AN AUXILIARY SPACE MULTIGRID PRECONDITIONER FOR THE WEAK GALERKIN METHOD
LONG CHEN*, JUNPING WANG†, YANQIU WANG‡, AND XIU YE§

Abstract. In this paper, we construct an auxiliary space multigrid preconditioner for the weak Galerkin method for second-order diffusion equations, discretized on simplicial 2D or 3D meshes. The idea of the auxiliary space multigrid preconditioner is to use an auxiliary space as a “coarse” space in the multigrid algorithm, where the discrete problem in the auxiliary space can be easily solved by an existing solver. In our construction, we conveniently use the H^1 conforming piecewise linear finite element space as an auxiliary space. The main technical difficulty is to build the connection between the weak Galerkin discrete space and the H^1 conforming piecewise linear finite element space. We successfully constructed such an auxiliary space multigrid preconditioner for the weak Galerkin method, as well as a reduced system of the weak Galerkin method involving only the degrees of freedom on edges/faces. The preconditioned systems are proved to have condition numbers independent of the mesh size. Numerical experiments further support the theoretical results.

Key words. Weak Galerkin finite element methods, multigrid, preconditioner.

AMS subject classifications. Primary, 65N15, 65N30.

1. Introduction. Consider the second-order diffusion equation

$$-\nabla \cdot (A \nabla u) = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega. \quad (1.1)$$

where Ω is a polygonal or polyhedral domain in \mathbb{R}^d ($d = 2, 3$). Assume that A is a symmetric, uniformly positive definite, and uniformly bounded-above diffusion matrix. Namely, there exist positive constants α and β such that

$$\alpha \xi^T \xi \leq \xi^T A(x) \xi \leq \beta \xi^T \xi \quad \text{for all } \xi \in \mathbb{R}^d \text{ and } x \in \Omega. \quad (1.2)$$

The goal of this paper is to construct and analyze an auxiliary space multigrid preconditioner for the weak Galerkin finite element discretization of Problem (1.1).

The weak Galerkin method was recently introduced in [15] for second order elliptic equations. It is an extension of the standard Galerkin finite element method where classical derivatives were substituted by weakly defined derivatives on functions with discontinuity. Optimal order of a priori error estimates has been observed and established for various weak Galerkin discretization schemes for second order elliptic equations [12, 15, 16]. An a posteriori error estimator was given in [5]. Numerical implementations of weak Galerkin were discussed in [12, 13] for some model problems.

*Department of Mathematics, University of California, Irvine -Irvine, CA 92697-3875 (chen-long@math.uci.edu). The research of Chen has been supported by NSF Grant DMS-1418934.
†Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230 (jwang@nsf.gov). The research of Wang was supported by the NSF IR/D program, while working at the Foundation. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.
‡Department of Mathematics, Oklahoma State University, Stillwater, OK 74075 (yqwang@math.okstate.edu).
§Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204 (xxye@ualr.edu). The research of Ye was supported in part by National Science Foundation Grant DMS-1115097.
The weak Galerkin method has already demonstrated many nice properties in various cases [11, 12, 15, 16]. Thus we are motivated to study fast solvers and preconditioning techniques for the weak Galerkin method.

The main results of this paper are:

- We develop a fast auxiliary space preconditioner for weak Galerkin methods using Raviart-Thomas element and Brezzi-Douglas-Marini element on triangular grids.
- We consider both the original system and the reduced system. The original weak Galerkin discretization of (1.1) involves degrees of freedom both on the interior of each mesh element and on mesh edges/faces. The reduced system, which only involves degrees of freedom on edges/faces, is to our knowledge first rigorously constructed and analyzed here.

Recently, Li and Xie announced an auxiliary space multigrid preconditioning method for the weak Galerkin finite element method, and the result was posted on ArXive [10]. This result became to be known to us after the bulk portion of the present paper was developed. Following a thorough comparison, we conclude that our results are more general, and the two approaches are different in analysis. In addition, our result offers a new feature by covering the weak Galerkin method in the reduced system.

We shall briefly introduce the auxiliary space preconditioner constructed in [19]. A classical geometric multigrid method constructs discrete spaces on different mesh levels using the same type of discretization. For example, in the classical multigrid method for \(H^1 \) conforming piecewise linear \((P_1) \) finite element approximation, one uses a set of nested meshes with characteristic mesh sizes \(h, 2h, 4h, \ldots \), from the finest mesh to the coarsest. An illustration of V-cycle multigrid is given in Figure 1.1. The auxiliary space multigrid method can be essentially understood as a two-level method involving a “fine” level and a “coarse” level, while the “fine” space and “coarse” space are not necessarily using the same type of discretization or the same type of meshes. This gives great freedom in choosing the “coarse” space, which is also called an auxiliary space. Here we use the weak Galerkin discretization for the “fine” level, and the \(H^1 \) conforming piecewise linear finite element discretization for the “coarse” level. Both the “fine” level and the “coarse” level are discretized on the same mesh, as shown in Figure 1.1. In the figure, we conveniently use black rectangles and black dots to denote different type of discretization spaces on different levels. Because the fast solvers for the \(H^1 \) conforming piecewise linear finite element discretization have been thoroughly studied, one can use any existing solvers/preconditioners as a “coarse” solver. For example, one may use a classical multigrid method as a “coarse” solver and consequently achieves a true “multi”-grid effect (see Figure 1.1).

The rest of the paper is organized as following. In Section 2, we give a brief introduction of the weak Galerkin method, and in Section 3 we construct the auxiliary space multigrid preconditioner for the weak Galerkin discretization, and prove that the condition number of the preconditioned system does not depend on the mesh size. After that, we consider a reduced system of the weak Galerkin discretization in Section 4 and construct an auxiliary space multigrid solver/preconditioner the reduced system, again with an optimal condition number estimate. Finally in Section 5 we present supporting numerical results.

2. A Weak Galerkin Finite Element Scheme. In this section, we give a brief introduction to the weak Galerkin method. Related notation, definitions, and several important inequalities will be stated.
Fig. 1.1. Illustration of auxiliary space multigrid. We use black rectangles and black dots to denote different type of discretization spaces. The dashed circles shows how to derive an auxiliary space “multi”-grid method by using a classical multigrid as a coarse solver in the two-grid auxiliary space multigrid framework.

Let $D \subseteq \Omega$ be a polygon or polyhedron, we use the standard definition of Sobolev spaces $H^s(D)$ and $H^s_0(D)$ with $s \geq 0$ (e.g., see [1, 7] for details). The associated inner product, norm, and semi-norms in $H^s(D)$ are denoted by $(\cdot, \cdot)_{s,D}$, $\| \cdot \|_{s,D}$, and $| \cdot |_{r,D}$, $0 \leq r \leq s$, respectively. When $s = 0$, $H^0(D)$ coincides with the space of square integrable functions $L^2(D)$. In this case, the subscript s is suppressed from the notation of norm, semi-norm, and inner products. Furthermore, the subscript D is also suppressed when $D = \Omega$. For $s < 0$, the space $H^s(D)$ is defined to be the dual of $H^{-s}(D)$.

The above definition/notation can easily be extended to vector-valued and matrix-valued functions. The norm, semi-norms, and inner-product for such functions shall follow the same naming convention. In addition, all these definitions can be transferred from a polygonal/polyhedral domain D to an edge/face e, a domain with lower dimension. Similar notation system will be employed. For example, $\| \cdot \|_{s,e}$ and $\| \cdot \|_e$ would denote the norm in $H^s(e)$ and $L^2(e)$ etc. We also define the $H(\text{div})$ space as follows

$$H(\text{div}, \Omega) = \{ q : q \in [L^2(\Omega)]^d, \nabla \cdot q \in L^2(\Omega) \}.$$

Using the notation defined above, the variational form of Equation (1.1) can be written as: Given $f \in L^2(\Omega)$, find $u \in H^1_0(\Omega)$ such that

$$(A \nabla u, \nabla v) = (f, v) \quad \text{for all } v \in H^1_0(\Omega). \quad (2.1)$$

It is well known that equation (2.1) admits a unique solution. In addition, we assume that the solution to (2.1) has H^{1+s} regularity [3, 8], where $0 < s \leq 1$. In other words, the solution u is in $H^{1+s}(\Omega)$ and there exists a constant C independent of u such that

$$\|u\|_{1+s} \leq C\|f\|_0. \quad (2.2)$$

Next, we present the weak Galerkin method for solving (2.1). Let \mathcal{T}_h be a shape-regular, quasi-uniform triangular/tetrahedral mesh on the domain Ω, with characteristic mesh size h. For each triangle/tetrahedron $K \in \mathcal{T}_h$, denote by K_0 and ∂K the interior and the boundary of K, respectively. Geometrically, K_0 is identical to K. Therefore, later in the paper, we often identify these two if it causes no ambiguity. The boundary ∂K consists of three edges in two-dimension, or four triangles in three-dimension. Denote by E_h the collection of all edges/faces in \mathcal{T}_h. For simplicity,
throughout the paper, we use “\lesssim” to denote “less than or equal to up to a general constant independent of the mesh size or functions appearing in the inequality”.

Let j be a non-negative integer. On each $K \in T_h$, denote by $P_j(K_0)$ the set of polynomials with degree less than or equal to j. Likewise, on each $e \in \mathcal{E}_h$, $P_j(e)$ is the set of polynomials of degree no more than j. Following [15], we define a weak discrete space on mesh T_h by

$$V_h = \{ v : v|_{K_0} \in P_j(K_0) \text{ for } K \in T_h; \ v|_e \in P_l(e) \text{ for } e \in \mathcal{E}_h, \text{ and } v|_e = 0 \text{ for } e \in \mathcal{E}_h \cap \partial \Omega \}, \text{ where } l = j \text{ or } j + 1. $$

Observe that the definition of V_h does not require any continuity of $v \in V_h$ across interior edges/faces. A function in V_h is characterized by its value on the interior of each mesh element plus its value on edges/faces. Therefore, it is convenient to represent functions in V_h with two components, $v = \{ v_0, v_b \}$, where v_0 denotes the value of v on all K_0 and v_b denotes the value of v on \mathcal{E}_h. The polynomial space $P_l(e)$ consists of two choices: $l = j$ or $j + 1$ and the corresponding weak function space will sometimes be abbreviated as $W_{j,j}$ or $W_{j,j+1}$, respectively.

The weak Galerkin method seeks an approximation $u_h \in V_h$ to the solution of problem (2.1). To this end, we first introduce a discrete gradient operator, which is defined element-wisely on each $K \in T_h$. For the choices of V_h given above, i.e., using $W_{j,j}$ or $W_{j,j+1}$, suitable definitions of the weak gradient involve the Raviart-Thomas (RT) element and the Brezzi-Douglas-Marini (BDM) element, respectively. Let K be either a triangle or a tetrahedron and denote by $\tilde{P}_h(K)$ the set of homogeneous polynomials of order k in the variable $x = (x_1, \ldots, x_d)^T$. Define the BDM element by $G_j(K) = [P_{j+1}(K)]^d$ and the RT element by $G_j(K) = [P_j(K)]^d + \tilde{P}_j(K) x$ for $j \geq 0$. Then, define a discrete space

$$\Sigma_h = \{ q \in (L^2(\Omega))^d : q|_K \in G_j(K) \text{ for } K \in T_h \}.$$

Here in the definition of V_h and Σ_h, the RT element is paired with $W_{j,j}$ while the BDM element is paired with $W_{j,j+1}$. Note that Σ_h is not necessarily a subspace of $H(\text{div}, \Omega)$, since it does not require any continuity in the normal direction across mesh edges/faces.

Definition 2.1 (Discrete Weak Gradient). The discrete weak gradient of v_h denoted by $\nabla_w v_h$ is defined as the unique polynomial $(\nabla_w v_h)|_K \in G_j(K)$ satisfying the following equation

$$\begin{align*}
(\nabla_w v_h, q)_K = -(v_0, \nabla \cdot q)_K + \langle v_b, q \cdot n \rangle_{\partial K} \quad \text{for all } q \in G_j(K),
\end{align*}$$

where n is the unit outward normal on ∂K.

Clearly, such a discrete weak gradient is always well-defined. Furthermore, if $v \in H^1(K)$, i.e. $v_b = 0|_{\partial K}$, and $\nabla v \in G_j(K)$, then one has $\nabla_w v = \nabla v$. In this paper we only consider the $W_{j,j} - RT$ and $W_{j,j+1} - BDM$ pairs on simplicial elements in the discretization. But there are many other different choices of discrete spaces in the weak Galerkin method, defined on either simplicial meshes or other types of meshes including general polytopal meshes [12]. Extension of the multigrid preconditioner to other weak Galerkin discretizations will be considered in the future work.

We define an L^2 projection from $H_0^1(\Omega)$ onto V_h by setting $Q_h v = \{ Q_0 v, Q_b v \}$, where $Q_0 v|_{K_0}$ is the local L^2 projection of v to $P_j(K_0)$, for $K \in T_h$, and $Q_b v|_e$ is the local L^2 projection to $P_l(e)$, for $e \in \mathcal{E}_h$. We also introduce Q_h the L^2 projection onto Σ_h. It is not hard to see the following operator identity [13]:

$$Q_h \nabla u = \nabla_w Q_h u, \quad \text{for all } u \in H_0^1(\Omega) \quad (2.4)$$
For the $W_{j,j} - RT$ and $W_{j,j+1} - BDM$ pairs, it follows directly from \[2.4\] that the discrete weak gradient is a good approximation to the classical gradient, as summarized in the following lemma \[15\].

Lemma 2.2. For any $v_h = \{v_0, v_b\} \in V_h$ and $K \in \mathcal{T}_h$, $\nabla_w v_h|_K = 0$ if and only if $v_0 = v_b = \text{constant on } K$. Furthermore, for any $v \in H^{m+1}(\Omega)$, where $0 \leq m \leq j + 1$, we have

$$\|\nabla_w(Q_h v) - \nabla v\| \lesssim h^m \|v\|_{m+1}.$$

In particular, for $v \in H^1(\Omega)$, the L^2-projection Q_h is energy stable, i.e.,

$$\|\nabla_w(Q_h v)\| \lesssim \|\nabla v\| \quad \text{for } v \in H^1(\Omega). \quad (2.5)$$

Now we are able to present the weak Galerkin finite element formulation for \[2.1\]: Find $u_h = \{u_0, u_b\} \in V_h$ such that

$$a_h(u_h, v_h) = (f, v_0) \quad \text{for all } v_h = \{v_0, v_b\} \in V_h, \quad (2.6)$$

where the bilinear form $a_h(\cdot, \cdot)$ on $V_h \times V_h$ is defined by

$$a_h(u_h, v_h) := (\mathcal{A}\nabla_w u_h, \nabla_w v_h). \quad (2.7)$$

The well-posedness and error estimates of the weak Galerkin formulation \[2.6\] have been discussed in \[15\] [11]. To state these results, we first define a few discrete inner-products and norms. For any $v_h = \{v_0, v_b\}$ and $\phi_h = \{\phi_0, \phi_b\}$ in V_h, define a discrete L^2 inner-product by

$$\langle v_h, \phi_h \rangle \triangleq \sum_{K \in \mathcal{T}_h} [(v_0, \phi_0)_K + h(v_0 - v_b, \phi_0 - \phi_b)_{\partial K}].$$

It is not hard to see that $\langle v_h, v_h \rangle = 0$ implies $v_h \equiv 0$. Hence, the inner-product is well-defined. Notice that the inner-product $\langle \cdot, \cdot \rangle$ is also well-defined for any $v \in H^1(\Omega)$, for which $v_{b|_e} = v|_e$ is the trace of v on the edge e. In this case, the inner-product $\langle \cdot, \cdot \rangle$ is identical to the standard L^2 inner-product.

Define on each $K \in \mathcal{T}_h$

$$\|v_h\|_{0,h,K}^2 = \|v_0\|_{0,K}^2 + h\|v_0 - v_b\|_{\partial K}^2,$$

$$\|v_h\|_{1,h,K}^2 = \|v_0\|^2_{1,K} + h^{-1}\|v_0 - v_b\|_{\partial K}^2,$$

$$\|v_h\|_{1,h,K}^2 = \|v_0\|^2_{1,K} + h^{-1}\|v_0 - v_b\|_{\partial K}^2.$$

Using the above quantities, we define the following discrete norms and semi-norms on the discrete space V_h

$$\|v_h\|_{0,h} := \left(\sum_{K \in \mathcal{T}_h} \|v_h\|_{0,h,K}^2\right)^{1/2},$$

$$\|v_h\|_{1,h} := \left(\sum_{K \in \mathcal{T}_h} \|v_h\|_{1,h,K}^2\right)^{1/2},$$

$$|v_h|_{1,h} := \left(\sum_{K \in \mathcal{T}_h} |v_h|_{1,h,K}^2\right)^{1/2}.$$
It is clear that \(\|v_h\|_{0,h}^2 = \langle v_h, v_h \rangle \). Moreover, we point out that the above norms and semi-norms are also well-defined for functions in \(H^1(\Omega) \). In this case they are identical to the usual \(L^2 \)-norm, \(H^1 \)-norm, and \(H^1 \)-seminorm, respectively.

With the aid of the above defined norms, we state an additional estimate of the \(L^2 \) projection \(Q_h \), which was proved in [11].

Lemma 2.3. For any \(v \in H^m(\Omega) \) with \(\frac{3}{2} < m \leq j + 1 \), we have

\[
\|v - Q_h v\|_{0,h} \lesssim h^m \|v\|_{m}.
\]

(2.8)

The following three Lemmas have also been proved in [11]. First, we have the equivalence between \(\|\nabla w(\cdot)\| \) and the \(|\cdot|_{1,h} \) semi-norm:

Lemma 2.4. For any \(v_h = \{v_0, v_b\} \in V_h \), we have

\[
|v_h|_{1,h} \lesssim \|\nabla v_h\| \lesssim |v_h|_{1,h}.
\]

(2.9)

Moreover, the discrete semi-norms satisfy the usual inverse inequality, as stated in the following Lemma.

Lemma 2.5. For any \(v_h = \{v_0, v_b\} \in V_h \), we have

\[
|v_h|_{1,h} \lesssim h^{-1} \|v_h\|_{0,h}.
\]

(2.10)

Consequently, by combining \(2.9 \) and \(2.10 \), we have

\[
\|\nabla v_h\| \lesssim h^{-1} \|v_h\|_{0,h}.
\]

(2.11)

Next, the discrete semi-norm \(\|\nabla w(\cdot)\| \), which is equivalent to \(|\cdot|_{1,h} \) as shown in Lemma 2.4, satisfies a Poincaré-type inequality.

Lemma 2.6. The Poincaré-type inequality holds true for functions in \(V_h \). In other words, we have the following estimate:

\[
\|v_h\|_{0,h} \lesssim \|\nabla v_h\| \quad \text{for all} \quad v_h \in V_h.
\]

(2.12)

Following the above lemmas and (4.2), it is clear that equation (2.6) admits a unique solution. This, together with error estimates for the weak Galerkin method, has been proved in [15].

Theorem 2.7. Assume Problem (2.1) has \(H^{1+s} \) regularity, where \(0 < s \leq 1 \). The weak Galerkin problem (2.6) admits a unique solution. Let \(u \in H^1_0(\Omega) \cap H^{m+1}(\Omega) \), \(0 \leq m \leq j + 1 \), be the solution to (2.1) and \(u_h = \{u_{h,0}, u_{h,b}\} \) be the solution to (2.6), then we have

\[
\|\nabla w(Q_h u - u_h)\| \lesssim h^m \|u\|_{m+1},
\]

\[
\|Q_0 u - u_{h,0}\| \lesssim h^{m+s} \|u\|_{m+1} + h^{1+s} \|f - Q_0 f\|.
\]

(2.13)

(2.14)

Remark 2.1. Theorem 2.7 is only stated for homogeneous Dirichlet boundary value problems. Similar results hold for problems with non-homogeneous Dirichlet boundary or Neumann boundary conditions [11, 13].

At the end of this section, we state a scaled trace theorem. Let \(K \) be an element with \(e \) as an edge. It is well known that for any function \(g \in H^1(K) \) one has

\[
\|g\|_e^2 \lesssim h^{-1} \|g\|_K^2 + h \|\nabla g\|_K^2.
\]

(2.15)
3. An auxiliary space multigrid preconditioner. In this section, we construct an auxiliary space multigrid method for the weak Galerkin formulation \[26\]. The auxiliary space multigrid method was introduced by J. Xu in \[10\]. Its main idea is to use an auxiliary space as a “coarse” space in the multigrid algorithm, where the discrete problem in the auxiliary space can be easily solved by an existing solver. In our construction, we will use the H^1 conforming piecewise linear finite element space as an auxiliary space. The main technical difficulty is to build the connection between the weak Galerkin discrete space V_h and the H^1 conforming piecewise linear finite element space.

Define the auxiliary space $V_h \subset H^1_0(\Omega)$ to be H^1 the conforming piecewise linear finite element space on mesh \mathcal{T}_h. The spaces V_h and V_h are equipped with inner-products $\langle \cdot, \cdot \rangle$ and (\cdot, \cdot), and induced norms $\| \cdot \|_{0,h}$ and $\| \cdot \|$, respectively. Define linear operators $A : V_h \rightarrow V_h$ and $\mathcal{A} : V_h \rightarrow V_h$ by

$$
\langle Au, v \rangle = (A \nabla w u, \nabla w v) \quad \text{for all } v \in V_h,
$$
$$
(Au, v) = (A \nabla w u, \nabla v) \quad \text{for all } v \in V_h.
$$

By the Poincaré inequality and Lemma \[2.6\], it is clear that operators A and \mathcal{A} are symmetric and positive definite with respect to $\langle \cdot, \cdot \rangle$ and (\cdot, \cdot), respectively. Hence we can define the A-norm and \mathcal{A}-norm on V_h and V_h, respectively, by

$$
\|v\|_A = \langle Av, v\rangle^{1/2} = (A \nabla w v, \nabla v)^{1/2} \quad \text{for all } v \in V_h,
$$
$$
\|w\|_{\mathcal{A}} = (A w, w)^{1/2} = (A \nabla w, \nabla w)^{1/2} \quad \text{for all } w \in V_h.
$$

It is well-known that the spectral radius and condition number of operator A is $O(h^{-2})$ \[2\]. We have similar estimate for the operator A. Note that the authors of \[10\] also give a proof of the order of the condition number. But our proof is different from theirs and seems to be easier.

Lemma 3.1. The spectral radius of operator A, denoted by $\rho_A = \lambda_{\text{max}}(A)$, and the condition number of operator A, denoted by $\kappa(A)$, are both of order h^{-2}.

Proof. By the definition of A and Lemma \[2.5\], for all $v \in V_h$,

$$
\langle Av, v \rangle \lesssim \|\nabla w v\|^2 \lesssim h^{-2} \|v\|_{0,h}^2 = h^{-2} \langle v, v \rangle.
$$

Because A is symmetric and positive definite with respect to $\langle \cdot, \cdot \rangle$, the above inequality implies that $\lambda_{\text{max}}(A) \lesssim h^{-2}$. The discrete Poincaré inequality \[2.12\] implies $\lambda_{\text{min}}(A) \gtrsim 1$. Therefore $\kappa(A) = \lambda_{\text{max}}(A)/\lambda_{\text{min}}(A) \lesssim h^{-2}$.

To derive a lower bound for $\lambda_{\text{max}}(A)$, we first consider functions in V_h with the form $v = \{v_0, v_h\}$. In other words, $v_0 \equiv 0$. Then, by the definition of discrete norms, Lemma \[2.4\] and the fact that A is uniformly positive definite, for such function v we have

$$
\langle Av, v \rangle \gtrsim \|\nabla w v\|^2 \gtrsim |v|^2_{1,h} = \sum_{K \in T_h} h^{-1} |v_h|^2_{\partial K}
$$
$$
= h^{-2} \sum_{K \in T_h} h |v_h|^2_{\partial K} = h^{-2} \|v\|^2_{0,h} = h^{-2} \langle v, v \rangle.
$$

Therefore, we must have $\lambda_{\text{max}}(A) \gtrsim h^{-2}$. This implies the spectral radius $\rho_A = \lambda_{\text{max}}(A) = O(h^{-2})$.

To get $\lambda_{\text{min}}(A) \lesssim 1$, we chose the eigen-function w of the smallest eigenvalue, λ_1, of $-\Delta$ with homogeneous Dirichlet boundary condition which satisfies $1 = \|\nabla w\| = \|w\|_{0,1}$. \[7\]
\(\lambda_1 = O(1) \). We then project \(w \) to \(V_h \) using the \(L^2 \)-projection, i.e., \(w_h = Q_hw \). We estimate the norm of \(w_h \) as follows: when \(h \) is sufficiently small, by the triangle inequality and Lemma 2.3 one has
\[
\|w_h\| \geq \|w\| - \|w - w_h\| \gtrsim \|w\| - Ch\|\nabla w\| = \|w\| - Ch \gtrsim \|w\|,
\]
where \(C \) is a positive, general constant. By the above inequality and the stability of \(Q_h \) in the energy norm, c.f. (2.5), we have
\[
\|w_h\|_{A} \lesssim \|\nabla w\| = \sqrt{\lambda_1}\|w\| \lesssim \|w_h\|.
\]
This completes the proof of the lemma. \(\square \)

Remark 3.1. By the triangle inequality, the trace inequality (2.15) and the inverse inequality, the norm \(\|v_h\|_{0,h} \) is equivalent to \(\left(\sum_{K \in T_h}(\|v_h\|^2_K + h^2\|v_h\|^2_{\partial K}) \right)^{1/2} \) in \(V_h \). In practice, equation (2.6) can be written as a linear algebraic system by using the canonical bases of \(V_h \), i.e. Lagrange bases of \(P_1(K) \) and \(P_1(e) \) on each \(K \) and \(e \). Using the standard scaling argument and the equivalent norm of \(\| \cdot \|_{0,h} \), it is not hard to see that for any \(v_h \in V_h \), one has \(\|v_h\|^2_{0,h} \approx h^d \|v_h\|^2_2 \), where \(v_h \) is the vector representation of \(v_h \) under the canonical bases and \(\| \cdot \|^2_2 \) is the Euclidean norm of vectors. Then, the stiffness matrix in the linear algebraic system resulting from (2.6), i.e., the matrix representation of \(\langle A \cdot, \cdot \rangle \), also has condition number of order \(O(h^{-2}) \). Thus it is not easy to solve equation (2.6) without efficient preconditioning.

Next, we introduce the auxiliary space multigrid method for solving equation (2.6). The idea is to construct a multigrid method using \(V_h \) as the “fine” space and \(V_h \) as the “coarse” space. Since \(A \) is the discrete Laplacian on the conforming piecewise linear finite element space, the “coarse” problem in \(V_h \) can be solved by many efficient, off-the-shelf solvers such as the standard multigrid solver or a domain decomposition solver. Denote \(B : V_h \rightarrow V_h \) to be such a “coarse” solver. It can be either an exact solver or an approximate solver that satisfies certain conditions, which will be given later. Next, on the fine space, we need a “smoother” \(R : V_h \rightarrow V_h \), which is symmetric and positive definite. For example, \(R \) can be a Jacobi or symmetric Gauss-Seidel smoother. Finally, to connect the “coarse” space with the “fine” space, we need a “prolongation” operator \(\Pi : V_h \rightarrow V_h \). A “restriction” operator \(\Pi^t : V_h \rightarrow V_h \) is consequently defined by
\[
(\Pi^tv, w) = \langle v, \Pi w \rangle \quad \text{for} \ v \in V_h \ \text{and} \ w \in V_h.
\]
Then, the auxiliary space multigrid preconditioner \(B : V_h \rightarrow V_h \), following the definition in [18], is given by
\[
\begin{align*}
\text{Additive} & \quad B = R + \Pi \Pi^t, \\
\text{Multiplicative} & \quad I - BA = (I - RA)(I - \Pi \Pi^t)(I - RA).
\end{align*}
\]
Both the additive and the multiplicative versions define symmetric multigrid solvers/preconditioners. Readers may refer to [18] for the equivalence between symmetric solvers and preconditioners for symmetric problems. Non-symmetric multiplicative multigrid solver can similarly be defined but it cannot be used as a preconditioner. Thus we restrict our attention to the symmetric version. According to [19], the following theorem holds.
Theorem 3.2. Assume that for all \(v \in V_h, w \in V_h \),
\[
\rho_A^{-1} \langle v, v \rangle \lesssim \langle Rv, v \rangle \lesssim \rho_A^{-1} \langle v, v \rangle,
\]
\[
(Aw, w) \lesssim (B Aw, Aw) \lesssim (Aw w),
\]
\[
\|\Pi w\|_A \lesssim \|w\|_A \quad \text{(stability of } \Pi),
\]
and furthermore, assume that there exists a linear operator \(P : V_h \to V_h \) such that
\[
\|Pv\|_A \lesssim \|v\|_A \quad \text{(stability of } P)
\]
\[
\|v - \Pi Pv \|_{0,A} \lesssim \rho_A^{-1} \|v\|_A^2 \quad \text{(approximability)}.
\]
Then the preconditioner \(B \) defined in (3.2) or (3.3) satisfies
\[
\kappa(BA) \lesssim O(1).
\]

Remark 3.2. Theorem 3.2 states that \(B \) is a good preconditioner for \(A \) as the condition number of \(BA \) is uniformly bounded. We thus can use the preconditioned conjugate gradient (PCG) method with \(B \) being an effective preconditioner for solving the linear algebraic equation system associate to \(Au = f \). According to [18], Theorem 3.2 also implies that \(I - \omega BA \), where \(0 < \omega < 2/\rho_{BA} \), defines an efficient iterative solver.

Now we shall construct an auxiliary space preconditioner which satisfies all conditions in Theorem 3.2, namely, inequalities (3.4)-(3.8). It is straightforward to pick \(B \) that satisfies condition (3.5). For example, \(B \) can be either the direct solver, for which \(B \sim A^{-1} \), or one step of classical multigrid iteration [2] which satisfies condition (3.5).

The smoother \(R \) is also easy to define. In view of Remark 3.1, a Jacobi or a symmetric Gauss-Seidel smoother [2] will satisfy condition (3.4). Hence it remains to construct operators \(\Pi \) and \(P \) that satisfy the conditions (3.6)-(3.8).

The operator \(\Pi \) is actually easy to choose, and we simply define \(\Pi = Q_h = \{Q_0, Q_b\} \). Note when \(V_h \) consists of \(W_{j,j} \) elements or \(W_{j,j+1} \) elements with \(j \geq 1 \), it is clear that for all \(w \in V_h \) and \(K \in T_h \), \(\Pi w|_K = \{w|_K, w|_{\partial K}\} \) which is just the natural inclusion of \(V_h \) into \(V_h \). The stability of \(\Pi \) in the energy norm follows immediately from (2.5) and the boundedness of the diffusion coefficient \(A \): Lemma 3.3. Let \(\Pi = Q_h = \{Q_0, Q_b\} \). Then \(\Pi \) satisfies condition (3.6), i.e.,
\[
\|\Pi w\|_A \lesssim \|w\|_A, \quad \text{for all } w \in V_h.
\]

Next, we construct an operator \(P \) that satisfies (3.7) and (3.8).

Definition 3.4. Let \(0 \leq \alpha_1, \alpha_2, \ldots, \alpha_k \leq 1 \) satisfy \(\sum_{i=1}^k \alpha_i = 1 \), and let \(\{c_1, c_2, \ldots, c_k\} \) be a sequence of numbers. The value \(\sum_{i=1}^k \alpha_i c_i \) is called a convex combination of \(\{c_1, c_2, \ldots, c_k\} \).

A function in \(V_h \) is completely determined by its value on mesh vertices. Let \(v = \{v_0, v_b\} \in V_h \). To define \(P v \), one only needs to specify its value on all mesh vertices. Hence we can define \(P \) as follows: on each mesh vertex \(x \), the value of \(P v(x) \) is a prescribed convex combination of the values of \(v_0(x) \) and \(v_b(x) \) on all mesh elements and edges/faces that have \(x \) as a vertex. Moreover, to preserve the homogeneous boundary condition, when \(x \in \partial \Omega \), the convex combination shall be...
constructed such that it only depends on the value of \(v_0(x) \) on boundary edges/faces that have \(x \) as a vertex. Of course, for problems with the homogeneous Dirichlet boundary condition, one can simply set \(P v(x) = 0 \) on boundary vertices. But the current set-up would allow easy extension to non-homogeneous boundary conditions.

Lemma 3.5. Operator \(P \) satisfies
\[
\| v - P v \|_{0,h}^2 + h^2 \| v - P v \|_{1,h}^2 \lesssim h^2 \| v \|_{1,h}^2, \quad \text{for all } v \in V_h.
\] (3.9)

Proof. For each \(K \in T_h \), denote by \(V(K) \) the vertices of \(K \). For each \(K \in T_h \) and \(v = \{ v_0, v_b \} \in V_h \), denote by \(I_{h,K} v_0 \) the nodal value interpolation of \(v_0 \) into \(P_1(K) \), i.e., \(I_{h,K} v_0 \in P_1(K) \) and is identical to \(v_0 \) on \(V(K) \). By the approximation property of nodal value interpolations, the scaling argument, the definition of \(P \), the triangle inequality, and the finite overlapping property of quasi-uniform meshes, we have
\[
\| v - P v \|_{0,h}^2 = \sum_{K \in T_h} \left(|v_0 - I_{h,K} v_0|_{0,K}^2 + h^2 |I_{h,K} v_0(x) - P v(x)|^2 + h \| v_0 - v_b \|_{0,\partial K}^2 \right)
\lesssim \sum_{K \in T_h} \left(h^2 |v_0|_{0,K}^2 + \sum_{x \in V(K)} h^2 |I_{h,K} v_0(x) - v_b(x)|^2 + h \| v_0 - v_b \|_{0,\partial K}^2 \right)
\lesssim \sum_{K \in T_h} \left(h^2 |v_0|_{0,K}^2 + h \| v_0 - v_b \|_{0,\partial K}^2 \right)
= h^2 \| v \|_{1,h}^2.
\]

Combining the above with the inverse inequality (2.10) completes the proof of the lemma. \(\square \)

Lemma 3.6. The operator \(P \) satisfies the properties (3.7) and (3.8).

Proof. By using inequalities (3.9) and (2.9), for all \(v \in V_h \), we have
\[
\| P v \|_{0,K}^2 \lesssim |P v|_{1,h}^2 \lesssim \| v - P v \|_{1,h}^2 + |v|_{1,h}^2 \lesssim |v|_{1,h}^2 \lesssim \| v \|_{1,K}^2.
\]
This completes the proof of Inequality (3.7).

We then estimate \(\| P v - \Pi P v \|_{0,h} \). When \(j \geq 1 \), \(\| P v - \Pi P v \|_{0,h} = 0 \) since \(\Pi \) is the natural inclusion. We only need to consider the case \(j = 0 \). Since \(\Pi P v \) is the average of \(P v \), we get
\[
\| P v - \Pi P v \|_{K} \lesssim h |P v|_1, \quad \| P v - \Pi P v \|_{\partial K} \lesssim h |P v|_{1,\partial K},
\]
by the average type Poincaré inequality. By the scaled trace inequality (2.15) and the fact \(|P v|_{2,K} = 0 \) for a piecewise linear function, we can bound \(h^{1/2} |P v|_{1,\partial K} \lesssim |P v|_{1,K} \). Therefore, we obtain
\[
\| P v - \Pi P v \|_{0,h} \lesssim h |P v|_1 = h |P v|_{1,h} \lesssim h \| v \|_{1,h}.
\]
Then, by the triangle inequality and the coercivity of operator \(A \), for all \(v \in V_h \), we have
\[
\| v - \Pi P v \|_{0,h} \lesssim \| v - P v \|_{0,h} + \| P v - \Pi P v \|_{0,h} \lesssim h \| v \|_{1,h} \lesssim h \| v \|_A.
\]
Combining the above with the estimate $\rho_A = O(h^{-2})$ (see Lemma \ref{lem:3.1}), this completes the proof of Inequality \eqref{eq:3.8}.

Remark 3.3. In the proof of Lemma \ref{lem:3.6}, one may also use Lemma \ref{lem:2.3} and the Poincaré inequality to estimate $\|Pv - \Pi Pv\|_{0,h}$, i.e.,

$$\|Pv - \Pi Pv\|_{0,h} \lesssim h\|Pv\|_1 \lesssim h|Pv|_1.$$

This requires the Poincaré inequality for Pv, which is not true for non-homogeneous Dirichlet boundary problems. The current approach avoids such difficulty and can thus be easily extended to non-homogeneous Dirichlet boundary problems or Neumann boundary problems.

By now, all conditions in Theorem \ref{thm:3.2} have been verified for the given multigrid construction. We summarize it in the following theorem:

Theorem 3.7. Suppose we have a smoother R and an auxiliary solver B satisfying the property: for all $v \in V_h, w \in V_h$,

$$\rho_A^{-1}(v, v) \lesssim (Rv, v) \lesssim \rho_A^{-1}(v, v),$$

$$(Aw, w) \lesssim (Bw, w) \lesssim (Aw, w).$$

Let $B = R + \Pi B^\dagger$ or defined implicitly by the relation $I - BA = (I - RA)(I - \Pi B^\dagger)(I - RA)$. Then B is symmetric and positive definite and $\kappa(BA) \lesssim O(1)$.

Remark 3.4. The operator P, although its definition seems to be complex, is only needed in the theoretical analysis. In the implementation, one only needs B, R and Π. It is also well-known that the matrix representation of the restriction operator Π^\dagger is just the transpose of the matrix representation of the prolongation operator Π.

4. Reduced system and its multigrid preconditioner. By using the Schur complement, the weak Galerkin problem (2.6) can be reduced to a system involving only the degrees of freedom on mesh edges/faces. In this section, we present such a reduced system and construct an auxiliary space multigrid preconditioner for the reduced system.

4.1. Reduced system. Let

$$V_0 = \{v \mid v = \{v_0, 0\} \in V_h\},$$

$$V_b = \{v \mid v = = \{0, v_b\} \in V_h\},$$

be two subspaces of V_h. Clearly one has $V_b = V_0 + V_b$. For any function $v = \{v_0, v_b\} \in V_h$, it is convenient to extend the notation of v_0 and v_b so that, without ambiguity, $v_0 \in V_0$ and $v_b \in V_b$. Functions in V_0 and V_b will also often be referred to as v_0 and v_b, respectively.

Then Equation (2.6) can be rewritten into

$$\begin{cases}
 a_h(u_0, v_b) + a_h(u_b, v_b) = 0, & \text{for all } v_b \in V_b, \\
 a_h(u_0, v_0) + a_h(u_b, v_0) = (f, v_0) & \text{for all } v_0 \in V_0.
\end{cases}$$

By choosing a basis of V_h, we can obtain a matrix form of (4.1). Let \mathbf{v} be the vector representation of a weak function $v \in V_h$ and \mathbf{M} be the matrix representation of an operator M relative to the chosen basis. We can write the matrix form of (4.1) as follows

$$\begin{pmatrix}
 A_b & A_{0b} \\
 A_{0b} & A_0
\end{pmatrix}
\begin{pmatrix}
 u_b \\
 u_0
\end{pmatrix} =
\begin{pmatrix}
 0 \\
 f
\end{pmatrix}.$$

(4.2)
Note that A_0 is block-diagonal. We can thus solve u_0 from the second equation and substitute into the first equation to obtain the Schur complement equation

$$(A_b - A_{b0}A_0^{-1}A_{0b})u_b = -A_0^{-1}f. \quad (4.3)$$

After u_b is obtained by solving (4.3), the interior part $u_0 = A_0^{-1}(f - A_{0b}u_b)$ can be computed element-wise.

The reduced system (4.3) involves less degrees of freedom than the original weak Galerkin system (4.2). Indeed, the difference between these two degrees of freedom is exactly $\dim(V_0)$, which is equal to $(j + 1)(j + 2)/2$ times the total number of mesh triangles in two-dimension, and $(j + 1)(j + 2)(j + 3)/6$ times the total number of mesh tetrahedron in three-dimension. More importantly, the Schur complement $A_b - A_{b0}A_0^{-1}A_{0b}$ is also a SPD matrix and has the same sparsity as A_b. Therefore solving the reduced system (4.3) is more efficient than solving the original system (4.2) provided a good preconditioner for (4.3) is available. In the rest of this section, we will construct a fast auxiliary multigrid preconditioner for (4.3). Note that the algorithm is implemented in the matrix formulation. The analysis, however, is given in the operator form. In the following we will introduce corresponding operators.

We first introduce an $a_h(\cdot, \cdot)$-orthogonal projector P_0 from V_b to V_0 as follows: For $v_b \in V_b$, define $P_0v_b \in V_0$ such that

$$a_h(P_0v_b, \zeta_0) = a_h(v_b, \zeta_0) \quad \text{for all } \zeta_0 \in V_0.$$

It is not hard to see that $\| (I - P_0)v_b \|_{0,b} = \| -P_0v_b, v_b \|_{0,b}$ is a well-defined norm on V_b. In the following analysis we shall always equip V_0 with this new norm and V_b with the inherited norm $\| \cdot \|_{0,h}$. By the trace inequality, the inverse inequality and the definition of $\| \cdot \|_{0,h}$, one has

$$\| P_0v_b \|_{0,h} \lesssim \| P_0v_b \| \lesssim \| \{ -P_0v_b, v_b \} \|_{0,h} = \| (I - P_0)v_b \|_{0,h},$$

which implies that $P_0 : V_b \to V_0$ is a bounded linear operator under the newly assigned norms. Denote by V_0' and V_0^\prime the space of bounded linear functionals on V_0 and V_b, respectively. Then the bounded linear operator P_0 induces a bounded dual operator $P_0^\prime : V_0^\prime \to V_b^\prime$, i.e., for $F \in V_0^\prime$, $(P_0^\prime F, v_b) \equiv \langle F, P_0v_b \rangle$ for all $v_b \in V_b$. In particular, let F be defined by $\langle F, \cdot \rangle = \langle f, \cdot \rangle$ for $f \in L^2(\Omega)$, then one has $\langle P_0^\prime F, v_b \rangle = \langle f, P_0v_b \rangle$.

We claim, and will prove later, that the operator form of the Schur complement equation (4.3) is

$$a_h((I - P_0)v_b, v_b) = -(P_0^\prime F, v_b), \quad \text{for all } v_b \in V_b. \quad (4.4)$$

Note that by the property of the projection P_0, Equation (4.4) can also be written into the symmetric form $a_h((I - P_0)v_b, (I - P_0)v_b) = -\langle P_0^\prime F, v_b \rangle$ for all $v_b \in V_b$.

To prove this, we first define a linear operator $A_0^{-1} : L^2(\Omega) \to V_0$ by: for a function $g \in L^2(\Omega)$, one has $A_0^{-1}g \in V_0$ such that

$$a_h(A_0^{-1}g, v_0) = \langle g, v_0 \rangle \quad \text{for all } v_0 \in V_0.$$

The well-posedness of A_0^{-1} follows directly from the coercivity of $a_h(\cdot, \cdot)$ on V_h, and consequently on its subspace V_0. Moreover, the restriction of A_0^{-1} to V_0 is symmetric and positive definite. Noticing that $\nabla\cdot v_b$ is locally defined on each mesh element, it is clear that A_0^{-1} is also locally defined on each mesh element.
Denote by ∇_h^\ast the piecewise divergence operator on Σ_h, and by $\mathbb{Q}_h : L^2(\Omega)^d \to \Sigma_h$ the L^2 projection. Using the above notation and the definition of ∇_w, the second equation in (4.1) implies that
\[
(A\nabla_w u_0, \nabla_w v_0) = (f, v_0) - (A\nabla_w u_b, \nabla_w v_0) = (f, v_0) + (\nabla_h \cdot (\mathbb{Q}_h A\nabla_w u_b), v_0),
\]
which leads to
\[
u_0 = A_0^{-1}(f + \nabla_h \cdot (\mathbb{Q}_h A\nabla_w u_b)).
\]

Next, we note that the projection P_0 is identical to $-A_0^{-1}\nabla_h \cdot (\mathbb{Q}_h A\nabla_w)$ on V_b:

Lemma 4.1. The orthogonal operator $P_0 : V_b \to V_b$
\[
P_0 v_b = -A_0^{-1}\nabla_h \cdot (\mathbb{Q}_h A\nabla_w v_b) \quad \text{for all } v_b \in V_b.
\]

Proof. By the definition of weak gradient ∇_w and A_0^{-1}, we have
\[
(A\nabla_w v_b, \nabla_w \zeta_0) = -(\nabla_h \cdot (\mathbb{Q}_h A\nabla_w v_b), \zeta_0) = -(A\nabla_w A_0^{-1}\nabla_h \cdot (\mathbb{Q}_h A\nabla_w v_b), \nabla_w \zeta_0).
\]

By the definition of P_0, we then complete the proof of the lemma. \qed

Remark 4.1. The operator P_0 corresponds to the matrix $A_0^{-1}A_{0b}$.

Now, by (4.6) and Lemma 4.1 one has $u_0 = A_0^{-1}f - P_0 u_b$. Substituting this into the first equation of (4.1) gives
\[
a_h((I - P_0)u_b, v_b) = -a_h(A_0^{-1}f, v_b) = -a_h(A_0^{-1}f, P_0 v_b) = -(f, P_0 v_b) = -(P_0^t F, v_b).
\]

This completes the derivation of the reduced problem (4.4) from the original problem (2.6). Here we emphasize again that $P_0^t F \in V'_b$ is bounded in the sense that
\[
||P_0^t F, v_b||_{V'} \lesssim ||(I - P_0)u_b||_{0,h}.
\]

We will further reformulate the reduced system (4.4). To this end, we define a subspace of V_b as $V_r = \{v_r | v_r = (I - P_0)v_b = -P_0 v_b, v_b \}$ for all $v_b \in V_b$, which is just the graph of V_b under $I - P_0$. The space V_r inherits the norm $||\cdot||_{0,h}$ from V_b, and hence V_r and V_b (equipped with the norm $||I - P_0||_{0,h}$) are clearly isomorphic under the mapping $I - P_0 : V_b \to V_r$. Moreover, the right-hand side of Equation (4.4) can be written into
\[
-\langle P_0^t F, v_b \rangle = -\langle \{0, P_0^t F\}, \{-P_0 v_b, v_b\} \rangle = -\langle \{0, P_0^t F\}, v_r \rangle = -\langle \mathcal{F}, v_r \rangle,
\]
where \mathcal{F} is a bounded linear functional on V_r according to (4.7).

By using Lemma 4.1 and combining the above analysis, Equation (4.4) can now be rewritten into: Find $u_r \in V_r$ such that
\[
a_h(u_r, v_r) = \langle \mathcal{F}, v_r \rangle, \quad \text{for all } v_r \in V_r.
\]
The well-posedness of (4.8) then follows from the continuity and coercivity of the bilinear form $a_h(\cdot, \cdot)$ restricted to V_r and the fact that \mathcal{F} is a bounded linear functional on V_r.

13
4.2. **Auxiliary space preconditioner for the reduced system.** Now we are able to consider an auxiliary space multigrid preconditioner for the reduced system \((4.8)\), using again the \(H^1\) conforming piecewise linear finite element space as the auxiliary space. Denote by \(A_r\) the restriction of operator \(A\), defined in \((3.1)\), to the subspace \(V_r\). That is, \(A_r : V_r \to V_r\) is defined by
\[
\langle A_r u, v \rangle = a_h(u, v) \quad \text{for all } v \in V_r.
\]

To apply Theorem \(3.2\) we define a prolongation operator \(\Pi_r : \mathcal{V}_h \to \mathcal{V}_r\) and a linear operator \(P_r : V_r \to \mathcal{V}_h\) by
\[
\Pi_r = (I - P_0)Q_h \quad \text{and} \quad P_r = P|_{V_r}.
\]

Lemma 4.2. Both \(\Pi_r\) and \(P_r\) are stable in the energy norm, i.e.,
\[
\|\Pi_r v\|_A \lesssim \|v\|_A, \quad \text{for all } v \in \mathcal{V}_h,
\]
\[
\|P_r v_r\|_A \lesssim \|v_r\|_A, \quad \text{for all } v_r \in V_r.
\]

Proof. The stability of \(\Pi_r\) follows from the property of \(P_0\) and the stability \((2.5)\) of \(Q_h\):
\[
\|\Pi_r v\|_A^2 = \|(I - P_0)Q_h v\|_A^2 = (A\nabla w(I - P_0)Q_h v, \nabla w(Q_h v + Q_0 v)) \\
\lesssim \|\Pi_r v\|_A \|Q_h v\|_A \lesssim \|\Pi_r v\|_A \|v\|_A.
\]
The stability of \(P_r\) simply follows from that of \(P\). This completes the proof of the lemma. \(\square\)

To verify the approximation property, we first explore the relation between \(Q_h w\) and \(\Pi_r w\) for \(w \in \mathcal{V}_h\). It turns out that \(Q_h w = \Pi_r w\) for all \(w \in \mathcal{V}_h\) when the diffusion coefficient matrix \(\mathbb{A}\) is piecewise constant.

Lemma 4.3. When \(\mathbb{A}\) is piecewise constant, we have for all \(w \in \mathcal{V}_h\),
\[
Q_h w = \Pi_r w.
\]

Proof. Recall that \(\Pi_r w = (I - P_0)Q_h w\). Since \(P_0\) is the orthogonal projection, we have
\[
(\mathbb{A}\nabla w \Pi_r w, \nabla w \zeta_0) = (\mathbb{A}\nabla w (I - P_0)Q_h w), \nabla w \zeta_0) = 0 \quad \text{for all } \zeta_0 \in V_0.
\]

On the other hand, using the relation \((2.4)\) and the fact that both \(\nabla w\) and \(\mathbb{A}\) are piecewise constant,
\[
(\mathbb{A}\nabla w Q_h w, \nabla w \zeta_0)_K = (\mathbb{A}Q_h \nabla w, \nabla w \zeta_0)_K = (\mathbb{A}\nabla w, \nabla w \zeta_0)_K \\
= -(\nabla h \cdot (\mathbb{A}\nabla w), \zeta_0)_K = 0, \quad \text{for all } \zeta_0 \in V_0.
\]

Therefore
\[
a_h(\Pi_r w - Q_h w, \zeta_0) = 0, \quad \text{for all } \zeta_0 \in V_0 \quad (4.11)
\]
The fact \(\Pi_r w - Q_h w \in V_0\) and the orthogonality \((4.11)\) implies \(\Pi_r w = Q_h w\). \(\square\)
Similar to the analysis in Section 3, we can establish the following results.

Lemma 4.4. Suppose A is piecewise constant and the space V_r is non-trivial, i.e., the triangulation contains at least one interior vertex. Then the spectral radius of operator A_r, denoted by ρ_{A_r}, is of order h^{-2}.

Proof. Recall that

$$\rho_{A_r} = \lambda_{\max}(A_r) = \max_{v \in V_r} \frac{(A_r v, v)}{(v, v)} = \max_{v \in V_r} \frac{(A v, v)}{(v, v)}.$$

Since $V_r \subset V_h$, we immediately get $\rho_{A_r} \leq \rho_A \lesssim h^{-2}$.

To show the lower bound, we pick a hat function $w \in V_h$. By the standard scaling argument,

$$\|w\| \lesssim h|\nabla w|.$$ \hspace{1cm} (4.12)

We then chose $v = \Pi_r w \in V_r$ and estimate its norms. First

$$\|v\|_{0,h} = \|\Pi_r w\|_{0,h} = \|Q_h w\|_{0,h} \lesssim \|w\|.$$ \hspace{1cm} (4.13)

Second, as ∇w is piecewise constant, $Q_h \nabla w = \nabla w$ and

$$\|\nabla w\| = \|Q_h \nabla w\| = \|\nabla w Q_h w\| = \|\nabla w \Pi_r w\| \lesssim (A_r v, v)^{1/2}. $$ \hspace{1cm} (4.14)

Combining (4.13), (4.14), and (4.12), we obtain

$$h^{-2} \|v\|_{0,h}^2 \lesssim (A_r v, v),$$

which implies $\rho_{A_r} \gtrsim h^{-2}$. \hfill \Box

Now we are able to derive the following approximation property:

Lemma 4.5. Under the same assumptions as in Lemma 4.4, one has

$$\|v_r - \Pi_r P_r v_r\|_{0,h} \lesssim \rho_{A_r}^{-1/2} \|v_r\|_A \quad \text{for all } v_r \in V_r.$$

Proof. By the triangular inequality and Equation (3.9), one has

$$\|v_r - \Pi_r P_r v_r\|_{0,h} = \|(I - P_0) v_b - \Pi_r P(I - P_0) v_b\|_{0,h}$$

$$\lesssim \|(I - P_0) v_b - P(I - P_0) v_b\|_{0,h} + \|w - Q_h w\|_{0,h}$$

$$\lesssim h\|(I - P_0) v_b\|_{1,h} + h\|w\|_1,$$

where we conveniently denote $w = P(I - P_0) v_b \in V_h$ and use $\Pi_r w = Q_h w$. In the last step, we have used

$$h\|w\|_1 \lesssim h\|w\|_1 = h\|P(I - P_0) v_b\|_{1,h} \lesssim h\|(I - P_0) v_b\|_{1,h}.$$

Combining the above and using Lemma 2.4 give

$$\|v_r - \Pi_r P_r v_r\|_{0,h} \lesssim h\|(I - P_0) v_b\|_{1,h} \lesssim h\|v_r\|_A.$$

According to Lemma 4.4, $\rho_{A_r} = O(h^{-2})$. This completes the proof of the lemma. \hfill \Box
Finally, for variable efficient A, if we denoted by \bar{A}, the piecewise constant approximation of A, then it is easy to show
\[
(\bar{A}\nabla w, \nabla w) \lesssim (\bar{A}\nabla w, \nabla w) \lesssim (\bar{A}\nabla w, \nabla w), \quad \text{for all } v \in V_h.
\]
Therefore, a good preconditioner for the piecewise constant case will lead to a good preconditioner for the variable case.

We are able to claim that, the auxiliary space multigrid preconditioner for the reduced system \([4, 8]\) again yields a preconditioner system with condition number of $O(1)$.

Theorem 4.6. Suppose we have a smoother R and auxiliary solver B satisfying the property: for all $v \in V_r$, $w \in V_h$,
\[
\rho^{-1}_{A_r}(v, v) \lesssim \langle Rv, v \rangle \lesssim \rho^{-1}_{A_r}(v, v),
\]
\[
(Aw, w) \lesssim \langle BAw, Aw \rangle \lesssim (Aw, w).
\]
Let $B = R + \Pi B\Pi^t$ or defined implicitly by the relation $I - BA_r = (I - RA_r)(I - \Pi B\Pi^t)(I - RA_r)$. Then B is symmetric and positive definite and $\kappa(BA_r) \lesssim O(1)$.

5. **Numerical results.** In this section, we examine the effectiveness of the auxiliary space multigrid preconditioner using several numerical examples. In all numerical experiments, we use the symmetric Gauss-Seidel smoothers as R and the multiplicative version of the multigrid preconditioner. It is known that the multiplicative version multigrid usually performs better than the corresponding additive version. The simulation is implemented using the MATLAB software package iFEM \([4]\).

The matrix A for the lowest order weak Galerkin discretization, i.e., $P_0 - P_0$ element, is assembled and the matrix A for the auxiliary problem using $P1$ element is obtained through the triple product $A = \Pi^t A \Pi$ where $\Pi : V_h \rightarrow V_h$ is the simple average. By doing so, there is no need to repeat the assembling procedure to get A and the implementation is more algebraic. After that, the matrices in coarse levels are obtained by the triple product using the standard prolongation and restriction operators of linear elements on hierarchical meshes. We use PCG with the auxiliary space multigrid preconditioner. The stopping criteria for all iterations are reached when the relative error of the residual is less than 10^{-8}. We report results for the original system and the reduced system, respectively. Since the main purpose of these numerical results is to examine the efficiency of the auxiliary space preconditioner instead of testing the accuracy of the weak Galerkin approximation, in the report we omit the approximation error part. Because of this, there is no need to list the exact solution for each test problem.

Example 1. We first consider the Poisson equation defined on a circular mesh of the unit disk. The coarsest mesh is shown in Fig. 5(a). A sequence of meshes are obtained by several uniformly regular refinements, i.e., a triangle is divided into four congruent four triangles by connecting middle points of edges, of the coarsest mesh. Results are summarized in Table 5.1.

Example 2. Next, we consider a variable coefficient problem with an oscillating coefficient:
\[
-\nabla \cdot (2(2 + \sin(10\pi x) \sin(10\pi y))\nabla u) = f
\]
on $[0, 1] \times [0, 1]$. The coarsest mesh has size $h = 1/4$ and is shown in Fig. 5(b). Fourth order quadrature is used when assembling the stiffness matrix. Results are summarized in Table 5.2.
Example 3. We consider a test problem on an L-shaped domain obtained by subtracting $[0,1] \times [-1,0]$ from $(-1,1) \times (-1,1)$. The Poisson equation on such a domain has $H^{3/2}$-regularity. Adaptive finite element method based on a posteriori error estimator constructed in [5] is used. A sample adaptive mesh obtained by bisection refinement is shown in Fig. 5 (c). For bisection grids, we apply coarsening algorithm developed in [6] to obtain a hierarchy of meshes. In Table 5.3 only results on some selected adaptive meshes are reported since the full list of adaptive meshes are long and the performance remains similar for all meshes.

![Initial grid of Example 1](image1.png) ![Initial grid of Example 2](image2.png) ![An adaptive grid of Example 3](image3.png)

Fig. 5.1. Meshes in Example 1, 2, 3.

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3446</td>
<td>13</td>
<td>0.052</td>
</tr>
<tr>
<td>13692</td>
<td>13</td>
<td>0.11</td>
</tr>
<tr>
<td>54584</td>
<td>13</td>
<td>0.41</td>
</tr>
<tr>
<td>217968</td>
<td>13</td>
<td>1.8</td>
</tr>
<tr>
<td>871136</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2086</td>
<td>8</td>
<td>0.02</td>
</tr>
<tr>
<td>8252</td>
<td>8</td>
<td>0.053</td>
</tr>
<tr>
<td>32824</td>
<td>8</td>
<td>0.17</td>
</tr>
<tr>
<td>130928</td>
<td>8</td>
<td>0.66</td>
</tr>
<tr>
<td>522976</td>
<td>8</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Table 5.1

Iteration steps and CPU time (in seconds) for Example 1. The left table is for the original system and the right table is for the reduced system.

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1312</td>
<td>13</td>
<td>0.017</td>
</tr>
<tr>
<td>5184</td>
<td>13</td>
<td>0.048</td>
</tr>
<tr>
<td>20608</td>
<td>14</td>
<td>0.17</td>
</tr>
<tr>
<td>82176</td>
<td>14</td>
<td>0.63</td>
</tr>
<tr>
<td>328192</td>
<td>14</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>9</td>
<td>0.013</td>
</tr>
<tr>
<td>3136</td>
<td>9</td>
<td>0.036</td>
</tr>
<tr>
<td>12416</td>
<td>10</td>
<td>0.082</td>
</tr>
<tr>
<td>49408</td>
<td>9</td>
<td>0.27</td>
</tr>
<tr>
<td>197120</td>
<td>9</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 5.2

Iteration steps and CPU time (in seconds) for Example 2. The left table is for the original system and the right table is for the reduced system.

Example 4. We consider the Poisson equation defined on the cube $\Omega = (-1,1)^3$. The coarsest mesh is shown in Fig. 5(a). A sequence of meshes are obtained by several uniformly regular refinements, i.e., a tetrahedron is divided into 8 small tetrahedron by connecting middle points of edges, of the coarsest mesh. Results are summarized in Table 5.4.
Table 5.3

Iteration steps and CPU time (in seconds) for Example 3. The left table is for the original system and the right table is for the reduced system.

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>13</td>
<td>0.0099</td>
<td>160</td>
<td>8</td>
<td>0.0088</td>
</tr>
<tr>
<td>574</td>
<td>13</td>
<td>0.023</td>
<td>352</td>
<td>9</td>
<td>0.014</td>
</tr>
<tr>
<td>1091</td>
<td>13</td>
<td>0.035</td>
<td>663</td>
<td>10</td>
<td>0.023</td>
</tr>
<tr>
<td>2177</td>
<td>13</td>
<td>0.058</td>
<td>1317</td>
<td>10</td>
<td>0.036</td>
</tr>
<tr>
<td>4398</td>
<td>13</td>
<td>0.11</td>
<td>2656</td>
<td>10</td>
<td>0.067</td>
</tr>
<tr>
<td>8642</td>
<td>13</td>
<td>0.16</td>
<td>5206</td>
<td>9</td>
<td>0.091</td>
</tr>
<tr>
<td>10742</td>
<td>13</td>
<td>0.2</td>
<td>6470</td>
<td>8</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Example 5. We consider the elliptic equation with jump coefficients [17, 20]. Let \(\Omega = (-1,1)^3 \) and the diffusion coefficient \(a(x)I \) be defined such that \(a(x) \) is equal to the constants \(a_1 = a_2 = 1 \) and \(a_3 = \epsilon \) on the three regions \(\Omega_1, \Omega_2 \) and \(\Omega_3 \) respectively (see Figure 5 (b)), where

\[
\Omega_1 = (-0.5,0)^3, \quad \Omega_2 = (0,0.5)^3 \quad \text{and} \quad \Omega_3 = \Omega \setminus (\overline{\Omega_1} \cup \overline{\Omega_2}).
\]

A sequence of meshes are obtained by several uniformly regular refinements of the coarsest mesh.

We choose \(f = 1 \) and impose the following boundary conditions: Dirichlet conditions

\[
u_{[-1] \times [-1,1] \times [-1,1]} = 0, \quad u_{\{1\} \times [-1,1] \times [-1,1]} = 1,
\]

and homogeneous Neumann boundary conditions on the remaining boundary. We test the robustness of our solver as the coefficient \(\epsilon \) changes. Only the reduced system is solved in this example. Results are summarized in Table 5.5.

From these experiments we may draw the following conclusions:

1. In all examples, the auxiliary space preconditioner works well for the linear system arising from discretization of the lowest order weak Galerkin method. The fluctuation of iteration steps of the PCG method applied to systems with different sizes is small which implies the condition number of the preconditioned system is uniformly bounded.
Table 5.4
Iteration steps and CPU time (in seconds) for Example 4. The left table is for the original system and the right table is for the reduced system.

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1248</td>
<td>16</td>
<td>0.018</td>
</tr>
<tr>
<td>9600</td>
<td>18</td>
<td>0.1</td>
</tr>
<tr>
<td>75264</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>595968</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>4743168</td>
<td>19</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dof</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td>11</td>
<td>0.058</td>
</tr>
<tr>
<td>6528</td>
<td>12</td>
<td>0.054</td>
</tr>
<tr>
<td>50688</td>
<td>13</td>
<td>0.41</td>
</tr>
<tr>
<td>399360</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>3170304</td>
<td>13</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 5.5
Iteration steps for Example 5. Only results for solving the reduced system is presented.

<table>
<thead>
<tr>
<th>Dof</th>
<th>$\epsilon = 10^{-4}$</th>
<th>$\epsilon = 10^{-2}$</th>
<th>$\epsilon = 1$</th>
<th>$\epsilon = 10^2$</th>
<th>$\epsilon = 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td>36</td>
<td>22</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>6528</td>
<td>33</td>
<td>21</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>50688</td>
<td>32</td>
<td>21</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>399360</td>
<td>34</td>
<td>21</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>3170304</td>
<td>34</td>
<td>21</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

2. The solver for the reduced system is more efficient than the original system. The size of the reduced system is around two thirds of the original one and the time for solving the reduced system is around half of the original one. This shows the efficiency gained by working on the reduced system.

3. Although our theory is developed for quasi-uniform meshes, the third example indicates that our solver works well for adaptive grids and elliptic equations with less regularity.

REFERENCES

