Invitation for Bid
DACA03-02-B-0009

U.S. Army Corps of Engineers
Little Rock District

C-130 J FLIGHT SIMULATOR FACILITY

LITTLE ROCK AIR FORCE BASE
PULASKI COUNTY, ARKANSAS

(This Solicitation Is Unrestricted)
(Site Visit Information See Section 00100)

December 2001

(Facsimile Bid Bond, Modification or Withdrawal of Proposal will not be accepted.)
CAUTION TO BIDDERS

All information required by the terms of the solicitation must be furnished. MISTAKES OR OMISSIONS CAN BE COSTLY. Important items for you to check are included in but not limited to those listed below. This checklist is furnished only to assist you in submitting a proper bid. Check as you read.

() Have you acknowledged all amendments?

() Have you included your Contractor ID (DUNS) number in the block below your name and address?

() Have you completed Section 00600 of the Solicitation?

() Is your offer properly signed?

() If a bid guarantee is required, is it included with your bid? (A late bid guarantee is treated the same as a late bid.)

() Is your bid guarantee in the proper amount? See Section 00100.

() If your bid guarantee is in the form of a bid bond, is the bond properly signed by both the bidder and surety and are all required seals affixed?

() Are decimals in total bid price in the proper place? Are your figures legible?

() Are all erasures or corrections initialed by the person signing this bid?

() Have you not restricted your bid by altering the provisions of the solicitation?

() Is the envelope containing your bid properly identified that it is a sealed bid, and does it contain the correct solicitation number and bid opening time?

() Will your bid arrive on time? See Section 00100.

() Have you completed and returned the form for Previous Contract History?
SPECIAL NOTICE TO BIDDERS

“Effective 01 June 1998”

No award will be made to a Contractor who is not
Registered with “Central Contractor Registration” (CCR).

See DFARS clause 52.204-7004
Section 00100 of Solicitation.

Bidders NOT registered with CCR may be determined
Non-Responsive.

The Arkansas Procurement Assistance Center (APAC)
Can do this for all Small Businesses Free of Charge.
Contact APAC at (501)337-5355 in Malvern or
(501)671-2393 in Little Rock to register.
DIRECT DEPOSIT AUTHORIZATION FORM

I hereby authorize U. S. Army Corps of Engineer, hereinafter called USACE, to initiate direct deposit credit entries and to initiate, a necessary debit entries and adjustments for any credit entry in error to my (our) account indicated below and the financial institution named below, hereinafter called DEPOSITORY, to credit and/or debit the same to such account. This authority is to remain in full force and effect until USACE has received written notification from me (or either of us) of its termination in such time and in such manner as to afford USACE and DEPOSITORY a reasonable opportunity to act on it.

Check One: I am not currently participating in the Direct Deposit Program.
 () ADD - Deposit my payment to the account shown.
 () I am currently participating in the Direct Deposit Program.
 () CHANGE - Change financial institutions and/or account number.
 () CANCEL - Stop my participation in the program.

Please ask your Financial Institution for your Depositor Account Number and Routing Number (Indicate which type account to credit)

<table>
<thead>
<tr>
<th>Type of Depositor Account</th>
<th>Checking</th>
<th>Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depositor Account Number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name of Financial Institution:

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th>State:</th>
<th>Zip:</th>
</tr>
</thead>
</table>

Routing Number:

<table>
<thead>
<tr>
<th>Depositor Account Title:</th>
</tr>
</thead>
</table>

Tax ID Number (TIN) for Business:

| SIGNATURE: ____________________________ DATE: ____________ |

FORM: UFC-DISB-4 MAIL TO: U.S. Army Finance Center
 Attn: Disbursing Div. (Stop 351), Mr. Michael Rye
 7800 Third Avenue
 Millington, Tn 38054-5005

Print on envelope "DO NOT OPEN IN MAILROOM"
FEDERAL CONTRACTOR VETERANS' EMPLOYMENT REPORT VETS-100

OMB NO: 1293-0005
Expires 12-31-2002

Persons are not required to respond to this collection of information unless it displays a valid OMB number.

RETURN COMPLETED REPORT TO:
U.S. DEPARTMENT OF LABOR
VETERANS' EMPLOYMENT AND TRAINING SERVICE
VETS-100 REPORTING OFFICE
6101 STEVENSON AVENUE
ALEXANDRIA, VA 22304

TYPE OF CONTRACTOR
(Enter contractor type as applicable)
☐ Prime Contractor
☐ Subcontractor

TYPE OF FORM (Check only one)
☐ Single Establishment
☐ Multiple Establishment-Headquarters
☐ Multiple Establishment-Hiring Location
☐ Multiple Establishment-State Consolidated (Specify number of locations) ___ (MSC)

COMPANY IDENTIFICATION INFORMATION (Omit if items preprinted above)

COMPANY No: ________________________________

TEN YEAR PERIOD ENDING 2011

NAME OF PARENT COMPANY: ________________________________

ADDRESS (NUMBER AND STREET): ________________________________

CITY: ________________________________ COUNTY: ________________________________ STATE: ________________________________ ZIP CODE: ________________________________

NAME OF HIRING LOCATION: ________________________________

ADDRESS (NUMBER AND STREET): ________________________________

CITY: ________________________________ COUNTY: ________________________________ STATE: ________________________________ ZIP CODE: ________________________________

SIC: ___ DUNS: ___ Employer I.D. No. (IRS TAX No.): ___

INFORMATION ON VETERANS

REPORT ALL PERMANENT FULL-TIME OR PART-TIME EMPLOYEES AND NEW HIRES WHO ARE VETERANS, AS DEFINED ON REVERSE. DATA ON NUMBER OF EMPLOYEES ARE TO BE ENTERED IN COLUMN L, M, AND N. DATA ON NEW HIRES ARE TO BE ENTERED IN COLUMNS O, P, Q, AND R. ENTRIES IN COLUMNS O THROUGH R, LINES 1 THROUGH 9, AND COLUMNS L, M, AND N, LINE 10 (GRAY SHADeD AREAS) ARE OPTIONAL. ENTRIES IN COLUMN N, LINES 1-8; COLUMN Q, LINE 10 AND THE MAXIMUM AND MINIMUM NUMBER OF EMPLOYEES (AREAS SHaded LIGHT GRAY) ARE OPTIONAL FOR 2001 AND EXPECTED TO BE REQUIRED FOR THE 2002 REPORTING CYCLE. DETAILED INSTRUCTIONS ARE FOUND ON THE REVERSE OF THIS FORM.

<table>
<thead>
<tr>
<th>JOB CATEGORIES</th>
<th>NUMBER OF EMPLOYEES</th>
<th>NEW HIRES (PREVIOUS 12 MONTHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Special Disabled</td>
<td>Vietnam Era Veterans</td>
</tr>
<tr>
<td></td>
<td>Veterans (E)</td>
<td>(M)</td>
</tr>
<tr>
<td></td>
<td>Special Disabled</td>
<td>Vietnam Era Veterans</td>
</tr>
<tr>
<td></td>
<td>Veterans (C)</td>
<td>(P)</td>
</tr>
<tr>
<td>OFFICIALS AND MANAGERS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PROFESSIONALS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TECHNICIANS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SALES WORKERS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>OFFICE AND CLERICAL</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CRAFT WORKERS (Skilled)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>OPERATIVE (SCM-Skilled)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>LABORERS (Unskilled)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SERVICE WORKERS</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Report the total maximum and minimum number of permanent employees on board during the period covered by this report.

<table>
<thead>
<tr>
<th>Maximum Number</th>
<th>Minimum Number</th>
</tr>
</thead>
</table>

Revised 04-30-01
WHO MUST FILE
The VETS-100 report is to be completed by all nonexempt federal contractors and subcontractors with contracts or subcontracts for the furnishing of supplies and services or the use of real or personal property for $25,000 or more. Services include but are not limited to the following services: Utility, construction, transportation, research, insurance, and loan depository, irrespective of whether the government is the purchaser or lessee. The presence of $25,000 or more in federal contracts or subcontracts during a given calendar year establishes the requirement to file a VETS-100 Report during the following calendar year.

WHEN TO FILE
This annual report must be filed no later than September 30. Mail to the address preprinted on the front of the form.

LEGAL BASIS FOR REPORTING REQUIREMENTS
Title 38, United States Code, Section 4212(d) and PL 105-339, require that federal contractors report at least annually the numbers of: 1) special disabled veterans, and 2) veterans of the Vietnam era. The following requirements for reporting annually are optional until Final Rule is published. 1) Other eligible veterans who served on active duty during a war or in a campaign or expedition for which a campaign badge has been authorized who are in their workforce, and 2) maximum and minimum number of employees. Reporting is required by hiring location and includes both the number employed and the number of new hires, within the two categories listed above. The number of veterans employed within these categories is to be broken out by job category.

HOW TO SUBMIT THE VETS-100 REPORTS
Single-establishment employers must file one completed form. All multi-establishment employers, i.e., those doing business at more than one hiring location, must file (A) one form covering the principal or headquarters office; (B) a separate form for each hiring location employing 50 or more persons; and (C) either: (I) a separate form for each hiring location employing fewer than 50 persons, or (II) consolidated reports that cover hiring locations within a State that have fewer than 50 employees. Each state consolidated report must also list the name and address of the hiring locations covered by the report. Company consolidated reports such as those required by EEO-1 reporting procedures are NOT required for the VETS-100 report. Completed reports for the headquarters location and all other hiring locations for each company should be mailed in one package to the address indicated on the front of the form.

RECORD KEEPING
Employers must keep copies of the completed annual VETS-100 report submitted to DOL for a period of two years.

HOW TO PREPARE THE FORMS
As VETS only sends one copy of the VETS-100 Reporting form to each headquarters location, multi-establishment employers submitting hard copy reports should produce facsimile copies of the headquarters form for reporting data on each location.

Type of Contractor
Indicate the type of contractual relationship (prime contractor or subcontractor) that the organization has with the Federal Government. If the organization serves as both a prime contractor and a subcontractor on various federal contracts, check both boxes.

Type of Form
If a reporting organization submits only one VETS-100 Report form for a single location, check the Single Establishment box. If the reporting organization submits more than one form, only one form should be checked as Multiple Establishment-Headquarters. The remaining forms should be checked as either Multiple Establishment-Location or Multiple Establishment-State Consolidated. For state consolidated forms, the number of hiring locations included in that report should be entered in the space provided. For each form, only one box should be checked within this block.

COMPANY IDENTIFICATION INFORMATION
Company Number. Do not change the Company Number that is printed on the form. If there are any questions regarding your Company Number, please call the VETS-100 staff at (703) 461-2460 or e-mail HELPDESK@VETS100.COM.

Twelve Month Period Ending
Enter the end date for the twelve month reporting period used as the basis for filing the VETS-100 Report. To determine this period, select a date in the current year between July 1 and August 31 that represents the end of a payroll period. That payroll period will be the basis for reporting Number of Employees, as described below. Then the twelve month period preceding the end date of that payroll period will be your twelve month period covered. This period is the basis for reporting New Hires, as described below. Any new hires of employers who have been hired has a single Establishment-Headquarters-Contractor or subcontractor, or services, or by whom the Equal Employment Opportunity Commission has been authorized. December 31 as the ending date for the EEO-1 Report may also use that date as the ending date for the payroll period selected for the VETS-100 Report.

Name and Address for Single Establishment Employers. COMPLETE the identifying information under the Parent Company name and address section. LEAVE BLANK all of the identifying information for the Hiring Location.

Name and Address for Multi Establishment Employers. COMPLETE the name and address for the parent company headquarters, LEAVE BLANK the name and address for the parent company headquarters. COMPLETE the name and address for the Hiring Location. For hiring locations of a parent company, COMPLETE the name and address for the Parent Company location, COMPLETE the name and address for the Hiring Location.

SIC Code, DUNS Number, and Employer ID Number
Single Establishment and Multi Establishment Employers should COMPLETE the SIC Code, DUNS Number, and Employer ID Number as described below.

SIC Code
Enter the four (4) digit SIC Code applicable to the hiring location for which the report is filed. If there is not a separate SIC Code for the hiring location, enter the SIC Code for the parent company.

DUNS and Bradstreet ID Number
If the company or any of its establishments has a Dun and Bradstreet Identification Number, please enter the nine (9) digit number in the space provided. If there is a specific SIC Code applicable to the hiring location for which the report is filed, enter that DUNS Number. Otherwise, enter the DUNS number for the parent company.

Employer ID Number
Enter the nine (9) digit numbers assigned by the I.R.S. to the contractor. If there is a specific EIN applicable to the hiring location for which the report is filed, enter that EIN. Otherwise, enter the EIN for the parent company.

INFORMATION ON VETERANS
Number of Employees
Select any payroll period ending between July 1 and August 31 of the current year. Provide all data for permanent full-time and part-time employees who were special disabled veterans or Vietnam-era veterans, or other eligible veterans employed as of the end date of the selected payroll period. Do not include employees specifically excluded as indicated in 41 CFR 61-250.2(b)(2). Employees must be tracked by veterans in each of the nine occupational categories (Lines 1-9) in columns L and M. The information in column N, lines 1-9 is expected to be required for the 2002 reporting cycle but this information is optional for 2001. Blank spaces will be considered zeros.

New Hires
Report the number of permanent full-time and part-time employees by veteran status who were hired (both veterans and non-veterans) and who were included in the payroll for the first time during the 12-month period ending between July 1 through August 31 of the current year. The totals in columns O, P, and R (Line 10) are required. The information in column Q, line 10 is also expected to be required for the 2002 reporting cycle but this information is optional for 2001. Enter all applicable numbers, including zeros.

Maximum/Minimum Employees
Report the maximum and minimum number of permanent employees on board during the period covered as indicated by PL 105-339.

DEFINITIONS:
'Hiring location' means an establishment as defined at 41 CFR 61 250.2(b).
'Special Disabled Veteran' means (A) a veteran who is entitled to compensation (or who but for the receipt of military retired pay would be entitled to compensation) under laws administered by the Department of Veterans' Affairs for a disability (I) rated at 30 percent or more, or (II) rated at 10 or 20 percent in the case of a veteran who has been determined under Section 3106 of Title 38, U.S.C. to have a serious employment handicap, or (B) a person who was discharged or released from active duty by reason of a service-connected disability.
'Vietnam Era Veteran' means a person who: (A) served in the military, ground, naval or air service of the United States on active duty for a period of more than 180 days, and was discharged or released therefrom with other than a dishonorable discharge, if any part of such active duty occurred: (1) in the Republic of Vietnam between February 28, 1961, and May 7, 1975; or (ii) between August 5, 1964, and May 7, 1975, in all other cases; or (B) was discharged or released from active duty for a service-connected disability if any part of such active duty was performed in the Republic of Vietnam between February 28, 1961, and May 7, 1975, or between August 5, 1964, and May 7, 1975, in all other cases.

Other Eligible Veterans
means veterans who served in the military, ground, naval or air service of the United States on active duty during a war or in a campaign or expedition for which a campaign badge has been authorized. To identify the campaigns or expeditions that meet this criteria, contact the Office of Personnel Management (OPM) and ask for the OPM VETS Guide. Appendix A. A local OPM telephone number may be found in the telephone book under Federal Government or consult Directory Assistance for your area code for the nearest OPM location. For those with Internet access, the information required to make this determination also is available at http://www.opm.gov/vets/vets/html/vgmeda2.htm.
Federal Contractor Program
Veterans' Employment and Training Service
U.S. Department of Labor

VETS 100 Final Rule in Effect.

The Veterans' Employment and Training Service (VETS) amended its regulations implementing the VETS-100 reporting requirement on October 11, 2001 (66 FR 51998). This rule went into effect on November 13, 2001. It has been brought to the attention of VETS that the final rule may have inadvertently increased the record keeping burden on some contractors with regard to how Federal contractors filing the report are to calculate the maximum and minimum number of employees. VETS will address this concern by amending this specific part of the final rule in the near future.

This page serves as the gateway to accessing the web-based reporting form, as well as valuable information that will make your experience as user-friendly as possible. Please click on the appropriate link below to find the information that you need.

Sample VETS-100 Reporting Form
A blank reporting form

Letter to VETS-100 Users
A letter from the Veterans' Employment and Training Service to VETS-100 Federal Contractors

Tips for Completing the
Web-Based Reporting Form
Helpful hints in the reporting process

VETS-100 Frequently Asked Questions
Federal Contractor Program
Fact Sheet

Electronic Submission
Instructions for Electronic Submission
of Vets-100 Reports for 2001

VETS-100 User Login Page

helpdesk@vets100.com
General box any unspecialized questions

Criteria Identifying Other Eligible Veterans

How to Obtain a Company Number

Search for submitted VETS-100
Use this to search for already submitted VETS-100's. Once they have been verified for completeness they will appear on this search page. This search system is updated on a non-standard schedule.

web@vets100.com
Internet filer that has questions or problems filing online

othervets@vets100.com
Questions regarding the new category "other veteran" that is optional for the 2001 VETS-100 reporting period
MAIN TABLE OF CONTENTS

SOLICITATION, OFFER, AND AWARD (SF 1442)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE NOS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>SF 1442, Bid Schedule</td>
<td>1 TO 3</td>
</tr>
<tr>
<td>00100</td>
<td>INSTRUCTIONS, CONDITIONS, AND NOTICE TO BIDDERS</td>
<td>4 TO 16</td>
</tr>
<tr>
<td>00600</td>
<td>REPRESENTATIONS AND CERTIFICATIONS AND OTHER STATEMENTS OF BIDDERS</td>
<td>17 TO 29 w/encl 9 pg</td>
</tr>
<tr>
<td>00700</td>
<td>CONTRACT CLAUSES</td>
<td>30 TO 133</td>
</tr>
<tr>
<td>00800</td>
<td>SPECIAL CONTRACT REQUIREMENTS</td>
<td>134 TO 140</td>
</tr>
<tr>
<td>00900</td>
<td>ATTACHMENTS</td>
<td>1309 Pages</td>
</tr>
<tr>
<td>DIVISION 1</td>
<td>GENERAL REQUIREMENTS</td>
<td>01015 TO 01720</td>
</tr>
<tr>
<td>DIVISION 2</td>
<td>SITE WORK</td>
<td>02220 TO 02930</td>
</tr>
<tr>
<td>DIVISION 3</td>
<td>CONCRETE</td>
<td>03100 TO 03300</td>
</tr>
<tr>
<td>DIVISION 4</td>
<td>MASONRY</td>
<td>04200 TO 04220</td>
</tr>
<tr>
<td>DIVISION 5</td>
<td>METALS</td>
<td>05120 TO 05500</td>
</tr>
<tr>
<td>DIVISION 6</td>
<td>WOOD AND PLASTICS</td>
<td>06100 TO 06200</td>
</tr>
<tr>
<td>DIVISION 7</td>
<td>THERMAL AND MOISTURE PROTECTION</td>
<td>07110 TO 07900</td>
</tr>
<tr>
<td>DIVISION 8</td>
<td>DOORS AND WINDOWS</td>
<td>08110 TO 08810</td>
</tr>
<tr>
<td>DIVISION 9</td>
<td>FINISHES</td>
<td>09250 TO 09900</td>
</tr>
<tr>
<td>DIVISION 10</td>
<td>SPECIALITIES</td>
<td>10101 TO 10800</td>
</tr>
<tr>
<td>DIVISION 11</td>
<td>EQUIPMENT</td>
<td>NOT USED</td>
</tr>
<tr>
<td>DIVISION 12</td>
<td>FURNISHINGS</td>
<td>12490</td>
</tr>
<tr>
<td>DIVISION 13</td>
<td>SPECIAL CONSTRUCTION</td>
<td>13080 TO 13930</td>
</tr>
<tr>
<td>DIVISION 14</td>
<td>EQUIPMENT</td>
<td>14240 TO 14602</td>
</tr>
<tr>
<td>DIVISION 15</td>
<td>MECHANICAL</td>
<td>15070 TO 15995</td>
</tr>
<tr>
<td>DIVISION 16</td>
<td>ELECTRICAL</td>
<td>16070 TO 16775</td>
</tr>
</tbody>
</table>
1. SOLICITATION NO.
DACA03-02-B-0009

2. TYPE OF SOLICITATION
X SEALLED BID (IFB)

3. DATE ISSUED
12/10/01

4. CONTRACT NO.
W41XDE-1298-5496

5. REQUISITION/PURCHASE REQUEST NO.

6. PROJECT NO.

7. ISSUED BY CODE
M4P0000

8. ADDRESS OFFER TO
Little Rock District, Corps of Engineers
P.O. Box 867 / 700 West Capitol Ave.
Little Rock, Arkansas 72203-0867

9. FOR INFORMATION CALL:
A. NAME: Darrel L. Johnson
E-Mail: darrel.l.johnson@swl02.usace.army.mil
B. TELEPHONE NO. (Include area code) (NO COLLECT CALLS)
501-324-5010
FAX: 501-324-5196

10. THE GOVERNMENT REQUIRES PERFORMANCE OF THE WORK DESCRIBED IN THESE DOCUMENTS (Title, identifying no., date):
C-130 J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AIR FORCE BASE, PULASKI COUNTY, ARKANSAS

The work consist of a new two-story, 3730 square meter, C-130 Flight Simulator facility. The building is divided into two (2) Areas A and B. Area A contains the simulator bay and support areas, which are required to be completed earlier than B (Phased Construction is required). Area B includes the teaching/administration areas and other support areas. The project includes several restrooms, stairways, computer rooms, briefing rooms, break areas with casework, and freight elevator. The project includes site development such as new parking, driveways, sidewalks, landscaping, and new perimeter service drive. The building will have mechanical, electrical, fire protection/detection, lightning protection, seismic protection, communication services, and other support infrastructures. In addition there are five Bid Options including, but not limited to, public address system, main room theatre seats, parking lot (including lighting, sidewalks, mechanical, masonry wall, dumpster masonry wall, pavilion, rear service drive, and burying the overhead primary electrical lines across Thomas and at 1220/1230A area. Demolition of overhead and underground utilities, concrete pads, asphalt areas, trees, sidewalks, etc., is required to prepare the site for the new facility.

NOTICE TO PROCEED WILL BE ISSUED WITHIN 30 DAYS OF RECEIPT OF CONTRACT AWARD.

* Phase One - complete within 494 days after NTP -- The entire project to be completed within 540 days after NTP.

11. The Contractor shall begin performance within _10_ calendar days and complete it within _X_ calendar days after receiving ☐ award, X notice to proceed. This performance period is ☐ mandatory, X negotiable. (See Section 00800.)

12A. THE CONTRACTOR MUST FURNISH ANY REQUIRED PERFORMANCE AND PAYMENT BONDS?
X YES ☐ NO

(If “YES,” Indicate within how many calendar days after award in Item 12B.)

12B. CALENDAR DAYS
10

13. ADDITIONAL SOLICITATION REQUIREMENTS:

A. Sealed offers in original and _0_ copies to perform the work required are due at the place specified in Item 8 by 2:00 p.m. (hour) local time _01/10/02_ (date). If this is a sealed bid solicitation, offers must be publicly opened at that time. Sealed envelopes containing offers shall be marked to show the offeror’s name and address, the solicitation number, and the date and time offers are due.

B. An offer guarantee X is, ☐ is not required.

C. All offers are subject to the (1) work requirements, and (2) other provisions and clauses incorporated in the solicitation in full text or by reference.

D. Offers providing less than _90_ calendar days for Government acceptance after the date offers are due will not be considered and will be rejected.
OFFER (Must be fully completed by offeror)

14. NAME AND ADDRESS OF OFFEROR (Include ZIP Code)
 (Must be fully completed by offeror)

 15. TELEPHONE NO. (Include area code) / FAX NO. (Include area code)

 16. REMITTANCE ADDRESS (Include only if different than Item 14)

DUNS: CAGE:

17. The offeror agrees to perform the work at the prices specified below in strict accordance with the terms of this solicitation, if this
 offer is accepted by the Government within _____ calendar days after the date offers are due. (Insert any number equal to or
 greater than the minimum requirement stated in Item 13D. Failure to insert any number means the offeror accepts the minimum
 in Item 13D.

 AMOUNTS

 See Bidding Schedule.

18. The offeror agrees to furnish any required performance and payment bonds.

19. ACKNOWLEDGMENT OF AMENDMENTS
 The offeror acknowledges receipt of amendments to the solicitation – give number and date of each

<table>
<thead>
<tr>
<th>AMENDMENT NO.</th>
<th>DATE</th>
</tr>
</thead>
</table>

20A. NAME AND TITLE OF PERSON AUTHORIZED TO SIGN OFFER 20B. SIGNATURE 20C. OFFER DATE
 (Type or print)

AWARD (To be completed by Government)

21. ITEMS ACCEPTED:

22. AMOUNT

23. ACCOUNTING AND APPROPRIATION DATA

24. SUBMIT INVOICES TO ADDRESS SHOWN IN (4 copies unless otherwise specified)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>25. OTHER THAN FULL AND OPEN COMPETITION PURSUANT TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 U.S.C. 2304(c)()</td>
</tr>
</tbody>
</table>

26. ADMINISTERED BY

<table>
<thead>
<tr>
<th>DESIGNED BILLING OFFICE:</th>
<th>Phone: 501-988-4153</th>
<th>FAX: 501-988-1530</th>
</tr>
</thead>
</table>
| Central Arkansas Area Office
P.O. Box 219
Jacksonville, AR 72076-0219 |
| Mr. Dan Clemans, Area Engineer |

USA CORPS OF ENGINEERS (M-4)
FINANCE CENTER
5720 INTEGRITY DRIVE
Millington, TN 38054-5005

27. PAYMENT WILL BE MADE BY

28. NEGOTIATED AGREEMENT (Contractor is required to sign this document and return ___ copies to issuing office.)
 Contractor agrees to furnish and deliver all items or perform all work, requisitions identified on this form and any continuation
 sheets for the consideration slated in this contract. The rights and obligations of the parties to this contract shall be governed
 by (a) this contract award, (b) the solicitation, and (c) the clauses, representations, certifications, and specifications or incorporated
 in or attached to this contract.

29. AWARD (Contractor is not required to sign this document.)
 Your offer on this solicitation is hereby accepted as to the items listed. This award consummates the contract, which consists of
 (a) the Government solicitation and your offer, and (b) this contract award. No further contractual document is necessary.

30A. NAME AND TITLE OF CONTRACTOR OR PERSON AUTHORIZED TO SIGN 31A. NAME OF CONTRACTING OFFICER (Type or print)
 (Type or print)

30B. SIGNATURE 30C. DATE 31B. UNITED STATES OF AMERICA 31C. AWARD DATE

BY

Computer Generated STANDARD FORM 1442 BACK (REV. 4-85)
SECTION 00010 Solicitation Contract Form

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>SUPPLIES/SERVICE</th>
<th>QTY</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>ALL WORK REQUIRED BY THE PLANS AND SPECIFICATIONS TO CONSTRUCT A NEW C-130 J FLIGHT SIMULATOR FACILITY AT LITTLE ROCK AIR FORCE BASE, EXCEPT AS OTHERWISE LISTED</td>
<td>1</td>
<td>JB</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>ROCK EXCAVATION FOR UTILITY SYSTEMS</td>
<td>10</td>
<td>CM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL BASEBID:

(Items 0001 - 0002)

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>SUPPLIES/SERVICE</th>
<th>QTY</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0003</td>
<td>OPTION NO. 1 AUDIO VISUAL SYSTEM FOR VARIOUS ROOMS. MAIN BRIEFING ROOM THEATRE SEATS W/ARMRESTS AND WRITING SURFACES</td>
<td>1</td>
<td>JB</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>OPTION NO. 2 PARKING LOT (Including any lighting and associated sod work), PUBLIC ADDRESS AMPLIFIER</td>
<td>1</td>
<td>JB</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>OPTION NO. 3 PAVILION, MECHANICAL YARD SCREEN WALL, AND DUMPSTER SCREEN WALL</td>
<td>1</td>
<td>JB</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>OPTION NO. 4 REAR SERVICE DRIVE</td>
<td>1</td>
<td>JB</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>OPTION NO. 5 BURYING THE OVERHEAD PRIMARY ELECTRICAL LINES ACROSS THOMAS AND AT 1220/1230A AREA</td>
<td>1</td>
<td>JB</td>
<td>Lump Sum</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL OPTIONS:

(Items 0003 - 0007)

TOTAL BID:

(Items 0001 - 0007)
SECTION 00100 Bidding Schedule/Instructions to Bidders

52.204-6 Data Universal Numbering System (DUNS) Number JUN 1999

52.211-1 Availability of Specifications Listed in the GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 AUG 1998

52.211-2 Availability of Specifications Listed in the DoD Index of Specifications and Standards (DODISS) and Descriptions Listed in the Acquisition Management Systems and Data Requirements Control List, DOD 5010.12-L DEC 1999

52.211-4 Availability for Examination of Specifications Not Listed in the GSA Index of Federal Specifications, Standards and Commercial Item Descriptions JUN 1988

52.211-14 Notice Of Priority Rating For National Defense Use SEP 1990

52.214-1 Solicitation Definitions--Sealed Bidding JUL 1987

52.214-3 Amendments To Invitations For Bids DEC 1989

52.214-4 False Statements In Bids APR 1984

52.214-5 Submission Of Bids MAR 1997

52.214-6 Explanation To Prospective Bidders APR 1984

52.214-7 Late Submissions, Modifications, and Withdrawals of Bids NOV 1999

52.214-18 Preparation of Bids -Construction APR 1984

52.214-19 Contract Award-Sealed Bidding -Construction AUG 1996

52.214-5000 Apparent Clerical Mistakes MAY 1999

52.216-1 Type Of Contract APR 1984

52.219-4 Notice of Price Evaluation Preference for HUBZone Small Business Concerns JAN 1999

52.222-23 Notice of Requirement for Affirmative Action to Ensure Equal Employment Opportunity for Construction FEB 1999

52.228-1 Bid Guarantee SEP 1996

52.233-2 Service Of Protest AUG 1996

52.236-27 Alt I Site Visit (Construction) (Feb 1995) - Alternate I FEB 1995

52.252-5 Authorized Deviations In Provisions APR 1984

252.204-7001 Commercial and Government Entity (CAGE) Code Reporting (AUG 1999)
252.211-7002 Availability For Examination Of Specifications, Standards, Plans, Drawings, Data Item Descriptions, And Other Pertinent Documents DEC 1991

252.236-7008 Contract Prices-Bidding Schedules DEC 1991

52.0005-4077 Partnering

52.1000-4003 Negotiations After Sealed Bidding (NOV 1994) (LRD)

52.1000-4214 Bid Schedule Item(s) (OCT 1994)

52.1000-4216 Receipt of Offers (APR 1984) (LRD)

52.1000-4232 Offerors Qualifications (APR 1984) (LRD)

52.1000-4234 Magnitude of Construction (OCT 1994) (LRD)

52.1000-4249 Postponement of Opening (APR 1984) (FAR 14.402-3)

52.1000-4265 Funds Availability

52.1000-4298 Local Labor Notice

52.1000-4299 Subcontracting Goals
SECTION 00100 Bidding Schedule/Instructions to Bidders

52.204-6 DATA UNIVERSAL NUMBERING SYSTEM (DUNS) NUMBER (JUN 99)

(a) The offeror shall enter, in the block with its name and address on the cover page of its offer, the annotation "DUNS" followed by the DUNS number that identifies the offeror's name and address exactly as stated in the offer.

(b) If the offeror does not have a DUNS number, it should contact Dun and Bradstreet directly to obtain one. A DUNS number will be provided immediately by telephone at no charge to the offeror. For information on obtaining a DUNS number, the offeror, if located within the United States, should call Dun and Bradstreet at 1-800-333-0505. The offeror should be prepared to provide the following information:

(1) Company name.
(2) Company address.
(3) Company telephone number.
(4) Line of business.
(5) Chief executive officer/key manager.
(6) Date the company was started.
(7) Number of people employed by the company.
(8) Company affiliation.

(c) Offerors located outside the United States may obtain the location and phone number of the local Dun and Bradstreet Information Services office from the Internet Home Page at http://www.customerservice@dnb.com. If an offeror is unable to locate a local service center, it may send an e-mail to Dun and Bradstreet at globalinfo@mail.dnb.com.

(End of provision)

52.211-1 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS, FPMR PART 101-29 (AUG 1998)

(a) The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29, and copies of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained for a fee by submitting a request to the GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L’Enfant Plaza, SW, Washington, DC 20407. Telephone (202) 619-8925, Facsimile (202) 619-8978.

(b) If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.
52.211 - 2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE DOD INDEX OF SPECIFICATIONS AND STANDARDS (DODISS) AND DESCRIPTIONS LISTED IN THE ACQUISITION MANAGEMENT SYSTEMS AND DATA REQUIREMENTS CONTROL LIST, DOD 5010.12 - L (DEC 1999)

Copies of specifications, standards, and data item descriptions cited in this solicitation may be obtained--

(a) From the ASSIST database via the Internet at http://assist.daps.mil; or

(b) By submitting a request to the Department of Defense Single Stock Point (DoDSSP), Building 4, Section D, 700 Robbins Avenue, Philadelphia, PA 19111-5094, Telephone (215) 697-2667/2179, Facsimile (215) 697-1462.

(End of provision)

52.211 - 4 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (JUN 1988)

Contracting Office
ATTN: CESWL-CT-A, Room 7412
Little Rock District, Corps of Engineers
P.O. Box 867 / 700 W. Capitol Ave.
Little Rock, AR 72203-0867
(Telephone number) 501-324-5721

(End of provision)

52.211 - 14 NOTICE OF PRIORITY RATING FOR NATIONAL DEFENSE USE (SEP 1990)

Any contract awarded as a result of this solicitation will be DX rated order; X DO rated order certified for national defense use under the Defense Priorities and Allocations System (DPAS) (15 CFR 700), and the Contractor will be required to follow all of the requirements of this regulation. [Contracting Officer check appropriate box.]

(End of provision)

52.214 - 1 SOLICITATION DEFINITIONS--SEALED BIDDING (JUL 1987)

"Government" means United States Government.

"Offer" means "bid" in sealed bidding.

"Solicitation" means an invitation for bids in sealed bidding.

(End of provision)

52.214 - 3 AMENDMENTS TO INVITATIONS FOR BIDS (DEC 1989)

(a) If this solicitation is amended, then all terms and conditions which are not modified remain unchanged.
(b) Bidders shall acknowledge receipt of any amendment to this solicitation (1) by signing and returning the amendment, (2) by identifying the amendment number and date in the space provided for this purpose on the form for submitting a bid, (3) by letter or telegram, or (4) by facsimile, if facsimile bids are authorized in the solicitation. The Government must receive the acknowledgment by the time and at the place specified for receipt of bids.

(End of provision)

52.214-4 FALSE STATEMENTS IN BIDS (APR 1984)

Bidders must provide full, accurate, and complete information as required by this solicitation and its attachments. The penalty for making false statements in bids is prescribed in 18 U.S.C. 1001.

(End of provision)

52.214-5 SUBMISSION OF BIDS (MAR 1997)

(a) Bids and bid modifications shall be submitted in sealed envelopes or packages (unless submitted by electronic means) (1) addressed to the office specified in the solicitation, and (2) showing the time and date specified for receipt, the solicitation number, and the name and address of the bidder.

(b) Bidders using commercial carrier services shall ensure that the bid is addressed and marked on the outermost envelope or wrapper as prescribed in subparagraphs (a)(1) and (2) of this provision when delivered to the office specified in the solicitation.

(c) Telegraphic bids will not be considered unless authorized by the solicitation; however, bids may be modified or withdrawn by written or telegraphic notice.

(d) Facsimile bids, modifications, or withdrawals, will not be considered unless authorized by the solicitation.

(e) Bids submitted by electronic commerce shall be considered only if the electronic commerce method was specifically stipulated or permitted by the solicitation.

52.214-6 EXPLANATION TO PROSPECTIVE BIDDERS (APR 1984)

Any prospective bidder desiring an explanation or interpretation of the solicitation, drawings, specifications, etc., must request it in writing soon enough to allow a reply to reach all prospective bidders before the submission of their bids. Oral explanations or instructions given before the award of a contract will not be binding. Any information given a prospective bidder concerning a solicitation will be furnished promptly to all other prospective bidders as an amendment to the solicitation, if that information is necessary in submitting bids or if the lack of it would be prejudicial to other prospective bidders.

(End of provision)

52.214-7 LATE SUBMISSIONS, MODIFICATIONS, AND WITHDRAWALS OF BIDS (NOV 1999)

(a) Bidders are responsible for submitting bids, and any modifications or withdrawals, so as to reach the Government office designated in the invitation for bids (IFB) by the time specified in the IFB. If no time is specified in the IFB, the time for receipt is 4:30 p.m., local time, for the designated Government office on the date that bids are due.
(b)(1) Any bid, modification, or withdrawal received at the Government office designated in the IFB after the exact time specified for receipt of bids is “late” and will not be considered unless it is received before award is made, the Contracting Officer determines that accepting the late bid would not unduly delay the acquisition; and--

(i) If it was transmitted through an electronic commerce method authorized by the IFB, it was received at the initial point of entry to the Government infrastructure not later than 5:00 p.m. one working day prior to the date specified for receipt of bids; or

(ii) There is acceptable evidence to establish that it was received at the Government installation designated for receipt of bids and was under the Government's control prior to the time set for receipt of bids.

(2) However, a late modification of an otherwise successful bid that makes its terms more favorable to the Government, will be considered at any time it is received and may be accepted.

(c) Acceptable evidence to establish the time of receipt at the Government installation includes the time/date stamp of that installation on the bid wrapper, other documentary evidence of receipt maintained by the installation, or oral testimony or statements of Government personnel.

(d) If an emergency or unanticipated event interrupts normal Government processes so that bids cannot be received at the Government office designated for receipt of bids by the exact time specified in the IFB and urgent Government requirements preclude amendment of the IFB, the time specified for receipt of bids will be deemed to be extended to the same time of day specified in the solicitation on the first work day on which normal Government processes resume.

(e) Bids may be withdrawn by written notice received at any time before the exact time set for receipt of bids. If the IFB authorizes facsimile bids, bids may be withdrawn via facsimile received at any time before the exact time set for receipt of bids, subject to the conditions specified in the provision at 52.214-31, Facsimile Bids. A bid may be withdrawn in person by a bidder or its authorized representative if, before the exact time set for receipt of bids, the identity of the person requesting withdrawal is established and the person signs a receipt for the bid.

(End of provision)

52.214-18 PREPARATION OF BIDS--CONSTRUCTION (APR 1984)

(a) Bids must be (1) submitted on the forms furnished by the Government or on copies of those forms, and (2) manually signed. The person signing a bid must initial each erasure or change appearing on any bid form.

(b) The bid form may require bidders to submit bid prices for one or more items on various bases, including--

(1) Lump sum bidding;

(2) Alternate prices;

(3) Units of construction; or

(4) Any combination of subparagraphs (1) through (3) above.

(c) If the solicitation requires bidding on all items, failure to do so will disqualify the bid. If bidding on all items is not required, bidders should insert the words "no bid" in the space provided for any item on which no price is submitted.
(d) Alternate bids will not be considered unless this solicitation authorizes their submission.

52.214-19 CONTRACT AWARD--SEALED BIDDING--CONSTRUCTION (AUG 1996)

(a) The Government will evaluate bids in response to this solicitation without discussions and will award a contract to the responsible bidder whose bid, conforming to the solicitation, will be most advantageous to the Government, considering only price and the price-related factors specified elsewhere in the solicitation.

(b) The Government may reject any or all bids, and waive informalities or minor irregularities in bids received.

(c) The Government may accept any item or combination of items, unless doing so is precluded by a restrictive limitation in the solicitation or the bid.

(d) The Government may reject a bid as nonresponsive if the prices bid are materially unbalanced between line items or subline items. A bid is materially unbalanced when it is based on prices significantly less than cost for some work and prices which are significantly overstated in relation to cost for other work, and if there is a reasonable doubt that the bid will result in the lowest overall cost to the Government even though it may be the low evaluated bid, or if it is so unbalanced as to be tantamount to allowing an advance payment.

52.214-5000 APPARENT CLERICAL MISTAKES (MAR 1995)--EFARS

(a) For the purpose of initial evaluations of bids, the following will be utilized in the resolving arithmetic discrepancies found on the face of bidding schedule as submitted by the bidder:

 (1) Obviously misplaced decimal points will be corrected;
 (2) Discrepancy between unit price and extended price, the unit price will govern;
 (3) Apparent errors in extension of unit prices will be corrected;
 (4) Apparent errors in addition of lump-sum and extended prices will be corrected.

(b) For the purpose of bid evaluation, the government will proceed on the assumption that the bidder intends his bid to be evaluated on basis of the unit prices, the totals arrived at by resolution of arithmetic discrepancies as provided above and the bid will be so reflected on the abstract of bids.

(c) These correction procedures shall not be used to resolve any ambiguity concerning which bid is low.

 (End of statement)

52.216-1 TYPE OF CONTRACT (APR 1984)

The Government contemplates award of a _Firm Fixed Price_ contract resulting from this solicitation.

(End of clause)

52.217-4 EVALUATION OF OPTIONS EXERCISED AT TIME OF CONTRACT AWARD (JUN 1988)

Except when it is determined in accordance with FAR 17.206(b) not to be in the Government's best interests, the Government will evaluate the total price for the basic requirement together with any option(s) exercised at the time of award.

(End of provision)
52.222-23 NOTICE OF REQUIREMENT FOR AFFIRMATIVE ACTION TO ENSURE EQUAL EMPLOYMENT OPPORTUNITY FOR CONSTRUCTION (FEB 1999)

(a) The offeror's attention is called to the Equal Opportunity clause and the Affirmative Action Compliance Requirements for Construction clause of this solicitation.

(b) The goals for minority and female participation, expressed in percentage terms for the Contractor's aggregate workforce in each trade on all construction work in the covered area, are as follows:

<table>
<thead>
<tr>
<th>Goals for minority participation for each trade</th>
<th>Goals for female participation for each trade</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7% Pulaski County, AR</td>
<td>6.9% Pulaski County, AR</td>
</tr>
</tbody>
</table>

These goals are applicable to all the Contractor's construction work performed in the covered area. If the Contractor performs construction work in a geographical area located outside of the covered area, the Contractor shall apply the goals established for the geographical area where the work is actually performed. Goals are published periodically in the Federal Register in notice form, and these notices may be obtained from any Office of Federal Contract Compliance Programs office.

(c) The Contractor's compliance with Executive Order 11246, as amended, and the regulations in 41 CFR 60-4 shall be based on (1) its implementation of the Equal Opportunity clause, (2) specific affirmative action obligations required by the clause entitled "Affirmative Action Compliance Requirements for Construction," and (3) its efforts to meet the goals. The hours of minority and female employment and training must be substantially uniform throughout the length of the contract, and in each trade. The Contractor shall make a good faith effort to employ minorities and women evenly on each of its projects. The transfer of minority or female employees or trainees from Contractor to Contractor, or from project to project, for the sole purpose of meeting the Contractor's goals shall be a violation of the contract, Executive Order 11246, as amended, and the regulations in 41 CFR 60-4. Compliance with the goals will be measured against the total work hours performed.

(d) The Contractor shall provide written notification to the Deputy Assistant Secretary for Federal Contract Compliance, U.S. Department of Labor, within 10 working days following award of any construction subcontract in excess of $10,000 at any tier for construction work under the contract resulting from this solicitation. The notification shall list the --

(1) Name, address, and telephone number of the subcontractor;

(2) Employer's identification number of the subcontractor;

(3) Estimated dollar amount of the subcontract;

(4) Estimated starting and completion dates of the subcontract; and

(5) Geographical area in which the subcontract is to be performed.

(e) As used in this Notice, and in any contract resulting from this solicitation, the "covered area" is Little Rock Air Force Base, Pulaski County, Arkansas.
52.225-12 NOTICE OF BUY AMERICAN ACT REQUIREMENT--CONSTRUCTION MATERIALS UNDER TRADE AGREEMENTS (FEB 2000)

(a) Definitions. Construction material, designated country construction material, domestic construction material, foreign construction material, and NAFTA country construction material, as used in this provision, are defined in the clause of this solicitation entitled “Buy American Act--Balance of Payments Program--Construction Materials under Trade Agreements” (Federal Acquisition Regulation (FAR) clause 52.225-11).

(b) Requests for determination of inapplicability. An offeror requesting a determination regarding the inapplicability of the Buy American Act or Balance of Payments Program should submit the request to the Contracting Officer in time to allow a determination before submission of offers. The offeror shall include the information and applicable supporting data required by paragraphs (c) and (d) of FAR clause 52.225-11 in the request. If an offeror has not requested a determination regarding the inapplicability of the Buy American Act or Balance of Payments Program before submitting its offer, or has not received a response to a previous request, the offeror shall include the information and supporting data in the offer.

(c) Evaluation of offers. (1) The Government will evaluate an offer requesting exception to the requirements of the Buy American Act or Balance of Payments Program, based on claimed unreasonable cost of domestic construction materials, by adding to the offered price the appropriate percentage of the cost of such foreign construction material, as specified in paragraph (b)(4)(i) of FAR clause 52.225-11.

(2) If evaluation results in a tie between an offeror that requested the substitution of foreign construction material based on unreasonable cost and an offeror that did not request an exception, the Contracting Officer will award to the offeror that did not request an exception based on unreasonable cost.

(d) Alternate offers. (1) When an offer includes foreign construction material, other than designated country or NAFTA country construction material, that is not listed by the Government in this solicitation in paragraph (b)(3) of FAR clause 52.225-11, the offeror also may submit an alternate offer based on use of equivalent domestic, designated country, or NAFTA country construction material.

(2) If an alternate offer is submitted, the offeror shall submit a separate Standard Form 1442 for the alternate offer, and a separate price comparison table prepared in accordance with paragraphs (c) and (d) of FAR clause 52.225-11 for the offer that is based on the use of any foreign construction material for which the Government has not yet determined an exception applies.

(3) If the Government determines that a particular exception requested in accordance with paragraph (c) of FAR clause 52.225-11 does not apply, the Government will evaluate only those offers based on use of the equivalent domestic, designated country, or NAFTA country construction material, and the offeror shall be required to furnish such domestic, designated country, or NAFTA country construction material. An offer based on use of the foreign construction material for which an exception was requested--

(i) Will be rejected as nonresponsive if this acquisition is conducted by sealed bidding; or

(ii) May be accepted if revised during negotiations.

(End of provision)

52.228-1 BID GUARANTEE (SEP 1996)

(a) Failure to furnish a bid guarantee in the proper form and amount, by the time set for opening of bids, may be cause for rejection of the bid.

(b) The bidder shall furnish a bid guarantee in the form of a firm commitment, e.g., bid bond supported by good and sufficient surety or sureties acceptable to the Government, postal money order, certified check,
cashier's check, irrevocable letter of credit, or, under Treasury Department regulations, certain bonds or notes of the United States. The Contracting Officer will return bid guarantees, other than bid bonds, (1) to unsuccessful bidders as soon as practicable after the opening of bids, and (2) to the successful bidder upon execution of contractual documents and bonds (including any necessary coinsurance or reinsurance agreements), as required by the bid as accepted.

(c) The amount of the bid guarantee shall be \(\frac{20}{100} \) percent of the bid price or \$3,000,000.00, whichever is less.

(d) If the successful bidder, upon acceptance of its bid by the Government within the period specified for acceptance, fails to execute all contractual documents or furnish executed bond(s) within 10 days after receipt of the forms by the bidder, the Contracting Officer may terminate the contract for default.

(e) In the event the contract is terminated for default, the bidder is liable for any cost of acquiring the work that exceeds the amount of its bid, and the bid guarantee is available to offset the difference.

52.233-2 SERVICE OF PROTEST (AUG 1996)

(a) Protests, as defined in section 33.101 of the Federal Acquisition Regulation, that are filed directly with an agency, and copies of any protests that are filed with the General Accounting Office (GAO), shall be served on the Contracting Officer (addressed as follows) by obtaining written and dated acknowledgment of receipt from Contracting Officer, ATTN: CESWL-CT-A, Little Rock District – Corps of Engineers, P.O. Box 867 / 700 W. Capitol Ave., Little Rock, AR 72203-0867.

(b) The copy of any protest shall be received in the office designated above within one day of filing a protest with the GAO.

(End of provision)

(a) The clauses at 52.236-2, Differing Site Conditions, and 52.236-3, Site Investigations and Conditions Affecting the Work, will be included in any contract awarded as a result of this solicitation. Accordingly, offerors or quoters are urged and expected to inspect the site where the work will be performed.

(b) An organized site visit has been scheduled for --

\[18 \text{ December 2001, at 10:00 a.m} \]

(c) Participants will meet at --

Williams Conference Room in Bldg 528
Little Rock Air Force Base
Jacksonville, Arkansas

52.252-5 AUTHORIZED DEVIATIONS IN PROVISIONS (APR 1984)

(a) The use in this solicitation of any Federal Acquisition Regulation (48 CFR Chapter 1) provision with an authorized deviation is indicated by the addition of "(DEVIATION)" after the date of the provision.

(b) The use in this solicitation of any DOD FAR Supplement (48 CFR Chapter 2) provision with an authorized deviation is indicated by the addition of "(DEVIATION)" after the name of the regulation.
252.204-7001 COMMERCIAL AND GOVERNMENT ENTITY (CAGE) CODE REPORTING (AUG 1999)

(a) The offeror is requested to enter its CAGE code on its offer in the block with its name and address. The CAGE code entered must be for that name and address. Enter “CAGE” before the number.

(b) If the offeror does not have a CAGE code, it may ask the Contracting Officer to request one from the Defense Logistics Information Service (DLIS). The Contracting Officer will--

(1) Ask the Contractor to complete section B of a DD Form 2051, Request for Assignment of a Commercial and Government Entity (CAGE) Code;

(2) Complete section A and forward the form to DLIS; and

(3) Notify the Contractor of its assigned CAGE code.

c) Do not delay submission of the offer pending receipt of a CAGE code.

(End of provision)

252.211-7002 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS, STANDARDS, PLANS, DRAWINGS, DATA ITEM DESCRIPTIONS, AND OTHER PERTINENT DOCUMENTS (DEC. 1991)

The specifications, standards, plans, drawings, data item descriptions, and other pertinent documents cited in this solicitation are not available for distribution but may be examined at the following location:

Contracting Officer
ATTN: CESWL-CT-A, Room 7412
Little Rock District, Corps of Engineers
P.O. Box 867 / 700 W. Capitol Ave.
Little Rock, AR 72203-0867

(End of Clause)

252.236-7008 CONTRACT PRICES - BIDDING SCHEDULES. (DEC 1991)

(a) The Government’s payment for the items listed in the Bidding Schedule shall constitute full compensation to the Contractor for --

(1) Furnishing all plant, labor, equipment, appliances, and materials; and

(2) Performing all operations required to complete the work in conformity with the drawings and specifications.

(b) The Contractor shall include in the prices for the items listed in the Bidding Schedule all costs for work in the specifications, whether or not specifically listed in the Bidding Schedule.

52.0005-4077 PARTNERING

In order to complete this contract most beneficially for both parties, the Government proposes to form a Partnering relationship with the Contractor. This Partnering relationship will draw on the strengths of each party in an effort to achieve a quality project done right the first time, within budget and on schedule. The
Partnering relationship will be bilateral and participation will be totally voluntary. Any costs associated with Partnering will be shared equally with no change in contract price.

52.1000-4003 NEGOTIATIONS AFTER SEALED BIDDING (NOV 1994) (LRD)

(a) This provision applies if after bid opening, the Contracting Officer determines that all otherwise acceptable bids received are at unreasonable prices, or only one bid is received and the Contracting Officer cannot determine the reasonableness of the bid price, or no responsive bid has been received from a responsible bidder; or the bids were not independently arrived at in open competition, were collusive, or were submitted in bad faith.

(b) The Government has the option to reject all bids received in response to the sealed bid advertisement and initiate negotiations. Negotiations will include soliciting offers from each responsible bidder that submits a bid in response to the Invitation for Bid.

(c) If after bid opening the Contracting Officer determines under (a) above the negotiations are in the best interest of the Government, an amendment to the sealed bid advertisement will be issued to each responsible bidder changing the Invitation for Bid Number to a Request for Proposal Number.

52.1000-4214 BID SCHEDULE ITEM(S) (OCT 1994)

For the purpose of this solicitation, the word "item" shall be considered to mean "schedule" as used in Provision 52.214-19, Contract Award -- Sealed Bidding -- Construction, excluding additives, deductives or options.

52.1000-4216 RECEIPT OF OFFERS (APR 1984) (LRD)

Sealed offers for the work described herein will be received until 1400 hours, 10 January 2002, local time. Handcarried offers must be deposited in the offer depository located at the Federal Building, 700 West Capitol, Little Rock, Arkansas, in Room 7412 up to fifteen minutes before bid opening time on opening day, and in Room 7408 thereafter until bid opening time. Bids will be publicly opened in Room 7408 at 1400 hours on opening day.

52.1000-4232 OFFEROR'S QUALIFICATIONS (APR 1984) (LRD)

Before an offer is considered for award, the Offeror may be requested by the Government to submit a statement regarding his previous experience in performing comparable work, his business and technical organization, financial resources, and plant available to be used in performing the work.

52.1000-4234 MAGNITUDE OF CONSTRUCTION (OCT 1994) (LRD)

The estimated cost range of the project is from $5,000,000.00 to $10,000,000.00.

52.1000-4249 POSTPONEMENT OF OPENING (APR 1984) (FAR 14.402-3)

(a) A bid opening may be postponed even after the time scheduled for bid opening and:

(1) The contracting officer has reason to believe that the bids of an important segment of bidders have been delayed in the mails for causes beyond their control and without their fault or negligence (e.g., flood, fire, accident, weather conditions, or strikes); or

(2) Emergency or unanticipated events interrupt normal governmental processes so that the conduct of bid opening as scheduled is impractical.
(b) At the time of a determination to postpone a bid opening under subparagraph (a)(1) above, an announcement of the determination shall be publicly posted. If practical before issuance of a formal amendment of the invitation, the determination shall be otherwise communicated to prospective bidders who are likely to attend the scheduled bid opening.

(c) In the case of subparagraph (a)(2) above, the contracting officer may proceed with the bid opening as soon as practical after the time scheduled without prior amendment to the invitation for bids or notice to bidders, whenever the delay incident to the amendment or notice is not in the Government's interest. In such cases, the time of actual bid opening shall be deemed to be the time set for bid opening for the purpose of determining "late bids" under 14.303.

52.1000-4265 FUNDS AVAILABILITY

Funds are not presently available for this acquisition. No contract award will be made until appropriated funds are made available from which payment for contract purposes can be made.

52.1000-4298 LOCAL LABOR NOTICE

Notice: Some contractors have experienced difficulties in hiring local labor and subcontractors due to low unemployment and a very busy construction market in the area.

52.1000-4299 SUBCONTRACTING GOALS

Small Business and Small Disadvantaged Business Subcontracting Plan (Applicable to Large Businesses only). The Subcontracting plan required by FAR 19.704 will be evaluated in accordance with AFARS Appendix CC. The following minimum percentage goals must be included in the subcontracting plan to be considered acceptable:

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Business Subcontracting</td>
<td>61.4%</td>
</tr>
<tr>
<td></td>
<td>(Includes Small Disadvantaged, Women and Veteran-Owned Small Businesses)</td>
</tr>
<tr>
<td>Small Disadvantaged Business</td>
<td>9.1%</td>
</tr>
<tr>
<td></td>
<td>(Includes Historically Black Colleges or Universities/Minority Institutions)</td>
</tr>
<tr>
<td>Women Owned Small Business</td>
<td>5.0%</td>
</tr>
<tr>
<td>Veteran Owned Small Business</td>
<td>3.0%</td>
</tr>
<tr>
<td>Historically Black Colleges or</td>
<td>10.0%</td>
</tr>
<tr>
<td>Universities/Minority Institutions</td>
<td></td>
</tr>
<tr>
<td>Hub Zone Businesses</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

END SECTION 00100
SECTION 00600 Representations & Certifications

52.203-2 Certificate Of Independent Price Determination APR 1985
52.203-11 Certification And Disclosure Regarding Payment To Influence Certain Federal Transactions APR 1991
52.204-3 Taxpayer Identification OCT 1998
52.204-5 Women-Owned Business (Other Than Small Business) MAY 1999
52.209-5 Certification Regarding Debarment, Suspension, Proposed Debarment, And Other Responsibility Matters JAN 2001
52.219-1 Alt I Small Business Program Representations (Oct 2000) Alternate I OCT 2000
52.219-2 Equal Low Bids OCT 1995
52.219-19 Small Business Concerns Representation For The Small Business Competitiveness Demonstration Program OCT 2000
52.219-22 Small Disadvantaged Business Status (OCT 1999)
52.222-22 Previous Contracts And Compliance Reports FEB 1999
52.223-13 Certification of Toxic Chemical Release Reporting OCT 2000
252.209-7003 Compliance With Veterans' Employment Reporting Requirements MAR 1998
252.247-7022 Representation Of Extent Of Transportation Of Supplies By Sea AUG 1992

ENCLOSURES
SECTION 00600 Representations & Certifications

52.203-2 CERTIFICATE OF INDEPENDENT PRICE DETERMINATION (APR 1985)

(a) The offeror certifies that --

(1) The prices in this offer have been arrived at independently, without, for the purpose of restricting competition, any consultation, communication, or agreement with any other offeror or competitor relating to --

(i) Those prices,

(ii) The intention to submit an offer, or

(iii) The methods of factors used to calculate the prices offered:

(2) The prices in this offer have not been and will not be knowingly disclosed by the offeror, directly or indirectly, to any other offeror or competitor before bid opening (in the case of a sealed bid solicitation) or contract award (in the case of a negotiated solicitation) unless otherwise required by law; and

(3) No attempt has been made or will be made by the offeror to induce any other concern to submit or not to submit an offer for the purpose of restricting competition.

(b) Each signature on the offer is considered to be a certification by the signatory that the signatory --

(1) Is the person in the offeror’s organization responsible for determining the prices offered in this bid or proposal, and that the signatory has not participated and will not participate in any action contrary to subparagraphs (a)(1) through (a)(3) of this provision; or

(2) (i) Has been authorized, in writing, to act as agent for the following principals in certifying that those principals have not participated, and will not participate in any action contrary to subparagraphs (a)(1) through (a)(3) of this provision __ (insert full name of person(s) in the offeror’s organization responsible for determining the prices offered in this bid or proposal, and the title of his or her position in the offeror’s organization);

(ii) As an authorized agent, does certify that the principals named in subdivision (b)(2)(i) above have not participated, and will not participate, in any action contrary to subparagraphs (a)(1) through (a)(3) above; and

(iii) As an agent, has not personally participated, and will not participate, in any action contrary to subparagraphs (a)(1) through (a)(3) of this provision.

(c) If the offeror deletes or modifies subparagraph (a)(2) of this provision, the offeror must furnish with its offer a signed statement setting forth in detail the circumstances of the disclosure.

(End of provision)

52.203-11 CERTIFICATION AND DISCLOSURE REGARDING PAYMENTS TO INFLUENCE CERTAIN FEDERAL TRANSACTIONS (APR 1991)

(a) The definitions and prohibitions contained in the clause, at FAR 52.203-12, Limitation on Payments to Influence Certain Federal Transactions, included in this solicitation, are hereby incorporated by reference in paragraph (b) of this Certification.
(b) The offeror, by signing its offer, hereby certifies to the best of his or her knowledge and belief that on or after December 23, 1989,-

(1) No Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress on his or her behalf in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment or modification of any Federal contract, grant, loan, or cooperative agreement;

(2) If any funds other than Federal appropriated funds (including profit or fee received under a covered Federal transaction) have been paid, or will be paid to any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress or an employee of a Member of Congress on his or her behalf in connection with this solicitation, the offeror shall complete and submit, with its offer, OMB standard form LLL, Disclosure of Lobbying Activities, to the Contracting Officer; and

(3) He or she will include the language of this certification in all subcontract awards at any tier and require that all recipients of subcontract awards in excess of $100,000 shall certify and disclose accordingly.

(c) Submission of this certification and disclosure is a prerequisite for making or entering into this contract imposed by section 1352, Title 31, United States Code. Any person who makes an expenditure prohibited under this provision, shall be subject to a civil penalty of not less than $10,000, and not more than $100,000, for each such failure.

(End of provision)

52.204-3 TAXPAYER IDENTIFICATION (OCT 1998)

(a) Definitions.

“Common parent,” as used in this provision, means that corporate entity that owns or controls an affiliated group of corporations that files its Federal income tax returns on a consolidated basis, and of which the offeror is a member.

“Taxpayer Identification Number (TIN),” as used in this provision, means the number required by the Internal Revenue Service (IRS) to be used by the offeror in reporting income tax and other returns. The TIN may be either a Social Security Number or an Employer Identification Number.

(b) All offerors must submit the information required in paragraphs (d) through (f) of this provision to comply with debt collection requirements of 31 U.S.C. 7701(c) and 3325(d), reporting requirements of 26 U.S.C. 6041, 6041A, and 6050M, and implementing regulations issued by the IRS. If the resulting contract is subject to the payment reporting requirements described in Federal Acquisition Regulation (FAR) 4.904, the failure or refusal by the offeror to furnish the information may result in a 31 percent reduction of payments otherwise due under the contract.

(c) The TIN may be used by the Government to collect and report on any delinquent amounts arising out of the offeror’s relationship with the Government (31 U.S.C. 7701(c)(3)). If the resulting contract is subject to the payment reporting requirements described in FAR 4.904, the TIN provided hereunder may be matched with IRS records to verify the accuracy of the offeror’s TIN.

(d) Taxpayer Identification Number (TIN).
___ TIN:___________________________
___ TIN has been applied for.
___ TIN is not required because:
___ Offeror is a nonresident alien, foreign corporation, or foreign partnership that does not have income effectively connected with the conduct of a trade or business in the United States and does not have an office or place of business or a fiscal paying agent in the United States;
___ Offeror is an agency or instrumentality of a foreign government;
___ Offeror is an agency or instrumentality of the Federal Government.

(e) Type of organization.
___ Sole proprietorship;
___ Partnership;
___ Corporate entity (not tax-exempt);
___ Corporate entity (tax-exempt);
___ Government entity (Federal, State, or local);
___ Foreign government;
___ International organization per 26 CFR 1.6049-4;
___ Other ______________________________

(f) Common parent.
___ Offeror is not owned or controlled by a common parent as defined in paragraph (a) of this provision.
___ Name and TIN of common parent:
Name _________________________________
TIN ___________________________________

(End of provision)

52.204-5 WOMEN-OWNED BUSINESS (OTHER THAN SMALL BUSINESS) (MAY 1999)

(a) Definition. Women-owned business concern, as used in this provision, means a concern that is at least 51 percent owned by one or more women; or in the case of any publicly owned business, at least 51 percent of its stock is owned by one or more women; and whose management and daily business operations are controlled by one or more women.
(b) Representation. [Complete only if the offeror is a women-owned business concern and has not represented itself as a small business concern in paragraph (b)(1) of FAR 52.219-1, Small Business Program Representations, of this solicitation.] The offeror represents that it () is a women-owned business concern.

(End of provision)

52.209-5 CERTIFICATION REGARDING DEBARMENT, SUS PENSION, PROPOSED DEBARMENT, AND OTHER RESPONSIBILITY MATTERS (APR 2001)

(a)(1) The Offeror certifies, to the best of its knowledge and belief, that--

(i) The Offeror and/or any of its Principals--

(A) Are () are not () presently debarred, suspended, proposed for debarment, or declared ineligible for the award of contracts by any Federal agency;

(B) Have () have not (), within the three-year period preceding this offer, been convicted of or had a civil judgment rendered against them for: commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, state, or local) contract or subcontract; violation of Federal or state antitrust statutes relating to the submission of offers; or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, tax evasion, or receiving stolen property;

(C) Are () are not () presently indicted for, or otherwise criminally or civilly charged by a governmental entity with, commission of any of the offenses enumerated in subdivision (a)(1)(i)(B) of this provision; and

(D) Have () have not (), within a three-year period preceding this offer, been convicted of or had a civil judgment rendered against them for: commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, state, or local) contract or subcontract; violation of Federal or state antitrust statutes relating to the submission of offers; or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, tax evasion, or receiving stolen property; and

(E) Are () are not () presently indicted for, or otherwise criminally or civilly charged by a governmental entity with, commission of any of the offenses enumerated in subdivision (a)(1)(i)(D) of this provision.

(ii)(A) The offeror, aside from the offenses enumerated in paragraphs (a)(1)(i)(A), (B), and (C) of this provision, has () has not () within the past three years, relative to tax, labor and employment, environmental, antitrust, or consumer protection laws--

(1) Been convicted of a Federal or state felony (or has any Federal or state felony indictments currently pending against them); or

(2) Had a Federal court judgment in a civil case brought by the United States rendered against them; or

(3) Had an adverse decision by a Federal administrative law judge, board, or commission indicating a willful violation of law.

(B) If the offeror has responded affirmatively, the offeror shall provide additional information if requested by the Contracting Officer; and

(iii) The Offeror has () has not (), within a three-year period preceding this offer, had one or more contracts terminated for default by any Federal agency.
(2) "Principals," for the purposes of this certification, means officers; directors; owners; partners; and, persons having primary management or supervisory responsibilities within a business entity (e.g., general manager; plant manager; head of a subsidiary, division, or business segment, and similar positions).

THIS CERTIFICATION CONCERNS A MATTER WITHIN THE JURISDICTION OF AN AGENCY OF THE UNITED STATES AND THE MAKING OF A FALSE, FICTITIOUS, OR FRAUDULENT CERTIFICATION MAY RENDER THE MAKER SUBJECT TO PROSECUTION UNDER SECTION 1001, TITLE 18, UNITED STATES CODE.

(b) The Offeror shall provide immediate written notice to the Contracting Officer if, at any time prior to contract award, the Offeror learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances.

(c) A certification that any of the items in paragraph (a) of this provision exists will not necessarily result in withholding of an award under this solicitation. However, the certification will be considered in connection with a determination of the Offeror's responsibility. Failure of the Offeror to furnish a certification or provide such additional information as requested by the Contracting Officer may render the Offeror nonresponsible.

(d) Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render, in good faith, the certification required by paragraph (a) of this provision. The knowledge and information of an Offeror is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

(e) The certification in paragraph (a) of this provision is a material representation of fact upon which reliance was placed when making award. If it is later determined that the Offeror knowingly rendered an erroneous certification, in addition to other remedies available to the Government, the Contracting Officer may terminate the contract resulting from this solicitation for default.

(End of provision)

52.219-1 SMALL BUSINESS PROGRAM REPRESENTATIONS (MAY 2001) ALTERNATE I (OCT 2000) & ALTERNATE II (OCT 2000)

(a)(1) The North American Industry Classification System (NAICS) code for this acquisition is 233320.

(2) The small business size standard is $27,500,000.00.

(3) The small business size standard for a concern which submits an offer in its own name, other than on a construction or service contract, but which proposes to furnish a product which it did not itself manufacture, is 500 employees.

(b) Representations. (1) The offeror represents as part of its offer that it () is, () is not a small business concern.

(2) (Complete only if the offeror represented itself as a small business concern in paragraph (b)(1) of this provision.) The offeror represents, for general statistical purposes, that it () is, () is not a small disadvantaged business concern as defined in 13 CFR 124.1002.

(3) (Complete only if the offeror represented itself as a small business concern in paragraph (b)(1) of this provision.) The offeror represents as part of its offer that it () is, () is not a women-owned small business concern.
(4) (Complete only if the offeror represented itself as a small business concern in paragraph (b)(1) of this provision.) The offeror represents as part of its offer that it () is, () is not a veteran-owned small business concern.

(5) (Complete only if the offeror represented itself as a veteran-owned small business concern in paragraph (b)(4) of this provision.) The offeror represents as part of its offer that it () is, () is not a service-disabled veteran-owned small business concern.

(6) (Complete only if offeror represented itself as small business concern in paragraph (b)(1) of this provision). The offeror represents, as part of its offer, that--

(i) It () is, () is not a HUBZone small business concern listed, on the date of this representation, on the List of Qualified HUBZone Small Business Concerns maintained by the Small Business Administration, and no material change in ownership and control, principal office, or HUBZone employee percentage has occurred since it was certified by the Small Business Administration in accordance with 13 CFR Part 126; and

(ii) It () is, () is not a joint venture that complies with the requirements of 13 CFR Part 126, and the representation in paragraph (b)(6)(i) of this provision is accurate for the HUBZone small business concern or concerns that are participating in the joint venture. (The offeror shall enter the name or names of the HUBZone small business concern or concerns that are participating in the joint venture: ______________.)

Each HUBZone small business concern participating in the joint venture shall submit a separate signed copy of the HUBZone representation.

(7) (Complete if offeror represented itself as disadvantaged in paragraph (b)(2) of this provision.) The offeror shall check the category in which its ownership falls:

() Black American.

() Hispanic American.

() Native American (American Indians, Eskimos, Aleuts, or Native Hawaiians).

() Asian-Pacific American (persons with origins from Burma, Thailand, Malaysia, Indonesia, Singapore, Brunei, Japan, China, Taiwan, Laos, Cambodia (Kampuchea), Vietnam, Korea, The Philippines, U.S. Trust Territory of the Pacific Islands (Republic of Palau), Republic of the Marshall Islands, Federated States of Micronesia, the Commonwealth of the Northern Mariana Islands, Guam, Samoa, Macao, Hong Kong, Fiji, Tonga, Kiribati, Tuvalu, or Nauru).

() Subcontinent Asian (Asian-Indian) American (persons with origins from India, Pakistan, Bangladesh, Sri Lanka, Bhutan, the Maldives Islands, or Nepal).

(c) Definitions. As used in this provision--

Service-disabled veteran-owned small business concern--

(1) Means a small business concern--

(i) Not less than 51 percent of which is owned by one or more service-disabled veterans or, in the case of any publicly owned business, not less than 51 percent of the stock of which is owned by one or more service-disabled veterans; and

(ii) The management and daily business operations of which are controlled by one or more service-disabled veterans or, in the case of a veteran with permanent and severe disability, the spouse or permanent caregiver of such veteran.
(2) Service-disabled veteran means a veteran, as defined in 38 U.S.C. 101(2), with a disability that is service-connected, as defined in 38 U.S.C. 101(16).

Small business concern means a concern, including its affiliates, that is independently owned and operated, not dominant in the field of operation in which it is bidding on Government contracts, and qualified as a small business under the criteria in 13 CFR Part 121 and the size standard in paragraph (a) of this provision.

Veteran-owned small business concern means a small business concern--

(1) Not less than 51 percent of which is owned by one or more veterans (as defined at 38 U.S.C. 101(2)) or, in the case of any publicly owned business, not less than 51 percent of the stock of which is owned by one or more veterans; and

(2) The management and daily business operations of which are controlled by one or more veterans.

Women-owned small business concern means a small business concern --

(1) That is at least 51 percent owned by one or more women; in the case of any publicly owned business, at least 51 percent of the stock of which is owned by one or more women; and

(2) Whose management and daily business operations are controlled by one or more women.

(d) Notice.

(1) If this solicitation is for supplies and has been set aside, in whole or in part, for small business concerns, then the clause in this solicitation providing notice of the set-aside contains restrictions on the source of the end items to be furnished.

(2) Under 15 U.S.C. 645(d), any person who misrepresents a firm's status as a small, HUBZone small, small disadvantaged, or women-owned small business concern in order to obtain a contract to be awarded under the preference programs established pursuant to section 8(a), 8(d), 9, or 15 of the Small Business Act or any other provision of Federal law that specifically references section 8(d) for a definition of program eligibility, shall--

(i) Be punished by imposition of fine, imprisonment, or both;

(ii) Be subject to administrative remedies, including suspension and debarment; and

(iii) Be ineligible for participation in programs conducted under the authority of the Act.

(End of provision)

52.219-2 EQUAL LOW BIDS. (OCT 1995)

(a) This provision applies to small business concerns only.

(b) The bidder's status as a labor surplus area (LSA) concern may affect entitlement to award in case of tie bids. If the bidder wishes to be considered for this priority, the bidder must identify, in the following space, the LSA in which the costs to be incurred on account of manufacturing or production (by the bidder or the first-tier subcontractors) amount to more than 50 percent of the contract price.
(c) Failure to identify the labor surplus area as specified in paragraph (b) of this provision will preclude the bidder from receiving priority consideration. If the bidder is awarded a contract as a result of receiving priority consideration under this provision and would not have otherwise received award, the bidder shall perform the contract or cause the contract to be performed in accordance with the obligations of an LSA concern.

52.219-19 SMALL BUSINESS CONCERN REPRESENTATION FOR THE SMALL BUSINESS COMPETITIVENESS DEMONSTRATION PROGRAM (OCT 2000)

(a) Definition.

"Emerging small business" as used in this solicitation, means a small business concern whose size is no greater than 50 percent of the numerical size standard applicable to the North American Industry Classification System (NAICS) code assigned to a contracting opportunity.

(b) [Complete only if the Offeror has represented itself under the provision at 52.219-1 as a small business concern under the size standards of this solicitation.] The Offeror [] is, [] is not an emerging small business.

(c) (Complete only if the Offeror is a small business or an emerging small business, indicating its size range.)

Offeror's number of employees for the past 12 months (check this column if size standard stated in solicitation is expressed in terms of number of employees) or Offeror's average annual gross revenue for the last 3 fiscal years (check this column if size standard stated in solicitation is expressed in terms of annual receipts). (Check one of the following.)

<table>
<thead>
<tr>
<th>No. of Employees</th>
<th>Avg. Annual Gross Revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ 50 or fewer</td>
<td>____ $1 million or less</td>
</tr>
<tr>
<td>____ 51 - 100</td>
<td>____ $1,000,001 - $2 million</td>
</tr>
<tr>
<td>____ 101 - 250</td>
<td>____ $2,000,001 - $3.5 million</td>
</tr>
<tr>
<td>____ 251 - 500</td>
<td>____ $3,500,001 - $5 million</td>
</tr>
<tr>
<td>____ 501 - 750</td>
<td>____ $5,000,001 - $10 million</td>
</tr>
<tr>
<td>____ 751 - 1,000</td>
<td>____ $10,000,001 - $17 million</td>
</tr>
<tr>
<td>____ Over 1,000</td>
<td>____ Over $17 million</td>
</tr>
</tbody>
</table>

(End of provision)

52.219-22 SMALL DISADVANTAGED BUSINESS STATUS (OCT 1999)

(a) General. This provision is used to assess an offeror's small disadvantaged business status for the purpose of obtaining a benefit on this solicitation. Status as a small business and status as a small disadvantaged business for general statistical purposes is covered by the provision at FAR 52.219-1, Small Business Program Representation.

(b) Representations.
(1) General. The offeror represents, as part of its offer, that it is a small business under the size standard applicable to this acquisition; and either--

___ (i) It has received certification by the Small Business Administration as a small disadvantaged business concern consistent with 13 CFR 124, Subpart B; and

(A) No material change in disadvantaged ownership and control has occurred since its certification;

(B) Where the concern is owned by one or more disadvantaged individuals, the net worth of each individual upon whom the certification is based does not exceed $750,000 after taking into account the applicable exclusions set forth at 13 CFR 124.104(c)(2); and

(C) It is identified, on the date of this representation, as a certified small disadvantaged business concern in the database maintained by the Small Business Administration(PRO0Net); or

___ (ii) It has submitted a completed application to the Small Business Administration or a Private Certifier to be certified as a small disadvantaged business concern in accordance with 13 CFR 124, Subpart B, and a decision on that application is pending, and that no material change in disadvantaged ownership and control has occurred since its application was submitted.

(2)___ For Joint Ventures. The offeror represents, as part of its offer, that it is a joint venture that complies with the requirements at 13 CFR 124.1002(f) and that the representation in paragraph (b)(1) of this provision is accurate for the small disadvantaged business concern that is participating in the joint venture. [The offeror shall enter the name of the small disadvantaged business concern that is participating in the joint venture: ____________ .]

(c) Penalties and Remedies. Anyone who misrepresents any aspects of the disadvantaged status of a concern for the purposes of securing a contract or subcontract shall:

(1) Be punished by imposition of a fine, imprisonment, or both;

(2) Be subject to administrative remedies, including suspension and debarment; and

(3) Be ineligible for participation in programs conducted under the authority of the Small Business Act.

(End of provision)

52.222-22 PREVIOUS CONTRACTS AND COMPLIANCE REPORTS (FEB 1999)

The offeror represents that --

(a) [] It has, [] has not participated in a previous contract or subcontract subject to the Equal Opportunity clause of this solicitation;

(b) [] It has, [] has not, filed all required compliance reports; and

(c) Representations indicating submission of required compliance reports, signed by proposed subcontractors, will be obtained before subcontract awards.

(End of provision)
52.223-13 CERTIFICATION OF TOXIC CHEMICAL RELEASE REPORTING (OCT 2000)

(a) Submission of this certification is a prerequisite for making or entering into this contract imposed by Executive Order 12969, August 8, 1995.

(b) By signing this offer, the offeror certifies that-

(1) As the owner or operator of facilities that will be used in the performance of this contract that are subject to the filing and reporting requirements described in section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) (42 U.S.C. 11023) and section 6607 of the Pollution Prevention Act of 1990 (PPA) (42 U.S.C. 13106), the offeror will file and continue to file for such facilities for the life of the contract the Toxic Chemical Release Inventory Form (Form R) as described in sections 313(a) and (g) of EPCRA and section 6607 of PPA; or

(2) None of its owned or operated facilities to be used in the performance of this contract is subject to the Form R filing and reporting requirements because each such facility is exempt for at least one of the following reasons: (Check each block that is applicable.)

[] (i) The facility does not manufacture, process or otherwise use any toxic chemicals listed under section 313(c) of EPCRA, 42 U.S.C. 11023(c);

[] (ii) The facility does not have 10 or more full-time employees as specified in section 313.(b)(1)(A) of EPCRA 42 U.S.C. 11023(b)(1)(A);

[] (iii) The facility does not meet the reporting thresholds of toxic chemicals established under section 313(f) of EPCRA, 42 U.S.C. 11023(f) (including the alternate thresholds at 40 CFR 372.27, provided an appropriate certification form has been filed with EPA);

[] (iv) The facility does not fall within Standard Industrial Classification Code (SIC) major groups 20 through 39 or their corresponding North American Industry Classification System (NAICS) sectors 31 through 33; or

[] (v) The facility is not located within any State of the United States, the District of Columbia, the Commonwealth of Puerto Rico, Guam, American Samoa, the United States Virgin Islands, the Northern Mariana Islands, or any other territory or possession over which the United States has jurisdiction.

252.209-7001 DISCLOSURE OF OWNERSHIP OR CONTROL BY THE GOVERNMENT OF A TERRORIST COUNTRY (MAR 1998)

(a) "Definitions."

As used in this provision --

(a) "Government of a terrorist country" includes the state and the government of a terrorist country, as well as any political subdivision, agency, or instrumentality thereof.

(2) "Terrorist country" means a country determined by the Secretary of State, under section 6(j)(1)(A) of the Export Administration Act of 1979 (50 U.S.C. App. 2405(j)(i)(A)), to be a country the government of which has repeatedly provided support for such acts of international terrorism. As of the date of this provision, terrorist countries include: Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria.

(3) "Significant interest" means --
(i) Ownership of or beneficial interest in 5 percent or more of the firm's or subsidiary's securities. Beneficial interest includes holding 5 percent or more of any class of the firm's securities in "nominee shares," "street names," or some other method of holding securities that does not disclose the beneficial owner;

(ii) Holding a management position in the firm, such as a director or officer;

(iii) Ability to control or influence the election, appointment, or tenure of directors or officers in the firm;

(iv) Ownership of 10 percent or more of the assets of a firm such as equipment, buildings, real estate, or other tangible assets of the firm; or

(v) Holding 50 percent or more of the indebtedness of a firm.

(b) "Prohibition on award."

In accordance with 10 U.S.C. 2327, no contract may be awarded to a firm or a subsidiary of a firm if the government of a terrorist country has a significant interest in the firm or subsidiary or, in the case of a subsidiary, the firm that owns the subsidiary, unless a waiver is granted by the Secretary of Defense.

(c) "Disclosure."

If the government of a terrorist country has a significant interest in the Offeror or a subsidiary of the Offeror, the Offeror shall disclosure such interest in an attachment to its offer. If the Offeror is a subsidiary, it shall also disclose any significant interest the government of a terrorist country has in any firm that owns or controls the subsidiary. The disclosure shall include --

(1) Identification of each government holding a significant interest; and

(2) A description of the significant interest held by each government.

(End of provision)

252.209-7003 COMPLIANCE WITH VETERANS' EMPLOYMENT REPORTING REQUIREMENTS (MAR 1998)

By submission of its offer, the offeror represents that, if it is subject to the reporting requirements of 37 U.S.C. 4212(d) (i.e., the VETS-100 report required by Federal Acquisition Regulation clause 52.222-37, Employment Reports on Disabled Veterans and Veterans of the Vietnam Era), it has submitted the most recent report required by 38 U.S.C. 4212(d).

252.247-7022 REPRESENTATION OF EXTENT OF TRANSPORTATION BY SEA (AUG 1992)

(a) The Offeror shall indicate by checking the appropriate blank in paragraph (b) of this provision whether transportation of supplies by sea is anticipated under the resultant contract. The term supplies is defined in the Transportation of Supplies by Sea clause of this solicitation.

(b) Representation. The Offeror represents that it:

____ (1) Does anticipate that supplies will be transported by sea in the performance of any contract or subcontract resulting from this solicitation.

____ (2) Does not anticipate that supplies will be transported by sea in the performance of any contract or subcontract resulting from this solicitation.
(c) Any contract resulting from this solicitation will include the Transportation of Supplies by Sea clause. If the Offeror represents that it will not use ocean transportation, the resulting contract will also include the Defense FAR Supplement clause at 252.247-7024, Notification of Transportation of Supplies by Sea.

(End of provision)

ENCLOSURES

Encl 1 Bid Bond (SF 24)
Encl 2 Previous Contract History
Encl 3 Financial Information
Encl 4 Disclosure of Lobbying Activities (SF LLL)
Encl 5 Sample Small Business and Small Disadvantaged Business Subcontracting Plan

END SECTION 00600
BID BOND

(See instructions on reverse)

<table>
<thead>
<tr>
<th>PRINCIPAL (Legal name and business address)</th>
<th>SURETY(IES) (Name and business address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF ORGANIZATION (X one)</td>
<td></td>
</tr>
<tr>
<td>☐ INDIVIDUAL</td>
<td>☐ PARTNERSHIP</td>
</tr>
<tr>
<td>☐ JOINT VENTURE</td>
<td>☐ CORPORATION</td>
</tr>
<tr>
<td>STATE OF INCORPORATION</td>
<td></td>
</tr>
</tbody>
</table>

DATE BOND EXECUTED: (Must not be later than bid opening date)

PERCENT OF BID PRICE

<table>
<thead>
<tr>
<th>AMOUNT NOT TO EXCEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENAL SUM OF BOND</td>
</tr>
<tr>
<td>MILLION(S)</td>
</tr>
<tr>
<td>THOUSAND(S)</td>
</tr>
<tr>
<td>HUNDRED(S)</td>
</tr>
<tr>
<td>CENTS</td>
</tr>
</tbody>
</table>

BID DATE

INVITATION NO.

FOR (Construction, Supplies, or Services)

OBLIGATION:

We, the Principal and Surety(ies) are firmly bound to the United States of America (hereinafter called the Government) in the above penal sum. For payment of the penal sum, we bind ourselves, our heirs, executors, administrators, and successors, jointly and severally. However, where the Sureties are corporations acting as co-sureties, we, the Sureties, bind ourselves in such sum "jointly and severally" as well as "severally" only for the purpose of allowing a joint action or actions against any or all of us. For all other purposes, each Surety binds itself, jointly and severally with the Principal, for the payment of the sum shown opposite the name of the Surety. If no limit of liability is indicated, the limit of liability is the full amount of the penal sum.

CONDITIONS:

The Principal has submitted the bid identified above.

THEREFORE:

The above obligation is void if the Principal - (a) upon acceptance by the Government of the bid identified above, within the period specified therein for acceptance (sixty (60) days if no period is specified), executes the further contractual documents and gives the bond(s) required by the terms of the bid as accepted within the time specified (ten (10) days if no period is specified) after receipt of the forms by the principal; or (b) in the event of failure to execute such further contractual documents and give such bonds, pays the Government for any cost of procuring the work which exceeds the amount of the bid.

Each Surety executing this instrument agrees that its obligation is not impaired by any extension(s) of the time for acceptance of the bid that the Principal may grant to the Government. Notice to the surety(ies) of extension(s) is waived. However, waiver of the notice applies only to extensions aggregating not more than sixty (60) calendar days in addition to the period originally allowed for acceptance of the bid.

WITNESS:

The Principal and Surety(ies) executed this bond and affixed their seals on the above date.

PRINCIPAL

<table>
<thead>
<tr>
<th>SIGNATURE(S)</th>
<th>(Seal)</th>
<th>(Seal)</th>
<th>(Seal)</th>
<th>Corporate Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAME(S) & TITLE(S) (Typed)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
</tbody>
</table>

INDIVIDUAL SURETY(IES)

<table>
<thead>
<tr>
<th>SIGNATURE(S)</th>
<th>(Seal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
</tbody>
</table>

NAME(S) (Typed)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
</tbody>
</table>

CORPORATE SURETY(IES)

<table>
<thead>
<tr>
<th>SURETY A</th>
<th>NAME & ADDRESS</th>
<th>STATE OF INC.</th>
<th>LIABILITY LIMIT ($)</th>
<th>Corporate Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURETY A

<table>
<thead>
<tr>
<th>SIGNATURE(S)</th>
<th>(Seal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
</tbody>
</table>

NAME(S) & TITLE(S) (Typed)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>SURETY B</td>
<td>NAME & ADDRESS</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>SIGNATURE(S)</td>
</tr>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAME(S) & TITLE(S) (Typed)</td>
</tr>
<tr>
<td>1.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURETY C</th>
<th>NAME & ADDRESS</th>
<th>STATE OF INC.</th>
<th>LIABILITY LIMIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIGNATURE(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>NAME(S) & TITLE(S) (Typed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURETY D</th>
<th>NAME & ADDRESS</th>
<th>STATE OF INC.</th>
<th>LIABILITY LIMIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIGNATURE(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>NAME(S) & TITLE(S) (Typed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURETY E</th>
<th>NAME & ADDRESS</th>
<th>STATE OF INC.</th>
<th>LIABILITY LIMIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIGNATURE(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>NAME(S) & TITLE(S) (Typed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURETY F</th>
<th>NAME & ADDRESS</th>
<th>STATE OF INC.</th>
<th>LIABILITY LIMIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIGNATURE(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>NAME(S) & TITLE(S) (Typed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURETY G</th>
<th>NAME & ADDRESS</th>
<th>STATE OF INC.</th>
<th>LIABILITY LIMIT ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIGNATURE(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>NAME(S) & TITLE(S) (Typed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. This form is authorized for use when a bid guaranty is required. Any deviation from this form will require the written approval of the Administrator of General Services.

2. Insert the full legal name and business address of the Principal in the space designated "Principal" on the face of the form. An authorized person shall sign the bond. Any person signing in a representative capacity (e.g., an attorney-in-fact) must furnish evidence of authority if that representative is not a member of the firm, partnership, or joint venture, or an officer of the corporation involved.

3. The bond may express penal sum as a percentage of the bid price. In these cases, the bond may state a maximum dollar limitation (e.g., 20% of the bid price but the amount not to exceed $123,456.78 dollars).

4. (a) Corporations executing the bond as sureties must appear on the Department of the Treasury’s list of approved sureties and must act within the limitation listed therein. Where more than one corporate surety is involved, their names and addresses shall appear in the spaces (Surety A, Surety B, etc.) headed "CORPORATE SURETY(IES)." In the space designed "SURETY(IES)" on the face of the form, insert only the letter identification of the sureties.

(b) Where individual sureties are involved, a completed Affidavit of Individual surety (Standard Form 28), for each individual surety, shall accompany the bond. The Government may require the surety to furnish additional substantiating information concerning its financial capability.

5. Corporations executing the bond shall affix their corporate seals. Individuals shall execute the bond opposite the word "Corporate Seal"; and shall affix an adhesive seal if executed in Maine, New Hampshire, or any other jurisdiction requiring adhesive seals.

6. Type the name and title of each person signing this bond in the space provided.

7. In its application to negotiated contracts, the terms "bid" and "bidder" shall include "proposal" and "offeror."
PREVIOUS CONTRACT HISTORY

Prospective bidders will identify the last five completed contracts, any on-going contracts, and contracts of similar nature as required on this solicitation, both Government and private, performed within the last three years.

<table>
<thead>
<tr>
<th>Contract #</th>
<th>Title & Location of Project</th>
<th>Contact Name & Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successful bidder/offeror may be requested to provide the Government additional business (credit), technical (work) and financial information.

Years in Business _____________ Date Incorporated _____________
FINANCIAL INFORMATION

Contractor’s Name__

Solicitation No.____________________________________for_______________________

Request that the following information be completed and submitted with your offer to expedite award in the event you are the low responsive offeror.

Banking Information

Name of Bank___

Address__

Telephone No.__________________________ Person to Contract____________________

Checking Acct. No.____________________ Savings Acct. No._______________________

Credit References

List name and address of three company credit references you have done business with in order to check your credit rating.

1. _______________________________ Telephone No._______________
 _______________________________ Contract__________________________

2. _______________________________ Telephone No._______________
 _______________________________ Contract__________________________

3. _______________________________ Telephone No._______________
 _______________________________ Contract__________________________
DISCLOSURE OF LOBBYING ACTIVITIES

Complete this form to disclose lobbying activities pursuant to 31 U.S.C. 1352
(See reverse for public burden disclosure.)

1. Type of Federal Action:
- [] a. contract
- [] b. grant
- [] c. cooperative agreement
- [] d. loan
- [] e. loan guarantee
- [] f. loan insurance

2. Status of Federal Action:
- [] a. bid/offer/application
- [] b. initial award
- [] c. post-award

3. Report Type:
- [] a. initial filing
- [] b. material change

For Material Change Only:
- year ____
- quarter ____
- date of last report ____

4. Name and Address of Reporting Entity:
- [] Prime
- [] Subawardee

Congressional District, if known:

5. If Reporting Entity in No. 4 is Subawardee, Enter Name and Address of Prime:

Congressional District, if known:

6. Federal Department/Agency:

7. Federal Program Name/Description:

CFDA Number, if applicable:

8. Federal Action Number, if known:

9. Award Amount, if known:

$ __________

10. a. Name and Address of Lobbying Entity
 (if individual, last name, first name, MI):

 b. Individuals Performing Services (including address if different from No. 10a)
 (last name, first name, MI):

 (attach Continuation Sheet(s) SF-LLL-A, if necessary)

11. Amount of Payment (check all that apply):

 $ __________

 [] actual
 [] planned

12. Form of Payment (check all that apply):

 [] a. cash
 [] b. in-kind; specify: nature __________
 value __________

13. Type of Payment (check all that apply):

 [] a. retainer
 [] b. one-time fee
 [] c. commission
 [] d. contingent fee
 [] e. deferred
 [] f. other; specify: __________

14. Brief Description of Services Performed or to be Performed and Date(s) of Service, including officer(s), employee(s), or Member(s) contacted, for Payment indicated in Item 11:

 (attach Continuation Sheet(s) SF-LLL-A, if necessary)

15. Continuation Sheet(s) SF-LLL-A attached:

 [] Yes
 [] No

16. Information requested through this form is authorized by title 31 U.S.C. section 1352. This disclosure of lobbying activities is a material representation of fact upon which reliance was placed by the tier above when this transaction was made or entered into. This disclosure is required pursuant to 31 U.S.C. 1352. This information will be reported to the Congress semi-annually and will be available for public inspection. Any person who fails to

 [] Signature:
 [] Print Name:
 [] Title:
 [] Telephone No.: __________
 [] Date: __________

Federal Use Only:

[] Authorized for Local Reproduction

Approved by
OM
0348-0046
INSTRUCTIONS FOR COMPLETION OF SF-LLL, DISCLOSURE OF LOBBYING ACTIVITIES

This disclosure form shall be completed by the reporting entity, whether subawardee or prime Federal recipient, at the initiation or receipt of a covered Federal action, or a material change to a previous filing, pursuant to title 31 U.S.C. section 1352. The filing of a form is required for each payment or agreement to make payment to any lobbying entity for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a member of Congress in connection with a covered Federal action. Use the SF-LLL-A Continuation Sheet for additional information if the space on the form is inadequate. Complete all items that apply for both the initial filing and material change report. Refer to the implementing guidance published by the Office of Management and Budget for additional information.

1. Identify the type of covered Federal action for which lobbying activity is and/or has been secured to influence the outcome of a covered Federal action.

2. Identify the status of the covered Federal action.

3. Identify the appropriate classification of this report. If this is a followup report caused by a material change to the information previously reported, enter the year and quarter in which the change occurred. Enter the date of the last previously submitted report by this reporting entity for this covered Federal action.

4. Enter the full name, address, city, state and zip code of the reporting entity. Include Congressional District, if known. Check the appropriate classification of the reporting entity that designates if it is, or expects to be, a prime or subawardee recipient. Identify the tier of the subawardee, e.g., the first subawardee of the prime is the 1st tier. Subawards include but are not limited to subcontracts, subgrants and contract awards under grants.

5. If the organization filing the report in item 4 checks "Subawardee", then enter the full name, address, city, state and zip code of the prime Federal recipient. Include Congressional District, if known.

6. Enter the name of the Federal agency making the award or loan commitment. Include at least one organizational level below agency name, if known. For example, Department of Transportation, United States Coast Guard.

7. Enter the Federal program name or description for the covered Federal action (item 1). If known, enter the full Catalog of Federal Domestic Assistance (CFDA) number for grants, cooperative agreements, loans, and loan commitments.

8. Enter the most appropriate Federal identifying number available for the Federal action identified in item 1 (e.g., Request for Proposal (RFP) number; Invitation for Bid (IFB) number; grant announcement number; the contract, grant, or loan award number; the application/proposal control number assigned by the Federal agency). Include prefixes, e.g., "RFP-DE-90-001."

9. For a covered Federal action where there has been an award or loan commitment by the Federal agency, enter the Federal amount of the award/loan commitment for the prime entity identified in item 4 or 5.

10. (a) Enter the full name, address, city, state and zip code of the lobbying entity engaged by the reporting entity identified in item 4 to influence the Federal action.

(b) Enter the full names of the individuals(s) performing services, and include full address if different from 10 (a). Enter Last Name, First Name, and Middle Initial (MI).

11. Enter the amount of compensation paid or reasonably expected to be paid by the reporting entity (item 4) to the lobbying entity (item 10). Indicate whether the payment has been made (actual) or will be made (planned). Check all boxes that apply. If this is a material change report, enter the cumulative amount of payment made or planned to be made.

12. Check the appropriate box(es). Check all boxes that apply. If payment is made through an in-kind contribution, specify the nature and value of the in-kind payment.

13. Check the appropriate box(es). Check all boxes that apply. If other, specify nature.

Provide a specific and detailed description of the services that the lobbyist has performed, or will be expected to perform, and the date(s) of any services rendered. Include all preparatory and related activity, not just time spent in

Public reporting burden for this collection of information is estimated to average 30 minutes per response, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Office of Management and Budget, Paperwork Reduction Project (0348-0046), Washington, D.C. 20503.
SMALL BUSINESS SUBCONTRACTING PLAN
(APPLICABLE TO LARGE BUSINESS ONLY)

DATE: _______________

SUBCONTRACTING PLAN FOR SOLICITATION NUMBER: ________________
CONTRACT NUMBER: ________________

DESCRIPTION OF WORK REQUIRED TO PERFORM THE CONTRACT:
__
__
__
__
__
__

SUBMITTED TO:
U.S. ARMY CORPS OF ENGINEERS, LITTLE ROCK DISTRICT
ATTN: CESWL-CT
P.O. BOX 867,
Little Rock, AR 72203-0867

SUBMITTED BY:

COMPANY'S NAME: _______________________________________
ADDRESS: ___

__

TELEPHONE NUMBER: ________________ FAX: ____________
POINT OF CONTACT: _______________________________________

This Subcontracting Plan is submitted in accordance with Federal Acquisition Regulation (FAR) clause 52.219-9 "Small Business Subcontracting Plan" and 52.219-8 "Utilization of Small Business Concerns"; and Department of Defense FAR Supplement 252.219-7003. Also, Army FAR Supplement (AFAR) Subpart 19.7 and Engineer Far Supplement (EFARS) Subpart 19.7 "Subcontracting with Small Business, Small Disadvantaged and Woman-Owned Small Business Concerns."
1. Dollar Amounts and subcontracting goals percentage.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$__________</td>
<td>100%</td>
</tr>
</tbody>
</table>

a. Prime Contract

b. Planned subcontracting $__________ ___%.$((b/1a)x100)

(1) **Large Business (LB)** $__________ ___%.$((b(1))/b)x100)

(2) **Small Business (SB)** $__________ ___%.$((b(2))/b)x100)

(a) **Historically Underutilized Business Zone (HUBZone)** SB: $__________ ___%.$((2)(a)/b)x100)

(b) **Women-Owned Small Business (WOSB)**:

$__________ ___%.$((2)(b)/b)x100)

(c) **Veteran-Owned Small Business (VOSB)**:

$__________ ___%.$((2)(c)/b)x100)

(d) **Small Disadvantaged Business (SDB)**

$__________ ___%.$((2)(d)/b)x100)

(e) **Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs)**:

$__________ ___%.$((2)(e)/b)x100)

2. a. The principal items or areas we will seek to subcontract under this contract are:

__

__

__

b. Of these items or areas stated in item 2a; the following are considered appropriate for award of subcontracts to

(1) **SB**:

__

__

(2) **HUBZone SB**:

__

__

(3) **WOSB**:

__

__
3. The method used to develop the above subcontracting goals is described as follows: (i.e., Statements explaining how the product and service areas to be subcontracted were established; how the areas to be subcontracted to SB, HubZone, SDB, WOSB, and VOSB concerns were determined, and how these concerns capabilities were determined, to include identification of sources lists utilized in making these determinations.)

4. The method used to identify potential sources for solicitation purpose is as follows:

5. Indirect costs are () are not () included in the goals. If indirect costs are included, a description of the method used to determine the proportionate share of indirect costs to be incurred with SB, HubZone, WOSB, VOSB, and SDB concerns follows:

6. The individual who will administer the firm's subcontracting program is:

 a. Name and Title: _________________________________
 Address: _______________________________________

 Telephone Number: ______________________________

 b. A Description of the duties of the subcontracting plan administrator are as follows: General overall responsibility for this company's SB program, the development, preparation and execution of individual subcontracting plans and for monitoring
performance relative to contractual subcontracting requirements contained in this plan. This would include but would not be limited to:

(1) Developing and maintaining bidders list of SB, HUBZone, SDB, WOSB, and VOSB concerns from all possible sources.

(2) Ensuring that procurement packages are structured to permit SB, HUBZone, SDB, WOSB, and VOSB concerns participation to the maximum extent possible.

(3) Assuring inclusion of SB, HUBZone, SDB, WOSB, and VOSB concerns in all solicitations for products or services that they are capable of providing.

(4) Reviewing solicitations to remove statements, clauses, etc. which may tend to restrict or prohibit SB, HUBZone, SDB, WOSB, and VOSB participation.

(5) Ensuring periodic rotation of potential subcontractors on bidders list.

(6) Ensuring that the bid proposal review board documents its' reasons for not selecting low bids submitted by SB, HUBZone, SDB, WOSB, and VOSB concerns.

(7) Ensuring the establishment and maintenance of records of solicitations and subcontract award activity.

(8) Provide notice to subcontractors concerning penalties and remedies for misrepresentations of business status.

(9) Attending or arranging for attendance of company counselors at Business Opportunity Workshops, Minority Business Enterprise Seminars, Trade Fairs, etc.

(10) Providing technical assistance (i.e., engineering, quality control and managerial assistance) to SB, HUBZone, SDB, HBCU/MIs, WOSB and VOSB as needed.

(11) Ensuring that HBCU/MIs will be provided the maximum practicable opportunities to participate.

(12) Monitoring attainment of proposed goals.
(13) Preparing and submitting periodic subcontracting reports as required.

(14) Coordinating contractor's activities during the conduct of compliance reviews by Federal Agencies.

(15) Coordinating the conduct of the contractor activities involving its SB, HUBZone, SDB, WOSB, and VOSB subcontracting program.

(16) Additions to the duties specified above are as follows:
__
__
__
__

8. The company will make the following efforts to assure that SB, HUBZone SB, SDB, WOSB, and VOSB concerns will have an equitable opportunity to compete for subcontracts.

 a. Outreach efforts to include contacts with SB trade associations and business development organizations.

 b. Attendance at small business procurement conferences and trade fairs.

 c. Sources will be obtained from SBA's Procurement Marketing and Access Network (PRO-NET) listing, SDBs, and HUBZone SB concerns listings, and SBA's Sub-Net.

 d. SB, HUBZone, SDB, HBCU/MIs, WOSB, and VOSB concerns source lists guides and other data identifying these type of concerns will be maintained and utilized by buyers in soliciting subcontracts.

 e. Additions to the above listed efforts follows:________
__
__
__

9. The company will include the clause entitled "Utilization of Small Business Concerns" 52.219-8, in all subcontracts which offer further subcontracting opportunities and will require all subcontractors (except SB concerns) who receive subcontracts in excess of $500,000 ($1,000,000 for construction) that has subcontracting possibilities, to adopt and comply with a plan
similar to the plan agreed to by this firm. The plan will comply with the requirements of the clause 52.219-9, "Small Business Subcontracting Plan". Such plans will be reviewed by comparing them with the requirements of the clause 52.219-9, and assuring that all minimum requirements of an acceptable subcontracting plan have been satisfied. The acceptability of percentage goals shall be determined on a case-by-case basis depending on the supplies/services involved, the availability of potential small business concerns and prior experience. Once approved and implemented, the plan will be monitored through the submission of periodic reports, and/or, as time and availability of funds permit, periodic, visits to the subcontractors facilities to review applicable records and the subcontracting program progress.

10. The company will submit such periodic reports and cooperate in any studies or surveys conducted by the U.S. Army Corps of Engineers, Little Rock District, or the Small Business Administration (SBA) in order to determine the extent of compliance by the company with the subcontracting plan. Standard Form (SF) 294 "Subcontracting Report for Individual Contracts" and SF 295 "Summary Subcontract Report" will be prepared and submitted no later than 15 days after the close of each reporting period. The company will ensure that its subcontractors (except SB concerns) submit SF 294 and SF 295 when required. The address and telephone number of the office responsible for preparation and submission of the reports is:

Name/Title: ___
Address: ___

Phone Number: ___________________ Fax:___________________

11. The company will maintain records to demonstrate procedures that have been adopted to comply with the requirements and goals set forth in the plan. In order to be considered acceptable the records shall include at least the following items:

a. SB, HUBZone, SDB, HBCU/MI, WOSB, and VOSB source lists, guides and other data identifying these types of vendors.

b. Organizations contacted or to be contacted for SB, HUBZone, SDB, HBCU/MI, WOSB, and VOSB sources.
SECTION 00700 Contract Clauses

52.202-1 Alt I Definitions (Oct 1995) --Alternate I APR 1984
52.203-3 Gratuities APR 1984
52.203-5 Covenant Against Contingent Fees APR 1984
52.203-7 Anti-Kickback Procedures JUL 1995
52.203-8 Cancellation, Rescission, and Recovery of Funds for Illegal or Improper Activity JAN 1997
52.203-10 Price Or Fee Adjustment For Illegal Or Improper Activity JAN 1997
52.203-12 Limitation On Payments To Influence Certain Federal Transactions JUN 1997
52.204-1 Approval of Contract DEC 1989
52.204-4 Printing/Copying Double-Sided on Recycled Paper AUG 2000
52.209-6 Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment JUL 1995
52.211-15 Defense Priority And Allocation Requirements SEP 1990
52.211-18 Variation in Estimated Quantity APR 1984
52.214-26 Audit and Records--Sealed Bidding OCT 1997
52.214-27 Price Reduction for Defective Cost or Pricing Data - Modifications - Sealed Bidding OCT 1997
52.214-28 Subcontracting Cost Or Pricing Data--Modifications--Sealed Bidding OCT 1997
52.215-19 Notification of Ownership Changes OCT 1997
52.217-7 Option For Increased Quantity--Separately Priced Line Items (MAR 1989)
52.219-4 Notice of Price Evaluation Preference for HUBZone Small Business Concerns JAN 1999
52.219-8 Utilization of Small Business Concerns OCT 2000
52.219-16 Liquidated Damages-Subcontracting Plan (JAN 1999)
52.222-3 Convict Labor AUG 1996
52.222-4 Contract Work Hours and Safety Standards Act - Overtime Compensation SEP 2000
52.222-6 Davis Bacon Act FEB 1995
52.222-7 Withholding of Funds FEB 1988
52.222-8 Payrolls and Basic Records FEB 1988
52.222-9 Apprentices and Trainees FEB 1988
52.222-10 Compliance with Copeland Act Requirements FEB 1988
52.222-11 Subcontracts (Labor Standards) FEB 1988
52.222-12 Contract Termination-Debarment FEB 1988
52.222-13 Compliance with Davis-Bacon and Related Act Regulations. FEB 1988
52.222-14 Disputes Concerning Labor Standards FEB 1988
52.222-15 Certification of Eligibility FEB 1988
52.222-21 Prohibition Of Segregated Facilities FEB 1999
52.222-26 Equal Opportunity FEB 1999
52.222-27 Affirmative Action Compliance Requirements for Construction FEB 1999
52.222-35 Affirmative Action For Disabled Veterans And Veterans of the Vietnam Era APR 1998
52.222-36 Affirmative Action For Workers With Disabilities JUN 1998
52.222-37 Employment Reports On Disabled Veterans And Veterans Of The Vietnam Era JAN 1999
52.223-5 Pollution Prevention and Right-to-Know Information APR 1998
52.223-6 Drug Free Workplace JAN 1997
52.223-12 Refrigeration Equipment and Air Conditioners MAY 1995
52.223-14 Toxic Chemical Release Reporting OCT 2000
52.224-1 Privacy Act Notification APR 1984
52.224-2 Privacy Act APR 1984
52.225-13 Restrictions on Certain Foreign Purchases JUL 2000
52.226-1 Utilization Of Indian Organizations And Indian-Owned Economic Enterprises JUN 2000
52.227-1 Authorization and Consent JUL 1995
52.227-2 Notice And Assistance Regarding Patent And Copyright Infringement AUG 1996
52.227-4 Patent Indemnity-Construction Contracts APR 1984
52.228-2 Additional Bond Security OCT 1997
52.228-5 Insurance - Work On A Government Installation JAN 1997
52.228-11 Pledges Of Assets FEB 1992
52.228-12 Prospective Subcontractor Requests for Bonds OCT 1995
52.228-14 Irrevocable Letter of Credit DEC 1999
52.228-15 Performance and Payment Bonds --Construction JUL 2000
52.229-3 Federal, State And Local Taxes JAN 1991
52.229-5 Taxes--Contracts Performed In U S Possessions Or Puerto Rico APR 1984
52.232-5 Payments under Fixed-Price Construction Contracts MAY 1997
52.232-17 Interest JUN 1996
52.232-18 Availability Of Funds APR 1984
52.232-23 Alt I Assignment of Claims (Jan 1986) - Alternate I APR 1984
52.232-27 Prompt Payment for Construction Contracts JUN 1997
52.232-33 Payment by Electronic Funds Transfer--Central Contractor Registration MAY 1999
52.233-1 Disputes DEC 1998
52.233-3 Protest After Award AUG 1996
52.236-1 Performance of Work by the Contractor APR 1984
52.236-2 Differing Site Conditions APR 1984
52.236-3 Site Investigation and Conditions Affecting the Work APR 1984
52.236-5 Material and Workmanship APR 1984
52.236-6 Superintendence by the Contractor APR 1984
52.236-7 Permits and Responsibilities NOV 1991
52.236-8 Other Contracts APR 1984
52.236-9 Protection of Existing Vegetation, Structures, Equipment, Utilities, and Improvements APR 1984
52.236-10 Operations and Storage Areas APR 1984
52.236-11 Use and Possession Prior to Completion APR 1984
52.236-12 Cleaning Up APR 1984
52.236-13 Alt I Accident Prevention (Nov 1991) - Alternate I NOV 1991
52.236-15 Schedules for Construction Contracts (APR 1984)
52.236-17 Layout of Work APR 1984
52.236-21 Alt I Specifications and Drawings for Construction (Feb 97) - Alternate I APR 1984
52.239-1 Privacy or Security Safeguards AUG 1996
52.242-13 Bankruptcy JUL 1995
52.242-14 Suspension of Work APR 1984
52.243-4 Changes AUG 1987
52.244-2 Subcontracts AUG 1998
52.246-12 Inspection of Construction AUG 1996
52.248-3 Alt I Value Engineering-Construction (Feb 2000) - Alternate I APR 1989
52.249-2 Alt I Termination For Convenience Of The Government (Fixed Price) (Sep 1996) - Alternate I SEP 1996
52.249-10 Default (Fixed-Price Construction) APR 1984
52.252-6 Authorized Deviations In Clauses APR 1984
52.253-1 Computer Generated Forms JAN 1991
252.201-7000 Contracting Officer's Representative DEC 1991
252.203-7001 Prohibition On Persons Convicted of Fraud or Other Defense-Contract-Related Felonies MAR 1999
252.203-7002 Display of DOD Hotline Poster (DEC 1991)
252.204-7003 Control Of Government Personnel Work Product APR 1992
252.204-7004 Required Central Contractor Registration MAR 2000
252.205-7000 Provisions Of Information To Cooperative Agreement Holders DEC 1991
252.209-7000 Acquisition From Subcontractors Subject To On-Site Inspection Under The Intermediate Range Nuclear Forces (INF) Treaty NOV 1995
252.209-7003 Compliance With Veterans' Employment Reporting Requirements (MAR 1998)
252.209-7004 Subcontracting With Firms That Are Owned or Controlled By The Government of a Terrorist Country MAR 1998
252.219-7003 Small, Small Disadvantaged and Women-Owned Small Business Subcontracting Plan (DOD Contracts) APR 1996
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.223-7004</td>
<td>Drug Free Work Force</td>
<td>SEP 1988</td>
</tr>
<tr>
<td>252.223-7006</td>
<td>Prohibition On Storage And Disposal Of Toxic And Hazardous Materials</td>
<td>APR 1993</td>
</tr>
<tr>
<td>252.225-7031</td>
<td>Secondary Arab Boycott Of Israel</td>
<td>JUN 1992</td>
</tr>
<tr>
<td>252.227-7030</td>
<td>Technical Data--Withholding Of Payment</td>
<td>MAR 2000</td>
</tr>
<tr>
<td>252.227-7033</td>
<td>Rights in Shop Drawings</td>
<td>APR 1966</td>
</tr>
<tr>
<td>252.231-7000</td>
<td>Supplemental Cost Principles</td>
<td>DEC 1991</td>
</tr>
<tr>
<td>252.236-7000</td>
<td>Modification Proposals-Price Breakdown</td>
<td>DEC 1991</td>
</tr>
<tr>
<td>252.243-7001</td>
<td>Pricing Of Contract Modifications</td>
<td>DEC 1991</td>
</tr>
<tr>
<td>252.243-7002</td>
<td>Requests for Equitable Adjustment</td>
<td>MAR 1998</td>
</tr>
<tr>
<td>252.247-7023</td>
<td>Transportation of Supplies by Sea</td>
<td>MAR 2000</td>
</tr>
<tr>
<td>252.247-7024</td>
<td>Notification of Transportation of Supplies by Sea (MAR 2000)</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 00700 Contract Clauses

52.202-1 DEFINITIONS (MAY 2001) --ALTERNATE I (MAY 2001)

(a) Agency head or head of the agency means the Secretary (Attorney General, Administrator, Governor, Chairperson, or other chief official, as appropriate) of the agency, unless otherwise indicated, including any deputy or assistant chief official of the executive agency.

(b) "Commercial component" means any component that is a commercial item.

(c) Except as otherwise provided in this contract, the term "subcontracts" includes, but is not limited to, purchase orders and changes and modifications to purchase orders under this contract.

(d) Component means any item supplied to the Government as part of an end item or of another component, except that for use in 52.225-9, and 52.225-11 see the definitions in 52.225-9(a) and 52.225-11(a).

(e) Contracting Officer means a person with the authority to enter into, administer, and/or terminate contracts and make related determinations and findings. The term includes certain authorized representatives of the Contracting Officer acting within the limits of their authority as delegated by the Contracting Officer.

(f) Nondevelopmental item means--

(1) Any previously developed item of supply used exclusively for governmental purposes by a Federal agency, a State or local government, or a foreign government with which the United States has a mutual defense cooperation agreement;

(2) Any item described in paragraph (f)(1) of this definition that requires only minor modification or modifications of a type customarily available in the commercial marketplace in order to meet the requirements of the procuring department or agency; or

(3) Any item of supply being produced that does not meet the requirements of paragraph (f)(1) or (f)(2) solely because the item is not yet in use.

(End of clause)

52.203-3 GRATUITIES (APR 1984)

(a) The right of the Contractor to proceed may be terminated by written notice if, after notice and hearing, the agency head or a designee determines that the Contractor, its agent, or another representative--

(1) Offered or gave a gratuity (e.g., an entertainment or gift) to an officer, official, or employee of the Government; and

(2) Intended, by the gratuity, to obtain a contract or favorable treatment under a contract.

(b) The facts supporting this determination may be reviewed by any court having lawful jurisdiction.

(c) If this contract is terminated under paragraph (a) of this clause, the Government is entitled--

(1) To pursue the same remedies as in a breach of the contract; and

(2) In addition to any other damages provided by law, to exemplary damages of not less than 3 nor more than
10 times the cost incurred by the Contractor in giving gratuities to the person concerned, as determined by the agency head or a designee. (This subparagraph (c)(2) is applicable only if this contract uses money appropriated to the Department of Defense.)

(d) The rights and remedies of the Government provided in this clause shall not be exclusive and are in addition to any other rights and remedies provided by law or under this contract.

(End of clause)

52.203-5 COVENANT AGAINST CONTINGENT FEES (APR 1984)

(a) The Contractor warrants that no person or agency has been employed or retained to solicit or obtain this contract upon an agreement or understanding for a contingent fee, except a bona fide employee or agency. For breach or violation of this warranty, the Government shall have the right to annul this contract without liability or, in its discretion, to deduct from the contract price or consideration, or otherwise recover, the full amount of the contingent fee.

(b) "Bona fide agency," as used in this clause, means an established commercial or selling agency, maintained by a contractor for the purpose of securing business, that neither exerts nor proposes to exert improper influence to solicit or obtain Government contracts nor holds itself out as being able to obtain any Government contract or contracts through improper influence.

"Bona fide employee," as used in this clause, means a person, employed by a contractor and subject to the contractor’s supervision and control as to time, place, and manner of performance, who neither exerts nor proposes to exert improper influence to solicit or obtain Government contracts nor holds itself out as being able to obtain any Government contract or contracts through improper influence.

"Contingent fee," as used in this clause, means any commission, percentage, brokerage, or other fee that is contingent upon the success that a person or concern has in securing a Government contract.

"Improper influence," as used in this clause, means any influence that induces or tends to induce a Government employee or officer to give consideration or to act regarding a Government contract on any basis other than the merits of the matter.

(End of clause)

52.203-7 ANTI-KICKBACK PROCEDURES. (JUL 1995)

(a) Definitions.

"Kickback," as used in this clause, means any money, fee, commission, credit, gift, gratuity, thing of value, or compensation of any kind which is provided, directly or indirectly, to any prime Contractor, prime Contractor employee, subcontractor, or subcontractor employee for the purpose of improperly obtaining or rewarding favorable treatment in connection with a prime contract or in connection with a subcontract relating to a prime contract.

"Person," as used in this clause, means a corporation, partnership, business association of any kind, trust, joint-stock company, or individual.

"Prime contract," as used in this clause, means a contract or contractual action entered into by the United States for the purpose of obtaining supplies, materials, equipment, or services of any kind.
"Prime Contractor," as used in this clause, means a person who has entered into a prime contract with the United States.

"Prime Contractor employee," as used in this clause, means any officer, partner, employee, or agent of a prime Contractor.

"Subcontract," as used in this clause, means a contract or contractual action entered into by a prime Contractor or subcontractor for the purpose of obtaining supplies, materials, equipment, or services of any kind under a prime contract.

"Subcontractor," as used in this clause, (1) means any person, other than the prime Contractor, who offers to furnish or furnishes any supplies, materials, equipment, or services of any kind under a prime contract or a subcontract entered into in connection with such prime contract, and (2) includes any person who offers to furnish or furnishes general supplies to the prime Contractor or a higher tier subcontractor.

"Subcontractor employee," as used in this clause, means any officer, partner, employee, or agent of a subcontractor.

(b) The Anti-Kickback Act of 1986 (41 U.S.C. 51-58) (the Act), prohibits any person from -

(1) Providing or attempting to provide or offering to provide any kickback;

(2) Soliciting, accepting, or attempting to accept any kickback; or

(3) Including, directly or indirectly, the amount of any kickback in the contract price charged by a prime Contractor to the United States or in the contract price charged by a subcontractor to a prime Contractor or higher tier subcontractor.

(c)(1) The Contractor shall have in place and follow reasonable procedures designed to prevent and detect possible violations described in paragraph (b) of this clause in its own operations and direct business relationships.

(2) When the Contractor has reasonable grounds to believe that a violation described in paragraph (b) of this clause may have occurred, the Contractor shall promptly report in writing the possible violation. Such reports shall be made to the inspector general of the contracting agency, the head of the contracting agency if the agency does not have an inspector general, or the Department of Justice.

(3) The Contractor shall cooperate fully with any Federal agency investigating a possible violation described in paragraph (b) of this clause.

(4) The Contracting Officer may (i) offset the amount of the kickback against any monies owed by the United States under the prime contract and/or (ii) direct that the Prime Contractor withhold, from sums owed a subcontractor under the prime contract, the amount of any kickback. The Contracting Officer may order the monies withheld under subdivision (c)(4)(ii) of this clause be paid over to the Government unless the Government has already offset those monies under subdivision (c)(4)(i) of this clause. In either case, the Prime Contractor shall notify the Contracting Officer when the monies are withheld.

(5) The Contractor agrees to incorporate the substance of this clause, including this subparagraph (c)(5) but excepting subparagraph (c)(1), in all subcontracts under this contract which exceed $100,000.
52.203-8 CANCELLATION, RESCISSION, AND RECOVERY OF FUNDS FOR ILLEGAL OR IMPROPER ACTIVITY (JAN 1997)

(a) If the Government receives information that a contractor or a person has engaged in conduct constituting a violation of subsection (a), (b), (c), or (d) of Section 27 of the Office of Federal Procurement Policy Act (41 U.S.C. 423) (the Act), as amended by section 4304 of the 1996 National Defense Authorization Act for Fiscal Year 1996 (Pub. L. 104-106), the Government may--

(1) Cancel the solicitation, if the contract has not yet been awarded or issued; or

(2) Rescind the contract with respect to which--

(i) The Contractor or someone acting for the Contractor has been convicted for an offense where the conduct constitutes a violation of subsection 27(a) or (b) of the Act for the purpose of either--

(A) Exchanging the information covered by such subsections for anything of value; or

(B) Obtaining or giving anyone a competitive advantage in the award of a Federal agency procurement contract; or

(ii) The head of the contracting activity has determined, based upon a preponderance of the evidence, that the Contractor or someone acting for the Contractor has engaged in conduct constituting an offense punishable under subsections 27(e)(1) of the Act.

(b) If the Government rescinds the contract under paragraph (a) of this clause, the Government is entitled to recover, in addition to any penalty prescribed by law, the amount expended under the contract.

(c) The rights and remedies of the Government specified herein are not exclusive, and are in addition to any other rights and remedies provided by law, regulation, or under this contract.

(End of clause)

52.203-10 PRICE OR FEE ADJUSTMENT FOR ILLEGAL OR IMPROPER ACTIVITY (JAN 1997)

(a) The Government, at its election, may reduce the price of a fixed-price type contract and the total cost and fee under a cost-type contract by the amount of profit or fee determined as set forth in paragraph (b) of this clause if the head of the contracting activity or designee determines that there was a violation of subsection 27 (a), (b), or (c) of the Office of Federal Procurement Policy Act, as amended (41 U.S.C. 423), as implemented in section 3.104 of the Federal Acquisition Regulation.

(b) The price or fee reduction referred to in paragraph (a) of this clause shall be--

(1) For cost-plus-fixed-fee contracts, the amount of the fee specified in the contract at the time of award;

(2) For cost-plus-incentive-fee contracts, the target fee specified in the contract at the time of award, notwithstanding any minimum fee or "fee floor" specified in the contract;

(3) For cost-plus-award-fee contracts--

(i) The base fee established in the contract at the time of contract award;

(ii) If no base fee is specified in the contract, 30 percent of the amount of each award fee otherwise payable to the Contractor for each award fee evaluation period or at each award fee determination point.
(4) For fixed-price-incentive contracts, the Government may--

(i) Reduce the contract target price and contract target profit both by an amount equal to the initial target profit specified in the contract at the time of contract award; or

(ii) If an immediate adjustment to the contract target price and contract target profit would have a significant adverse impact on the incentive price revision relationship under the contract, or adversely affect the contract financing provisions, the Contracting Officer may defer such adjustment until establishment of the total final price of the contract. The total final price established in accordance with the incentive price revision provisions of the contract shall be reduced by an amount equal to the initial target profit specified in the contract at the time of contract award and such reduced price shall be the total final contract price.

(5) For firm-fixed-price contracts, by 10 percent of the initial contract price or a profit amount determined by the Contracting Officer from records or documents in existence prior to the date of the contract award.

(c) The Government may, at its election, reduce a prime contractor's price or fee in accordance with the procedures of paragraph (b) of this clause for violations of the Act by its subcontractors by an amount not to exceed the amount of profit or fee reflected in the subcontract at the time the subcontract was first definitively priced.

(d) In addition to the remedies in paragraphs (a) and (c) of this clause, the Government may terminate this contract for default. The rights and remedies of the Government specified herein are not exclusive, and are in addition to any other rights and remedies provided by law or under this contract.

(End of clause)

52.203-12 LIMITATION ON PAYMENTS TO INFLUENCE CERTAIN FEDERAL TRANSACTIONS (JUN 1997)

(a) Definitions.

"Agency," as used in this clause, means executive agency as defined in 2.101.

"Covered Federal action," as used in this clause, means any of the following Federal actions:

(1) The awarding of any Federal contract.

(2) The making of any Federal grant.

(3) The making of any Federal loan.

(4) The entering into of any cooperative agreement.

(5) The extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.

"Indian tribe" and "tribal organization," as used in this clause, have the meaning provided in section 4 of the Indian Self-Determination and Education Assistance Act (25 U.S.C. 450B) and include Alaskan Natives.

"Influencing or attempting to influence," as used in this clause, means making, with the intent to influence, any communication to or appearance before an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with any covered Federal action.
"Local government," as used in this clause, means a unit of government in a State and, if chartered, established, or otherwise recognized by a State for the performance of a governmental duty, including a local public authority, a special district, an intrastate district, a council of governments, a sponsor group representative organization, and any other instrumentality of a local government.

"Officer or employee of an agency," as used in this clause, includes the following individuals who are employed by an agency:

1. An individual who is appointed to a position in the Government under Title 5, United States Code, including a position under a temporary appointment.

2. A member of the uniformed services, as defined in subsection 101(3), Title 37, United States Code.

3. A special Government employee, as defined in section 202, Title 18, United States Code.

4. An individual who is a member of a Federal advisory committee, as defined by the Federal Advisory Committee Act, Title 5, United States Code, appendix 2.

"Person," as used in this clause, means an individual, corporation, company, association, authority, firm, partnership, society, State, and local government, regardless of whether such entity is operated for profit, or not for profit. This term excludes an Indian tribe, tribal organization, or any other Indian organization with respect to expenditures specifically permitted by other Federal law.

"Reasonable compensation," as used in this clause, means, with respect to a regularly employed officer or employee of any person, compensation that is consistent with the normal compensation for such officer or employee for work that is not furnished to, not funded by, or not furnished in cooperation with the Federal Government.

"Reasonable payment," as used in this clause, means, with respect to professional and other technical services, a payment in an amount that is consistent with the amount normally paid for such services in the private sector.

"Recipient," as used in this clause, includes the Contractor and all subcontractors. This term excludes an Indian tribe, tribal organization, or any other Indian organization with respect to expenditures specifically permitted by other Federal law.

"Regularly employed," as used in this clause, means, with respect to an officer or employee of a person requesting or receiving a Federal contract, an officer or employee who is employed by such person for at least 130 working days within 1 year immediately preceding the date of the submission that initiates agency consideration of such person for receipt of such contract. An officer or employee who is employed by such person for less than 130 working days within 1 year immediately preceding the date of the submission that initiates agency consideration of such person shall be considered to be regularly employed as soon as he or she is employed by such person for 130 working days.

"State," as used in this clause, means a State of the United States, the District of Columbia, the Commonwealth of Puerto Rico, a territory or possession of the United States, an agency or instrumentality of a State, and multi-State, regional, or interstate entity having governmental duties and powers.

(b) Prohibitions.

(1) Section 1352 of Title 31, United States Code, among other things, prohibits a recipient of a Federal contract, grant, loan, or cooperative agreement from using appropriated funds to pay any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with any of the following covered Federal actions: the awarding of any Federal contract; the making of any Federal grant; the making
(2) The Act also requires Contractors to furnish a disclosure if any funds other than Federal appropriated funds (including profit or fee received under a covered Federal transaction) have been paid, or will be paid, to any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with a Federal contract, grant, loan, or cooperative agreement.

(3) The prohibitions of the Act do not apply under the following conditions:

(i) Agency and legislative liaison by own employees.

(A) The prohibition on the use of appropriated funds, in subparagraph (b)(1) of this clause, does not apply in the case of a payment of reasonable compensation made to an officer or employee of a person requesting or receiving a covered Federal action if the payment is for agency and legislative liaison activities not directly related to a covered Federal action.

(B) For purposes of subdivision (b)(3)(i)(A) of this clause, providing any information specifically requested by an agency or Congress is permitted at any time.

(C) The following agency and legislative liaison activities are permitted at any time where they are not related to a specific solicitation for any covered Federal action:

(1) Discussing with an agency the qualities and characteristics (including individual demonstrations) of the person's products or services, conditions or terms of sale, and service capabilities.

(2) Technical discussions and other activities regarding the application or adaptation of the person's products or services for an agency's use.

(D) The following agency and legislative liaison activities are permitted where they are prior to formal solicitation of any covered Federal action--

(1) Providing any information not specifically requested but necessary for an agency to make an informed decision about initiation of a covered Federal action;

(2) Technical discussions regarding the preparation of an unsolicited proposal prior to its official submission; and

(3) Capability presentations by persons seeking awards from an agency pursuant to the provisions of the Small Business Act, as amended by Pub. L. 95-507, and subsequent amendments.

(E) Only those services expressly authorized by subdivision (b)(3)(i)(A) of this clause are permitted under this clause.

(ii) Professional and technical services.

(A) The prohibition on the use of appropriated funds, in subparagraph (b)(1) of this clause, does not apply in the case of--

(1) A payment of reasonable compensation made to an officer or employee of a person requesting or receiving a covered Federal action or an extension, continuation, renewal, amendment, or modification of a covered Federal action, if payment is for professional or technical services rendered directly in the preparation, submission, or negotiation of any bid, proposal, or application for that Federal action or for meeting requirements imposed by or pursuant to law as a condition for receiving that Federal action.
(2) Any reasonable payment to a person, other than an officer or employee of a person requesting or receiving a covered Federal action or an extension, continuation, renewal, amendment, or modification of a covered Federal action if the payment is for professional or technical services rendered directly in the preparation, submission, or negotiation of any bid, proposal, or application for that Federal action or for meeting requirements imposed by or pursuant to law as a condition for receiving that Federal action. Persons other than officers or employees of a person requesting or receiving a covered Federal action include consultants and trade associations.

(B) For purposes of subdivision (b)(3)(ii)(A) of this clause, "professional and technical services" shall be limited to advice and analysis directly applying any professional or technical discipline. For example, drafting of a legal document accompanying a bid or proposal by a lawyer is allowable. Similarly, technical advice provided by an engineer on the performance or operational capability of a piece of equipment rendered directly in the negotiation of a contract is allowable. However, communications with the intent to influence made by a professional (such as a licensed lawyer) or a technical person (such as a licensed accountant) are not allowable under this section unless they provide advice and analysis directly applying their professional or technical expertise and unless the advice or analysis is rendered directly and solely in the preparation, submission or negotiation of a covered Federal action. Thus, for example, communications with the intent to influence made by a lawyer that do not provide legal advice or analysis directly and solely related to the legal aspects of his or her client's proposal, but generally advocate one proposal over another are not allowable under this section because the lawyer is not providing professional legal services. Similarly, communications with the intent to influence made by an engineer providing an engineering analysis prior to the preparation or submission of a bid or proposal are not allowable under this section since the engineer is providing technical services but not directly in the preparation, submission or negotiation of a covered Federal action.

(C) Requirements imposed by or pursuant to law as a condition for receiving a covered Federal award include those required by law or regulation and any other requirements in the actual awarded documents.

(D) Only those services expressly authorized by subdivisions (b)(3)(ii)(A)(1) and (2) of this clause are permitted under this clause.

(E) The reporting requirements of FAR 3.803(a) shall not apply with respect to payments of reasonable compensation made to regularly employed officers or employees of a person.

(c) Disclosure.

(1) The Contractor who requests or receives from an agency a Federal contract shall file with that agency a disclosure form, OMB standard form LLL, Disclosure of Lobbying Activities, if such person has made or has agreed to make any payment using nonappropriated funds (to include profits from any covered Federal action), which would be prohibited under subparagraph (b)(1) of this clause, if paid for with appropriated funds.

(2) The Contractor shall file a disclosure form at the end of each calendar quarter in which there occurs any event that materially affects the accuracy of the information contained in any disclosure form previously filed by such person under subparagraph (c)(1) of this clause. An event that materially affects the accuracy of the information reported includes--

(i) A cumulative increase of $25,000 or more in the amount paid or expected to be paid for influencing or attempting to influence a covered Federal action; or

(ii) A change in the person(s) or individual(s) influencing or attempting to influence a covered Federal action; or

(iii) A change in the officer(s), employee(s), or Member(s) contacted to influence or attempt to influence a covered Federal action.
(3) The Contractor shall require the submittal of a certification, and if required, a disclosure form by any person who requests or receives any subcontract exceeding $100,000 under the Federal contract.

(4) All subcontractor disclosure forms (but not certifications) shall be forwarded from tier to tier until received by the prime Contractor. The prime Contractor shall submit all disclosures to the Contracting Officer at the end of the calendar quarter in which the disclosure form is submitted by the subcontractor. Each subcontractor certification shall be retained in the subcontract file of the awarding Contractor.

(d) Agreement. The Contractor agrees not to make any payment prohibited by this clause.

(e) Penalties.

(1) Any person who makes an expenditure prohibited under paragraph (a) of this clause or who fails to file or amend the disclosure form to be filed or amended by paragraph (b) of this clause shall be subject to civil penalties as provided for by 31 U.S.C. 1352. An imposition of a civil penalty does not prevent the Government from seeking any other remedy that may be applicable.

(2) Contractors may rely without liability on the representation made by their subcontractors in the certification and disclosure form.

(f) Cost allowability. Nothing in this clause makes allowable or reasonable any costs which would otherwise be unallowable or unreasonable. Conversely, costs made specifically unallowable by the requirements in this clause will not be made allowable under any other provision.

(End of clause)

52.204-4 PRINTED OR COPIED DOUBLE-SIDED ON RECYCLED PAPER (AUG 2000)

(a) Definitions. As used in this clause--

“Postconsumer material” means a material or finished product that has served its intended use and has been discarded for disposal or recovery, having completed its life as a consumer item. Postconsumer material is a part of the broader category of “recovered material.” For paper and paper products, postconsumer material means “postconsumer fiber” defined by the U.S. Environmental Protection Agency (EPA) as--

(1) Paper, paperboard, and fibrous materials from retail stores, office buildings, homes, and so forth, after they have passed through their end-usage as a consumer item, including: used corrugated boxes; old newspapers; old magazines; mixed waste paper; tabulating cards; and used cordage; or

(2) All paper, paperboard, and fibrous materials that enter and are collected from municipal solid waste; but not

(3) Fiber derived from printers' over-runs, converters' scrap, and over-issue publications.

“Printed or copied double-sided” means printing or reproducing a document so that information is on both sides of a sheet of paper.

“Recovered material,” for paper and paper products, is defined by EPA in its Comprehensive Procurement Guideline as “recovered fiber” and means the following materials:

(1) Postconsumer fiber; and

(2) Manufacturing wastes such as--
(i) Dry paper and paperboard waste generated after completion of the papermaking process (that is, those manufacturing operations up to and including the cutting and trimming of the paper machine reel into smaller rolls or rough sheets) including: envelope cuttings, bindery trimmings, and other paper and paperboard waste resulting from printing, cutting, forming, and other converting operations; bag, box, and carton manufacturing wastes; and butt rolls, mill wrappers, and rejected unused stock; and

(ii) Repulped finished paper and paperboard from obsolete inventories of paper and paperboard manufacturers, merchants, wholesalers, dealers, printers, converters, or others.

(b) In accordance with Section 101 of Executive Order 13101 of September 14, 1998, Greening the Government through Waste Prevention, Recycling, and Federal Acquisition, the Contractor is encouraged to submit paper documents, such as offers, letters, or reports, that are printed or copied double-sided on recycled paper that meet minimum content standards specified in Section 505 of Executive Order 13101, when not using electronic commerce methods to submit information or data to the Government.

(c) If the Contractor cannot purchase high-speed copier paper, offset paper, forms bond, computer printout paper, carbonless paper, file folders, white wove envelopes, writing and office paper, book paper, cotton fiber paper, and cover stock meeting the 30 percent postconsumer material standard for use in submitting paper documents to the Government, it should use paper containing no less than 20 percent postconsumer material. This lesser standard should be used only when paper meeting the 30 percent postconsumer material standard is not obtainable at a reasonable price or does not meet reasonable performance standards.

(End of clause)

52.209-6 PROTECTING THE GOVERNMENT'S INTEREST WHEN SUBCONTRACTING WITH CONTRACTORS DEBARRED, SUSPENDED, OR PROPOSED FOR DEBARMENT (JUL 1995)

(a) The Government suspends or debars Contractors to protect the Government's interests. The Contractor shall not enter into any subcontract in excess of the $25,000 with a Contractor that is debarred, suspended, or proposed for debarment unless there is a compelling reason to do so.

(b) The Contractor shall require each proposed first-tier subcontractor, whose subcontract will exceed $25,000, to disclose to the Contractor, in writing, whether as of the time of award of the subcontract, the subcontractor, or its principles, is or is not debarred, suspended, or proposed for debarment by the Federal Government.

(c) A corporate officer or a designee of the Contractor shall notify the Contracting Officer, in writing, before entering into a subcontract with a party that is debarred, suspended, or proposed for debarment (see FAR 9.404 for information on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs). The notice must include the following:

(1) The name of the subcontractor.

(2) The Contractor's knowledge of the reasons for the subcontractor being on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs.

(3) The compelling reason(s) for doing business with the subcontractor notwithstanding its inclusion on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs.

(4) The systems and procedures the Contractor has established to ensure that it is fully protecting the Government's interests when dealing with such subcontractor in view of the specific basis for the party's debarment, suspension, or proposed debarment.

(End of clause)
52.211-15 DEFENSE PRIORITY AND ALLOCATION REQUIREMENTS (SEP 1990)

This is a rated order certified for national defense use, and the Contractor shall follow all the requirements of the Defense Priorities and Allocations System regulation (15 CFR 700).

(End of clause)

52.211-18 VARIATION IN ESTIMATED QUANTITY (APR 1984)

If the quantity of a unit-priced item in this contract is an estimated quantity and the actual quantity of the unit-priced item varies more than 15 percent above or below the estimated quantity, an equitable adjustment in the contract price shall be made upon demand of either party. The equitable adjustment shall be based upon any increase or decrease in costs due solely to the variation above 115 percent or below 85 percent of the estimated quantity. If the quantity variation is such as to cause an increase in the time necessary for completion, the Contractor may request, in writing, an extension of time, to be received by the Contracting Officer within 10 days from the beginning of the delay, or within such further period as may be granted by the Contracting Officer before the date of final settlement of the contract. Upon the receipt of a written request for an extension, the Contracting Officer shall ascertain the facts and make an adjustment for extending the completion date as, in the judgement of the Contracting Officer, is justified.

52.214-26 AUDIT AND RECORDS—SEALED BIDDING. (OCT 1997)

(a) As used in this clause, records includes books, documents, accounting procedures and practices, and other data, regardless of type and regardless of whether such items are in written form, in the form of computer data, or in any other form.

(b) Cost or pricing data. If the Contractor has been required to submit cost or pricing data in connection with the pricing of any modification to this contract, the Contracting Officer, or an authorized representative of the Contracting Officer, in order to evaluate the accuracy, completeness, and currency of the cost or pricing data, shall have the right to examine and audit all of the Contractor’s records, including computations and projections, related to--

(1) The proposal for the modification;

(2) The discussions conducted on the proposal(s), including those related to negotiating;

(3) Pricing of the modification; or

(4) Performance of the modification.

(c) Comptroller General. In the case of pricing any modification, the Comptroller General of the United States, or an authorized representative, shall have the same rights as specified in paragraph (b) of this clause.

(d) Availability. The Contractor shall make available at its office at all reasonable times the materials described in reproduction, until 3 years after final payment under this contract, or for any other period specified in Subpart 4.7 of the Federal Acquisition Regulation (FAR). FAR Subpart 4.7, Contractor Records Retention, in effect on the data of this contract, is incorporated by reference in its entirety and made a part of this contract.

(1) If this contract is completely or partially terminated, the records relating to the work terminated shall be made available for 3 years after any resulting final termination settlement.
(2) Records pertaining to appeals under the Disputes clause or to litigation or the settlement of claims arising under or relating to the performance of this contract shall be made available until disposition of such appeals, litigation, or claims.

(e) The Contractor shall insert a clause containing all the provisions of this clause, including this paragraph (e), in all subcontracts expected to exceed the threshold in FAR 15.403-4(a)(1) for submission of cost or pricing data.

52.214-27 PRICE REDUCTION FOR DEFECTIVE COST OR PRICING DATA - MODIFICATIONS - SEALED BIDDING. (OCT 1997)

(a) This clause shall become operative only for any modification to this contract involving aggregate increases and/or decreases in costs, plus applicable profits, expected to exceed the threshold for the submission of cost or pricing data at FAR 15.403-4(a)(1), except that this clause does not apply to a modification if an exception under FAR 15.403-1(b) applies.

(1) Based on adequate price competition;

(2) Based on established catalog or market prices of commercial items sold in substantial quantities to the general public; or

(3) Set by law or regulation.

(b) If any price, including profit, negotiated in connection with any modification under this clause, was increased by any significant amount because

(1) the Contractor or a subcontractor furnished cost or pricing data that were not complete, accurate, and current as certified in its Certificate of Current Cost or Pricing Data;

(2) a subcontractor or prospective subcontractor furnished the Contractor cost or pricing data that were not complete, accurate, and current as certified in the Contractor’s Certificate of Current Cost or Pricing Data; or

(3) any of these parties furnished data of any description that were not accurate, the price shall be reduced accordingly and the contract shall be modified to reflect the reduction. This right to a price reduction is limited to that resulting from defects in data relating to modifications for which this clause becomes operative under paragraph (a) above.

(c) Any reduction in the contract price under paragraph (b) above due to defective data from a prospective subcontractor that was not subsequently awarded the subcontract shall be limited to the amount, plus applicable overhead and profit markup, by which:

(1) the actual subcontract; or

(2) the actual cost to the Contractor, if there was no subcontract, was less than the prospective subcontract cost estimate submitted by the Contractor; provided, that the actual subcontract price was not itself affected by defective cost or pricing data.

(d) If the Contracting Officer determines under paragraph (b) of this clause that a price or cost reduction should be made:

(1) the Contractor agrees not to raise the following matters as a defense:
(i) The Contractor or subcontractor was a sole source supplier or otherwise was in a superior bargaining position and thus the price of the contract would not have been modified even if accurate, complete, and current cost or pricing data had been submitted;

(ii) The Contracting Officer should have known that the cost or pricing data in issue were defective even though the Contractor or subcontractor took no affirmative action to bring the character of the data to the attention of the Contracting Officer;

(iii) The contract was based on an agreement about the total cost of the contract and there was no agreement about the cost of each item procured under the contract; or

(iv) The Contractor or subcontractor did not submit a Certificate of Current Cost or Pricing Data.

(2) Except as prohibited by subdivision (d)(2)(ii) of this clause:

(i) an offset in an amount determined appropriate by the Contracting Officer based upon the facts shall be allowed against the amount of a contract price reduction if:

(A) The Contractor certifies to the Contracting Officer that, to the best of the Contractor's knowledge and belief, the Contractor is entitled to the offset in the amount requested; and

(B) The Contractor proves that the cost or pricing data were available before the date of agreement on the price of the contract (or price of the modification) and that the data were not submitted before such date.

(ii) An offset shall not be allowed if:

(A) The understated data was known by the Contractor to be understated when the Certificate of Current Cost or Pricing Data was signed; or

(B) The Government proves that the facts demonstrate that the contract price would not have increased in the amount to be offset even if the available data had been submitted before the date of agreement on price.

(e) If any reduction in the contract price under this clause reduces the price of items for which payment was made prior to the date of the modification reflecting the price reduction, the Contractor shall be liable to and shall pay the United States at the time such overpayment is repaid:

(1) Simple interest on the amount of such overpayment to be computed from the date(s) of overpayment to the Contractor to the date the Government is repaid by the Contractor at the applicable underpayment rate effective for each quarter prescribed by the Secretary of the Treasury under 26 U.S.C. 6621(a)(2); and

(2) A penalty equal to the amount of the overpayment, if the Contractor or subcontractor knowingly submitted cost or pricing data which were incomplete, inaccurate, or noncurrent.
(b) Before awarding any subcontract expected to exceed the threshold for submission of cost or pricing data at FAR 15.403-4(a)(1), on the date of agreement on price or the date of award, whichever is later; or before pricing any subcontract modifications involving aggregate increases and/or decreases in costs, plus applicable profits, expected to exceed the threshold for submission of cost or pricing data at FAR 15.403-4(a)(1), the Contractor shall require the subcontractor to submit cost or pricing data (actually or by specific identification in writing), unless an exception under FAR 15.403-1(b) applies.

(1) Based on adequate price competition;

(2) Based on established catalog or market prices of commercial items sold in substantial quantities to the general public; or

(3) Set by law or regulation.

(c) The Contractor shall require the subcontractor to certify in substantially the form prescribed in subsection 15.406-2 of the Federal Acquisition Regulation that, to the best of its knowledge and belief, the data submitted under paragraph (b) above were accurate, complete, and current as of the date of agreement on the negotiated price of the subcontract or subcontract modification.

(d) The Contractor shall insert the substance of this clause, including this paragraph (d), in each subcontract that, when entered into, exceeds the threshold for submission of cost or pricing data at FAR 15.403-4(a)(1).

52.215-19 NOTIFICATION OF OWNERSHIP CHANGES (OCT 1997)

(a) The Contractor shall make the following notifications in writing:

(1) When the Contractor becomes aware that a change in its ownership has occurred, or is certain to occur, that could result in changes in the valuation of its capitalized assets in the accounting records, the Contractor shall notify the Administrative Contracting Officer (ACO) within 30 days.

(2) The Contractor shall also notify the ACO within 30 days whenever changes to asset valuations or any other cost changes have occurred or are certain to occur as a result of a change in ownership.

(b) The Contractor shall--

(1) Maintain current, accurate, and complete inventory records of assets and their costs;

(2) Provide the ACO or designated representative ready access to the records upon request;

(3) Ensure that all individual and grouped assets, their capitalized values, accumulated depreciation or amortization, and remaining useful lives are identified accurately before and after each of the Contractor's ownership changes; and

(4) Retain and continue to maintain depreciation and amortization schedules based on the asset records maintained before each Contractor ownership change.

The Contractor shall include the substance of this clause in all subcontracts under this contract that meet the applicability requirement of FAR 15.408(k).

(End of clause)
52.217-7 OPTION FOR INCREASED QUANTITY--SEPARATELY PRICED LINE ITEM (MAR 1989)

The Government may require the delivery of the numbered line item, identified in the Schedule as an option item, in the quantity and at the price stated in the Schedule. The Contracting Officer may exercise the option by written notice to the Contractor within 120 days. Delivery of added items shall continue at the same rate that like items are called for under the contract, unless the parties otherwise agree.

(End of clause)

52.219-4 NOTICE OF PRICE EVALUATION PREFERENCE FOR HUBZONE SMALL BUSINESS CONCERNS (JAN 1999)

(a) Definition. HUBZone small business concern, as used in this clause, means a small business concern that appears on the List of Qualified HUBZone Small Business Concerns maintained by the Small Business Administration.

(b) Evaluation preference. (1) Offers will be evaluated by adding a factor of 10 percent to the price of all offers, except--

(i) Offers from HUBZone small business concerns that have not waived the evaluation preference;

(ii) Otherwise successful offers from small business concerns;

(iii) Otherwise successful offers of eligible products under the Trade Agreements Act when the dollar threshold for application of the Act is exceeded (see 25.402 of the Federal Acquisition Regulation (FAR)); and

(iv) Otherwise successful offers where application of the factor would be inconsistent with a Memorandum of Understanding or other international agreement with a foreign government.

(2) The factor of 10 percent shall be applied on a line item basis or to any group of items on which award may be made. Other evaluation factors described in the solicitation shall be applied before application of the factor.

(3) A concern that is both a HUBZone small business concern and a small disadvantaged business concern will receive the benefit of both the HUBZone small business price evaluation preference and the small disadvantaged business price evaluation adjustment (see FAR clause 52.219-23). Each applicable price evaluation preference or adjustment shall be calculated independently against an offeror's base offer.

These individual preference amounts shall be added together to arrive at the total evaluated price for that offer.

(c) Waiver of evaluation preference. A HUBZone small business concern may elect to waive the evaluation preference, in which case the factor will be added to its offer for evaluation purposes. The agreements in paragraph (d) of this clause do not apply if the offeror has waived the evaluation preference.

___ Offeror elects to waive the evaluation preference.

(d) Agreement. A HUBZone small business concern agrees that in the performance of the contract, in the case of a contract for

(1) Services (except construction), at least 50 percent of the cost of personnel for contract performance will be spent for employees of the concern or employees of other HUBZone small business concerns;
(2) Supplies (other than procurement from a nonmanufacturer of such supplies), at least 50 percent of the cost of manufacturing, excluding the cost of materials, will be performed by the concern or other HUBZone small business concerns;

(3) General construction, at least 15 percent of the cost of the contract performance incurred for personnel will be spent on the concern's employees or the employees of other HUBZone small business concerns; or

(4) Construction by special trade contractors, at least 25 percent of the cost of the contract performance incurred for personnel will be spent on the concern's employees or the employees of other HUBZone small business concerns.

(e) A HUBZone joint venture agrees that in the performance of the contract, the applicable percentage specified in paragraph (d) of this clause will be performed by the HUBZone small business participant or participants.

(f) A HUBZone small business concern nonmanufacturer agrees to furnish in performing this contract only end items manufactured or produced by HUBZone small business manufacturer concerns. This paragraph does not apply in connection with construction or service contracts.

(End of clause)

52.219-8 UTILIZATION OF SMALL BUSINESS CONCERNS (OCT 2000)

(a) It is the policy of the United States that small business concerns, veteran-owned small business concerns, service-disabled veteran-owned small business concerns, HUBZone small business concerns, small disadvantaged business concerns, and women-owned small business concerns shall have the maximum practicable opportunity to participate in performing contracts let by any Federal agency, including contracts and subcontracts for subsystems, assemblies, components, and related services for major systems. It is further the policy of the United States that its prime contractors establish procedures to ensure the timely payment of amounts due pursuant to the terms of their subcontracts with small business concerns, veteran-owned small business concerns, service-disabled veteran-owned small business concerns, HUBZone small business concerns, small disadvantaged business concerns, and women-owned small business concerns.

(b) The Contractor hereby agrees to carry out this policy in the awarding of subcontracts to the fullest extent consistent with efficient contract performance. The Contractor further agrees to cooperate in any studies or surveys as may be conducted by the United States Small Business Administration or the awarding agency of the United States as may be necessary to determine the extent of the Contractor's compliance with this clause.

Definitions. As used in this contract--

HUBZone small business concern means a small business concern that appears on the List of Qualified HUBZone Small Business Concerns maintained by the Small Business Administration.

Service-disabled veteran-owned small business concern--

(1) Means a small business concern--

(i) Not less than 51 percent of which is owned by one or more service-disabled veterans or, in the case of any publicly owned business, not less than 51 percent of the stock of which is owned by one or more service-disabled veterans; and

(ii) The management and daily business operations of which are controlled by one or more service-disabled veterans or, in the case of a veteran with permanent and severe disability, the spouse or permanent caregiver of such veteran.
(2) Service-disabled veteran means a veteran, as defined in 38 U.S.C. 101(2), with a disability that is service-connected, as defined in 38 U.S.C. 101(16).

Small business concern means a small business as defined pursuant to Section 3 of the Small Business Act and relevant regulations promulgated pursuant thereto.

Small disadvantaged business concern means a small business concern that represents, as part of its offer that--

(1) It has received certification as a small disadvantaged business concern consistent with 13 CFR part 124, subpart B;

(2) No material change in disadvantaged ownership and control has occurred since its certification;

(3) Where the concern is owned by one or more individuals, the net worth of each individual upon whom the certification is based does not exceed $750,000 after taking into account the applicable exclusions set forth at 13 CFR 124.104(c)(2); and

(4) It is identified, on the date of its representation, as a certified small disadvantaged business in the database maintained by the Small Business Administration (PRO-Net).

Veteran-owned small business concern means a small business concern--

(1) Not less than 51 percent of which is owned by one or more veterans (as defined at 38 U.S.C. 101(2)) or, in the case of any publicly owned business, not less than 51 percent of the stock of which is owned by one or more veterans; and

(2) The management and daily business operations of which are controlled by one or more veterans.

Women-owned small business concern means a small business concern--

(1) That is at least 51 percent owned by one or more women, or, in the case of any publicly owned business, at least 51 percent of the stock of which is owned by one or more women; and

(2) Whose management and daily business operations are controlled by one or more women.

(d) Contractors acting in good faith may rely on written representations by their subcontractors regarding their status as a small business concern, a veteran-owned small business concern, a service-disabled veteran-owned small business concern, a HUBZone small business concern, a small disadvantaged business concern, or a women-owned small business concern.

(End of clause)

52.219-9 SMALL BUSINESS SUBCONTRACTING PLAN (OCT 2001) ALTERNATE I (OCT 2001)

(a) This clause does not apply to small business concerns.

(b) Definitions. As used in this clause--

Commercial item means a product or service that satisfies the definition of commercial item in section 2.101 of the Federal Acquisition Regulation.
Commercial plan means a subcontracting plan (including goals) that covers the offeror's fiscal year and that applies to the entire production of commercial items sold by either the entire company or a portion thereof (e.g., division, plant, or product line).

Individual contract plan means a subcontracting plan that covers the entire contract period (including option periods), applies to a specific contract, and has goals that are based on the offeror's planned subcontracting in support of the specific contract, except that indirect costs incurred for common or joint purposes may be allocated on a prorated basis to the contract.

Master plan means a subcontracting plan that contains all the required elements of an individual contract plan, except goals, and may be incorporated into individual contract plans, provided the master plan has been approved.

Subcontract means any agreement (other than one involving an employer-employee relationship) entered into by a Federal Government prime Contractor or subcontractor calling for supplies or services required for performance of the contract or subcontract.

(c) The apparent low bidder, upon request by the Contracting Officer, shall submit a subcontracting plan, where applicable, that separately addresses subcontracting with small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns. If the bidder is submitting an individual contract plan, the plan must separately address subcontracting with small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns, with a separate part for the basic contract and separate parts for each option (if any). The plan shall be included in and made a part of the resultant contract. The subcontracting plan shall be submitted within the time specified by the Contracting Officer. Failure to submit the subcontracting plan shall make the bidder ineligible for the award of a contract.

(d) The offeror's subcontracting plan shall include the following:

1. Goals, expressed in terms of percentages of total planned subcontracting dollars, for the use of small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns as subcontractors. Service-disabled veteran-owned small business concerns meet the definition of veteran-owned small business concerns, and offerors may include them within the subcontracting plan goal for veteran-owned small business concerns. A separate goal for service-disabled veteran-owned small business concerns is not required. The offeror shall include all subcontracts that contribute to contract performance, and may include a proportionate share of products and services that are normally allocated as indirect costs.

2. A statement of--

(i) Total dollars planned to be subcontracted for an individual contract plan; or the offeror's total projected sales, expressed in dollars, and the total value of projected subcontracts to support the sales for a commercial plan;

(ii) Total dollars planned to be subcontracted to small business concerns;

(iii) Total dollars planned to be subcontracted to veteran-owned small business concerns;

(iv) Total dollars planned to be subcontracted to service-disabled veteran-owned small business;

(v) Total dollars planned to be subcontracted to HUBZone small business concerns;

(vi) Total dollars planned to be subcontracted to small disadvantaged business concerns; and
(vi) Total dollars planned to be subcontracted to women-owned small business concerns.

(3) A description of the principal types of supplies and services to be subcontracted, and an identification of the types planned for subcontracting to—

(i) Small business concerns;

(ii) Veteran-owned small business concerns;

(iii) Service-disabled veteran-owned small business concerns;

(iv) HUBZone small business concerns;

(v) Small disadvantaged business concerns; and

(vi) Women-owned small business concerns.

(4) A description of the method used to develop the subcontracting goals in paragraph (d)(1) of this clause.

(5) A description of the method used to identify potential sources for solicitation purposes (e.g., existing company source lists, the Procurement Marketing and Access Network (PRO-Net) of the Small Business Administration (SBA), veterans service organizations, the National Minority Purchasing Council Vendor Information Service, the Research and Information Division of the Minority Business Development Agency in the Department of Commerce, or small, HUBZone, small disadvantaged, and women-owned small business trade associations). A firm may rely on the information contained in PRO-Net as an accurate representation of a concern’s size and ownership characteristics for the purposes of maintaining a small, veteran-owned small, (iii) Service-disabled veteran-owned small business concerns; HUBZone small, small disadvantaged, and women-owned small business source list. Use of PRO-Net as its source list does not relieve a firm of its responsibilities (e.g., outreach, assistance, counseling, or publicizing subcontracting opportunities) in this clause.

(6) A statement as to whether or not the offeror in included indirect costs in establishing subcontracting goals, and a description of the method used to determine the proportionate share of indirect costs to be incurred with—

(i) Small business concerns;

(ii) Veteran-owned small business concerns;

(iii) Service-disabled veteran-owned small business concerns;

(iv) HUBZone small business concerns;

(v) Small disadvantaged business concerns; and

(vi) Women-owned small business concerns.

(7) The name of the individual employed by the offeror who will administer the offeror’s subcontracting program, and a description of the duties of the individual.

(8) A description of the efforts the offeror will make to assure that small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business and women-owned small business concerns have an equitable opportunity to compete for subcontracts.
(9) Assurances that the offeror will include the clause of this contract entitled “Utilization of Small Business Concerns” in all subcontracts that offer further subcontracting opportunities, and that the offeror will require all subcontractors (except small business concerns) that receive subcontracts in excess of $500,000 ($1,000,000 for construction of any public facility) to adopt a subcontracting plan that complies with the requirements of this clause.

(10) Assurances that the offeror will--

(i) Cooperate in any studies or surveys as may be required;

(ii) Submit periodic reports so that the Government can determine the extent of compliance by the offeror with the subcontracting plan;

(iii) Submit Standard Form (SF) 294, Subcontracting Report for Individual Contracts, and/or SF 295, Summary Subcontract Report, in accordance with paragraph (j) of this clause. The reports shall provide information on subcontract awards to small business concerns, veteran-owned small business concerns, service-disabled veteran-owned small business concerns, HUBZone small business concerns, small disadvantaged business concerns, women-owned small business concerns, and Historically Black Colleges and Universities and Minority Institutions. Reporting shall be in accordance with the instructions on the forms or as provided in agency regulations.

(iv) Ensure that its subcontractors agree to submit SF 294 and SF 295.

(11) A description of the types of records that will be maintained concerning procedures that have been adopted to comply with the requirements and goals in the plan, including establishing source lists; and a description of the offeror's efforts to locate small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns and award subcontracts to them. The records shall include at least the following (on a plant-wide or company-wide basis, unless otherwise indicated)

(i) Source lists (e.g., PRO-Net), guides, and other data that identify small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns.

(ii) Organizations contacted in an attempt to locate sources that are small business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, or women-owned small business concerns.

(iii) Records on each subcontract solicitation resulting in an award of more than $100,000, indicating--

(A) Whether small business concerns were solicited and, if not, why not;

(B) Whether veteran-owned small business concerns were solicited and, if not, why not;

(C) Whether service-disabled veteran-owned small business concerns were solicited and, if not, why not;

(D) Whether HUBZone small business concerns were solicited and, if not, why not;

(E) Whether small disadvantaged business concerns were solicited and, if not, why not;

(F) Whether women-owned small business concerns were solicited and, if not, why not; and

(G) If applicable, the reason award was not made to a small business concern.

(iv) Records of any outreach efforts to contact--
(A) Trade associations;

(B) Business development organizations;

(C) Conferences and trade fairs to locate small, HUBZone small, small disadvantaged, and women-owned small business sources; and

(D) Veterans service organizations.

(v) Records of internal guidance and encouragement provided to buyers through--

(A) Workshops, seminars, training, etc.; and

(B) Monitoring performance to evaluate compliance with the program's requirements.

(vi) On a contract-by-contract basis, records to support award data submitted by the offeror to the Government, including the name, address, and business size of each subcontractor. Contractors having commercial plans need not comply with this requirement.

(c) In order to effectively implement this plan to the extent consistent with efficient contract performance, the Contractor shall perform the following functions:

(1) Assist small business, veteran-owner small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns by arranging solicitations, time for the preparation of bids, quantities, specifications, and delivery schedules so as to facilitate the participation by such concerns. Where the Contractor's lists of potential small business, veteran-owner small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business subcontractors are excessively long, reasonable effort shall be made to give all such small business concerns an opportunity to compete over a period of time.

(2) Provide adequate and timely consideration of the potentialities of small business, veteran-owner small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business concerns in all "make-or-buy" decisions.

(3) Counsel and discuss subcontracting opportunities with representatives of small business, veteran-owner small business, service-disabled veteran-owned small business, HUBZone small business, small disadvantaged business, and women-owned small business firms.

(4) Provide notice to subcontractors concerning penalties and remedies for misrepresentations of business status as small, veteran-owner small business, HUBZone small, small disadvantaged, or women-owned small business for the purpose of obtaining a subcontract that is to be included as part or all of a goal contained in the Contractor's subcontracting plan.

(f) A master plan on a plant or division-wide basis that contains all the elements required by paragraph (d) of this clause, except goals, may be incorporated by reference as a part of the subcontracting plan required of the offeror by this clause; provided--

(1) the master plan has been approved,

(2) the offeror ensures that the master plan is updated as necessary and provides copies of the approved master plan, including evidence of its approval, to the Contracting Officer; and

(3) goals and any deviations from the master plan deemed necessary by the Contracting Officer to satisfy the requirements of this contract are set forth in the individual subcontracting plan.
(g) A commercial plan is the preferred type of subcontracting plan for contractors furnishing commercial items. The commercial plan shall relate to the offeror's planned subcontracting generally, for both commercial and Government business, rather than solely to the Government contract. Commercial plans are also preferred for subcontractors that provide commercial items under a prime contract, whether or not the prime contractor is supplying a commercial item.

(h) Prior compliance of the offeror with other such subcontracting plans under previous contracts will be considered by the Contracting Officer in determining the responsibility of the offeror for award of the contract.

(i) The failure of the Contractor or subcontractor to comply in good faith with (1) the clause of this contract entitled "Utilization Of Small Business Concerns," or (2) an approved plan required by this clause, shall be a material breach of the contract.

(j) The Contractor shall submit the following reports:

(1) Standard Form 294, Subcontracting Report for Individual Contracts. This report shall be submitted to the Contracting Officer semiannually and at contract completion. The report covers subcontract award data related to this contract. This report is not required for commercial plans.

(2) Standard Form 295, Summary Subcontract Report. This report encompasses all of the contracts with the awarding agency. It must be submitted semi-annually for contracts with the Department of Defense and annually for contracts with civilian agencies. If the reporting activity is covered by a commercial plan, the reporting activity must report annually all subcontract awards under that plan. All reports submitted at the close of each fiscal year (both individual and commercial plans) shall include a breakout, in the Contractor's format, of subcontract awards, in whole dollars, to small disadvantaged business concerns by North American Industry Classification System (NAICS) Industry Subsector. For a commercial plan, the Contractor may obtain from each of its subcontractors a predominant NAICS Industry Subsector and report all awards to that subcontractor under its predominant NAICS Industry Subsector.

(End of clause)

52.219-16 LIQUIDATED DAMAGES-SUBCONTRACTING PLAN (JAN 1999)

(a) Failure to make a good faith effort to comply with the subcontracting plan, as used in this clause, means a willful or intentional failure to perform in accordance with the requirements of the subcontracting plan approved under the clause in this contract entitled "Small Business Subcontracting Plan," or willful or intentional action to frustrate the plan.

(b) Performance shall be measured by applying the percentage goals to the total actual subcontracting dollars or, if a commercial plan is involved, to the pro rata share of actual subcontracting dollars attributable to Government contracts covered by the commercial plan. If, at contract completion or, in the case of a commercial plan, at the close of the fiscal year for which the plan is applicable, the Contractor has failed to meet its subcontracting goals and the Contracting Officer decides in accordance with paragraph (c) of this clause that the Contractor failed to make a good faith effort to comply with its subcontracting plan, established in accordance with the clause in this contract entitled “Small Business Subcontracting Plan,” the Contractor shall pay the Government liquidated damages in an amount stated. The amount of probable damages attributable to the Contractor's failure to comply shall be an amount equal to the actual dollar amount by which the Contractor failed to achieve each subcontract goal.

(c) Before the Contracting Officer makes a final decision that the Contractor has failed to make such good faith effort, the Contracting Officer shall give the Contractor written notice specifying the failure and permitting the Contractor to demonstrate what good faith efforts have been made and to discuss the matter.
Failure to respond to the notice may be taken as an admission that no valid explanation exists. If, after consideration of all the pertinent data, the Contracting Officer finds that the Contractor failed to make a good faith effort to comply with the subcontracting plan, the Contracting Officer shall issue a final decision to that effect and require that the Contractor pay the Government liquidated damages as provided in paragraph (b) of this clause.

(d) With respect to commercial plans, the Contracting Officer who approved the plan will perform the functions of the Contracting Officer under this clause on behalf of all agencies with contracts covered by the commercial plan.

(e) The Contractor shall have the right of appeal, under the clause in this contract entitled Disputes, from any final decision of the Contracting Officer.

(f) Liquidated damages shall be in addition to any other remedies that the Government may have.

(End of clause)

52.222-3 CONVICT LABOR (AUG 1996)

The Contractor agrees not to employ in the performance of this contract any person undergoing a sentence of imprisonment which has been imposed by any court of a State, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, or the Trust Territory of the Pacific Islands. This limitation, however, shall not prohibit the employment by the Contractor in the performance of this contract of persons on parole or probation to work at paid employment during the term of their sentence or persons who have been pardoned or who have served their terms. Nor shall it prohibit the employment by the Contractor in the performance of this contract of persons confined for violation of the laws of any of the States, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, or the Trust Territory of the Pacific Islands who are authorized to work at paid employment in the community under the laws of such jurisdiction, if--

(a)(1) The worker is paid or is in an approved work training program on a voluntary basis;

(2) Representatives of local union central bodies or similar labor union organizations have been consulted;

(3) Such paid employment will not result in the displacement of employed workers, or be applied in skills, crafts, or trades in which there is a surplus of available gainful labor in the locality, or impair existing contracts for services; and

(4) The rates of pay and other conditions of employment will not be less than those paid or provided for work of a similar nature in the locality in which the work is being performed; and

(b) The Attorney General of the United States has certified that the work-release laws or regulations of the jurisdiction involved are in conformity with the requirements of Executive Order 11755, as amended by Executive Orders 12608 and 12943.

(End of clause)
(a) Overtime requirements. No Contractor or subcontractor employing laborers or mechanics (see Federal Acquisition Regulation 22.300) shall require or permit them to work over 40 hours in any workweek unless they are paid at least 1 and 1/2 times the basic rate of pay for each hour worked over 40 hours.

(b) Violation; liability for unpaid wages; liquidated damages. The responsible Contractor and subcontractor are liable for unpaid wages if they violate the terms in paragraph (a) of this clause. In addition, the Contractor and subcontractor are liable for liquidated damages payable to the Government. The Contracting Officer will assess liquidated damages at the rate of $10 per affected employee for each calendar day on which the employer required or permitted the employee to work in excess of the standard workweek of 40 hours without paying overtime wages required by the Contract Work Hours and Safety Standards Act.

(c) Withholding for unpaid wages and liquidated damages. The Contracting Officer will withhold from payments due under the contract sufficient funds required to satisfy any Contractor or subcontractor liabilities for unpaid wages and liquidated damages. If amounts withheld under the contract are insufficient to satisfy Contractor or subcontractor liabilities, the Contracting Officer will withhold payments from other Federal or Federally assisted contracts held by the same Contractor that are subject to the Contract Work Hours and Safety Standards Act.

(d) Payrolls and basic records.

(1) The Contractor and its subcontractors shall maintain payrolls and basic payroll records for all laborers and mechanics working on the contract during the contract and shall make them available to the Government until 3 years after contract completion. The records shall contain the name and address of each employee, social security number, labor classifications, hourly rates of wages paid, daily and weekly number of hours worked, deductions made, and actual wages paid. The records need not duplicate those required for construction work by Department of Labor regulations at 29 CFR 5.5(a)(3) implementing the Davis-Bacon Act.

(2) The Contractor and its subcontractors shall allow authorized representatives of the Contracting Officer or the Department of Labor to inspect, copy, or transcribe records maintained under paragraph (d)(1) of this clause. The Contractor or subcontractor also shall allow authorized representatives of the Contracting Officer or Department of Labor to interview employees in the workplace during working hours.

(e) Subcontracts. The Contractor shall insert the provisions set forth in paragraphs (a) through (d) of this clause in subcontracts exceeding $100,000 and require subcontractors to include these provisions in any lower tier subcontracts. The Contractor shall be responsible for compliance by any subcontractor or lower-tier subcontractor with the provisions set forth in paragraphs (a) through (d) of this clause.

(End of clause)
provisions of paragraph (d) of this clause; also, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs which cover the particular weekly period, are deemed to be constructively made or incurred during such period. Such laborers and mechanics shall be paid not less than the appropriate wage rate and fringe benefits in the wage determination for the classification of work actually performed, without regard to skill, except as provided in the clause entitled Apprentices and Trainees. Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein; provided, That the employer's payroll records accurately set forth the time spent in each classification in which work is performed. The wage determination (including any additional classifications and wage rates conforming under paragraph (b) of this clause) and the Davis-Bacon poster (WH-1321) shall be posted at all times by the Contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers.

(b)(1) The Contracting Officer shall require that any class of laborers or mechanics which is not listed in the wage determination and which is to be employed under the contract shall be classified in conformance with the wage determination. The Contracting Officer shall approve an additional classification and wage rate and fringe benefits therefor only when all the following criteria have been met:

(i) The work to be performed by the classification requested is not performed by a classification in the wage determination.

(ii) The classification is utilized in the area by the construction industry.

(iii) The proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination.

(2) If the Contractor and the laborers and mechanics to be employed in the classification (if known), or their representatives, and the Contracting Officer agree on the classification and wage rate (including the amount designated for fringe benefits, where appropriate), a report of the action taken shall be sent by the Contracting Officer to the Administrator of the Wage and Hour Division, Employment Standards Administration, U.S. Department of Labor, Washington, DC 20210. The Administrator or an authorized representative will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the Contracting Officer or will notify the Contracting Officer within the 30-day period that additional time is necessary.

(3) In the event the Contractor, the laborers or mechanics to be employed in the classification, or their representatives, and the Contracting Officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the Contracting Officer shall refer the questions, including the views of all interested parties and the recommendation of the Contracting Officer, to the Administrator of the Wage and Hour Division for determination. The Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the Contracting Officer or will notify the Contracting Officer within the 30-day period that additional time is necessary.

(4) The wage rate (including fringe benefits, where appropriate) determined pursuant to subparagraphs (b)(2) and (b)(3) of this clause shall be paid to all workers performing work in the classification under this contract from the first day on which work is performed in the classification.

(c) Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the Contractor shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly cash equivalent thereof.

(d) If the Contractor does not make payments to a trustee or other third person, the Contractor may consider as part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program; provided, That the Secretary of Labor has found, upon the written request of the Contractor, that the applicable standards of the Davis-Bacon Act have
been met. The Secretary of Labor may require the Contractor to set aside in a separate account assets for the meeting of obligations under the plan or program.

52.222-7 WITHHOLDING OF FUNDS (FEB 1988)

The Contracting Officer shall, upon his or her own action or upon written request of an authorized representative of the Department of Labor, withhold or cause to be withheld from the Contractor under this contract or any other Federal contract with the same Prime Contractor, or any other Federally assisted contract subject to Davis-Bacon prevailing wage requirements, which is held by the same Prime Contractor, so much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the Contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the Contracting Officer may, after written notice to the Contractor, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased.

52.222-8 PAYROLLS AND BASIC RECORDS (FEB 1988)

(a) Payrolls and basic records relating thereto shall be maintained by the Contractor during the course of the work and preserved for a period of 3 years thereafter for all laborers and mechanics working at the site of the work. Such records shall contain the name, address, and social security number of each such worker, his or her correct classification, hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalents thereof of the types described in section 1(b)(2)(B) of the Davis-Bacon Act), daily and weekly number of hours worked, deductions made, and actual wages paid. Whenever the Secretary of Labor has found, under paragraph (d) of the clause entitled Davis-Bacon Act, that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in section 1(b)(2)(B) of the Davis-Bacon Act, the Contractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, and that the plan or program has been communicated in writing to the laborers or mechanics affected, and records which show the costs anticipated or the actual cost incurred in providing such benefits. Contractors employing apprentices or trainees under approved programs shall maintain written evidence of the registration of apprenticeship programs and certification of trainee programs, the registration of the apprentices and trainees, and the ratios and wage rates prescribed in the applicable programs.

(b)(1) The Contractor shall submit weekly for each week in which any contract work is performed a copy of all payrolls to the Contracting Officer. The payrolls submitted shall set out accurately and completely all of the information required to be maintained under paragraph (a) of this clause. This information may be submitted in any form desired. Optional Form WH-347 (Federal Stock Number 029-005-00014-1) is available for this purpose and may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. The Prime Contractor is responsible for the submission of copies of payrolls by all subcontractors.

(2) Each payroll submitted shall be accompanied by a "Statement of Compliance," signed by the Contractor or subcontractor or his or her agent who pays or supervises the payment of the persons employed under the contract and shall certify--

(i) That the payroll for the payroll period contains the information required to be maintained under paragraph (a) of this clause and that such information is correct and complete;

(ii) That each laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or
indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in the Regulations, 29 CFR Part 3; and

(iii) That each laborer or mechanic has been paid not less than the applicable wage rates and fringe benefits or cash equivalents for the classification of work performed, as specified in the applicable wage determination incorporated into the contract.

(3) The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH-347 shall satisfy the requirement for submission of the "Statement of Compliance" required by subparagraph (b)(2) of this clause.

(4) The falsification of any of the certifications in this clause may subject the Contractor or subcontractor to civil or criminal prosecution under Section 1001 of Title 18 and Section 3729 of Title 31 of the United States Code.

c) The Contractor or subcontractor shall make the records required under paragraph (a) of this clause available for inspection, copying, or transcription by the Contracting Officer or authorized representatives of the Contracting Officer or the Department of Labor. The Contractor or subcontractor shall permit the Contracting Officer or representatives of the Contracting Officer or the Department of Labor to interview employees during working hours on the job. If the Contractor or subcontractor fails to submit required records or to make them available, the Contracting Officer may, after written notice to the Contractor, take such action as may be necessary to cause the suspension of any further payment. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12.

52.222-9 APPRENTICES AND TRAINEES (FEB 1988)

(a) Apprentices. Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the U.S. Department of Labor, Employment and Training Administration, Bureau of Apprenticeship and Training, or with a State Apprenticeship Agency recognized by the Bureau, or if a person is employed in his or her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the program, but who has been certified by the Bureau of Apprenticeship and Training or a State Apprenticeship Agency (where appropriate) to be eligible for probationary employment as an apprentice. The allowable ratio of apprentices to journeymen on the job site in any craft classification shall not be greater than the ratio permitted to the Contractor as to the entire work force under the registered program. Any worker listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated in this paragraph, shall be paid not less than the applicable wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyman's hourly rate) specified in the Contractor's or subcontractor's registered program shall be observed. Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice's level of progress, expressed as a percentage of the journeyman hourly rate specified in the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator determines that a different practice prevails for the applicable apprentice classification, fringes shall be paid in accordance with that determination. In the event the Bureau of Apprenticeship and Training, or a State Apprenticeship Agency recognized by the Bureau, withdraws approval of an apprenticeship program, the Contractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the work performed until an acceptable program is approved.
(b) Trainees. Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the U.S. Department of Labor, Employment and Training Administration. The ratio of trainees to journeymen on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration. Every trainee must be paid at not less than the rate specified in the approved program for the trainee's level of progress, expressed as a percentage of the journeyman hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed in the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeyman wage rate in the wage determination which provides for less than full fringe benefits for apprentices. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and Training Administration shall be paid not less than the applicable wage rate in the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate in the wage determination for the work actually performed. In the event the Employment and Training Administration withdraws approval of a training program, the Contractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

(c) Equal employment opportunity. The utilization of apprentices, trainees, and journeymen under this clause shall be in conformity with the equal employment opportunity requirements of Executive Order 11246, as amended, and 29 CFR Part 30.

52.222-10 COMPLIANCE WITH COPELAND ACT REQUIREMENTS (FEB 1988)

The Contractor shall comply with the requirements of 29 CFR Part 3, which are hereby incorporated by reference in this contract.

52.222-11 SUBCONTRACTS (LABOR STANDARDS (FEB 1988)

(a) The Contractor or subcontractor shall insert in any subcontracts the clauses entitled Davis-Bacon Act, Contract Work Hours and Safety Standards Act-Overtime Compensation, Apprentices and Trainees, Payrolls and Basic Records, Compliance with Copeland Act Requirements, Withholding of Funds, Subcontracts (Labor Standards), Contract Termination-Debarment, Disputes Concerning Labor Standards, Compliance with Davis-Bacon and Related Act Regulations, and Certification of Eligibility, and such other clauses as the Contracting Officer may, by appropriate instructions, require, and also a clause requiring subcontractors to include these clauses in any lower tier subcontracts. The Prime Contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with all the contract clauses cited in this paragraph.

(b)(1) Within 14 days after award of the contract, the Contractor shall deliver to the Contracting Officer a completed Statement and Acknowledgment Form (SF 1413) for each subcontract, including the subcontractor's signed and dated acknowledgment that the clauses set forth in paragraph (a) of this clause have been included in the subcontract.

(2) Within 14 days after the award of any subsequently awarded subcontract the Contractor shall deliver to the Contracting Officer an updated completed SF 1413 for such additional subcontract.
52.222-12 CONTRACT TERMINATION--DEBARMENT (FEB 1988)

A breach of the contract clauses entitled Davis-Bacon Act, Contract Work Hours and Safety Standards Act--Overtime Compensation, Apprentices and Trainees, Payrolls and Basic Records, Compliance with Copeland Act Requirements, Subcontracts (Labor Standards), Compliance with Davis-Bacon and Related Act Regulations, or Certification of Eligibility may be grounds for termination of the contract, and for debarment as a Contractor and subcontractor as provided in 29 CFR 5.12.

52.222-13 COMPLIANCE WITH DAVIS -BACON AND RELATED ACT REGULATIONS (FEB 1988)

All rulings and interpretations of the Davis-Bacon and Related Acts contained in 29 CFR Parts 1, 3, and 5 are hereby incorporated by reference in this contract.

52.222-14 DISPUTES CONCERNING LABOR STANDARDS (FEB 1988)

The United States Department of Labor has set forth in 29 CFR Parts 5, 6, and 7 procedures for resolving disputes concerning labor standards requirements. Such disputes shall be resolved in accordance with those procedures and not the Disputes clause of this contract. Disputes within the meaning of this clause include disputes between the Contractor (or any of its subcontractors) and the contracting agency, the U.S. Department of Labor, or the employees or their representatives.

52.222-15 CERTIFICATION OF ELIGIBILITY (FEB 1988)

(a) By entering into this contract, the Contractor certifies that neither it (nor he or she) nor any person or firm who has an interest in the Contractor's firm is a person or firm ineligible to be awarded Government contracts by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1).

(b) No part of this contract shall be subcontracted to any person or firm ineligible for award of a Government contract by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1).

(c) The penalty for making false statements is prescribed in the U.S. Criminal Code, 18 U.S.C. 1001.

52.222-21 PROHIBITION OF SEGREGATED FACILITIES (FEB 1999)

(a) Segregated facilities, as used in this clause, means any waiting rooms, work areas, rest rooms and wash rooms, restaurants and other eating areas, time clocks, locker rooms and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing facilities provided for employees, that are segregated by explicit directive or are in fact segregated on the basis of race, color, religion, sex, or national origin because of written or oral policies or employee custom. The term does not include separate or single-user rest rooms or necessary dressing or sleeping areas provided to assure privacy between the sexes.

(b) The Contractor agrees that it does not and will not maintain or provide for its employees any segregated facilities at any of its establishments, and that it does not and will not permit its employees to perform their services at any location under its control where segregated facilities are maintained. The Contractor agrees that a breach of this clause is a violation of the Equal Opportunity clause in this contract.

(c) The Contractor shall include this clause in every subcontract and purchase order that is subject to the Equal Opportunity clause of this contract.

(End of clause)
52.222-26 EQUAL OPPORTUNITY (FEB 1999)

(a) If, during any 12-month period (including the 12 months preceding the award of this contract), the Contractor has been or is awarded nonexempt Federal contracts and/or subcontracts that have an aggregate value in excess of $10,000, the Contractor shall comply with subparagraphs (b)(1) through (11) of this clause. Upon request, the Contractor shall provide information necessary to determine the applicability of this clause.

(b) During performing this contract, the Contractor agrees as follows:

(1) The Contractor shall not discriminate against any employee or applicant for employment because of race, color, religion, sex, or national origin. However, it shall not be a violation of this clause for the Contractor to extend a publicly announced preference in employment to Indians living on or near an Indian reservation, in connection with employment opportunities on or near an Indian reservation, as permitted by 41 CFR 60-1.5.

(2) The Contractor shall take affirmative action to ensure that applicants are employed, and that employees are treated during employment, without regard to their race, color, religion, sex, or national origin. This shall include, but not be limited to, (i) employment, (ii) upgrading, (iii) demotion, (iv) transfer, (v) recruitment or recruitment advertising, (vi) layoff or termination, (vii) rates of pay or other forms of compensation, and (viii) selection for training, including apprenticeship.

(3) The Contractor shall post in conspicuous places available to employees and applicants for employment the notices to be provided by the Contracting Officer that explain this clause.

(4) The Contractor shall, in all solicitations or advertisements for employees placed by or on behalf of the Contractor, state that all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, or national origin.

(5) The Contractor shall send, to each labor union or representative of workers with which it has a collective bargaining agreement or other contract or understanding, the notice to be provided by the Contracting Officer advising the labor union or workers' representative of the Contractor's commitments under this clause, and post copies of the notice in conspicuous places available to employees and applicants for employment.

(6) The Contractor shall comply with Executive Order 11246, as amended, and the rules, regulations, and orders of the Secretary of Labor.

(7) The Contractor shall furnish to the contracting agency all information required by Executive Order 11246, as amended, and by the rules, regulations, and orders of the Secretary of Labor. The Contractor shall also file Standard Form 100 (EEO-1), or any successor form, as prescribed in 41 CFR part 60-1. Unless the Contractor has filed within the 12 months preceding the date of contract award, the Contractor shall, within 30 days after contract award, apply to either the regional Office of Federal Contract Compliance Programs (OFCCP) or the local office of the Equal Employment Opportunity Commission for the necessary forms.

(8) The Contractor shall permit access to its premises, during normal business hours, by the contracting agency or the OFCCP for the purpose of conducting on-site compliance evaluations and complaint investigations. The Contractor shall permit the Government to inspect and copy any books, accounts, records (including computerized records), and other material that may be relevant to the matter under investigation and pertinent to compliance with Executive Order 11246, as amended, and rules and regulations that implement the Executive Order.

(9) If the OFCCP determines that the Contractor is not in compliance with this clause or any rule, regulation, or order of the Secretary of Labor, this contract may be canceled, terminated, or suspended in whole or in part and the Contractor may be declared ineligible for further Government contracts, under the procedures
authorized in Executive Order 11246, as amended. In addition, sanctions may be imposed and remedies invoked against the Contractor as provided in Executive Order 11246, as amended; in the rules, regulations, and orders of the Secretary of Labor; or as otherwise provided by law.

(10) The Contractor shall include the terms and conditions of subparagraphs (b)(1) through (11) of this clause in every subcontract or purchase order that is not exempted by the rules, regulations, or orders of the Secretary of Labor issued under Executive Order 11246, as amended, so that these terms and conditions will be binding upon each subcontractor or vendor.

(11) The Contractor shall take such action with respect to any subcontract or purchase order as the contracting officer may direct as a means of enforcing these terms and conditions, including sanctions for noncompliance; provided, that if the Contractor becomes involved in, or is threatened with, litigation with a subcontractor or vendor as a result of any direction, the Contractor may request the United States to enter into the litigation to protect the interests of the United States.

(c) Notwithstanding any other clause in this contract, disputes relative to this clause will be governed by the procedures in 41 CFR 60-1.1.

(End of clause)

52.222-27 AFFIRMATIVE ACTION COMPLIANCE REQUIREMENTS FOR CONSTRUCTION (FEB 1999)

(a) Definitions. "Covered area," as used in this clause, means the geographical area described in the solicitation for this contract.

"Deputy Assistant Secretary," as used in this clause, means Deputy Assistant Secretary for Federal Contract Compliance, U.S. Department of Labor, or a designee.

"Employer's identification number," as used in this clause, means the Federal Social Security number used on the employer's quarterly federal tax return, U.S. Treasury Department Form 941.

"Minority," as used in this clause, means--

(1) American Indian or Alaskan Native (all persons having origins in any of the original peoples of North America and maintaining identifiable tribal affiliations through membership and participation or community identification).

(2) Asian and Pacific Islander (all persons having origins in any of the original peoples of the Far East, Southeast Asia, the Indian Subcontinent, or the Pacific Islands);

(3) Black (all persons having origins in any of the black African racial groups not of Hispanic origin); and

(4) Hispanic (all persons of Mexican, Puerto Rican, Cuban, Central or South American, or other Spanish culture or origin, regardless of race).

(b) If the Contractor, or a subcontractor at any tier, subcontracts a portion of the work involving any construction trade, each such subcontract in excess of $10,000 shall include this clause and the Notice containing the goals for minority and female participation stated in the solicitation for this contract.

(c) If the Contractor is participating in a Hometown Plan (41 CFR 60-4) approved by the U.S. Department of Labor in a covered area, either individually or through an association, its affirmative action obligations on all work in the plan area (including goals) shall comply with the plan for those trades that have unions participating in the plan. Contractors must be able to demonstrate participation in, and compliance with, the
provisions of the plan. Each Contractor or subcontractor participating in an approved plan is also required to comply with its obligations under the Equal Opportunity clause, and to make a good faith effort to achieve each goal under the plan in each trade in which it has employees. The overall good-faith performance by other Contractors or subcontractors toward a goal in an approved plan does not excuse any Contractor's or subcontractor's failure to make good-faith efforts to achieve the plan's goals.

(d) The Contractor shall implement the affirmative action procedures in subparagraphs (g)(1) through (16) of this clause. The goals stated in the solicitation for this contract are expressed as percentages of the total hours of employment and training of minority and female utilization that the Contractor should reasonably be able to achieve in each construction trade in which it has employees in the covered area. If the Contractor performs construction work in a geographical area located outside of the covered area, it shall apply the goals established for the geographical area where that work is actually performed. The Contractor is expected to make substantially uniform progress toward its goals in each craft.

(e) Neither the terms and conditions of any collective bargaining agreement, nor the failure by a union with which the Contractor has a collective bargaining agreement, to refer minorities or women shall excuse the Contractor's obligations under this clause, Executive Order 11246, as amended, or the regulations thereunder.

(f) In order for the nonworking training hours of apprentices and trainees to be counted in meeting the goals, apprentices and trainees must be employed by the Contractor during the training period, and the Contractor must have made a commitment to employ the apprentices and trainees at the completion of their training, subject to the availability of employment opportunities. Trainees must be trained pursuant to training programs approved by the U.S. Department of Labor.

(g) The Contractor shall take affirmative action to ensure equal employment opportunity. The evaluation of the Contractor's compliance with this clause shall be based upon its effort to achieve maximum results from its actions. The Contractor shall document these efforts fully and implement affirmative action steps at least as extensive as the following:

1. Ensure a working environment free of harassment, intimidation, and coercion at all sites and in all facilities where the Contractor's employees are assigned to work. The Contractor, if possible, will assign two or more women to each construction project. The Contractor shall ensure that foremen, superintendents, and other onsite supervisory personnel are aware of and carry out the Contractor's obligation to maintain such a working environment, with specific attention to minority or female individuals working at these sites or facilities.

2. Establish and maintain a current list of sources for minority and female recruitment. Provide written notification to minority and female recruitment sources and community organizations when the Contractor or its unions have employment opportunities available, and maintain a record of the organizations' responses.

3. Establish and maintain a current file of the names, addresses, and telephone numbers of each minority and female off-the-street applicant, referrals of minorities or females from unions, recruitment sources, or community organizations, and the action taken with respect to each individual. If an individual was sent to the union hiring hall for referral and not referred back to the Contractor by the union or, if referred back, not employed by the Contractor, this shall be documented in the file, along with whatever additional actions the Contractor may have taken.

4. Immediately notify the Deputy Assistant Secretary when the union or unions with which the Contractor has a collective bargaining agreement has not referred back to the Contractor a minority or woman sent by the Contractor, or when the Contractor has other information that the union referral process has impeded the Contractor's efforts to meet its obligations.
(5) Develop on-the-job training opportunities and/or participate in training programs for the area that expressly include minorities and women, including upgrading programs and apprenticeship and trainee programs relevant to the Contractor's employment needs, especially those programs funded or approved by the Department of Labor. The Contractor shall provide notice of these programs to the sources compiled under subparagraph (g)(2) of this clause.

(6) Disseminate the Contractor's equal employment policy by--

(i) Providing notice of the policy to unions and to training, recruitment, and outreach programs, and requesting their cooperation in assisting the Contractor in meeting its contract obligations;

(ii) Including the policy in any policy manual and in collective bargaining agreements;

(iii) Publicizing the policy in the company newspaper, annual report, etc.;

(iv) Reviewing the policy with all management personnel and with all minority and female employees at least once a year; and

(v) Posting the policy on bulletin boards accessible to employees at each location where construction work is performed.

(7) Review, at least annually, the Contractor's equal employment policy and affirmative action obligations with all employees having responsibility for hiring, assignment, layoff, termination, or other employment decisions. Conduct review of this policy with all on-site supervisory personnel before initiating construction work at a job site. A written record shall be made and maintained identifying the time and place of these meetings, persons attending, subject matter discussed, and disposition of the subject matter.

(8) Disseminate the Contractor's equal employment policy externally by including it in any advertising in the news media, specifically including minority and female news media. Provide written notification to, and discuss this policy with, other Contractors and subcontractors with which the Contractor does or anticipates doing business.

(9) Direct recruitment efforts, both oral and written, to minority, female, and community organizations, to schools with minority and female students, and to minority and female recruitment and training organizations serving the Contractor's recruitment area and employment needs. Not later than 1 month before the date for acceptance of applications for apprenticeship or training by any recruitment source, send written notification to organizations such as the above, describing the openings, screening procedures, and tests to be used in the selection process.

(10) Encourage present minority and female employees to recruit minority persons and women. Where reasonable, provide after-school, summer, and vacation employment to minority and female youth both on the site and in other areas of the Contractor's workforce.

(11) Validate all tests and other selection requirements where required under 41 CFR 60-3.

(12) Conduct, at least annually, an inventory and evaluation at least of all minority and female personnel for promotional opportunities. Encourage these employees to seek or to prepare for, through appropriate training, etc., opportunities for promotion.

(13) Ensure that seniority practices, job classifications, work assignments, and other personnel practices do not have a discriminatory effect by continually monitoring all personnel and employment-related activities to ensure that the Contractor's obligations under this contract are being carried out.

(14) Ensure that all facilities and company activities are nonsegregated except that separate or single-user rest rooms and necessary dressing or sleeping areas shall be provided to assure privacy between the sexes.
(15) Maintain a record of solicitations for subcontracts for minority and female construction contractors and suppliers, including circulation of solicitations to minority and female contractor associations and other business associations.

(16) Conduct a review, at least annually, of all supervisors' adherence to and performance under the Contractor's equal employment policy and affirmative action obligations.

(h) The Contractor is encouraged to participate in voluntary associations that may assist in fulfilling one or more of the affirmative action obligations contained in subparagraphs (g)(1) through (16) of this clause. The efforts of a contractor association, joint contractor-union, contractor-community, or similar group of which the contractor is a member and participant may be asserted as fulfilling one or more of its obligations under subparagraphs (g)(1) through (16) of this clause, provided the Contractor--

(1) Actively participates in the group;

(2) Makes every effort to ensure that the group has a positive impact on the employment of minorities and women in the industry;

(3) Ensures that concrete benefits of the program are reflected in the Contractor's minority and female workforce participation;

(4) Makes a good-faith effort to meet its individual goals and timetables; and

(5) Can provide access to documentation that demonstrates the effectiveness of actions taken on behalf of the Contractor. The obligation to comply is the Contractor’s, and failure of such a group to fulfill an obligation shall not be a defense for the Contractor's noncompliance.

(i) A single goal for minorities and a separate single goal for women shall be established. The Contractor is required to provide equal employment opportunity and to take affirmative action for all minority groups, both male and female, and all women, both minority and nonminority. Consequently, the Contractor may be in violation of Executive Order 11246, as amended, if a particular group is employed in a substantially disparate manner.

(j) The Contractor shall not use goals or affirmative action standards to discriminate against any person because of race, color, religion, sex, or national origin.

(k) The Contractor shall not enter into any subcontract with any person or firm debarred from Government contracts under Executive Order 11246, as amended.

(l) The Contractor shall carry out such sanctions and penalties for violation of this clause and of the Equal Opportunity clause, including suspension, termination, and cancellation of existing subcontracts, as may be imposed or ordered under Executive Order 11246, as amended, and its implementing regulations, by the OFCCP. Any failure to carry out these sanctions and penalties as ordered shall be a violation of this clause and Executive Order 11246, as amended.

(m) The Contractor in fulfilling its obligations under this clause shall implement affirmative action procedures at least as extensive as those prescribed in paragraph (g) of this clause, so as to achieve maximum results from its efforts to ensure equal employment opportunity. If the Contractor fails to comply with the requirements of Executive Order 11246, as amended, the implementing regulations, or this clause, the Deputy Assistant Secretary shall take action as prescribed in 41 CFR 60-4.8.

(n) The Contractor shall designate a responsible official to--
(1) Monitor all employment-related activity to ensure that the Contractor's equal employment policy is being carried out;

(2) Submit reports as may be required by the Government; and

(3) Keep records that shall at least include for each employee the name, address, telephone number, construction trade, union affiliation (if any), employee identification number, social security number, race, sex, status (e.g., mechanic, apprentice, trainee, helper, or laborer), dates of changes in status, hours worked per week in the indicated trade, rate of pay, and locations at which the work was performed. Records shall be maintained in an easily understandable and retrievable form; however, to the degree that existing records satisfy this requirement, separate records are not required to be maintained.

Nothing contained herein shall be construed as a limitation upon the application of other laws that establish different standards of compliance or upon the requirements for the hiring of local or other area residents (e.g., those under the Public Works Employment Act of 1977 and the Community Development Block Grant Program).

52.222-35 AFFIRMATIVE ACTION FOR DISABLED VETERANS AND VETERANS OF THE VIETNAM ERA (APR 1998)

(a) Definitions. As used in this clause--

All employment openings includes all positions except executive and top management, those positions that will be filled from within the contractor's organization, and positions lasting 3 days or less. This term includes full-time employment, temporary employment of more than 3 days' duration, and part-time employment.

Appropriate office of the State employment service system means the local office of the Federal-State national system of public employment offices with assigned responsibility to serve the area where the employment opening is to be filled, including the District of Columbia, Guam, the Commonwealth of Puerto Rico, and the Virgin Islands.

Positions that will be filled from within the Contractor's organization means employment openings for which no consideration will be given to persons outside the Contractor's organization (including any affiliates, subsidiaries, and parent companies) and includes any openings that the Contractor proposes to fill from regularly established "recall" lists. The exception does not apply to a particular opening once an employer decides to consider applicants outside of its organization.

Veteran of the Vietnam era means a person who--

(1) Served on active duty for a period of more than 180 days, any part of which occurred between August 5, 1964, and May 7, 1975, and was discharged or released therefrom with other than a dishonorable discharge; or

(2) Was discharged or released from active duty for a service-connected disability if any part of such active duty was performed between August 5, 1964, and May 7, 1975.

(b) General. (1) Regarding any position for which the employee or applicant for employment is qualified, the Contractor shall not discriminate against the individual because the individual is a disabled veteran or a veteran of the Vietnam era. The Contractor agrees to take affirmative action to employ, advance in employment, and otherwise treat qualified disabled veterans and veterans of the Vietnam era without discrimination based upon their disability or veterans' status in all employment practices such as--

(i) Employment;
(ii) Upgrading;

(iii) Demotion or transfer;

(iv) Recruitment;

(v) Advertising;

(vi) Layoff or termination;

(vii) Rates of pay or other forms of compensation; and

(viii) Selection for training, including apprenticeship.

(2) The Contractor agrees to comply with the rules, regulations, and relevant orders of the Secretary of Labor (Secretary) issued under the Vietnam Era Veterans' Readjustment Assistance Act of 1972 (the Act), as amended.

(c) Listing openings. (1) The Contractor agrees to list all employment openings existing at contract award or occurring during contract performance, at an appropriate office of the State employment service system in the locality where the opening occurs. These openings include those occurring at any Contractor facility, including one not connected with performing this contract. An independent corporate affiliate is exempt from this requirement.

(2) State and local government agencies holding Federal contracts of $10,000 or more shall also list all their employment openings with the appropriate office of the State employment service.

(3) The listing of employment openings with the State employment service system is required at least concurrently with using any other recruitment source or effort and involves the obligations of placing a bona fide job order, including accepting referrals of veterans and nonveterans. This listing does not require hiring any particular job applicant or hiring from any particular group of job applicants and is not intended to relieve the Contractor from any requirements of Executive orders or regulations concerning nondiscrimination in employment.

(4) Whenever the Contractor becomes contractually bound to the listing terms of this clause, it shall advise the State employment service system, in each State where it has establishments, of the name and location of each hiring location in the State. As long as the Contractor is contractually bound to these terms and has so advised the State system, it need not advise the State system of subsequent contracts. The Contractor may advise the State system when it is no longer bound by this contract clause.

(d) Applicability. This clause does not apply to the listing of employment openings that occur and are filled outside the 50 States, the District of Columbia, the Commonwealth of Puerto Rico, Guam, and the Virgin Islands.

(e) Postings. (1) The Contractor agrees to post employment notices stating (i) the Contractor's obligation under the law to take affirmative action to employ and advance in employment qualified disabled veterans and veterans of the Vietnam era, and (ii) the rights of applicants and employees.

(2) These notices shall be posted in conspicuous places that are available to employees and applicants for employment. They shall be in a form prescribed by the Deputy Assistant Secretary for Federal Contract Compliance Programs, Department of Labor (Deputy Assistant Secretary), and provided by or through the Contracting Officer.

(3) The Contractor shall notify each labor union or representative of workers with which it has a collective bargaining agreement or other contract understanding, that the Contractor is bound by the terms of the Act,
and is committed to take affirmative action to employ, and advance in employment, qualified disabled veterans and veterans of the Vietnam Era.

(f) Noncompliance. If the Contractor does not comply with the requirements of this clause, appropriate actions may be taken under the rules, regulations, and relevant orders of the Secretary issued pursuant to the Act.

(g) Subcontracts. The Contractor shall include the terms of this clause in every subcontract or purchase order of $10,000 or more unless exempted by rules, regulations, or orders of the Secretary. The Contractor shall act as specified by the Deputy Assistant Secretary to enforce the terms, including action for noncompliance.

(End of clause)

52.222-36 AFFIRMATIVE ACTION FOR WORKERS WITH DISABILITIES (JUN 1998)

(a) General. (1) Regarding any position for which the employee or applicant for employment is qualified, the Contractor shall not discriminate against any employee or applicant because of physical or mental disability. The Contractor agrees to take affirmative action to employ, advance in employment, and otherwise treat qualified individuals with disabilities without discrimination based upon their physical or mental disability in all employment practices such as--

(i) Recruitment, advertising, and job application procedures;

(ii) Hiring, upgrading, promotion, award of tenure, demotion, transfer, layoff, termination, right of return from layoff, and rehiring;

(iii) Rates of pay or any other form of compensation and changes in compensation;

(iv) Job assignments, job classifications, organizational structures, position descriptions, lines of progression, and seniority lists;

(v) Leaves of absence, sick leave, or any other leave;

(vi) Fringe benefits available by virtue of employment, whether or not administered by the Contractor;

(vii) Selection and financial support for training, including apprenticeships, professional meetings, conferences, and other related activities, and selection for leaves of absence to pursue training;

(viii) Activities sponsored by the Contractor, including social or recreational programs; and

(ix) Any other term, condition, or privilege of employment.

(2) The Contractor agrees to comply with the rules, regulations, and relevant orders of the Secretary of Labor (Secretary) issued under the Rehabilitation Act of 1973 (29 U.S.C. 793) (the Act), as amended.

(b) Postings. (1) The Contractor agrees to post employment notices stating--

(i) The Contractor's obligation under the law to take affirmative action to employ and advance in employment qualified individuals with disabilities; and

(ii) The rights of applicants and employees.
(2) These notices shall be posted in conspicuous places that are available to employees and applicants for employment. The Contractor shall ensure that applicants and employees with disabilities are informed of the contents of the notice (e.g., the Contractor may have the notice read to a visually disabled individual, or may lower the posted notice so that it might be read by a person in a wheelchair). The notices shall be in a form prescribed by the Deputy Assistant Secretary for Federal Contract Compliance of the U.S. Department of Labor (Deputy Assistant Secretary) and shall be provided by or through the Contracting Officer.

(3) The Contractor shall notify each labor union or representative of workers with which it has a collective bargaining agreement or other contract understanding, that the Contractor is bound by the terms of Section 503 of the Act and is committed to take affirmative action to employ, and advance in employment, qualified individuals with physical or mental disabilities.

(c) Noncompliance. If the Contractor does not comply with the requirements of this clause, appropriate actions may be taken under the rules, regulations, and relevant orders of the Secretary issued pursuant to the Act.

(d) Subcontracts. The Contractor shall include the terms of this clause in every subcontract or purchase order in excess of $10,000 unless exempted by rules, regulations, or orders of the Secretary. The Contractor shall act as specified by the Deputy Assistant Secretary to enforce the terms, including action for noncompliance.

(End of clause)

52.222-37 EMPLOYMENT REPORTS ON DISABLED VETERANS AND VETERANS OF THE VIETNAM ERA (JAN 1999)

(a) Unless the Contractor is a State or local government agency, the Contractor shall report at least annually, as required by the Secretary of Labor, on:

(1) The number of disabled veterans and the number of veterans of the Vietnam era in the workforce of the contractor by job category and hiring location; and

(2) The total number of new employees hired during the period covered by the report, and of that total, the number of disabled veterans, and the number of veterans of the Vietnam era.

(b) The above items shall be reported by completing the form entitled "Federal Contractor Veterans' Employment Report VETS-100."

(c) Reports shall be submitted no later than September 30 of each year beginning September 30, 1988.

(d) The employment activity report required by paragraph (a)(2) of this clause shall reflect total hires during the most recent 12-month period as of the ending date selected for the employment profile report required by paragraph (a)(1) of this clause. Contractors may select an ending date: (1) As of the end of any pay period during the period January through March 1st of the year the report is due, or (2) as of December 31, if the contractor has previous written approval from the Equal Employment Opportunity Commission to do so for purposes of submitting the Employer Information Report EEO-1 (Standard Form 100).

(e) The count of veterans reported according to paragraph (a) of this clause shall be based on voluntary disclosure. Each Contractor subject to the reporting requirements at 38 U.S.C. 4212 shall invite all disabled veterans and veterans of the Vietnam era who wish to benefit under the affirmative action program at 38 U.S.C. 4212 to identify themselves to the Contractor. The invitation shall state that the information is voluntarily provided; that the information will be kept confidential; that disclosure or refusal to provide the information will not subject the applicant or employee to any adverse treatment; and that the information will be used only in accordance with the regulations promulgated under 38 U.S.C. 4212.
(f) Subcontracts. The Contractor shall include the terms of this clause in every subcontract or purchase order of $10,000 or more unless exempted by rules, regulations, or orders of the Secretary.

(End of clause)

52.223-5 POLLUTION PREVENTION AND RIGHT-TO-KNOW INFORMATION (APR 1998)

(b) The Contractor shall provide all information needed by the Federal facility to comply with the emergency planning reporting requirements of Section 302 of EPCRA; the emergency notice requirements of Section 304 of EPCRA; the list of Material Safety Data Sheets required by Section 311 of EPCRA; the emergency and hazardous chemical inventory forms of Section 312 of EPCRA; the toxic chemical release inventory of Section 313 of EPCRA, which includes the reduction and recycling information required by Section 6607 of PPA; and the toxic chemical reduction goals requirements of Section 3-302 of Executive Order 12856.

52.223-6 DRUG-FREE WORKPLACE (MAY 2001)

(a) Definitions. As used in this clause --

"Controlled substance" means a controlled substance in schedules I through V of section 202 of the Controlled Substances Act (21 U.S.C. 812) and as further defined in regulation at 21 CFR 1308.11 - 1308.15.

"Conviction" means a finding of guilt (including a plea of nolo contendere) or imposition of sentence, or both, by any judicial body charged with the responsibility to deter- mine violations of the Federal or State criminal drug statutes.

"Criminal drug statute" means a Federal or non-Federal criminal statute involving the manufacture, distribution, dispensing, possession, or use of any controlled substance.

"Drug-free workplace" means the site(s) for the performance of work done by the Contractor in connection with a specific contract where employees of the Contractor are prohibited from engaging in the unlawful manufacture, distribution, dispensing, possession, or use of a controlled substance.

"Employee" means an employee of a Contractor directly engaged in the performance of work under a Government contract. "Directly engaged" is defined to include all direct cost employees and any other Contractor employee who has other than a minimal impact or involvement in contract performance.

"Individual" means an offeror/contractor that has no more than one employee including the offeror/contractor.

(b) The Contractor, if other than an individual, shall-- within 30 days after award (unless a longer period is agreed to in writing for contracts of 30 days or more performance duration), or as soon as possible for contracts of less than 30 days performance duration--

(1) Publish a statement notifying its employees that the unlawful manufacture, distribution, dispensing, possession, or use of a controlled substance is prohibited in the Contractor's workplace and specifying the actions that will be taken against employees for violations of such prohibition;
(2) Establish an ongoing drug-free awareness program to inform such employees about--

(i) The dangers of drug abuse in the workplace;

(ii) The Contractor's policy of maintaining a drug-free workplace;

(iii) Any available drug counseling, rehabilitation, and employee assistance programs; and

(iv) The penalties that may be imposed upon employees for drug abuse violations occurring in the workplace;

(3) Provide all employees engaged in performance of the contract with a copy of the statement required by subparagraph (b)(1) of this clause;

(4) Notify such employees in writing in the statement required by subparagraph (b)(1) of this clause that, as a condition of continued employment on this contract, the employee will--

(i) Abide by the terms of the statement; and

(ii) Notify the employer in writing of the employee's conviction under a criminal drug statute for a violation occurring in the workplace no later than 5 days after such conviction.

(5) Notify the Contracting Officer in writing within 10 days after receiving notice under subdivision (b)(4)(ii) of this clause, from an employee or otherwise receiving actual notice of such conviction. The notice shall include the position title of the employee;

(6) Within 30 days after receiving notice under subdivision (b)(4)(ii) of this clause of a conviction, take one of the following actions with respect to any employee who is convicted of a drug abuse violation occurring in the workplace:

(i) Taking appropriate personnel action against such employee, up to and including termination; or

(ii) Require such employee to satisfactorily participate in a drug abuse assistance or rehabilitation program approved for such purposes by a Federal, State, or local health, law enforcement, or other appropriate agency; and

(7) Make a good faith effort to maintain a drug-free workplace through implementation of subparagraphs (b)(1) though (b)(6) of this clause.

(c) The Contractor, if an individual, agrees by award of the contract or acceptance of a purchase order, not to engage in the unlawful manufacture, distribution, dispensing, possession, or use of a controlled substance while performing this contract.

(d) In addition to other remedies available to the Government, the Contractor's failure to comply with the requirements of paragraph (b) or (c) of this clause may, pursuant to FAR 23.506, render the Contractor subject to suspension of contract payments, termination of the contract for default, and suspension or debarment.

(End of clause)

52.223-12 REFRIGERATION EQUIPMENT AND AIR CONDITIONERS. (MAY 1995)

The Contractor shall comply with the applicable requirements of Sections 608 and 609 of the Clean Air Act (42 U.S.C. 7671g and 7671h) as each or both apply to this contract.
52.223-14 TOXIC CHEMICAL RELEASE REPORTING (OCT 2000)

(a) Unless otherwise exempt, the Contractor, as owner or operator of a facility used in the performance of this contract, shall file by July 1 for the prior calendar year an annual Toxic Chemical Release Inventory Form (Form R) as described in sections 313(a) and (g) of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) (42 U.S.C. 11023(a) and (g)), and section 6607 of the Pollution Prevention Act of 1990 (PPA) (42 U.S.C. 13106). The Contractor shall file, for each facility subject to the Form R filing and reporting requirements, the annual Form R throughout the life of the contract.

(b) A Contractor owned or operated facility used in the performance of this contract is exempt from the requirement to file an annual Form R if--

(1) The facility does not manufacture, process, or otherwise use any toxic chemicals listed under section 313(c) of EPCRA, 42 U.S.C. 11023(c);

(2) The facility does not have 10 or more full-time employees as specified in section 313(b)(1)(A) of EPCRA, 42 U.S.C. 11023(b)(1)(A);

(3) The facility does not meet the reporting thresholds of toxic chemicals established under of EPCRA, 42 U.S.C. 11023(f) (including the alternate thresholds at 40 CFR 372.27, provided an appropriate certification form has been filed with EPA);

(4) The facility does not fall within Standard Industrial Classification Code (SIC) major groups 20 through 39 or their corresponding North American Industry Classification System (NAICS) sectors 31 through 33; or

(5) The facility is not located within any State of the United States, the District of Columbia, the Commonwealth of Puerto Rico, Guam, American Samoa, the United States Virgin Islands, the Northern Mariana Islands, or any other territory or possession over which the United States has jurisdiction.

(c) If the Contractor has certified to an exemption in accordance with one or more of the criteria in paragraph (b) of this clause, and after award of the contract circumstances change so that any of its owned or operated facilities used in the performance of this contract is no longer exempt--

(1) The Contractor shall notify the Contracting Officer; and

(2) The Contractor, as owner or operator of a facility used in the performance of this contract that is no longer exempt, shall (i) submit a Toxic Chemical Release Inventory Form (Form R) on or before July 1 for the prior calendar year during which the facility becomes eligible; and (ii) continue to file the annual Form R for the life of the contract for such facility.

(d) The Contracting Officer may terminate this contract or take other action as appropriate, if the Contractor fails to comply accurately and fully with the EPCRA and PPA toxic chemical release filing and reporting requirements.

(e) Except for acquisitions of commercial items, as defined in FAR Part 2, the Contractor shall--

(1) For competitive subcontracts expected to exceed $100,000 (including all options), include a solicitation provision substantially the same as the provision at FAR 52.223-13, Certification of Toxic Chemical Release Reporting; and

(2) Include in any resultant subcontract exceeding $100,000 (including all options), the substance of this clause, except this paragraph (e).
52.224-1 PRIVACY ACT NOTIFICATION (APR 1984)

The Contractor will be required to design, develop, or operate a system of records on individuals, to accomplish an agency function subject to the Privacy Act of 1974, Public Law 93-579, December 31, 1974 (5 U.S.C. 552a) and applicable agency regulations. Violation of the Act may involve the imposition of criminal penalties.

(End of clause)

52.224-2 PRIVACY ACT (APR 1984)

(a) The Contractor agrees to--

(1) Comply with the Privacy Act of 1974 (the Act) and the agency rules and regulations issued under the Act in the design, development, or operation of any system of records on individuals to accomplish an agency function when the contract specifically identifies--

(i) The systems of records; and

(ii) The design, development, or operation work that the contractor is to perform;

(2) Include the Privacy Act notification contained in this contract in every solicitation and resulting subcontract and in every subcontract awarded without a solicitation, when the work statement in the proposed subcontract requires the redesign, development, or operation of a system of records on individuals that is subject to the Act; and

(3) Include this clause, including this subparagraph (3), in all subcontracts awarded under this contract which requires the design, development, or operation of such a system of records.

(b) In the event of violations of the Act, a civil action may be brought against the agency involved when the violation concerns the design, development, or operation of a system of records on individuals to accomplish an agency function, and criminal penalties may be imposed upon the officers or employees of the agency when the violation concerns the operation of a system of records on individuals to accomplish an agency function. For purposes of the Act, when the contract is for the operation of a system of records on individuals to accomplish an agency function, the Contractor is considered to be an employee of the agency.

(c)(1) "Operation of a system of records," as used in this clause, means performance of any of the activities associated with maintaining the system of records, including the collection, use, and dissemination of records.

(2) "Record," as used in this clause, means any item, collection, or grouping of information about an individual that is maintained by an agency, including, but not limited to, education, financial transactions, medical history, and criminal or employment history and that contains the person's name, or the identifying number, symbol, or other identifying particular assigned to the individual, such as a fingerprint or voiceprint or a photograph.

(3) "System of records on individuals," as used in this clause, means a group of any records under the control of any agency from which information is retrieved by the name of the individual or by some identifying number, symbol, or other identifying particular assigned to the individual.

(End of clause)
52.225-11 BUY AMERICAN ACT--BALANCE OF PAYMENTS PROGRAM--CONSTRUCTION MATERIALS UNDER TRADE AGREEMENTS (FEB 2000)

(a) Definitions. As used in this clause--

Component means any article, material, or supply incorporated directly into construction materials.

Construction material means an article, material, or supply brought to the construction site by the Contractor or subcontractor for incorporation into the building or work. The term also includes an item brought to the site preassembled from articles, materials, or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, that are discrete systems incorporated into a public building or work and that are produced as complete systems, are evaluated as a single and distinct construction material regardless of when or how the individual parts or components of those systems are delivered to the construction site. Materials purchased directly by the Government are supplies, not construction material.

Cost of components means--

(1) For components purchased by the Contractor, the acquisition cost, including transportation costs to the place of incorporation into the end product (whether or not such costs are paid to a domestic firm), and any applicable duty (whether or not a duty-free entry certificate is issued); or

(2) For components manufactured by the Contractor, all costs associated with the manufacture of the component, including transportation costs as described in paragraph (1) of this definition, plus allocable overhead costs, but excluding profit. Cost of components does not include any costs associated with the manufacture of the end product.

Designated country means any of the following countries: Aruba, Austria, Bangladesh, Belgium, Benin, Bhutan, Botswana, Burkina Faso, Burundi, Canada, Cape Verde, Central African Republic, Chad, Comoros, Djibouti, Equatorial Guinea, Finland, France, Gambia, Germany, Greece, Guinea, Guinea-Bissau, Haiti, Hong Kong, Ireland, Israel, Italy, Japan, Kiribati, Korea, Republic of, Lesotho, Liechtenstein, Luxembourg, Malawi, Maldives, Mali, Mozambique, Nepal, Netherlands, Niger, Norway, Portugal, Rwanda, Sao Tome and Principe, Sierra Leone, Singapore, Somalia, Spain, Sweden, Switzerland, Tanzania U.R., Togo, Tuvalu, Uganda, United Kingdom, Vanuatu, Western Samoa, Yemen.

Designated country construction material means a construction material that:

(1) Is wholly the growth, product, or manufacture of a designated country; or

(2) In the case of a construction material that consists in whole or in part of materials from another country, has been substantially transformed in a designated country into a new and different construction material distinct from the materials from which it was transformed.

Domestic construction material means--

(1) An unmanufactured construction material mined or produced in the United States; or

(2) A construction material manufactured in the United States, if the cost of its components mined, produced, or manufactured in the United States exceeds 50 percent of the cost of all its components.
foreign origin of the same class or kind for which nonavailability determinations have been made are treated as domestic.

Foreign construction material means a construction material other than a domestic construction material.

North American Free Trade Agreement country means Canada or Mexico.

North American Free Trade Agreement country construction material means a construction material that--

(1) Is wholly the growth, product, or manufacture of a North American Free Trade Agreement (NAFTA) country; or

(2) In the case of a construction material that consists in whole or in part of materials from another country, has been substantially transformed in a NAFTA country into a new and different construction material distinct from the materials from which it was transformed.

United States means the 50 States and the District of Columbia, U.S. territories and possessions, Puerto Rico, the Northern Mariana Islands, and any other place subject to U.S. jurisdiction, but does not include leased bases.

(b) Construction materials. (1) This clause implements the Buy American Act (41 U.S.C. 10a-10d) and the Balance of Payments Program by providing a preference for domestic construction material. In addition, the Contracting Officer has determined that the Trade Agreements Act and the North American Free Trade Agreement (NAFTA) apply to this acquisition. Therefore, the Buy American Act and Balance of Payments Program restrictions are waived for designated country and NAFTA country construction materials.

(2) The Contractor shall use only domestic, designated country, or NAFTA country construction material in performing this contract, except as provided in paragraphs (b)(3) and (b)(4) of this clause.

(3) The requirement in paragraph (b)(2) of this clause does not apply to the construction materials or components listed by the Government as follows: NONE

(4) The Contracting Officer may add other foreign construction material to the list in paragraph (b)(3) of this clause if the Government determines that--

(i) The cost of domestic construction material would be unreasonable. The cost of a particular domestic construction material subject to the restrictions of the Buy American Act is unreasonable when the cost of such material exceeds the cost of foreign material by more than 6 percent. For determination of unreasonable cost under the Balance of Payments Program, the Contracting Officer will use a factor of 50 percent;

(ii) The application of the restriction of the Buy American Act or Balance of Payments Program to a particular construction material would be impracticable or inconsistent with the public interest; or

(iii) The construction material is not mined, produced, or manufactured in the United States in sufficient and reasonably available commercial quantities of a satisfactory quality.

(c) Request for determination of inapplicability of the Buy American Act or Balance of Payments Program. (1)(i) Any Contractor request to use foreign construction material in accordance with paragraph (b)(4) of this clause shall include adequate information for Government evaluation of the request, including--

(A) A description of the foreign and domestic construction materials;

(B) Unit of measure;

(C) Quantity;
(D) Price;

(E) Time of delivery or availability;

(F) Location of the construction project;

(G) Name and address of the proposed supplier; and

(H) A detailed justification of the reason for use of foreign construction materials cited in accordance with paragraph (b)(3) of this clause.

(ii) A request based on unreasonable cost shall include a reasonable survey of the market and a completed price comparison table in the format in paragraph (d) of this clause.

(iii) The price of construction material shall include all delivery costs to the construction site and any applicable duty (whether or not a duty-free certificate may be issued).

(iv) Any Contractor request for a determination submitted after contract award shall explain why the Contractor could not reasonably foresee the need for such determination and could not have requested the determination before contract award. If the Contractor does not submit a satisfactory explanation, the Contracting Officer need not make a determination.

(2) If the Government determines after contract award that an exception to the Buy American Act or Balance of Payments Program applies and the Contracting Officer and the Contractor negotiate adequate consideration, the Contracting Officer will modify the contract to allow use of the foreign construction material. However, when the basis for the exception is the unreasonable price of a domestic construction material, adequate consideration is not less than the differential established in paragraph (b)(4)(i) of this clause.

(3) Unless the Government determines that an exception to the Buy American Act or Balance of Payments Program applies, use of foreign construction material is noncompliant with the Buy American Act or Balance of Payments Program.

(d) Data. To permit evaluation of requests under paragraph (c) of this clause based on unreasonable cost, the Contractor shall include the following information and any applicable supporting data based on the survey of suppliers:

Foreign and Domestic Construction Materials Price Comparison

<table>
<thead>
<tr>
<th>Construction material description</th>
<th>Unit of measure</th>
<th>Quantity</th>
<th>Price (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign construction material...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic construction material...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign construction material...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic construction material...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\]\[\] Include all delivery costs to the construction site and any applicable duty (whether or not a duty-free entry certificate is issued).
List name, address, telephone number, and contact for suppliers surveyed. Attach copy of response; if oral, attach summary.
Include other applicable supporting information.

(End of clause)

52.225-13 RESTRICTIONS ON CERTAIN FOREIGN PURCHASES (JUL 2000)

(a) The Contractor shall not acquire, for use in the performance of this contract, any supplies or services originating from sources within, or that were located in or transported from or through, countries whose products are banned from importation into the United States under regulations of the Office of Foreign Assets Control, Department of the Treasury. Those countries are Cuba, Iran, Iraq, Libya, North Korea, Sudan, the territory of Afghanistan controlled by the Taliban, and Serbia (excluding the territory of Kosovo).

(b) The Contractor shall not acquire for use in the performance of this contract any supplies or services from entities controlled by the government of Iraq.

(c) The Contractor shall insert this clause, including this paragraph (c), in all subcontracts.

(End of clause)

52.226-1 UTILIZATION OF INDIAN ORGANIZATIONS AND INDIAN-OWNED ECONOMIC ENTERPRISES (JUN 2000)

(a) Definitions. As used in this clause:

"Indian" means any person who is a member of any Indian tribe, band, group, pueblo or community that is recognized by the Federal Government as eligible for services from the Bureau of Indian Affairs (BIA) in accordance with 25 U.S.C. 1452(c) and any "Native" as defined in the Alaska Native Claims Settlement Act (43 U.S.C. 1601).

"Indian organization" means the governing body of any Indian tribe or entity established or recognized by the governing body of an Indian tribe for the purposes of 25 U.S.C., chapter 17.

"Indian-owned economic enterprise" means any Indian-owned (as determined by the Secretary of the Interior) commercial, industrial, or business activity established or organized for the purpose of profit, provided that Indian ownership constitutes not less than 51 percent of the enterprise.

"Indian tribe" means any Indian tribe, band, group, pueblo or community, including native villages and native groups (including corporations organized by Kenai, Juneau, Sitka, and Kodiak) as defined in the Alaska Native Claims Settlement Act, that is recognized by the Federal Government as eligible for services from BIA in accordance with 25 U.S.C. 1542(c).

"Interested party" means a prime contractor or an actual or prospective offeror whose direct economic interest would be affected by the award of a subcontract or by the failure to award a subcontract.

(b) The Contractor shall use its best efforts to give Indian organizations and Indian-owned economic enterprises (25 U.S.C. 1544) the maximum practicable opportunity to participate in the subcontracts it awards to the fullest extent consistent with efficient performance of its contract.

(1) The Contracting Officer and the Contractor, acting in good faith, may rely on the representation of an Indian organization or Indian-owned economic enterprise as to its eligibility, unless an
interested party challenges its status or the Contracting Officer has independent reason to question that status. In the event of a challenge to the representation of a subcontractor, the Contracting Officer will refer the matter to the U.S. Department of the Interior, Bureau of Indian Affairs (BIA), Attn: Chief, Division of Contracting and Grants Administration, 1849 C Street, NW., MS 2626-MIB, Washington, DC 20240-4000.

The BIA will determine the eligibility and notify the Contracting Officer. No incentive payment will be made within 50 working days of subcontract award or while a challenge is pending. If a subcontractor is determined to be an ineligible participant, no incentive payment will be made under the Indian Incentive Program.

(2) The Contractor may request an adjustment under the Indian Incentive Program to the following:

(i) The estimated cost of a cost-type contract.

(ii) The target cost of a cost-plus-incentive-fee prime contract.

(iii) The target cost and ceiling price of a fixed-price incentive prime contract.

(iv) The price of a firm-fixed-price prime contract.

(3) The amount of the adjustment to the prime contract is 5 percent of the estimated cost, target cost, or firm-fixed-price included in the subcontract initially awarded to the Indian organization or Indian-owned economic enterprise.

(4) The Contractor has the burden of proving the amount claimed and must assert its request for an adjustment prior to completion of contract performance.

(c) The Contracting Officer, subject to the terms and conditions of the contract and the availability of funds, will authorize an incentive payment of 5 percent of the amount paid to the subcontractor. The Contracting Officer will seek funding in accordance with agency procedures.

(End of clause)

52.227-1 AUTHORIZATION AND CONSENT (JUL 1995)

(a) The Government authorizes and consents to all use and manufacture, in performing this contract or any subcontract at any tier, of any invention described in and covered by a United States patent (1) embodied in the structure or composition of any article the delivery of which is accepted by the Government under this contract or (2) used in machinery, tools, or methods whose use necessarily results from compliance by the Contractor or a subcontractor with (i) specifications or written provisions forming a part of this contract or (ii) specific written instructions given by the Contracting Officer directing the manner of performance. The entire liability to the Government for infringement of a patent of the United States shall be determined solely by the provisions of the indemnity clause, if any, included in this contract or any subcontract hereunder (including any lower-tier subcontract), and the Government assumes liability for all other infringement to the extent of the authorization and consent hereinafter granted.

(b) The Contractor agrees to include, and require inclusion of, this clause, suitably modified to identify the parties, in all subcontracts at any tier for supplies or services (including construction, architect-engineer services, and materials, supplies, models, samples, and design or testing services expected to exceed the simplified acquisition threshold (however, omission of this clause from any subcontract, including those at or below the simplified acquisition threshold, does not affect this authorization and consent.)
52.227-2 NOTICE AND ASSISTANCE REGARDING PATENT AND COPYRIGHT INFRINGEMENT (AUG 1996)

(a) The Contractor shall report to the Contracting Officer, promptly and in reasonable written detail, each notice or claim of patent or copyright infringement based on the performance of this contract of which the Contractor has knowledge.

(b) In the event of any claim or suit against the Government on account of any alleged patent or copyright infringement arising out of the performance of this contract or out of the use of any supplies furnished or work or services performed under this contract, the Contractor shall furnish to the Government, when requested by the Contracting Officer, all evidence and information in possession of the Contractor pertaining to such suit or claim. Such evidence and information shall be furnished at the expense of the Government except where the Contractor has agreed to indemnify the Government.

(c) The Contractor agrees to include, and require inclusion of, this clause in all subcontracts at any tier for supplies or services (including construction and architect-engineer subcontracts and those for material, supplies, models, samples, or design or testing services) expected to exceed the simplified acquisition threshold at (FAR) 2.101 to exceed the dollar amount set forth in 13.000 of the Federal Acquisition Regulation (FAR).

(End of clause)

52.227-4 PATENT INDEMNITY--CONSTRUCTION CONTRACTS (APR 1984)

Except as otherwise provided, the Contractor agrees to indemnify the Government and its officers, agents, and employees against liability, including costs and expenses, for infringement upon any United States patent (except a patent issued upon an application that is now or may hereafter be withheld from issue pursuant to a Secrecy Order under 35 U.S.C. 181) arising out of performing this contract or out of the use or disposal by or for the account of the Government of supplies furnished or work performed under this contract.

52.228-2 ADDITIONAL BOND SECURITY (OCT 1997)

The Contractor shall promptly furnish additional security required to protect the Government and persons supplying labor or materials under this contract if-

(a) Any surety upon any bond, or issuing financial institution for other security, furnished with this contract becomes unacceptable to the Government.

(b) Any surety fails to furnish reports on its financial condition as required by the Government;

(c) The contract price is increased so that the penal sum of any bond becomes inadequate in the opinion of the Contracting Officer; or

(d) An irrevocable letter of credit (ILC) used as security will expire before the end of the period of required security. If the Contractor does not furnish an acceptable extension or replacement ILC, or other acceptable substitute, at least 30 days before an ILC’s scheduled expiration, the Contracting officer has the right to immediately draw on the ILC.
52.228-5 INSURANCE--WORK ON A GOVERNMENT INSTALLATION (JAN 1997)

(a) The Contractor shall, at its own expense, provide and maintain during the entire performance of this contract, at least the kinds and minimum amounts of insurance required in the Schedule or elsewhere in the contract.

(b) Before commencing work under this contract, the Contractor shall notify the Contracting Officer in writing that the required insurance has been obtained. The policies evidencing required insurance shall contain an endorsement to the effect that any cancellation or any material change adversely affecting the Government's interest shall not be effective (1) for such period as the laws of the State in which this contract is to be performed prescribe, or (2) until 30 days after the insurer or the Contractor gives written notice to the Contracting Officer, whichever period is longer.

(c) The Contractor shall insert the substance of this clause, including this paragraph (c), in subcontracts under this contract that require work on a Government installation and shall require subcontractors to provide and maintain the insurance required in the Schedule or elsewhere in the contract. The Contractor shall maintain a copy of all subcontractors' proofs of required insurance, and shall make copies available to the Contracting Officer upon request.

(End of clause)

52.228-11 PLEDGES OF ASSETS (FEB 1992)

(a) Offerors shall obtain from each person acting as an individual surety on a bid guarantee, a performance bond, or a payment bond--

(1) Pledge of assets; and

(2) Standard Form 28, Affidavit of Individual Surety.

(b) Pledges of assets from each person acting as an individual surety shall be in the form of--

(1) Evidence of an escrow account containing cash, certificates of deposit, commercial or Government securities, or other assets described in FAR 28.203-2 (except see 28.203-2(b)(2) with respect to Government securities held in book entry form) and/or;

(2) A recorded lien on real estate. The offeror will be required to provide --

(i) Evidence of title in the form of a certificate of title prepared by a title insurance company approved by the United States Department of Justice. This title evidence must show fee simple title vested in the surety along with any concurrent owners; whether any real estate taxes are due and payable; and any recorded encumbrances against the property, including the lien filed in favor of the Government as required by FAR 28.203-3(d);

(ii) Evidence of the amount due under any encumbrance shown in the evidence of title;

(iii) A copy of the current real estate tax assessment of the property or a current appraisal dated no earlier than 6 months prior to the date of the bond, prepared by a professional appraiser who certifies that the appraisal has been conducted in accordance with the generally accepted appraisal standards as reflected in the Uniform Standards of Professional Appraisal Practice, as promulgated by the Appraisal Foundation.

(End of clause)
52.228-12 PROSPECTIVE SUBCONTRACTOR REQUESTS FOR BONDS. (OCT 1995)

In accordance with Section 806(a)(3) of Pub. L. 102-190, as amended by Sections 2091 and 8105 of Pub. L. 103-355, upon the request of a prospective subcontractor or supplier offering to furnish labor or material for the performance of this contract for which a payment bond has been furnished to the Government pursuant to the Miller Act, the Contractor shall promptly provide a copy of such payment bond to the requester.

52.228-14 IRREVOCABLE LETTER OF CREDIT (DEC 1999)

(a) “Irrevocable letter of credit” (ILC), as used in this clause, means a written commitment by a federally insured financial institution to pay all or part of a stated amount of money, until the expiration date of the letter, upon presentation by the Government (the beneficiary) of a written demand therefor. Neither the financial institution nor the offeror/Contractor can revoke or condition the letter of credit.

(b) If the offeror intends to use an ILC in lieu of a bid bond, or to secure other types of bonds such as performance and payment bonds, the letter of credit and letter of confirmation formats in paragraphs (e) and (f) of this clause shall be used.

(c) The letter of credit shall be irrevocable, shall require presentation of no document other than a written demand and the ILC (including confirming letter, if any), shall be issued/confirmed by an acceptable federally insured financial institution as provided in paragraph (d) of this clause, and--

(1) If used as a bid guarantee, the ILC shall expire no earlier than 60 days after the close of the bid acceptance period;

(2) If used as an alternative to corporate or individual sureties as security for a performance or payment bond, the offeror/Contractor may submit an ILC with an initial expiration date estimated to cover the entire period for which financial security is required or may submit an ILC with an initial expiration date that is a minimum period of one year from the date of issuance. The ILC shall provide that, unless the issuer provides the beneficiary written notice of non-renewal at least 60 days in advance of the current expiration date, the ILC is automatically extended without amendment for one year from the expiration date, or any future expiration date, until the period of required coverage is completed and the Contracting Officer provides the financial institution with a written statement waiving the right to payment. The period of required coverage shall be:

(i) For contracts subject to the Miller Act, the later of--

(A) One year following the expected date of final payment;

(B) For performance bonds only, until completion of any warranty period; or

(C) For payment bonds only, until resolution of all claims filed against the payment bond during the one-year period following final payment.

(ii) For contracts not subject to the Miller Act, the later of--

(A) 90 days following final payment; or

(B) For performance bonds only, until completion of any warranty period.

(d) Only federally insured financial institutions rated investment grade or higher shall issue or confirm the ILC. The offeror/Contractor shall provide the Contracting Officer a credit rating that indicates the financial institution has the required rating(s) as of the date of issuance of the ILC. Unless the financial institution issuing the ILC had letter of credit business of less than $25 million in the past year, ILCs over $5 million
must be confirmed by another acceptable financial institution that had letter of credit business of less than $25 million in the past year.

(e) The following format shall be used by the issuing financial institution to create an ILC:

[Issuing Financial Institution's Letterhead or Name and Address]

Issue Date ____________

IRREVOCABLE LETTER OF CREDIT NO. __________

Account party's name _____________________________

Account party's address ___________________________

For Solicitation No. ____________ (for reference only)

TO: [U.S. Government agency]

1. We hereby establish this irrevocable and transferable Letter of Credit in your favor for one or more drawings up to United States $________. This Letter of Credit is payable at [issuing financial institution's and, if any, confirming financial institution's] office at [issuing financial institution’s address and, if any, confirming financial institution’s address] and expires with our close of business on ________, or any automatically extended expiration date.

2. We hereby undertake to honor your or the transferee's sight draft(s) drawn on the issuing or, if any, the confirming financial institution, for all or any part of this credit if presented with this Letter of Credit and confirmation, if any, at the office specified in paragraph 1 of this Letter of Credit on or before the expiration date or any automatically extended expiration date.

3. [This paragraph is omitted if used as a bid guarantee, and subsequent paragraphs are renumbered.] It is a condition of this Letter of Credit that it is deemed to be automatically extended without amendment for one year from the expiration date hereof, or any future expiration date, unless at least 60 days prior to any expiration date, we notify you or the transferee by registered mail, or other receipted means of delivery, that we elect not to consider this Letter of Credit renewed for any such additional period. At the time we notify you, we also agree to notify the account party (and confirming financial institution, if any) by the same means of delivery.

4. This Letter of Credit is transferable. Transfers and assignments of proceeds are to be effected without charge to either the beneficiary or the transferee/assignee of proceeds. Such transfer or assignment shall be only at the written direction of the Government (the beneficiary) in a form satisfactory to the issuing financial institution and the confirming financial institution, if any.

5. This Letter of Credit is subject to the Uniform Customs and Practice (UCP) for Documentary Credits, 1993 Revision, International Chamber of Commerce Publication No. 500, and to the extent not inconsistent therewith, to the laws of ________________ [state of confirming financial institution, if any, otherwise state of issuing financial institution].

6. If this credit expires during an interruption of business of this financial institution as described in Article 17 of the UCP, the financial institution specifically agrees to effect payment if this credit is drawn against within 30 days after the resumption of our business.
Sincerely,

[Issuing financial institution]

(f) The following format shall be used by the financial institution to confirm an ILC:

[Confirming Financial Institution’s Letterhead or Name and Address]

(Date) __________________

Our Letter of Credit Advice Number _________________

Beneficiary: ______________ [U.S. Government agency]

Issuing Financial Institution: _______________________

Issuing Financial Institution’s LC No.: ______________

Gentlemen:

1. We hereby confirm the above indicated Letter of Credit, the original of which is attached, issued by __________ [name of issuing financial institution] for drawings of up to United States dollars __________/U.S. $_______ and expiring with our close of business on _____________ [the expiration date], or any automatically extended expiration date.

2. Draft(s) drawn under the Letter of Credit and this Confirmation are payable at our office located at ________________.

3. We hereby undertake to honor sight draft(s) drawn under and presented with the Letter of Credit and this Confirmation at our offices as specified herein.

4. [This paragraph is omitted if used as a bid guarantee, and subsequent paragraphs are renumbered.] It is a condition of this confirmation that it be deemed automatically extended without amendment for one year from the expiration date hereof, or any automatically extended expiration date, unless:

 (a) At least 60 days prior to any such expiration date, we shall notify the Contracting Officer, or the transferee and the issuing financial institution, by registered mail or other receipted means of delivery, that we elect not to consider this confirmation extended for any such additional period; or

 (b) The issuing financial institution shall have exercised its right to notify you or the transferee, the account party, and ourselves, of its election not to extend the expiration date of the Letter of Credit.

5. This confirmation is subject to the Uniform Customs and Practice (UCP) for Documentary Credits, 1993 Revision, International Chamber of Commerce Publication No. 500, and to the extent not inconsistent therewith, to the laws of ________ [state of confirming financial institution].

6. If this confirmation expires during an interruption of business of this financial institution as described in Article 17 of the UCP, we specifically agree to effect payment if this credit is drawn against within 30 days after the resumption of our business.

Sincerely,
(g) The following format shall be used by the Contracting Officer for a sight draft to draw on the Letter of Credit:

SIGHT DRAFT

[City, State]
(Date) _____________________

[Name and address of financial institution]

Pay to the order of _____________ [Beneficiary Agency] ___________ the sum of United States $____________. This draft is drawn under Irrevocable Letter of Credit No. __.

[Beneficiary Agency]

By: ___________________

(End of clause)

52.228-15 PERFORMANCE AND PAYMENT BONDS--CONSTRUCTION (JUL 2000)-

(a) Definitions. As used in this clause--

Original contract price means the award price of the contract; or, for requirements contracts, the price payable for the estimated total quantity; or, for indefinite-quantity contracts, the price payable for the specified minimum quantity. Original contract price does not include the price of any options, except those options exercised at the time of contract award.

(b) Amount of required bonds. Unless the resulting contract price is $100,000 or less, the successful offeror shall furnish performance and payment bonds to the Contracting Officer as follows:

(1) Performance bonds (Standard Form 25). The penal amount of performance bonds at the time of contract award shall be 100 percent of the original contract price.

(2) Payment Bonds (Standard Form 25-A). The penal amount of payment bonds at the time of contract award shall be 100 percent of the original contract price.

(3) Additional bond protection. (i) The Government may require additional performance and payment bond protection if the contract price is increased. The increase in protection generally will equal 100 percent of the increase in contract price.

(ii) The Government may secure the additional protection by directing the Contractor to increase the penal amount of the existing bond or to obtain an additional bond.
(c) Furnishing executed bonds. The Contractor shall furnish all executed bonds, including any necessary reinsurance agreements, to the Contracting Officer, within the time period specified in the Bid Guarantee provision of the solicitation, or otherwise specified by the Contracting Officer, but in any event, before starting work.

(d) Surety or other security for bonds. The bonds shall be in the form of firm commitment, supported by corporate sureties whose names appear on the list contained in Treasury Department Circular 570, individual sureties, or by other acceptable security such as postal money order, certified check, cashier's check, irrevocable letter of credit, or, in accordance with Treasury Department regulations, certain bonds or notes of the United States. Treasury Circular 570 is published in the Federal Register or may be obtained from the U.S. Department of Treasury, Financial Management Service, Surety Bond Branch, 401 14th Street, NW, 2nd Floor, West Wing, Washington, DC 20227.

(e) Notice of subcontractor waiver of protection (40 U.S.C. 270b(c)). Any waiver of the right to sue on the payment bond is void unless it is in writing, signed by the person whose right is waived, and executed after such person has first furnished labor or material for use in the performance of the contract.

(End of clause)

52.229-3 FEDERAL, STATE, AND LOCAL TAXES (JAN 1991)

(a) "Contract date," as used in this clause, means the date set for bid opening or, if this is a negotiated contract or a modification, the effective date of this contract or modification.

"All applicable Federal, State, and local taxes and duties," as used in this clause, means all taxes and duties, in effect on the contract date, that the taxing authority is imposing and collecting on the transactions or property covered by this contract.

"After-imposed Federal tax," as used in this clause, means any new or increased Federal excise tax or duty, or tax that was exempted or excluded on the contract date but whose exemption was later revoked or reduced during the contract period, on the transactions or property covered by this contract that the Contractor is required to pay or bear as the result of legislative, judicial, or administrative action taking effect after the contract date. It does not include social security tax or other employment taxes.

"After-relieved Federal tax," as used in this clause, means any amount of Federal excise tax or duty, except social security or other employment taxes, that would otherwise have been payable on the transactions or property covered by this contract, but which the Contractor is not required to pay or bear, or for which the Contractor obtains a refund or drawback, as the result of legislative, judicial, or administrative action taking effect after the contract date.

(b) The contract price includes all applicable Federal, State, and local taxes and duties.

(c) The contract price shall be increased by the amount of any after-imposed Federal tax, provided the Contractor warrants in writing that no amount for such newly imposed Federal excise tax or duty or rate increase was included in the contract price, as a contingency reserve or otherwise.

(d) The contract price shall be decreased by the amount of any after-relieved Federal tax.

(e) The contract price shall be decreased by the amount of any Federal excise tax or duty, except social security or other employment taxes, that the Contractor is required to pay or bear, or does not obtain a refund of, through the Contractor's fault, negligence, or failure to follow instructions of the Contracting Officer.
(f) No adjustment shall be made in the contract price under this clause unless the amount of the adjustment exceeds $250.

(g) The Contractor shall promptly notify the Contracting Officer of all matters relating to any Federal excise tax or duty that reasonably may be expected to result in either an increase or decrease in the contract price and shall take appropriate action as the Contracting Officer directs.

(h) The Government shall, without liability, furnish evidence appropriate to establish exemption from any Federal, State, or local tax when the Contractor requests such evidence and a reasonable basis exists to sustain the exemption.

(End of clause)

52.229-5 TAXES—CONTRACTS PERFORMED IN U.S. POSSESSIONS OR PUERTO RICO (APR 1984)

The term "local taxes," as used in the Federal, State, and local taxes clause of this contract, includes taxes imposed by a possession of the United States or by Puerto Rico.

(End of clause)

52.232-5 PAYMENTS UNDER FIXED-PRICE CONSTRUCTION CONTRACTS (MAY 1997)

(a) Payment of price. The Government shall pay the Contractor the contract price as provided in this contract.

(b) Progress payments. The Government shall make progress payments monthly as the work proceeds, or at more frequent intervals as determined by the Contracting Officer, on estimates of work accomplished which meets the standards of quality established under the contract, as approved by the Contracting Officer.

1) The Contractor's request for progress payments shall include the following substantiation:

(i) An itemization of the amounts requested, related to the various elements of work required by the contract covered by the payment requested.

(ii) A listing of the amount included for work performed by each subcontractor under the contract.

(iii) A listing of the total amount of each subcontract under the contract.

(iv) A listing of the amounts previously paid to each such subcontractor under the contract.

(v) Additional supporting data in a form and detail required by the Contracting Officer.

2) In the preparation of estimates, the Contracting Officer may authorize material delivered on the site and preparatory work done to be taken into consideration. Material delivered to the Contractor at locations other than the site also may be taken into consideration if--

(i) Consideration is specifically authorized by this contract; and

(ii) The Contractor furnishes satisfactory evidence that it has acquired title to such material and that the material will be used to perform this contract.
(c) Contractor certification. Along with each request for progress payments, the Contractor shall furnish the following certification, or payment shall not be made: (However, if the Contractor elects to delete paragraph (c)(4) from the certification, the certification is still acceptable.)

I hereby certify, to the best of my knowledge and belief, that--

(1) The amounts requested are only for performance in accordance with the specifications, terms, and conditions of the contract;

(2) Payments to subcontractors and suppliers have been made from previous payments received under the contract, and timely payments will be made from the proceeds of the payment covered by this certification, in accordance with subcontract agreements and the requirements of chapter 39 of Title 31, United States Code;

(3) This request for progress payments does not include any amounts which the prime contractor intends to withhold or retain from a subcontractor or supplier in accordance with the terms and conditions of the subcontract; and

(4) This certification is not to be construed as final acceptance of a subcontractor's performance.

(Name)

(Title)

(Date)

(d) Refund of unearned amounts. If the Contractor, after making a certified request for progress payments, discovers that a portion or all of such request constitutes a payment for performance by the Contractor that fails to conform to the specifications, terms, and conditions of this contract (hereinafter referred to as the "unearned amount"), the Contractor shall--

(1) Notify the Contracting Officer of such performance deficiency; and

(2) Be obligated to pay the Government an amount (computed by the Contracting Officer in the manner provided in paragraph (j) of this clause) equal to interest on the unearned amount from the 8th day after the date of receipt of the unearned amount until--

(i) The date the Contractor notifies the Contracting Officer that the performance deficiency has been corrected; or

(ii) The date the Contractor reduces the amount of any subsequent certified request for progress payments by an amount equal to the unearned amount.

(e) Retainage. If the Contracting Officer finds that satisfactory progress was achieved during any period for which a progress payment is to be made, the Contracting Officer shall authorize payment to be made in full. However, if satisfactory progress has not been made, the Contracting Officer may retain a maximum of 10 percent of the amount of the payment until satisfactory progress is achieved. When the work is substantially complete, the Contracting Officer may retain from previously withheld funds and future progress payments that amount the Contracting Officer considers adequate for protection of the Government and shall release to the Contractor all the remaining withheld funds. Also, on completion and acceptance of each separate
building, public work, or other division of the contract, for which the price is stated separately in the contract, payment shall be made for the completed work without retention of a percentage.

(f) Title, liability, and reservation of rights. All material and work covered by progress payments made shall, at the time of payment, become the sole property of the Government, but this shall not be construed as--

(1) Relieving the Contractor from the sole responsibility for all material and work upon which payments have been made or the restoration of any damaged work; or

(2) Waiving the right of the Government to require the fulfillment of all of the terms of the contract.

(g) Reimbursement for bond premiums. In making these progress payments, the Government shall, upon request, reimburse the Contractor for the amount of premiums paid for performance and payment bonds (including coinsurance and reinsurance agreements, when applicable) after the Contractor has furnished evidence of full payment to the surety. The retainage provisions in paragraph (e) of this clause shall not apply to that portion of progress payments attributable to bond premiums.

(h) Final payment. The Government shall pay the amount due the Contractor under this contract after--

(1) Completion and acceptance of all work;

(2) Presentation of a properly executed voucher; and

(3) Presentation of release of all claims against the Government arising by virtue of this contract, other than claims, in stated amounts, that the Contractor has specifically excepted from the operation of the release. A release may also be required of the assignee if the Contractor's claim to amounts payable under this contract has been assigned under the Assignment of Claims Act of 1940 (31 U.S.C. 3727 and 41 U.S.C. 15).

(i) Limitation because of undefinitized work. Notwithstanding any provision of this contract, progress payments shall not exceed 80 percent on work accomplished on undefinitized contract actions. A "contract action" is any action resulting in a contract, as defined in FAR Subpart 2.1, including contract modifications for additional supplies or services, but not including contract modifications that are within the scope and under the terms of the contract, such as contract modifications issued pursuant to the Changes clause, or funding and other administrative changes.

(j) Interest computation on unearned amounts. In accordance with 31 U.S.C. 3903(c)(1), the amount payable under subparagraph (d)(2) of this clause shall be--

(1) Computed at the rate of average bond equivalent rates of 91-day Treasury bills auctioned at the most recent auction of such bills prior to the date the Contractor receives the unearned amount; and

(2) Deducted from the next available payment to the Contractor.

52.232-17 INTEREST (JUNE 1996)

(a) Except as otherwise provided in this contract under a Price Reduction for Defective Cost or Pricing Data clause or a Cost Accounting Standards clause, all amounts that become payable by the Contractor to the Government under this contract (net of any applicable tax credit under the Internal Revenue Code (26 U.S.C. 1481)) shall bear simple interest from the date due until paid unless paid within 30 days of becoming due. The interest rate shall be the interest rate established by the Secretary of the Treasury as provided in Section 12 of the Contract Disputes Act of 1978 (Public Law 95-563), which is applicable to the period in which the amount becomes due, as provided in paragraph (b) of this clause, and then at the rate applicable for each six-month
period as fixed by the Secretary until the amount is paid. reproduce, prepare derivative works, distribute
copies to the public, and (b) Amounts shall be due at the earliest of the following dates:

(1) The date fixed under this contract.

(2) The date of the first written demand for payment consistent with this contract, including any demand
resulting from a default termination.

(3) The date the Government transmits to the Contractor a proposed supplemental agreement to confirm
completed negotiations establishing the amount of debt.

(4) If this contract provides for revision of prices, the date of written notice to the Contractor stating the
amount of refund payable in connection with a pricing proposal or a negotiated pricing agreement not
confirmed by contract modification.

(c) The interest charge made under this clause may be reduced under the procedures prescribed in 32.614-2
of the Federal Acquisition Regulation in effect on the date of this contract.

52.232-18 AVAILABILITY OF FUNDS (APR 1984)

Funds are not presently available for this contract. The Government's obligation under this contract is
contingent upon the availability of appropriated funds from which payment for contract purposes can be
made. No legal liability on the part of the Government for any payment may arise until funds are made
available to the Contracting Officer for this contract and until the Contractor receives notice of such
availability, to be confirmed in writing by the Contracting Officer.

52.232-23 ASSIGNMENT OF CLAIMS (JAN 1986) - ALTERNATE I (APR 1984)

referred to as "the Act"), may assign its rights to be paid amounts due or to become due as a result of the
performance of this contract to a bank, trust company, or other financing institution, including any Federal
lending agency. The assignee under such an assignment may thereafter further assign or reassign its right
under the original assignment to any type of financing institution described in the preceding sentence. Unless
otherwise stated in this contract, payments to an assignee of any amounts due or to become due under this
contract shall not, to the extent specified in the Act, be subject to reduction or setoff.

(b) Any assignment or reassignment authorized under the Act and this clause shall cover all unpaid amounts
payable under this contract, and shall not be made to more than one party, except that an assignment or
reassignment may be made to one party as agent or trustee for two or more parties participating in the
financing of this contract.

(c) The Contractor shall not furnish or disclose to any assignee under this contract any classified document
(including this contract) or information related to work under this contract until the Contracting Officer
authorizes such action in writing.

52.232-27 PROMPT PAYMENT FOR CONSTRUCTION CONTRACTS (MAY 2001)

Notwithstanding any other payment terms in this contract, the Government will make invoice payments and
contract financing payments under the terms and conditions specified in this clause. Payment shall be
considered as being made on the day a check is dated or the date of an electronic funds transfer. Definitions
of pertinent terms are set forth in sections 2.101 and 32.902 of the Federal Acquisition Regulation. All days
referred to in this clause are calendar days, unless otherwise specified. (However, see subparagraph (a)(3) concerning payments due on Saturdays, Sundays, and legal holidays.)

(a) Invoice payments. (1) Types of invoice payments. For purposes of this clause, there are several types of invoice payments that may occur under this contract, as follows:

(i) Progress payments, if provided for elsewhere in this contract, based on Contracting Officer approval of the estimated amount and value of work or services performed, including payments for reaching milestones in any project:

(A) The due date for-making such payments shall be 14 days after receipt of the payment request by the designated billing office. If the designated billing office fails to annotate the payment request with the actual date of receipt at the time of receipt, the payment due date shall be the 14th day after the date of the Contractor's payment request, provided a proper payment request is received and there is no disagreement over quantity, quality, or Contractor compliance with contract requirements.

(B) The due date for payment of any amounts retained by the Contracting Officer in accordance with the clause at 52.232-5, Payments Under Fixed-Price Construction Contracts, shall be as specified in the contract or, if not specified, 30 days after approval for release to the Contractor by the Contracting Officer.

(ii) Final payments based on completion and acceptance of all work and presentation of release of all claims against the Government arising by virtue of the contract, and payments for partial deliveries that have been accepted by the Government (e.g., each separate building, public work, or other division of the contract for which the price is stated separately in the contract):

(A) The due date for making such payments shall be either the 30th day after receipt by the designated billing office of a proper invoice from the Contractor, or the 30th day after Government acceptance of the work or services completed by the Contractor, whichever is later. If the designated billing office fails to annotate the invoice with the date of actual receipt at the time of receipt, the invoice payment due date shall be the 30th day after the date of the Contractor's invoice, provided a proper invoice is received and there is no disagreement over quantity, quality, or Contractor compliance with contract requirements.

(B) On a final invoice where the payment amount is subject to contract settlement actions (e.g., release of claims), acceptance shall be deemed to have occurred on the effective date of the contract settlement.

(2) Contractor's invoice. The Contractor shall prepare and submit invoices to the designated billing office specified in the contract. A proper invoice must include the items listed in subdivisions (a)(2)(i) through (a)(2)(ix) of this clause. If the invoice does not comply with these requirements, it shall be returned within 7 days after the date the designated billing office received the invoice, with a statement of the reasons why it is not a proper invoice. Untimely notification will be taken into account in computing any interest penalty owed the Contractor in the manner described in subparagraph (a)(4) of this clause.

(i) Name and address of the Contractor.

(ii) Invoice date. (The Contractor is encouraged to date invoices as close as possible to the date of mailing or transmission.)

(iii) Contract number or other authorization for work or services performed (including order number and contract line item number).

(iv) Description of work or services performed.

(v) Delivery and payment terms (e.g., prompt payment discount terms).
(vi) Name and address of Contractor official to whom payment is to be sent (must be the same as that in the contract or in a proper notice of assignment).

(vii) Name (where practicable), title, phone number, and mailing address of person to be notified in the event of a defective invoice.

(viii) For payments described in subdivision (a)(1)(i) of this clause, substantiation of the amounts requested and certification in accordance with the requirements of the clause at 52.232-5, Payments Under Fixed-Price Construction Contracts.

(ix) Any other information or documentation required by the contract.

(x) While not required, the Contractor is strongly encouraged to assign an identification number to each invoice.

(3) Interest penalty. An interest penalty shall be paid automatically by the designated payment office, without request from the Contractor, if payment is not made by the due date and the conditions listed in subdivisions (a)(3)(i) through (a)(3)(iii) of this clause are met, if applicable. However, when the due date falls on a Saturday, Sunday, or legal holiday when Federal Government offices are closed and Government business is not expected to be conducted, payment may be made on the following business day without incurring a late payment interest penalty.

(i) A proper invoice was received by the designated billing office.

(ii) A receiving report or other Government documentation authorizing payment was processed and there was no disagreement over quantity, quality, Contractor compliance with any contract term or condition, or requested progress payment amount.

(iii) In the case of a final invoice for any balance of funds due the Contractor for work or services performed, the amount was not subject to further contract settlement actions between the Government and the Contractor.

(4) Computing penalty amount. The interest penalty shall be at the rate established by the Secretary of the Treasury under section 12 of the Contract Disputes Act of 1978 (41 U.S.C. 611) that is in effect on the day after the due date, except where the interest penalty is prescribed by other governmental authority (e.g., tariffs). This rate is referred to as the "Renegotiation Board Interest Rate," and it is published in the Federal Register semiannually on or about January 1 and July 1. The interest penalty shall accrue daily on the invoice principal payment amount approved by the Government until the payment date of such approved principal amount; and will be compounded in 30-day increments inclusive from the first day after the due date through the payment date. That is, interest accrued at the end of any 30-day period will be added to the approved invoice principal payment amount and will be subject to interest penalties if not paid in the succeeding 30-day period. If the designated billing office failed to notify the Contractor of a defective invoice within the periods prescribed in subparagraph (a)(2) of this clause, the due date on the corrected invoice will be adjusted by subtracting from such date the number of days taken beyond the prescribed notification of defects period. Any interest penalty owed the Contractor will be based on this adjusted due date. Adjustments will be made by the designated payment office for errors in calculating interest penalties.

(i) For the sole purpose of computing an interest penalty that might be due the Contractor for payments described in subdivision (a)(1)(ii) of this clause, Government acceptance or approval shall be deemed to have occurred constructively on the 7th day after the Contractor has completed the work or services in accordance with the terms and conditions of the contract. In the event that actual acceptance or approval occurs within the constructive acceptance or approval period, the determination of an interest penalty shall be based on the actual date of acceptance or approval. Constructive acceptance or constructive approval requirements do not apply if there is a disagreement over quantity, quality, or Contractor compliance with a contract provision. These requirements also do not compel Government officials to accept work or services, approve Contractor
estimates, perform contract administration functions, or make payment prior to fulfilling their responsibilities.

(ii) The following periods of time will not be included in the determination of an interest penalty:

(A) The period taken to notify the Contractor of defects in invoices submitted to the Government, but this may not exceed 7 days.

(B) The period between the defects notice and resubmission of the corrected invoice by the Contractor.

(C) For incorrect electronic funds transfer (EFT) information, in accordance with the EFT clause of this contract.

(iii) Interest penalties will not continue to accrue after the filing of a claim for such penalties under the clause at 52.233-1, Disputes, or for more than 1 year. Interest penalties of less than $1 need not be paid.

(iv) Interest penalties are not required on payment delays due to disagreement between the Government and the Contractor over the payment amount or other issues involving contract compliance, or on amounts temporarily withheld or retained in accordance with the terms of the contract. Claims involving disputes, and any interest that may be payable, will be resolved in accordance with the clause at 52.233-1, Disputes.

(5) Prompt payment discounts. An interest penalty also shall be paid automatically by the designated payment office, without request from the Contractor, if a discount for prompt payment is taken improperly. The interest penalty will be calculated on the amount of discount taken for the period beginning with the first day after the end of the discount period through the date when the Contractor is paid.

(6) Additional interest penalty. (i) If this contract was awarded on or after October 1, 1989, a penalty amount, calculated in accordance with subdivision (a)(6)(iii) of this clause, shall be paid in addition to the interest penalty amount if the Contractor--

(A) Is owed an interest penalty of $1 or more;

(B) Is not paid the interest penalty within 10 days after the date the invoice amount is paid; and

(C) Makes a written demand to the designated payment office for additional penalty payment, in accordance with subdivision (a)(6)(ii) of this clause, postmarked not later than 40 days after the date the invoice amount is paid.

(ii)(A) Contractors shall support written demands for additional penalty payments with the following data. No additional data shall be required. Contractors shall--

(1) Specifically assert that late payment interest is due under a specific invoice, and request payment of all overdue late payment interest penalty and such additional penalty as may be required;

(2) Attach a copy of the invoice on which the unpaid late payment interest was due; and

(3) State that payment of the principal has been received, including the date of receipt.

(B) Demands must be postmarked on or before the 40th day after payment was made, except that--

(1) If the postmark is illegible or nonexistent, the demand must have been received and annotated with the date of receipt by the designated payment office on or before the 40th day after payment was made; or
(2) If the postmark is illegible or nonexistent and the designated payment office fails to make the required annotation, the demand’s validity will be determined by the date the Contractor has placed on the demand; provided such date is no later than the 40th day after payment was made.

(iii)(A) The additional penalty shall be equal to 100 percent of any original late payment interest penalty, except --

(1) The additional penalty shall not exceed $5,000;

(2) The additional penalty shall never be less than $25; and

(3) No additional penalty is owed if the amount of the underlying interest penalty is less than $1.

(B) If the interest penalty ceases to accrue in accordance with the limits stated in subdivision (a)(4)(iii) of this clause, the amount of the additional penalty shall be calculated on the amount of interest penalty that would have accrued in the absence of these limits, subject to the overall limits on the additional penalty specified in subdivision (a)(6)(iii)(A) of this clause.

(C) For determining the maximum and minimum additional penalties, the test shall be the interest penalty due on each separate payment made for each separate contract. The maximum and minimum additional penalty shall not be based upon individual invoices unless the invoices are paid separately. Where payments are consolidated for disbursing purposes, the maximum and minimum additional penalty determination shall be made separately for each contract therein.

(D) The additional penalty does not apply to payments regulated by other Government regulations (e.g., payments under utility contracts subject to tariffs and regulation).

(b) Contract financing payments. (1) Due dates for recurring financing payments. If this contract provides for contract financing, requests for payment shall be submitted to the designated billing office as specified in this contract or as directed by the Contracting Officer. Contract financing payments shall be made on the [insert day as prescribed by Agency head; if not prescribed, insert 30th day] day after receipt of a proper contract financing request by the designated billing office. In the event that an audit or other review of a specific financing request is required to ensure compliance with the terms and conditions of the contract, the designated payment office is not compelled to make payment by the due date specified.

(2) Due dates for other contract financing. For advance payments, loans, or other arrangements that do not involve recurring submissions of contract financing requests, payment shall be made in accordance with the corresponding contract terms or as directed by the Contracting Officer.

(3) Interest penalty not applicable. Contract financing payments shall not be assessed an interest penalty for payment delays.

(c) Subcontract clause requirements. The Contractor shall include in each subcontract for property or services (including a material supplier) for the purpose of performing this contract the following:

(1) Prompt payment for subcontractors. A payment clause that obligates the Contractor to pay the subcontractor for satisfactory performance under its subcontract not later than 7 days from receipt of payment out of such amounts as are paid to the Contractor under this contract.

(2) Interest for subcontractors. An interest penalty clause that obligates the Contractor to pay to the subcontractor an interest penalty for each payment not made in accordance with the payment clause--

(i) For the period beginning on the day after the required payment date and ending on the date on which payment of the amount due is made; and
(ii) Computed at the rate of interest established by the Secretary of the Treasury, and published in the Federal Register, for interest payments under section 12 of the Contract Disputes Act of 1978 (41 U.S.C. 611) in effect at the time the Contractor accrues the obligation to pay an interest penalty.

(3) Subcontractor clause flowdown. A clause requiring each subcontractor to include a payment clause and an interest penalty clause conforming to the standards set forth in subparagraphs (c)(1) and (c)(2) of this clause in each of its subcontracts, and to require each of its subcontractors to include such clauses in their subcontracts with each lower-tier subcontractor or supplier.

(d) Subcontract clause interpretation. The clauses required by paragraph (c) of this clause shall not be construed to impair the right of the Contractor or a subcontractor at any tier to negotiate, and to include in their subcontract, provisions that--

(1) Retainage permitted. Permit the Contractor or a subcontractor to retain (without cause) a specified percentage of each progress payment otherwise due to a subcontractor for satisfactory performance under the subcontract without incurring any obligation to pay a late payment interest penalty, in accordance with terms and conditions agreed to by the parties to the subcontract, giving such recognition as the parties deem appropriate to the ability of a subcontractor to furnish a performance bond and a payment bond;

(2) Withholding permitted. Permit the Contractor or subcontractor to make a determination that part or all of the subcontractor's request for payment may be withheld in accordance with the subcontract agreement; and

(3) Withholding requirements. Permit such withholding without incurring any obligation to pay a late payment penalty if--

(i) A notice conforming to the standards of paragraph (g) of this clause previously has been furnished to the subcontractor; and

(ii) A copy of any notice issued by a Contractor pursuant to subdivision (d)(3)(i) of this clause has been furnished to the Contracting Officer.

(e) Subcontractor withholding procedures. If a Contractor, after making a request for payment to the Government but before making a payment to a subcontractor for the subcontractor's performance covered by the payment request, discovers that all or a portion of the payment otherwise due such subcontractor is subject to withholding from the subcontractor in accordance with the subcontract agreement, then the Contractor shall--

(1) Subcontractor notice. Furnish to the subcontractor a notice conforming to the standards of paragraph (g) of this clause as soon as practicable upon ascertaining the cause giving rise to a withholding, but prior to the due date for subcontractor payment;

(2) Contracting Officer notice. Furnish to the Contracting Officer, as soon as practicable, a copy of the notice furnished to the subcontractor pursuant to subparagraph (e)(1) of this clause;

(3) Subcontractor progress payment reduction. Reduce the subcontractor's progress payment by an amount not to exceed the amount specified in the notice of withholding furnished under subparagraph (e)(1) of this clause;

(4) Subsequent subcontractor payment. Pay the subcontractor as soon as practicable after the correction of the identified subcontract performance deficiency, and--

(i) Make such payment within--
(A) Seven days after correction of the identified subcontract performance deficiency (unless the funds therefor must be recovered from the Government because of a reduction under subdivision (e)(5)(i)) of this clause; or

(B) Seven days after the Contractor recovers such funds from the Government; or

(ii) Incur an obligation to pay a late payment interest penalty computed at the rate of interest established by the Secretary of the Treasury, and published in the Federal Register, for interest payments under section 12 of the Contracts Disputes Act of 1978 (41 U.S.C. 611) in effect at the time the Contractor accrues the obligation to pay an interest penalty;

(5) Notice to Contracting Officer. Notify the Contracting Officer upon--

(i) Reduction of the amount of any subsequent certified application for payment; or

(ii) Payment to the subcontractor of any withheld amounts of a progress payment, specifying--

(A) The amounts withheld under subparagraph (e)(1) of this clause; and

(B) The dates that such withholding began and ended; and

(6) Interest to Government. Be obligated to pay to the Government an amount equal to interest on the withheld payments (computed in the manner provided in 31 U.S.C. 3903(c)(1)), from the 8th day after receipt of the withheld amounts from the Government until--

(i) The day the identified subcontractor performance deficiency is corrected; or

(ii) The date that any subsequent payment is reduced under subdivision (e)(5)(i) of this clause.

(f) Third-party deficiency reports. (1) Withholding from subcontractor. If a Contractor, after making payment to a first-tier subcontractor, receives from a supplier or subcontractor of the first-tier subcontractor (hereafter referred to as a "second-tier subcontractor") a written notice in accordance with section 2 of the Act of August 24, 1935 (40 U.S.C. 270b, Miller Act), asserting a deficiency in such first-tier subcontractor's performance under the contract for which the Contractor may be ultimately liable, and the Contractor determines that all or a portion of future payments otherwise due such first-tier subcontractor is subject to withholding in accordance with the subcontract agreement, the Contractor may, without incurring an obligation to pay an interest penalty under subparagraph (e)(6) of this clause--

(i) Furnish to the first-tier subcontractor a notice conforming to the standards of paragraph (g) of this clause as soon as practicable upon making such determination; and

(ii) Withhold from the first-tier subcontractor's next available progress payment or payments an amount not to exceed the amount specified in the notice of withholding furnished under subdivision (f)(1)(i) of this clause.

(2) Subsequent payment or interest charge. As soon as practicable, but not later than 7 days after receipt of satisfactory written notification that the identified subcontract performance deficiency has been corrected, the Contractor shall--

(i) Pay the amount withheld under subdivision (f)(1)(ii) of this clause to such first-tier subcontractor; or

(ii) Incur an obligation to pay a late payment interest penalty to such first-tier subcontractor computed at the rate of interest established by the Secretary of the Treasury, and published in the Federal Register, for interest payments under section 12 of the Contracts Disputes Act of 1978 (41 U.S.C. 611) in effect at the time the Contractor accrues the obligation to pay an interest penalty.
(g) Written notice of subcontractor withholding. A written notice of any withholding shall be issued to a subcontractor (with a copy to the Contracting Officer of any such notice issued by the Contractor), specifying--

(1) The amount to be withheld;

(2) The specific causes for the withholding under the terms of the subcontract; and

(3) The remedial actions to be taken by the subcontractor in order to receive payment of the amounts withheld.

(h) Subcontractor payment entitlement. The Contractor may not request payment from the Government of any amount withheld or retained in accordance with paragraph (d) of this clause until such time as the Contractor has determined and certified to the Contracting Officer that the subcontractor is entitled to the payment of such amount.

(i) Prime-subcontractor disputes. A dispute between the Contractor and subcontractor relating to the amount or entitlement of a subcontractor to a payment or a late payment interest penalty under a clause included in the subcontract pursuant to paragraph (c) of this clause does not constitute a dispute to which the United States is a party. The United States may not be interpleaded in any judicial or administrative proceeding involving such a dispute.

(j) Preservation of prime-subcontractor rights. Except as provided in paragraph (i) of this clause, this clause shall not limit or impair any contractual, administrative, or judicial remedies otherwise available to the Contractor or a subcontractor in the event of a dispute involving late payment or nonpayment by the Contractor or deficient subcontract performance or nonperformance by a subcontractor.

(k) Non-recourse for prime contractor interest penalty. The Contractor's obligation to pay an interest penalty to a subcontractor pursuant to the clauses included in the subcontract under paragraph (c) of this clause shall not be construed to be an obligation of the United States for such interest penalty. A cost-reimbursement claim may not include any amount for reimbursement of such interest penalty.

52.232-33 PAYMENT BY ELECTRONIC FUNDS TRANSFER—CENTRAL CONTRACTOR REGISTRATION (MAY 1999)

(a) Method of payment. (1) All payments by the Government under this contract shall be made by electronic funds transfer (EFT), except as provided in paragraph (a)(2) of this clause. As used in this clause, the term “EFT” refers to the funds transfer and may also include the payment information transfer.

(2) In the event the Government is unable to release one or more payments by EFT, the Contractor agrees to either--

(i) Accept payment by check or some other mutually agreeable method of payment; or

(ii) Request the Government to extend the payment due date until such time as the Government can make payment by EFT (but see paragraph (d) of this clause).

(b) Contractor's EFT information. The Government shall make payment to the Contractor using the EFT information contained in the Central Contractor Registration (CCR) database. In the event that the EFT information changes, the Contractor shall be responsible for providing the updated information to the CCR database.

(c) Mechanisms for EFT payment. The Government may make payment by EFT through either the Automated Clearing House (ACH) network, subject to the rules of the National Automated Clearing House
Association, or the Fedwire Transfer System. The rules governing Federal payments through the ACH are contained in 31 CFR part 210.

(d) Suspension of payment. If the Contractor's EFT information in the CCR database is incorrect, then the Government need not make payment to the Contractor under this contract until correct EFT information is entered into the CCR database; and any invoice or contract financing request shall be deemed not to be a proper invoice for the purpose of prompt payment under this contract. The prompt payment terms of the contract regarding notice of an improper invoice and delays in accrual of interest penalties apply.

(e) Contractor EFT arrangements. If the Contractor has identified multiple payment receiving points (i.e., more than one remittance address and/or EFT information set) in the CCR database, and the Contractor has not notified the Government of the payment receiving point applicable to this contract, the Government shall make payment to the first payment receiving point (EFT information set or remittance address as applicable) listed in the CCR database.

(f) Liability for uncompleted or erroneous transfers. (1) If an uncompleted or erroneous transfer occurs because the Government used the Contractor's EFT information incorrectly, the Government remains responsible for--

(i) Making a correct payment;

(ii) Paying any prompt payment penalty due; and

(iii) Recovering any erroneously directed funds.

(2) If an uncompleted or erroneous transfer occurs because the Contractor's EFT information was incorrect, or was revised within 30 days of Government release of the EFT payment transaction instruction to the Federal Reserve System, and--

(i) If the funds are no longer under the control of the payment office, the Government is deemed to have made payment and the Contractor is responsible for recovery of any erroneously directed funds; or

(ii) If the funds remain under the control of the payment office, the Government shall not make payment, and the provisions of paragraph (d) of this clause shall apply.

(g) EFT and prompt payment. A payment shall be deemed to have been made in a timely manner in accordance with the prompt payment terms of this contract if, in the EFT payment transaction instruction released to the Federal Reserve System, the date specified for settlement of the payment is on or before the prompt payment due date, provided the specified payment date is a valid date under the rules of the Federal Reserve System.

(h) EFT and assignment of claims. If the Contractor assigns the proceeds of this contract as provided for in the assignment of claims terms of this contract, the Contractor shall require as a condition of any such assignment, that the assignee shall register in the CCR database and shall be paid by EFT in accordance with the terms of this clause. In all respects, the requirements of this clause shall apply to the assignee as if it were the Contractor. EFT information that shows the ultimate recipient of the transfer to be other than the Contractor, in the absence of a proper assignment of claims acceptable to the Government, is incorrect EFT information within the meaning of paragraph (d) of this clause.

(i) Liability for change of EFT information by financial agent. The Government is not liable for errors resulting from changes to EFT information made by the Contractor's financial agent.

(j) Payment information. The payment or disbursing office shall forward to the Contractor available payment information that is suitable for transmission as of the date of release of the EFT instruction to the Federal Reserve System. The Government may request the Contractor to designate a desired format and
method(s) for delivery of payment information from a list of formats and methods the payment office is capable of executing. However, the Government does not guarantee that any particular format or method of delivery is available at any particular payment office and retains the latitude to use the format and delivery method most convenient to the Government. If the Government makes payment by check in accordance with paragraph (a) of this clause, the Government shall mail the payment information to the remittance address contained in the CCR database.

(End of Clause)

52.233-1 DISPUTES. (DEC 1998)

(a) This contract is subject to the Contract Disputes Act of 1978, as amended (41 U.S.C. 601-613).

(b) Except as provided in the Act, all disputes arising under or relating to this contract shall be resolved under this clause.

(c) "Claim," as used in this clause, means a written demand or written assertion by one of the contracting parties seeking, as a matter of right, the payment of money in a sum certain, the adjustment or interpretation of contract terms, or other relief arising under or relating to this contract. A claim arising under a contract, unlike a claim relating to that contract, is a claim that can be resolved under a contract clause that provides for the relief sought by the claimant. However, a written demand or written assertion by the Contractor seeking the payment of money exceeding $100,000 is not a claim under the Act until certified as required by subparagraph (d)(2) of this clause. A voucher, invoice, or other routine request for payment that is not in dispute when submitted is not a claim under the Act. The submission may be converted to a claim under the Act, by complying with the submission and certification requirements of this clause, if it is disputed either as to liability or amount or is not acted upon in a reasonable time.

(d)(1) A claim by the Contractor shall be made in writing and, unless otherwise stated in this contract, submitted within 6 years after accrual of the claim to the Contracting Officer for a written decision. A claim by the Government against the Contractor shall be subject to a written decision by the Contracting Officer.

(2)(i) The contractors shall provide the certification specified in subparagraph (d)(2)(iii) of this clause when submitting any claim -

(A) Exceeding $100,000; or

(B) Regardless of the amount claimed, when using -

(1) Arbitration conducted pursuant to 5 U.S.C. 575-580; or

(2) Any other alternative means of dispute resolution (ADR) technique that the agency elects to handle in accordance with the Administrative Dispute Resolution Act (ADRA).

(ii) The certification requirement does not apply to issues in controversy that have not been submitted as all or part of a claim.

(iii) The certification shall state as follows: "I certify that the claim is made in good faith; that the supporting data are accurate and complete to the best of my knowledge and belief; that the amount requested accurately reflects the contract adjustment for which the Contractor believes the Government is liable; and that I am duly authorized to certify the claim on behalf of the Contractor.

(3) The certification may be executed by any person duly authorized to bind the Contractor with respect to the claim.
(e) For Contractor claims of $100,000 or less, the Contracting Officer must, if requested in writing by the Contractor, render a decision within 60 days of the request. For Contractor-certified claims over $100,000, the Contracting Officer must, within 60 days, decide the claim or notify the Contractor of the date by which the decision will be made.

(f) The Contracting Officer's decision shall be final unless the Contractor appeals or files a suit as provided in the Act.

(g) If the claim by the Contractor is submitted to the Contracting Officer or a claim by the Government is presented to the Contractor, the parties, by mutual consent, may agree to use alternative dispute resolution (ADR). If the Contractor refuses an offer for ADR, the Contractor shall inform the Contracting Officer, in writing, of the Contractor's specific reasons for rejecting the request.

(h) The Government shall pay interest on the amount found due and unpaid from (1) the date the Contracting Officer receives the claim (certified, if required); or (2) the date that payment otherwise would be due, if that date is later, until the date of payment. With regard to claims having defective certifications, as defined in (FAR) 48 CFR 33.201, interest shall be paid from the date that the Contracting Officer initially receives the claim. Simple interest on claims shall be paid at the rate, fixed by the Secretary of the Treasury as provided in the Act, which is applicable to the period during which the Contracting Officer receives the claim and then at the rate applicable for each 6-month period as fixed by the Treasury Secretary during the pendency of the claim.

(i) The Contractor shall proceed diligently with performance of this contract, pending final resolution of any request for relief, claim, appeal, or action arising under the contract, and comply with any decision of the Contracting Officer.

(End of clause)

52.233-3 PROTEST AFTER AWARD (AUG. 1996)

(a) Upon receipt of a notice of protest (as defined in FAR 33.101) or a determination that a protest is likely (see FAR 33.102(d)), the Contracting Officer may, by written order to the Contractor, direct the Contractor to stop performance of the work called for by this contract. The order shall be specifically identified as a stop-work order issued under this clause. Upon receipt of the order, the Contractor shall immediately comply with its terms and take all reasonable steps to minimize the incurrence of costs allocable to the work covered by the order during the period of work stoppage. Upon receipt of the final decision in the protest, the Contracting Officer shall either--

(1) Cancel the stop-work order; or

(2) Terminate the work covered by the order as provided in the Default, or the Termination for Convenience of the Government, clause of this contract.

(b) If a stop-work order issued under this clause is canceled either before or after a final decision in the protest, the Contractor shall resume work. The Contracting Officer shall make an equitable adjustment in the delivery schedule or contract price, or both, and the contract shall be modified, in writing, accordingly, if-

(1) The stop-work order results in an increase in the time required for, or in the Contractor's cost properly allocable to, the performance of any part of this contract; and

(2) The Contractor asserts its right to an adjustment within 30 days after the end of the period of work stoppage; provided, that if the Contracting Officer decides the facts justify the action, the Contracting Officer may receive and act upon a proposal at any time before final payment under this contract.
(c) If a stop-work order is not canceled and the work covered by the order is terminated for the convenience of the Government, the Contracting Officer shall allow reasonable costs resulting from the stop-work order in arriving at the termination settlement.

(d) If a stop-work order is not canceled and the work covered by the order is terminated for default, the Contracting Officer shall allow, by equitable adjustment or otherwise, reasonable costs resulting from the stop-work order.

(e) The Government's rights to terminate this contract at any time are not affected by action taken under this clause.

(f) If, as the result of the Contractor's intentional or negligent misstatement, misrepresentation, or miscertification, a protest related to this contract is sustained, and the Government pays costs, as provided in FAR 33.102(b)(2) or 33.104(h)(1), the Government may require the Contractor to reimburse the Government the amount of such costs. In addition to any other remedy available, and pursuant to the requirements of Subpart 32.6, the Government may collect this debt by offsetting the amount against any payment due the Contractor under any contract between the Contractor and the Government.

52.236-1 PERFORMANCE OF WORK BY THE CONTRACTOR (APR 1984)

The Contractor shall perform on the site, and with its own organization, work equivalent to at least 25 percent of the total amount of work to be performed under the contract. This percentage may be reduced by a supplemental agreement to this contract if, during performing the work, the Contractor requests a reduction and the Contracting Officer determines that the reduction would be to the advantage of the Government.

52.236-2 DIFFERING SITE CONDITIONS (APR 1984)

(a) The Contractor shall promptly, and before the conditions are disturbed, give a written notice to the Contracting Officer of

(1) subsurface or latent physical conditions at the site which differ materially from those indicated in this contract, or

(2) unknown physical conditions at the site, of an unusual nature, which differ materially from those ordinarily encountered and generally recognized as inhering in work of the character provided for in the contract.

(b) The Contracting Officer shall investigate the site conditions promptly after receiving the notice. If the conditions do materially so differ and cause an increase or decrease in the Contractor's cost of, or the time required for, performing any part of the work under this contract, whether or not changed as a result of the conditions, an equitable adjustment shall be made under this clause and the contract modified in writing accordingly.

(c) No request by the Contractor for an equitable adjustment to the contract under this clause shall be allowed, unless the Contractor has given the written notice required; provided, that the time prescribed in (a) above for giving written notice may be extended by the Contracting Officer.

(d) No request by the Contractor for an equitable adjustment to the contract for differing site conditions shall be allowed if made after final payment under this contract.
52.236-3 SITE INVESTIGATION AND CONDITIONS AFFECTING THE WORK (APR 1984)

(a) The Contractor acknowledges that it has taken steps reasonably necessary to ascertain the nature and location of the work, and that it has investigated and satisfied itself as to the general and local conditions which can affect the work or its cost, including but not limited to

1. conditions bearing upon transportation, disposal, handling, and storage of materials;
2. the availability of labor, water, electric power, and roads;
3. uncertainties of weather, river stages, tides, or similar physical conditions at the site;
4. the conformation and conditions of the ground; and
5. the character of equipment and facilities needed preliminary to and during work performance. The Contractor also acknowledges that it has satisfied itself as to the character, quality, and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information is reasonably ascertainable from an inspection of the site, including all exploratory work done by the Government, as well as from the drawings and specifications made a part of this contract. Any failure of the Contractor to take the actions described and acknowledged in this paragraph will not relieve the Contractor from responsibility for estimating properly the difficulty and cost of successfully performing the work, or for proceeding to successfully perform the work without additional expense to the Government.

(b) The Government assumes no responsibility for any conclusions or interpretations made by the Contractor based on the information made available by the Government. Nor does the Government assume responsibility for any understanding reached or representation made concerning conditions which can affect the work by any of its officers or agents before the execution of this contract, unless that understanding or representation is expressly stated in this contract.

52.236-5 MATERIAL AND WORKMANSHIP (APR 1984)

(a) All equipment, material, and articles incorporated into the work covered by this contract shall be new and of the most suitable grade for the purpose intended, unless otherwise specifically provided in this contract. References in the specifications to equipment, material, articles, or patented processes by trade name, make, or catalog number, shall be regarded as establishing a standard of quality and shall not be construed as limiting competition. The Contractor may, at its option, use any equipment, material, article, or process that, in the judgment of the Contracting Officer, is equal to that named in the specifications, unless otherwise specifically provided in this contract.

(b) The Contractor shall obtain the Contracting Officer's approval of the machinery and mechanical and other equipment to be incorporated into the work. When requesting approval, the Contractor shall furnish to the Contracting Officer the name of the manufacturer, the model number, and other information concerning the performance, capacity, nature, and rating of the machinery and mechanical and other equipment. When required by this contract or by the Contracting Officer, the Contractor shall also obtain the Contracting Officer's approval of the material or articles which the Contractor contemplates incorporating into the work. When requesting approval, the Contractor shall provide full information concerning the material or articles. When directed to do so, the Contractor shall submit samples for approval at the Contractor's expense, with all shipping charges prepaid. Machinery, equipment, material, and articles that do not have the required approval shall be installed or used at the risk of subsequent rejection.

(c) All work under this contract shall be performed in a skillful and workmanlike manner. The Contracting Officer may require, in writing, that the Contractor remove from the work any employee the Contracting Officer deems incompetent, careless, or otherwise objectionable.
52.236-6 SUPERINTENDENCE BY THE CONTRACTOR (APR 1984)

At all times during performance of this contract and until the work is completed and accepted, the Contractor shall directly superintend the work or assign and have on the worksite a competent superintendent who is satisfactory to the Contracting Officer and has authority to act for the Contractor.

52.236-7 PERMITS AND RESPONSIBILITIES (NOV 1991)

The Contractor shall, without additional expense to the Government, be responsible for obtaining any necessary licenses and permits, and for complying with any Federal, State, and municipal laws, codes, and regulations applicable to the performance of the work. The Contractor shall also be responsible for all damages to persons or property that occur as a result of the Contractor's fault or negligence. The Contractor shall also be responsible for all materials delivered and work performed until completion and acceptance of the entire work, except for any completed unit of work which may have been accepted under the contract.

52.236-8 OTHER CONTRACTS (APR 1984)

The Government may undertake or award other contracts for additional work at or near the site of the work under this contract. The Contractor shall fully cooperate with the other contractors and with Government employees and shall carefully adapt scheduling and performing the work under this contract to accommodate the additional work, heeding any direction that may be provided by the Contracting Officer. The Contractor shall not commit or permit any act that will interfere with the performance of work by any other contractor or by Government employees.

52.236-9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS (APR 1984)

(a) The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.

(b) The Contractor shall protect from damage all existing improvements and utilities

(1) at or near the work site, and

(2) on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

52.236-10 OPERATIONS AND STORAGE AREAS (APR 1984)

(a) The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the
Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.

(b) Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.

(c) The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

52.236-11 USE AND POSSESSION PRIOR TO COMPLETION (APR 1984)

(a) The Government shall have the right to take possession of or use any completed or partially completed part of the work. Before taking possession of or using any work, the Contracting Officer shall furnish the Contractor a list of items of work remaining to be performed or corrected on those portions of the work that the Government intends to take possession of or use. However, failure of the Contracting Officer to list any item of work shall not relieve the Contractor of responsibility for complying with the terms of the contract. The Government's possession or use shall not be deemed an acceptance of any work under the contract.

(b) While the Government has such possession or use, the Contractor shall be relieved of the responsibility for the loss of or damage to the work resulting from the Government's possession or use, notwithstanding the terms of the clause in this contract entitled "Permits and Responsibilities." If prior possession or use by the Government delays the progress of the work or causes additional expense to the Contractor, an equitable adjustment shall be made in the contract price or the time of completion, and the contract shall be modified in writing accordingly.

52.236-12 CLEANING UP (APR 1984)

The Contractor shall at all times keep the work area, including storage areas, free from accumulations of waste materials. Before completing the work, the Contractor shall remove from the work and premises any rubbish, tools, scaffolding, equipment, and materials that are not the property of the Government. Upon completing the work, the Contractor shall leave the work area in a clean, neat, and orderly condition satisfactory to the Contracting Officer.

52.236-13 ACCIDENT PREVENTION (NOV 1991) – ALTERNATE I (NOV 1991)

(a) The Contractor shall provide and maintain work environments and procedures which will

(1) safeguard the public and Government personnel, property, materials, supplies, and equipment exposed to Contractor operations and activities;

(2) avoid interruptions of Government operations and delays in project completion dates; and

(3) control costs in the performance of this contract.
(b) For these purposes on contracts for construction or dismantling, demolition, or removal of improvements, the Contractor shall-

(1) Provide appropriate safety barricades, signs, and signal lights;

(2) Comply with the standards issued by the Secretary of Labor at 29 CFR Part 1926 and 29 CFR Part 1910; and

(3) Ensure that any additional measures the Contracting Officer determines to be reasonably necessary for the purposes are taken.

(c) If this contract is for construction or dismantling, demolition or removal of improvements with any Department of Defense agency or component, the Contractor shall comply with all pertinent provisions of the latest version of U.S. Army Corps of Engineers Safety and Health Requirements Manual, EM 385-1-1, in effect on the date of the solicitation.

(d) Whenever the Contracting Officer becomes aware of any noncompliance with these requirements or any condition which poses a serious or imminent danger to the health or safety of the public or Government personnel, the Contracting Officer shall notify the Contractor orally, with written confirmation, and request immediate initiation of corrective action. This notice, when delivered to the Contractor or the Contractor's representative at the work site, shall be deemed sufficient notice of the noncompliance and that corrective action is required. After receiving the notice, the Contractor shall immediately take corrective action. If the Contractor fails or refuses to promptly take corrective action, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. The Contractor shall not be entitled to any equitable adjustment of the contract price or extension of the performance schedule on any stop work order issued under this clause.

(e) The Contractor shall insert this clause, including this paragraph (e), with appropriate changes in the designation of the parties, in subcontracts.

(f) Before commencing the work, the Contractor shall-

(1) Submit a written proposed plan for implementing this clause. The plan shall include an analysis of the significant hazards to life, limb, and property inherent in contract work performance and a plan for controlling these hazards; and

(2) Meet with representatives of the Contracting Officer to discuss and develop a mutual understanding relative to administration of the overall safety program.

52.236-15 SCHEDULES FOR CONSTRUCTION CONTRACTS (APR 1984)

(a) The Contractor shall, within five days after the work commences on the contract or another period of time determined by the Contracting Officer, prepare and submit to the Contracting Officer for approval three copies of a practicable schedule showing the order in which the Contractor proposes to perform the work, and the dates on which the Contractor contemplates starting and completing the several salient features of the work (including acquiring materials, plant, and equipment). The schedule shall be in the form of a progress chart of suitable scale to indicate appropriately the percentage of work scheduled for completion by any given date during the period. If the Contractor fails to submit a schedule within the time prescribed, the Contracting Officer may withhold approval of progress payments until the Contractor submits the required schedule.

(b) The Contractor shall enter the actual progress on the chart as directed by the Contracting Officer, and upon doing so shall immediately deliver three copies of the annotated schedule to the Contracting Officer. If,
in the opinion of the Contracting Officer, the Contractor falls behind the approved schedule, the Contractor shall take steps necessary to improve its progress, including those that may be required by the Contracting Officer, without additional cost to the Government. In this circumstance, the Contracting Officer may require the Contractor to increase the number of shifts, overtime operations, days of work, and/or the amount of construction plant, and to submit for approval any supplementary schedule or schedules in chart form as the Contracting Officer deems necessary to demonstrate how the approved rate of progress will be regained.

(c) Failure of the Contractor to comply with the requirements of the Contracting Officer under this clause shall be grounds for a determination by the Contracting Officer that the Contractor is not prosecuting the work with sufficient diligence to ensure completion within the time specified in the contract. Upon making this determination, the Contracting Officer may terminate the Contractor's right to proceed with the work, or any separable part of it, in accordance with the default terms of this contract.

52.236-17 LAYOUT OF WORK (APR 1984)

The Contractor shall lay out its work from Government established base lines and bench marks indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at its own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through its negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

52.236-21 SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FEB 1997)

(a) The Contractor shall keep on the work site a copy of the drawings and specifications and shall at all times give the Contracting Officer access thereto. Anything mentioned in the specifications and not shown on the drawings, or shown on the drawings and not mentioned in the specifications, shall be of like effect as if shown or mentioned in both. In case of difference between drawings and specifications, the specifications shall govern. In case of discrepancy in the figures, in the drawings, or in the specifications, the matter shall be promptly submitted to the Contracting Officer, who shall promptly make a determination in writing. Any adjustment by the Contractor without such a determination shall be at its own risk and expense. The Contracting Officer shall furnish from time to time such detailed drawings and other information as considered necessary, unless otherwise provided.

(b) Wherever in the specifications or upon the drawings the words "directed", "required", "ordered", "designated", "prescribed", or words of like import are used, it shall be understood that the "direction", "requirement", "order", "designation", or "prescription", of the Contracting Officer is intended and similarly the words "approved", "acceptable", "satisfactory", or words of like import shall mean "approved by," or "acceptable to", or "satisfactory to" the Contracting Officer, unless otherwise expressly stated.

(c) Where "as shown," as indicated", "as detailed", or words of similar import are used, it shall be understood that the reference is made to the drawings accompanying this contract unless stated otherwise. The word "provided" as used herein shall be understood to mean "provide complete in place," that is "furnished and installed".

(d) Shop drawings means drawings, submitted to the Government by the Contractor, subcontractor, or any lower tier subcontractor pursuant to a construction contract, showing in detail (1) the proposed fabrication and assembly of structural elements, and (2) the installation (i.e., fit, and attachment details) of materials or equipment. It includes drawings, diagrams, layouts, schematics, descriptive literature, illustrations, schedules,
performance and test data, and similar materials furnished by the contractor to explain in detail specific portions of the work required by the contract. The Government may duplicate, use, and disclose in any manner and for any purpose shop drawings delivered under this contract.

(e) If this contract requires shop drawings, the Contractor shall coordinate all such drawings, and review them for accuracy, completeness, and compliance with contract requirements and shall indicate its approval thereon as evidence of such coordination and review. Shop drawings submitted to the Contracting Officer without evidence of the Contractor's approval may be returned for resubmission. The Contracting Officer will indicate an approval or disapproval of the shop drawings and if not approved as submitted shall indicate the Government's reasons therefor. Any work done before such approval shall be at the Contractor's risk. Approval by the Contracting Officer shall not relieve the Contractor from responsibility for any errors or omissions in such drawings, nor from responsibility for complying with the requirements of this contract, except with respect to variations described and approved in accordance with (f) below.

(f) If shop drawings show variations from the contract requirements, the Contractor shall describe such variations in writing, separate from the drawings, at the time of submission. If the Contracting Officer approves any such variation, the Contracting Officer shall issue an appropriate contract modification, except that, if the variation is minor or does not involve a change in price or in time of performance, a modification need not be issued.

(g) The Contractor shall submit to the Contracting Officer for approval four copies (unless otherwise indicated) of all shop drawings as called for under the various headings of these specifications. Three sets (unless otherwise indicated) of all shop drawings, will be retained by the Contracting Officer and one set will be returned to the Contractor.

52.239-1 PRIVACY OR SECURITY SAFEGUARDS (AUG 1996)

(a) The Contractor shall not publish or disclose in any manner, without the Contracting Officer's written consent, the details of any safeguards either designed or developed by the Contractor under this contract or otherwise provided by the Government.

(b) To the extent required to carry out a program of inspection to safeguard against threats and hazards to the security, integrity, and confidentiality of Government data, the Contractor shall afford the Government access to the Contractor's facilities, installations, technical capabilities, operations, documentation, records, and databases.

(c) If new or unanticipated threats or hazards are discovered by either the Government or the Contractor, or if existing safeguards have ceased to function, the discoverer shall immediately bring the situation to the attention of the other party.

52.242-13 BANKRUPTCY (JUL 1995)

In the event the Contractor enters into proceedings relating to bankruptcy, whether voluntary or involuntary, the Contractor agrees to furnish, by certified mail or electronic commerce method authorized by the contract, written notification of the bankruptcy to the Contracting Officer responsible for administering the contract. This notification shall be furnished within five days of the initiation of the proceedings relating to bankruptcy filing. This notification shall include the date on which the bankruptcy petition was filed, the identity of the court in which the bankruptcy petition was filed, and a listing of Government contract numbers and contracting offices for all Government contracts against which final payment has not been made. This obligation remains in effect until final payment under this contract.

(End of clause)
52.242-14 SUSPENSION OF WORK (APR 1984)

(a) The Contracting Officer may order the Contractor, in writing, to suspend, delay, or interrupt all or any part of the work of this contract for the period of time that the Contracting Officer determines appropriate for the convenience of the Government.

(b) If the performance of all or any part of the work is, for an unreasonable period of time, suspended, delayed, or interrupted (1) by an act of the Contracting Officer in the administration of this contract, or (2) by the Contracting Officer’s failure to act within the time specified in this contract (or within a reasonable time if not specified), an adjustment shall be made for any increase in the cost of performance of this contract (excluding profit) necessarily caused by the unreasonable suspension, delay, or interruption, and the contract modified in writing accordingly. However, no adjustment shall be made under this clause for any suspension, delay, or interruption to the extent that performance would have been so suspended, delayed, or interrupted by any other cause, including the fault or negligence of the Contractor, or for which an equitable adjustment is provided for or excluded under any other term or condition of this contract. (c) A claim under this clause shall not be allowed (1) for any costs incurred more than 20 days before the Contractor shall have notified the Contracting Officer in writing of the act or failure to act involved (but this requirement shall not apply as to a claim resulting from a suspension order), and (2) unless the claim, in an amount stated, is asserted in writing as soon as practicable after the termination of the suspension, delay, or interruption, but not later than the date of final payment under the contract.

52.243-4 CHANGES (AUG 1987)

(a) The Contracting Officer may, at any time, without notice to the sureties, if any, by written order designated or indicated to be a change order, make changes in the work within the general scope of the contract, including changes--

(1) In the specifications (including drawings and designs);

(2) In the method or manner of performance of the work;

(3) In the Government-furnished facilities, equipment, materials, services, or site; or

(4) Directing acceleration in the performance of the work.

(b) Any other written or oral order (which, as used in this paragraph (b), includes direction, instruction, interpretation, or determination) from the Contracting Officer that causes a change shall be treated as a change order under this clause; provided, that the Contractor gives the Contracting Officer written notice stating

(1) the date, circumstances, and source of the order and

(2) that the Contractor regards the order as a change order.

(c) Except as provided in this clause, no order, statement, or conduct of the Contracting Officer shall be treated as a change under this clause or entitle the Contractor to an equitable adjustment.

(d) If any change under this clause causes an increase or decrease in the Contractor's cost of, or the time required for, the performance of any part of the work under this contract, whether or not changed by any such order, the Contracting Officer shall make an equitable adjustment and modify the contract in writing. However, except for an adjustment based on defective specifications, no adjustment for any change under paragraph (b) of this clause shall be made for any costs incurred more than 20 days before the Contractor gives written notice as required. In the case of defective specifications for which the Government is
responsible, the equitable adjustment shall include any increased cost reasonably incurred by the Contractor in attempting to comply with the defective specifications.

(e) The Contractor must assert its right to an adjustment under this clause within 30 days after

(1) receipt of a written change order under paragraph (a) of this clause or (2) the furnishing of a written notice under paragraph (b) of this clause, by submitting to the Contracting Officer a written statement describing the general nature and amount of the proposal, unless this period is extended by the Government. The statement of proposal for adjustment may be included in the notice under paragraph (b) above.

(f) No proposal by the Contractor for an equitable adjustment shall be allowed if asserted after final payment under this contract.

52.244-2 SUBCONTRACTS (AUG 1998)

(a) Definitions. As used in this clause--

Approved purchasing system means a Contractor's purchasing system that has been reviewed and approved in accordance with Part 44 of the Federal Acquisition Regulation (FAR).

Consent to subcontract means the Contracting Officer's written consent for the Contractor to enter into a particular subcontract.

Subcontract means any contract, as defined in FAR Subpart 2.1, entered into by a subcontractor to furnish supplies or services for performance of the prime contract or a subcontract. It includes, but is not limited to, purchase orders, and changes and modifications to purchase orders.

(b) This clause does not apply to subcontracts for special test equipment when the contract contains the clause at FAR 52.245-18, Special Test Equipment.

(c) When this clause is included in a fixed-price type contract, consent to subcontract is required only on unpriced contract actions (including unpriced modifications or unpriced delivery orders), and only if required in accordance with paragraph (d) or (e) of this clause.

(d) If the Contractor does not have an approved purchasing system, consent to subcontract is required for any subcontract that--

(1) Is of the cost-reimbursement, time-and-materials, or labor-hour type; or

(2) Is fixed-price and exceeds --

(i) For a contract awarded by the Department of Defense, the Coast Guard, or the National Aeronautics and Space Administration, the greater of the simplified acquisition threshold or 5 percent of the total estimated cost of the contract; or

(ii) For a contract awarded by a civilian agency other than the Coast Guard and the National Aeronautics and Space Administration, either the simplified acquisition threshold or 5 percent of the total estimated cost of the contract.

(e) If the Contractor has an approved purchasing system, the Contractor nevertheless shall obtain the Contracting Officer's written consent before placing the following subcontracts:

NONE
(f)(1) The Contractor shall notify the Contracting Officer reasonably in advance of placing any subcontract or modification thereof for which consent is required under paragraph (c), (d), or (e) of this clause, including the following information:

(i) A description of the supplies or services to be subcontracted.

(ii) Identification of the type of subcontract to be used.

(iii) Identification of the proposed subcontractor.

(iv) The proposed subcontract price.

(v) The subcontractor's current, complete, and accurate cost or pricing data and Certificate of Current Cost or Pricing Data, if required by other contract provisions.

(vi) The subcontractor's Disclosure Statement or Certificate relating to Cost Accounting Standards when such data are required by other provisions of this contract.

(vii) A negotiation memorandum reflecting--

(A) The principal elements of the subcontract price negotiations;

(B) The most significant considerations controlling establishment of initial or revised prices;

(C) The reason cost or pricing data were or were not required;

(D) The extent, if any, to which the Contractor did not rely on the subcontractor's cost or pricing data in determining the price objective and in negotiating the final price;

(E) The extent to which it was recognized in the negotiation that the subcontractor's cost or pricing data were not accurate, complete, or current; the action taken by the Contractor and the subcontractor; and the effect of any such defective data on the total price negotiated;

(F) The reasons for any significant difference between the Contractor's price objective and the price negotiated; and

(G) A complete explanation of the incentive fee or profit plan when incentives are used. The explanation shall identify each critical performance element, management decisions used to quantify each incentive element, reasons for the incentives, and a summary of all trade-off possibilities considered.

(2) The Contractor is not required to notify the Contracting Officer in advance of entering into any subcontract for which consent is not required under paragraph (c), (d), or (e) of this clause.

(g) Unless the consent or approval specifically provides otherwise, neither consent by the Contracting Officer to any subcontract nor approval of the Contractor's purchasing system shall constitute a determination--

(1) Of the acceptability of any subcontract terms or conditions;

(2) Of the allowability of any cost under this contract; or

(3) To relieve the Contractor of any responsibility for performing this contract.
(h) No subcontract or modification thereof placed under this contract shall provide for payment on a cost-plus-a-percentage-of-cost basis, and any fee payable under cost-reimbursement type subcontracts shall not exceed the fee limitations in FAR 15.404-4(c)(4)(i).

(i) The Contractor shall give the Contracting Officer immediate written notice of any action or suit filed and prompt notice of any claim made against the Contractor by any subcontractor or vendor that, in the opinion of the Contractor, may result in litigation related in any way to this contract, with respect to which the Contractor may be entitled to reimbursement from the Government.

(j) The Government reserves the right to review the Contractor's purchasing system as set forth in FAR Subpart 44.3.

(k) Paragraphs (d) and (f) of this clause do not apply to the following subcontracts, which were evaluated during negotiations:

(End of clause)

52.246-12 INSPECTION OF CONSTRUCTION (AUG 1996)

(a) Definition. "Work" includes, but is not limited to, materials, workmanship, and manufacture and fabrication of components.

(b) The Contractor shall maintain an adequate inspection system and perform such inspections as will ensure that the work performed under the contract conforms to contract requirements. The Contractor shall maintain complete inspection records and make them available to the Government. All work shall be conducted under the general direction of the Contracting Officer and is subject to Government inspection and test at all places and at all reasonable times before acceptance to ensure strict compliance with the terms of the contract.

(c) Government inspections and tests are for the sole benefit of the Government and do not--

(1) Relieve the Contractor of responsibility for providing adequate quality control measures;

(2) Relieve the Contractor of responsibility for damage to or loss of the material before acceptance;

(3) Constitute or imply acceptance; or

(4) Affect the continuing rights of the Government after acceptance of the completed work under paragraph (i) of this section.

(d) The presence or absence of a Government inspector does not relieve the Contractor from any contract requirement, nor is the inspector authorized to change any term or condition of the specification without the Contracting Officer's written authorization.

(e) The Contractor shall promptly furnish, at no increase in contract price, all facilities, labor, and material reasonably needed for performing such safe and convenient inspections and tests as may be required by the Contracting Officer. The Government may charge to the Contractor any additional cost of inspection or test when work is not ready at the time specified by the Contractor for inspection or test, or when prior rejection makes reinspection or retest necessary. The Government shall perform all inspections and tests in a manner that will not unnecessarily delay the work. Special, full size, and performance tests shall be performed as described in the contract.
(f) The Contractor shall, without charge, replace or correct work found by the Government not to conform to contract requirements, unless in the public interest the Government consents to accept the work with an appropriate adjustment in contract price. The Contractor shall promptly segregate and remove rejected material from the premises.

(g) If the Contractor does not promptly replace or correct rejected work, the Government may (1) by contract or otherwise, replace or correct the work and charge the cost to the Contractor or (2) terminate for default the Contractor's right to proceed.

(h) If, before acceptance of the entire work, the Government decides to examine already completed work by removing it or tearing it out, the Contractor, on request, shall promptly furnish all necessary facilities, labor, and material. If the work is found to be defective or nonconforming in any material respect due to the fault of the Contractor or its subcontractors, the Contractor shall defray the expenses of the examination and of satisfactory reconstruction. However, if the work is found to meet contract requirements, the Contracting Officer shall make an equitable adjustment for the additional services involved in the examination and reconstruction, including, if completion of the work was thereby delayed, an extension of time.

(i) Unless otherwise specified in the contract, the Government shall accept, as promptly as practicable after completion and inspection, all work required by the contract or that portion of the work the Contracting Officer determines can be accepted separately. Acceptance shall be final and conclusive except for latent defects, fraud, gross mistakes amounting to fraud, or the Government's rights under any warranty or guarantee.

52.248-3 VALUE ENGINEERING--CONSTRUCTION (FEB 2000) - ALTERNATE I (APR 1984)

(a) General. The Contractor is encouraged to develop, prepare, and submit value engineering change proposals (VECP's) voluntarily. The Contractor shall share in any instant contract savings realized from accepted VECP's, in accordance with paragraph (f) below.

(b) Definitions. "Collateral costs," as used in this clause, means agency costs of operation, maintenance, logistic support, or Government-furnished property.

"Collateral savings," as used in this clause, means those measurable net reductions resulting from a VECP in the agency's overall projected collateral costs, exclusive of acquisition savings, whether or not the acquisition cost changes.

"Contractor's development and implementation costs," as used in this clause, means those costs the Contractor incurs on a VECP specifically in developing, testing, preparing, and submitting the VECP, as well as those costs the Contractor incurs to make the contractual changes required by Government acceptance of a VECP.

"Government costs," as used in this clause, means those agency costs that result directly from developing and implementing the VECP, such as any net increases in the cost of testing, operations, maintenance, and logistic support. The term does not include the normal administrative costs of processing the VECP.

"Instant contract savings," as used in this clause, means the estimated reduction in Contractor cost of performance resulting from acceptance of the VECP, minus allowable Contractor's development and implementation costs, including subcontractors' development and implementation costs (see paragraph (h) below).

"Value engineering change proposal (VECP)" means a proposal that--

(1) Requires a change to this, the instant contract, to implement; and
(2) Results in reducing the contract price or estimated cost without impairing essential functions or
characteristics; provided, that it does not involve a change--

(i) In deliverable end item quantities only; or

(ii) To the contract type only.

(c) VECP preparation. As a minimum, the Contractor shall include in each VECP the information described
in subparagraphs (1) through (7) below. If the proposed change is affected by contractually required
configuration management or similar procedures, the instructions in those procedures relating to format,
identification, and priority assignment shall govern VECP preparation. The VECP shall include the
following:

(1) A description of the difference between the existing contract requirement and that proposed, the
comparative advantages and disadvantages of each, a justification when an item's function or characteristics
are being altered, and the effect of the change on the end item's performance.

(2) A list and analysis of the contract requirements that must be changed if the VECP is accepted, including
any suggested specification revisions.

(3) A separate, detailed cost estimate for (i) the affected portions of the existing contract requirement and (ii)
the VECP. The cost reduction associated with the VECP shall take into account the Contractor's allowable
development and implementation costs, including any amount attributable to subcontracts under paragraph
(h) below.

(4) A description and estimate of costs the Government may incur in implementing the VECP, such as test
and evaluation and operating and support costs.

(5) A prediction of any effects the proposed change would have on collateral costs to the agency.

(6) A statement of the time by which a contract modification accepting the VECP must be issued in order to
achieve the maximum cost reduction, noting any effect on the contract completion time or delivery schedule.

(7) Identification of any previous submissions of the VECP, including the dates submitted, the agencies and
contract numbers involved, and previous Government actions, if known.

(d) Submission. The Contractor shall submit VECP's to the Resident Engineer at the worksite, with a copy to
the Contracting Officer.

(e) Government action. (1) The Contracting Officer shall notify the Contractor of the status of the VECP
within 45 calendar days after the contracting office receives it. If additional time is required, the Contracting
Officer shall notify the Contractor within the 45-day period and provide the reason for the delay and the
expected date of the decision. The Government will process VECP's expeditiously; however, it shall not be
liable for any delay in acting upon a VECP.

(2) If the VECP is not accepted, the Contracting Officer shall notify the Contractor in writing, explaining the
reasons for rejection. The Contractor may withdraw any VECP, in whole or in part, at any time before it is
accepted by the Government. The Contracting Officer may require that the Contractor provide written
notification before undertaking significant expenditures for VECP effort.

(3) Any VECP may be accepted, in whole or in part, by the Contracting Officer's award of a modification to
this contract citing this clause. The Contracting Officer may accept the VECP, even though an agreement on
price reduction has not been reached, by issuing the Contractor a notice to proceed with the change. Until a
notice to proceed is issued or a contract modification applies a VECP to this contract, the Contractor shall
perform in accordance with the existing contract. The decision to accept or reject all or part of any VECP is a unilateral decision made solely at the discretion of the Contracting Officer.

(f) Sharing.

(1) Rates. The Government's share of savings is determined by subtracting Government costs from instant contract savings and multiplying the result by (i) 45 percent for fixed-price contracts or (ii) 75 percent for cost-reimbursement contracts.

(2) Payment. Payment of any share due the Contractor for use of a VECP on this contract shall be authorized by a modification to this contract to--

(i) Accept the VECP;

(ii) Reduce the contract price or estimated cost by the amount of instant contract savings; and

(iii) Provide the Contractor's share of savings by adding the amount calculated to the contract price or fee.

(g) Subcontracts. The Contractor shall include an appropriate value engineering clause in any subcontract of $50,000 or more and may include one in subcontracts of lesser value. In computing any adjustment in this contract's price under paragraph (f) above, the Contractor's allowable development and implementation costs shall include any subcontractor's allowable development and implementation costs clearly resulting from a VECP accepted by the Government under this contract, but shall exclude any value engineering incentive payments to a subcontractor. The Contractor may choose any arrangement for subcontractor value engineering incentive payments; provided, that these payments shall not reduce the Government's share of the savings resulting from the VECP.

(h) Data. The Contractor may restrict the Government's right to use any part of a VECP or the supporting data by marking the following legend on the affected parts:

"These data, furnished under the Value Engineering--Construction clause of contract , shall not be disclosed outside the Government or duplicated, used, or disclosed, in whole or in part, for any purpose other than to evaluate a value engineering change proposal submitted under the clause. This restriction does not limit the Government's right to use information contained in these data if it has been obtained or is otherwise available from the Contractor or from another source without limitations."

If a VECP is accepted, the Contractor hereby grants the Government unlimited rights in the VECP and supporting data, except that, with respect to data qualifying and submitted as limited rights technical data, the Government shall have the rights specified in the contract modification implementing the VECP and shall appropriately mark the data. (The terms "unlimited rights" and "limited rights" are defined in Part 27 of the Federal Acquisition Regulation.)

(End of clause)

52.249-2 TERMINATION FOR CONVENIENCE OF THE GOVERNMENT (FIXED-PRICE) (SEP 1996) - ALTERNATE I (SEP 1996)

(a) The Government may terminate performance of work under this contract in whole or, from time to time, in part if the Contracting Officer determines that a termination is in the Government's interest. The Contracting Officer shall terminate by delivering to the Contractor a Notice of Termination specifying the extent of termination and the effective date.
(b) After receipt of a Notice of Termination, and except as directed by the Contracting Officer, the Contractor shall immediately proceed with the following obligations, regardless of any delay in determining or adjusting any amounts due under this clause:

1) Stop work as specified in the notice.

2) Place no further subcontracts or orders (referred to as subcontracts in this clause) for materials, services, or facilities, except as necessary to complete the continued portion of the contract.

3) Terminate all subcontracts to the extent they relate to the work terminated.

4) Assign to the Government, as directed by the Contracting Officer, all right, title, and interest of the Contractor under the subcontracts terminated, in which case the Government shall have the right to settle or to pay any termination settlement proposal arising out of those terminations.

5) With approval or ratification to the extent required by the Contracting Officer, settle all outstanding liabilities and termination settlement proposals arising from the termination of subcontracts; the approval or ratification will be final for purposes of this clause.

6) As directed by the Contracting Officer, transfer title and deliver to the Government (i) the fabricated or unfabricated parts, work in process, completed work, supplies, and other material produced or acquired for the work terminated, and (ii) the completed or partially completed plans, drawings, information, and other property that, if the contract had been completed, would be required to be furnished to the Government.

7) Complete performance of the work not terminated.

8) Take any action that may be necessary, or that the Contracting Officer may direct, for the protection and preservation of the property related to this contract that is in the possession of the Contractor and in which the Government has or may acquire an interest.

9) Use its best efforts to sell, as directed or authorized by the Contracting Officer, any property of the types referred to in subparagraph (b)(6) of this clause; provided, however, that the Contractor (i) is not required to extend credit to any purchaser and (ii) may acquire the property under the conditions prescribed by, and at prices approved by, the Contracting Officer. The proceeds of any transfer or disposition will be applied to reduce any payments to be made by the Government under this contract, credited to the price or cost of the work, or paid in any other manner directed by the Contracting Officer.

(c) The Contractor shall submit complete termination inventory schedules no later than 120 days from the effective date of termination, unless extended in writing by the Contracting Officer upon written request of the Contractor within this 120-day period.

(d) After expiration of the plant clearance period as defined in Subpart 45.6 of the Federal Acquisition Regulation, the Contractor may submit to the Contracting Officer a list, certified as to quantity and quality, of termination inventory not previously disposed of, excluding items authorized for disposition by the Contracting Officer. The Contractor may request the Government to remove those items or enter into an agreement for their storage. Within 15 days, the Government will accept title to those items and remove them or enter into a storage agreement. The Contracting Officer may verify the list upon removal of the items, or if stored, within 45 days from submission of the list, and shall correct the list, as necessary, before final settlement.

(e) After termination, the Contractor shall submit a final termination settlement proposal to the Contracting Officer in the form and with the certification prescribed by the Contracting Officer. The Contractor shall submit the proposal promptly, but no later than 1 year from the effective date of termination, unless extended in writing by the Contracting Officer upon written request of the Contractor within this 1-year period. However, if the Contracting Officer determines that the facts justify it, a termination settlement proposal
may be received and acted on after 1 year or any extension. If the Contractor fails to submit the proposal within the time allowed, the Contracting Officer may determine, on the basis of information available, the amount, if any, due the Contractor because of the termination and shall pay the amount determined.

(f) Subject to paragraph (e) of this clause, the Contractor and the Contracting Officer may agree upon the whole or any part of the amount to be paid or remaining to be paid because of the termination. The amount may include a reasonable allowance for profit on work done. However, the agreed amount, whether under this paragraph (g) or paragraph (g) of this clause, exclusive of costs shown in subparagraph (g)(3) of this clause, may not exceed the total contract price as reduced by (1) the amount of payments previously made and (2) the contract price of work not terminated. The contract shall be modified, and the Contractor paid the agreed amount. Paragraph (g) of this clause shall not limit, restrict, or affect the amount that may be agreed upon to be paid under this paragraph.

(g) If the Contractor and Contracting Officer fail to agree on the whole amount to be paid the Contractor because of the termination of work, the Contracting Officer shall pay the Contractor the amounts determined as follows, but without duplication of any amounts agreed upon under paragraph (f) of this clause:

(1) For contract work performed before the effective date of termination, the total (without duplication of any items) of--

(i) The cost of this work;

(ii) The cost of settling and paying termination settlement proposals under terminated subcontracts that are properly chargeable to the terminated portion of the contract if not included in subdivision (g)(1)(i) of this clause; and

(iii) A sum, as profit on subdivision (g)(1)(i) of this clause, determined by the Contracting Officer under 49.202 of the Federal Acquisition Regulation, in effect on the date of this contract, to be fair and reasonable; however, if it appears that the Contractor would have sustained a loss on the entire contract had it been completed, the Contracting Officer shall allow no profit under this subdivision (iii) and shall reduce the settlement to reflect the indicated rate of loss.

(2) The reasonable costs of settlement of the work terminated, including--

(i) Accounting, legal, clerical, and other expenses reasonably necessary for the preparation of termination settlement proposals and supporting data;

(ii) The termination and settlement of subcontracts (excluding the amounts of such settlements); and

(iii) Storage, transportation, and other costs incurred, reasonably necessary for the preservation, protection, or disposition of the termination inventory.

(h) Except for normal spoilage, and except to the extent that the Government expressly assumed the risk of loss, the Contracting Officer shall exclude from the amounts payable to the Contractor under paragraph (g) of this clause, the fair value, as determined by the Contracting Officer, of property that is destroyed, lost, stolen, or damaged so as to become undeliverable to the Government or to a buyer.

(i) The cost principles and procedures of Part 31 of the Federal Acquisition Regulation, in effect on the date of this contract, shall govern all costs claimed, agreed to, or determined under this clause.

(j) The Contractor shall have the right of appeal, under the Disputes clause, from any determination made by the Contracting Officer under paragraph (e), (g), or (l) of this clause, except that if the Contractor failed to submit the termination settlement proposal or request for equitable adjustment within the time provided in paragraph (e) or (l), respectively, and failed to request a time extension, there is no right of appeal.
(k) In arriving at the amount due the Contractor under this clause, there shall be deducted—

1. All unliquidated advance or other payments to the Contractor under the terminated portion of this contract;

2. Any claim which the Government has against the Contractor under this contract; and

3. The agreed price for, or the proceeds of sale of, materials, supplies, or other things acquired by the Contractor or sold under the provisions of this clause and not recovered by or credited to the Government.

(l) If the termination is partial, the Contractor may file a proposal with the Contracting Officer for an equitable adjustment of the price(s) of the continued portion of the contract. The Contracting Officer shall make any equitable adjustment agreed upon. Any proposal by the Contractor for an equitable adjustment under this clause shall be requested within 90 days from the effective date of termination unless extended in writing by the Contracting Officer.

(m)(1) The Government may, under the terms and conditions it prescribes, make partial payments and payments against costs incurred by the Contractor for the terminated portion of the contract, if the Contracting Officer believes the total of these payments will not exceed the amount to which the Contractor will be entitled.

(2) If the total payments exceed the amount finally determined to be due, the Contractor shall repay the excess to the Government upon demand, together with interest computed at the rate established by the Secretary of the Treasury under 50 U.S.C. App. 1215(b)(2). Interest shall be computed for the period from the date the excess payment is received by the Contractor to the date the excess is repaid. Interest shall not be charged on any excess payment due to a reduction in the Contractor's termination settlement proposal because of retention or other disposition of termination inventory until 10 days after the date of the retention or disposition, or a later date determined by the Contracting Officer because of the circumstances.

(n) Unless otherwise provided in this contract or by statute, the Contractor shall maintain all records and documents relating to the terminated portion of this contract for 3 years after final settlement. This includes all books and other evidence bearing on the Contractor's costs and expenses under this contract. The Contractor shall make these records and documents available to the Government, at the Contractor's office, at all reasonable times, without any direct charge. If approved by the Contracting Officer, photographs, microphotographs, or other authentic reproductions may be maintained instead of original records and documents.

52.249-10 DEFAULT (FIXED-PRICE CONSTRUCTION) (APR 1984)

(a) If the Contractor refuses or fails to prosecute the work or any separable part, with the diligence that will insure its completion within the time specified in this contract including any extension, or fails to complete the work within this time, the Government may, by written notice to the Contractor, terminate the right to proceed with the work (or the separable part of the work) that has been delayed. In this event, the Government may take over the work and complete it by contract or otherwise, and may take possession of and use any materials, appliances, and plant on the work site necessary for completing the work. The Contractor and its sureties shall be liable for any damage to the Government resulting from the Contractor's refusal or failure to complete the work within the specified time, whether or not the Contractor's right to proceed with the work is terminated. This liability includes any increased costs incurred by the Government in completing the work.

(b) The Contractor's right to proceed shall not be terminated nor the Contractor charged with damages under this clause, if--

1. The delay in completing the work arises from unforeseeable causes beyond the control and without the
fault or negligence of the Contractor. Examples of such causes include

(i) acts of God or of the public enemy,

(ii) acts of the Government in either its sovereign or contractual capacity,

(iii) acts of another Contractor in the performance of a contract with the Government,

(iv) fires,

(v) floods,

(vi) epidemics,

(vii) quarantine restrictions,

(viii) strikes,

(ix) freight embargoes,

(x) unusually severe weather, or delays of subcontractors or suppliers at any tier arising from unforeseeable causes beyond the control and without the fault or negligence of both the Contractor and the subcontractors or suppliers; and

(2) The Contractor, within 10 days from the beginning of any delay (unless extended by the Contracting Officer), notifies the Contracting Officer in writing of the causes of delay. The Contracting Officer shall ascertain the facts and the extent of delay. If, in the judgment of the Contracting Officer, the findings of fact warrant such action, the time for completing the work shall be extended. The findings of the Contracting Officer shall be final and conclusive on the parties, but subject to appeal under the Disputes clause.

(c) If, after termination of the Contractor's right to proceed, it is determined that the Contractor was not in default, or that the delay was excusable, the rights and obligations of the parties will be the same as if the termination had been issued for the convenience of the Government.

The rights and remedies of the Government in this clause are in addition to any other rights and remedies provided by law or under this contract.

52.252-6 AUTHORIZED DEVIATIONS IN CLAUSES (APR 1984)

(a) The use in this solicitation or contract of any Federal Acquisition Regulation (48 CFR Chapter 1) clause with an authorized deviation is indicated by the addition of "(DEVIATION)" after the date of the clause.

(b) The use in this solicitation or contract of any _DOD FAR Supplement_ (48 CFR _2_) clause with an authorized deviation is indicated by the addition of "(DEVIATION)" after the name of the regulation.

52.253-1 COMPUTER GENERATED FORMS (JAN 1991)

(a) Any data required to be submitted on a Standard or Optional Form prescribed by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of the form, provided there is no change to the name, content, or sequence of the data elements on the form, and provided the form carries the Standard or Optional Form number and edition date.
(b) Unless prohibited by agency regulations, any data required to be submitted on an agency unique form prescribed by an agency supplement to the FAR may be submitted on a computer generated version of the form provided there is no change to the name, content, or sequence of the data elements on the form and provided the form carries the agency form number and edition date.

(c) If the Contractor submits a computer generated version of a form that is different than the required form, then the rights and obligations of the parties will be determined based on the content of the required form.

252.201-7000 CONTRACTING OFFICER'S REPRESENTATIVE (DEC 1991)

(a) “Definition. Contracting officer's representative” means an individual designated in accordance with subsection 201.602-2 of the Defense Federal Acquisition Regulation Supplement and authorized in writing by the contracting officer to perform specific technical or administrative functions.

(b) If the Contracting Officer designates a contracting officer's representative (COR), the Contractor will receive a copy of the written designation. It will specify the extent of the COR's authority to act on behalf of the contracting officer. The COR is not authorized to make any commitments or changes that will affect price, quality, quantity, delivery, or any other term or condition of the contract.

(End of clause)

252.203-7001 PROHIBITION ON PERSONS CONVICTED OF FRAUD OR OTHER DEFENSE-CONTRACT-RELATED FELONIES (MAR 1999)

(a) Definitions. As used in this clause—

(1) “Arising out of a contract with the DoD” means any act in connection with—

(i) Attempting to obtain;

(ii) Obtaining, or

(iii) Performing a contract or first-tier subcontract of any agency, department, or component of the Department of Defense (DoD).

(2) “Conviction of fraud or any other felony” means any conviction for fraud or a felony in violation of state or Federal criminal statutes, whether entered on a verdict or plea, including a plea of nolo contendere, for which sentence has been imposed.

(3) “Date of conviction” means the date judgment was entered against the individual.

(b) Any individual who is convicted after September 29, 1988, of fraud or any other felony arising out of a contract with the DoD is prohibited from serving—

(1) In a management or supervisory capacity on any DoD contract or first-tier subcontract;

(2) On the board of directors of any DoD contractor or first-tier subcontractor;

(3) As a consultant, agent, or representative for any DoD contractor or first-tier subcontractor; or
(4) In any other capacity with the authority to influence, advise, or control the decisions of any DoD contractor or subcontractor with regard to any DoD contract or first-tier subcontract.

(c) Unless waived, the prohibition in paragraph (b) of this clause applies for not less than 5 years from the date of conviction.

(d) 10 U.S.C. 2408 provides that a defense contractor or first-tier subcontractor shall be subject to a criminal penalty of not more than $500,000 if convicted of knowingly—

(1) Employing a person under a prohibition specified in paragraph (b) of this clause; or

(2) Allowing such a person to serve on the board of directors of the contractor or first-tier subcontractor.

(e) In addition to the criminal penalties contained in 10 U.S.C. 2408, the Government may consider other available remedies, such as—

(1) Suspension or debarment;

(2) Cancellation of the contract at no cost to the Government; or

(3) Termination of the contract for default.

(f) The Contractor may submit written requests for waiver of the prohibition in paragraph (b) of this clause to the Contracting Officer. Requests shall clearly identify—

(1) The person involved;

(2) The nature of the conviction and resultant sentence or punishment imposed;

(3) The reasons for the requested waiver; and

(4) An explanation of why a waiver is in the interest of national security.

(g) The Contractor agrees to include the substance of this clause, appropriately modified to reflect the identity and relationship of the parties, in all first-tier subcontracts exceeding the simplified acquisition threshold in Part 2 of the Federal Acquisition Regulation, except those for commercial items or components.

(h) Pursuant to 10 U.S.C. 2408(c), defense contractors and subcontractors may obtain information as to whether a particular person has been convicted of fraud or any other felony arising out of a contract with the DoD by contacting The Office of Justice Programs, The Denial of Federal Benefits Office, U.S. Department of Justice, telephone (202) 616-3507.

(End of clause)

252.203-7002 DISPLAY OF DOD HOTLINE POSTER (DEC 1991)

(a) The Contractor shall display prominently in common work areas within business segments performing work under Department of Defense (DoD) contracts, DoD Hotline Posters prepared by the DoD Office of the Inspector General.

(b) DoD Hotline Posters may be obtained from the DoD Inspector General, ATTN: Defense Hotline, 400 Army Navy Drive, Washington, DC 22202-2884.
(c) The Contractor need not comply with paragraph (a) of this clause if it has established a mechanism, such as a hotline, by which employees may report suspected instances of improper conduct, and instructions that encourage employees to make such reports.

(End of clause)

252.204-7003 CONTROL OF GOVERNMENT PERSONNEL WORK PRODUCT (APR 1992)

The Contractor's procedures for protecting against unauthorized disclosure of information shall not require Department of Defense employees or members of the Armed Forces to relinquish control of their work products, whether classified or not, to the contractor.

(End of clause)

252.204-7004 REQUIRED CENTRAL CONTRACTOR REGISTRATION.(NOV 2001)

(a) Definitions.

As used in this clause--

(1) Central Contractor Registration (CCR) database means the primary DoD repository for contractor information required for the conduct of business with DoD.

(2) Data Universal Numbering System (DUNS) number means the 9-digit number assigned by Dun and Bradstreet Information Services to identify unique business entities.

(3) Data Universal Numbering System +4 (DUNS+4) number means the DUNS number assigned by Dun and Bradstreet plus a 4-digit suffix that may be assigned by a parent (controlling) business concern. This 4-digit suffix may be assigned at the discretion of the parent business concern for such purposes as identifying subunits or affiliates of the parent business concern.

(4) Registered in the CCR database means that all mandatory information, including the DUNS number or the DUNS+4 number, if applicable, and the corresponding Commercial and Government Entity (CAGE) code, is in the CCR database; the DUNS number and the CAGE code have been validated; and all edits have been successfully completed.

(b)(1) By submission of an offer, the offeror acknowledges the requirement that a prospective awardee must be registered in the CCR database prior to award, during performance, and through final payment of any contract resulting from this solicitation, except for awards to foreign vendors for work to be performed outside the United States.

(2) The offeror shall provide its DUNS or, if applicable, its DUNS+4 number with its offer, which will be used by the Contracting Officer to verify that the offeror is registered in the CCR database.

(3) Lack of registration in the CCR database will make an offeror ineligible for award.

(4) DoD has established a goal of registering an applicant in the CCR database within 48 hours after receipt of a complete and accurate application via the Internet. However, registration of an applicant submitting an application through a method other than the Internet may take up to 30 days. Therefore, offerors that are not registered should consider applying for registration immediately upon receipt of this solicitation.
(c) The Contractor is responsible for the accuracy and completeness of the data within the CCR, and for any liability resulting from the Government’s reliance on inaccurate or incomplete data. To remain registered in the CCR database after the initial registration, the Contractor is required to confirm on an annual basis that its information in the CCR database is accurate and complete.

(d) Offerors and contractors may obtain information on registration and annual confirmation requirements by calling 1-888-227-2423, or via the Internet at http://www.ccr.com.

(End of clause)

252.205-7000 PROVISION OF INFORMATION TO COOPERATIVE AGREEMENT HOLDERS (DEC 1991)

(a) Definition.

"Cooperative agreement holder" means a State or local government; a private, nonprofit organization; a tribal organization (as defined in section 4(c) of the Indian Self-Determination and Education Assistance Act (Pub. L. 93-268; 25 U.S.C. 450 (c))); or an economic enterprise (as defined in section 3(e) of the Indian Financing Act of 1974 (Pub. L. 93-362; 25 U.S.C. 1452(e))) whether such economic enterprise is organized for profit or nonprofit purposes; which has an agreement with the Defense Logistics Agency to furnish procurement technical assistance to business entities.

(b) The Contractor shall provide cooperative agreement holders, upon their request, with a list of those appropriate employees or offices responsible for entering into subcontracts under defense contracts. The list shall include the business address, telephone number, and area of responsibility of each employee or office.

(c) The Contractor need not provide the listing to a particular cooperative agreement holder more frequently than once a year.

(End of clause)

252.209-7000 ACQUISITION FROM SUBCONTRACTORS SUBJECT TO ONSITE INSPECTION UNDER THE INTERMEDIATE-RANGE NUCLEAR FORCES (INF) TREATY (NOV 1995)

(a) The Contractor shall not deny consideration for a subcontract award under this contract to a potential subcontractor subject to on-site inspection under the INF Treaty, or a similar treaty, solely or in part because of the actual or potential presence of Soviet inspectors at the subcontractor's facility, unless the decision is approved by the Contracting Officer.

(b) The Contractor shall incorporate this clause, including this paragraph (b), in all solicitations and contracts exceeding the simplified acquisition threshold in part 13 of the Federal Acquisition Regulation, except those for commercial items.

252.209-7003 COMPLIANCE WITH VETERANS' EMPLOYMENT REPORTING REQUIREMENTS (MAR 1998)

By submission of its offer, the offeror represents that, if it is subject to the reporting requirements of 37 U.S.C. 4212(d) (i.e., the VETS-100 report required by Federal Acquisition Regulation clause 52.222-37, Employment Reports on Disabled Veterans and Veterans of the Vietnam Era), it has submitted the most recent report required by 38 U.S.C. 4212(d).
252.209-7004 SUBCONTRACTING WITH FIRMS THAT ARE OWNED OR CONTROLLED BY THE GOVERNMENT OF A TERRORIST COUNTRY (MAR 1998)

(a) Unless the Government determines that there is a compelling reason to do so, the Contractor shall not enter into any subcontract in excess of $25,000 with a firm, or subsidiary of a firm, that is identified, on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs, as being ineligible for the award of Defense contracts or subcontracts because it is owned or controlled by the government of a terrorist country.

(b) A corporate officer or a designee of the Contractor shall notify the Contracting Officer, in writing, before entering into a subcontract with a party that is identified, on the List of Parties Excluded from Federal Procurement and Nonprocurement Programs, as being ineligible for the award of Defense contracts or subcontracts because it is owned or controlled by the government of a terrorist country. The notice must include the name of the proposed subcontractor notwithstanding its inclusion on the List of Parties Excluded From Federal Procurement and Nonprocurement Programs.

252.219-7003 SMALL, SMALL DISADVANTAGED AND WOMEN-OWNED SMALL BUSINESS SUBCONTRACTING PLAN (DOD CONTRACTS) (APR. 1996)

This clause supplements the Federal Acquisition Regulation 52.219-9, Small, Small Disadvantaged and Women-Owned Small Business Subcontracting Plan, clause of this contract.

(a) Definitions. Historically black colleges and universities, as used in this clause, means institutions determined by the Secretary of Education to meet the requirements of 34 CFR 608.2. The term also means any nonprofit research institution that was an integral part of such a college or university before November 14, 1986.

Minority institutions, as used in this clause, means institutions meeting the requirements of section 1046(3) of the Higher Education Act of 1965 (20 U.S.C. 1135d-5(3)). The term also includes Hispanic-serving institutions as defined in section 316(b)(1) of such Act (20 U.S.C. 1059c(b)(1)).

(b) Except for company or division-wide commercial items subcontracting plans, the term small disadvantaged business, when used in the FAR 52.219-9 clause, includes historically black colleges and universities and minority institutions, in addition to small disadvantaged business concerns.

(c) Work under the contract or its subcontracts shall be credited toward meeting the small disadvantaged business concern goal required by paragraph (d) of the FAR 52.219-9 clause when:

(1) It is performed on Indian lands or in joint venture with an Indian tribe or a tribally-owned corporation, and

(2) It meets the requirements of 10 U.S.C. 2323a.

(d) Subcontracts awarded to workshops approved by the Committee for Purchase from People Who are Blind or Severely Disabled (41 U.S.C. 46-48), may be counted toward the Contractor's small business subcontracting goal.

(e) A mentor firm, under the Pilot Mentor-Protege Program established under Section 831 of Pub. L. 101-510, as amended, may count toward its small disadvantaged business goal, subcontracts awarded--

(f) The master plan approval referred to in paragraph (f) of the FAR 52.219-9 clause is approval by the Contractor's cognizant contract administration activity.
(g) In those subcontracting plans which specifically identify small, small disadvantaged, and women-owned small businesses, the Contractor shall notify the Administrative Contracting Officer of any substitutions of firms that are not small, small disadvantaged, or women-owned small businesses for the firms listed in the subcontracting plan. Notifications shall be in writing and shall occur within a reasonable period of time after award of the subcontract. Contractor-specified formats shall be acceptable.

(End of clause)

252.223-7004 DRUG-FREE WORK FORCE (SEP 1988)

(a) Definitions.

(1) "Employee in a sensitive position," as used in this clause, means an employee who has been granted access to classified information; or employees in other positions that the Contractor determines involve national security; health or safety, or functions other than the foregoing requiring a high degree of trust and confidence.

(2) "Illegal drugs," as used in this clause, means controlled substances included in Schedules I and II, as defined by section 802(6) of title 21 of the United States Code, the possession of which is unlawful under chapter 13 of that Title. The term "illegal drugs" does not mean the use of a controlled substance pursuant to a valid prescription or other uses authorized by law.

(b) The Contractor agrees to institute and maintain a program for achieving the objective of a drug-free work force. While this clause defines criteria for such a program, contractors are encouraged to implement alternative approaches comparable to the criteria in paragraph (c) that are designed to achieve the objectives of this clause.

(c) Contractor programs shall include the following, or appropriate alternatives:

(1) Employee assistance programs emphasizing high level direction, education, counseling, rehabilitation, and coordination with available community resources;

(2) Supervisory training to assist in identifying and addressing illegal drug use by Contractor employees;

(3) Provision for self-referrals as well as supervisory referrals to treatment with maximum respect for individual confidentiality consistent with safety and security issues;

(4) Provision for identifying illegal drug users, including testing on a controlled and carefully monitored basis. Employee drug testing programs shall be established taking account of the following:

(i) The Contractor shall establish a program that provides for testing for the use of illegal drugs by employees in sensitive positions. The extent of and criteria for such testing shall be determined by the Contractor based on considerations that include the nature of the work being performed under the contract, the employee's duties, and efficient use of Contractor resources, and the risks to health, safety, or national security that could result from the failure of an employee adequately to discharge his or her position.

(ii) In addition, the Contractor may establish a program for employee drug testing--

(A) When there is a reasonable suspicion that an employee uses illegal drugs; or

(B) When an employee has been involved in an accident or unsafe practice;

(C) As part of or as a follow-up to counseling or rehabilitation for illegal drug use;
(D) As part of a voluntary employee drug testing program.

(iii) The Contractor may establish a program to test applicants for employment for illegal drug use.

(iv) For the purpose of administering this clause, testing for illegal drugs may be limited to those substances for which testing is prescribed by section 2.1 of subpart B of the "Mandatory Guidelines for Federal Workplace Drug Testing Programs" (53 FR 11980 (April 11, 1988), issued by the Department of Health and Human Services.

(d) Contractors shall adopt appropriate personnel procedures to deal with employees who are found to be using drugs illegally. Contractors shall not allow any employee to remain on duty or perform in a sensitive position who is found to use illegal drugs until such times as the Contractor, in accordance with procedures established by the Contractor, determines that the employee may perform in such a position.

(e) The provisions of this clause pertaining to drug testing program shall not apply to the extent that are inconsistent with state or local law, or with an existing collective bargaining agreement; provided that with respect to the latter, the Contractor agrees those issues that are in conflict will be a subject of negotiation at the next collective bargaining session.

(End of clause)

252.223-7006 PROHIBITION ON STORAGE AND DISPOSAL OF TOXIC AND HAZARDOUS MATERIALS (APR 1993)

(a) "Definitions".

As used in this clause --

(1) "Storage" means a non-transitory, semi-permanent or permanent holding, placement, or leaving of material. It does not include a temporary accumulation of a limited quantity of a material used in or a waste generated or resulting from authorized activities, such as servicing, maintenance, or repair of Department of Defense (DoD) items, equipment, or facilities.

(2) "Toxic or hazardous materials" means:

(ii) Materials that are of an explosive, flammable, or pyrotechnic nature; or

(iii) Materials otherwise identified by the Secretary of Defense as specified in DoD regulations.

(b) In accordance with 10 U.S.C. 2692, the Contractor is prohibited from storing or disposing of non-DoD-owned toxic or hazardous materials on a DoD installation, except to the extent authorized by a statutory exception to 10 U.S.C. 2692 or as authorized by the Secretary of Defense or his designee.

(End of clause)
252.225-7031 SECONDARY ARAB BOYCOTT OF ISRAEL (JUN 1992)

(a) Definitions. As used in this clause--

(1) "Foreign person" means any person other than a United States person as defined in Section 16(2) of the Export Administration Act of 1979 (50 U.S.C. App. Sec 2415).

(2) "United States person" is defined in Section 16(2) of the Export Administration Act of 1979 and means any United States resident or national (other than an individual resident outside the United States and employed by other than a United States person), any domestic concern (including any permanent domestic establishment of any foreign concern), and any foreign subsidiary or affiliate (including any permanent foreign establishment) of any domestic concern which is controlled in fact by such domestic concerns, as determined under regulations of the President.

(b) Certification. By submitting this offer, the Offeror, if a foreign person, company or entity, certifies that it--

(1) Does not comply with the Secondary Arab Boycott of Israel; and

(2) Is not taking or knowingly agreeing to take any action, with respect to the Secondary Boycott of Israel by Arab countries, which 50 U.S.C. App. Sec 2407(a) prohibits a United States person from taking.

(End of clause)

252.227-7030 TECHNICAL DATA--WITHHOLDING OF PAYMENT (MAR 2000)

(a) If technical data specified to be delivered under this contract, is not delivered within the time specified by this contract or is deficient upon delivery (including having restrictive markings not identified in the list described in the clause at 252.227-7013(e)(2) or 252.227-7018(e)(2) of this contract), the Contracting Officer may until such data is accepted by the Government, withhold payment to the Contractor of ten percent (10%) of the total contract price or amount unless a lesser withholding is specified in the contract. Payments shall not be withheld nor any other action taken pursuant to this paragraph when the Contractor's failure to make timely delivery or to deliver such data without deficiencies arises out of causes beyond the control and without the fault or negligence of the Contractor.

(b) The withholding of any amount or subsequent payment to the Contractor shall not be construed as a waiver of any rights accruing to the Government under this contract.

(End of clause)

252.227-7033 RIGHTS IN SHOP DRAWINGS (APR 1966)

(a) Shop drawings for construction means drawings, submitted to the Government by the Construction Contractor, subcontractor or any lower-tier subcontractor pursuant to a construction contract, showing in detail (i) the proposed fabrication and assembly of structural elements and (ii) the installation (i.e., form, fit, and attachment details) of materials or equipment. The Government may duplicate, use, and disclose in any manner and for any purpose shop drawings delivered under this contract.

(b) This clause, including this paragraph (b), shall be included in all subcontracts hereunder at any tier.
252.231-7000 SUPPLEMENTAL COST PRINCIPLES (DEC 1991)

When the allowability of costs under this contract is determined in accordance with part 31 of the Federal Acquisition Regulation (FAR), allowability shall also be determined in accordance with part 231 of the Defense FAR Supplement, in effect on the date of this contract.

252.236-7000 MODIFICATION PROPOSALS - PRICE BREAKDOWN. (DEC 1991)

(a) The Contractor shall furnish a price breakdown, itemized as required and within the time specified by the Contracting Officer, with any proposal for a contract modification.

(b) The price breakdown --

(1) Must include sufficient detail to permit an analysis of profit, and of all costs for --

(i) Material;

(ii) Labor;

(iii) Equipment;

(iv) Subcontracts; and

(v) Overhead; and

(2) Must cover all work involved in the modification, whether the work was deleted, added, or changed.

(c) The Contractor shall provide similar price breakdowns to support any amounts claimed for subcontracts.

(d) The Contractor's proposal shall include a justification for any time extension proposed.

252.243-7001 PRICING OF CONTRACT MODIFICATIONS (DEC 1991)

When costs are a factor in any price adjustment under this contract, the contract cost principles and procedures in FAR part 31 and DFARS part 231, in effect on the date of this contract, apply.

252.243-7002 REQUESTS FOR EQUITABLE ADJUSTMENT (MAR 1998)

(a) The amount of any request for equitable adjustment to contract terms shall accurately reflect the contract adjustment for which the Contractor believes the Government is liable. The request shall include only costs for performing the change, and shall not include any costs that already have been reimbursed or that have been separately claimed. All indirect costs included in the request shall be properly allocable to the change in accordance with applicable acquisition regulations.

(b) In accordance with 10 U.S.C. 2410(a), any request for equitable adjustment to contract terms that exceeds the simplified acquisition threshold shall bear, at the time of submission, the following certificate executed by an individual authorized to certify the request on behalf of the Contractor:

I certify that the request is made in good faith, and that the supporting data are accurate and complete to the best of my knowledge and belief.

(Official's Name)

130/140

(Title)

(c) The certification in paragraph (b) of this clause requires full disclosure of all relevant facts, including--

(1) Cost or pricing data if required in accordance with subsection 15.403-4 of the Federal Acquisition Regulation (FAR); and

(2) Information other than cost or pricing data, in accordance with subsection 15.403-3 of the FAR, including actual cost data and data to support any estimated costs, even if cost or pricing data are not required.

(d) The certification requirement in paragraph (b) of this clause does not apply to----

(1) Requests for routine contract payments; for example, requests for payment for accepted supplies and services, routine vouchers under a cost-reimbursement type contract, or progress payment invoices; or

(2) Final adjustment under an incentive provision of the contract.

252.247-7023 TRANSPORTATION OF SUPPLIES BY SEA (MAR 2000)

(a) Definitions. As used in this clause --

(1) "Components" means articles, materials, and supplies incorporated directly into end products at any level of manufacture, fabrication, or assembly by the Contractor or any subcontractor.

(2) "Department of Defense" (DoD) means the Army, Navy, Air Force, Marine Corps, and defense agencies.

(3) "Foreign flag vessel" means any vessel that is not a U.S.-flag vessel.

(4) "Ocean transportation" means any transportation aboard a ship, vessel, boat, barge, or ferry through international waters.

(5) "Subcontractor" means a supplier, materialman, distributor, or vendor at any level below the prime contractor whose contractual obligation to perform results from, or is conditioned upon, award of the prime contract and who is performing any part of the work or other requirement of the prime contract.

(6) "Supplies" means all property, except land and interests in land, that is clearly identifiable for eventual use by or owned by the DoD at the time of transportation by sea.

(i) An item is clearly identifiable for eventual use by the DoD if, for example, the contract documentation contains a reference to a DoD contract number or a military destination.

(ii) "Supplies" includes (but is not limited to) public works; buildings and facilities; ships; floating equipment and vessels of every character, type, and description, with parts, subassemblies, accessories, and equipment; machine tools; material; equipment; stores of all kinds; end items; construction materials; and components of the foregoing.

(7) "U.S.-flag vessel" means a vessel of the United States or belonging to the United States, including any vessel registered or having national status under the laws of the United States.

(b)(1) The Contractor shall use U.S.-flag vessels when transporting any supplies by sea under this contract.

(2) A subcontractor transporting supplies by sea under this contract shall use U.S.-flag vessels if--
(i) This contract is a construction contract; or

(ii) The supplies being transported are--

(A) Noncommercial items; or

(B) Commercial items that--

(1) The Contractor is reselling or distributing to the Government without adding value (generally, the Contractor does not add value to items that it contracts for f.o.b. destination shipment);

(2) Are shipped in direct support of U.S. military contingency operations, exercises, or forces deployed in humanitarian or peacekeeping operations; or

(3) Are commissary or exchange cargoes transported outside of the Defense Transportation System in accordance with 10 U.S.C. 2643.

c) The Contractor and its subcontractors may request that the Contracting Officer authorize shipment in foreign-flag vessels, or designate available U.S.-flag vessels, if the Contractor or a subcontractor believes that--

(1) U.S.-flag vessels are not available for timely shipment;

(2) The freight charges are inordinately excessive or unreasonable; or

(3) Freight charges are higher than charges to private persons for transportation of like goods.

d) The Contractor must submit any request for use of other than U.S.-flag vessels in writing to the Contracting Officer at least 45 days prior to the sailing date necessary to meet its delivery schedules. The Contracting Officer will process requests submitted after such date(s) as expeditiously as possible, but the Contracting Officer's failure to grant approvals to meet the shipper's sailing date will not of itself constitute a compensable delay under this or any other clause of this contract. Requests shall contain at a minimum--

(1) Type, weight, and cube of cargo;

(2) Required shipping date;

(3) Special handling and discharge requirements;

(4) Loading and discharge points;

(5) Name of shipper and consignee;

(6) Prime contract number; and

(7) A documented description of efforts made to secure U.S.-flag vessels, including points of contact (with names and telephone numbers) with at least two U.S.-flag carriers contacted. Copies of telephone notes, telegraphic and facsimile messages or letters will be sufficient for this purpose.

e) The Contractor shall, within 30 days after each shipment covered by this clause, provide the Contracting Officer and the Division of National Cargo, Office of Market Development, Maritime Administration, U.S. Department of Transportation, Washington, DC 20590, one copy of the rated on board vessel operating carrier's ocean bill of lading, which shall contain the following information--
(1) Prime contract number;
(2) Name of vessel;
(3) Vessel flag of registry;
(4) Date of loading;
(5) Port of loading;
(6) Port of final discharge;
(7) Description of commodity;
(8) Gross weight in pounds and cubic feet if available;
(9) Total ocean freight in U.S. dollars; and
(10) Name of the steamship company.

(f) The Contractor agrees to provide with its final invoice under this contract a representation that to the best of its knowledge and belief --

(1) No ocean transportation was used in the performance of this contract;
(2) Ocean transportation was used and only U.S.-flag vessels were used for all ocean shipments under the contract;
(3) Ocean transportation was used, and the Contractor had the written consent of the Contracting Officer for all non-U.S.-flag ocean transportation; or
(4) Ocean transportation was used and some or all of the shipments were made on non-U.S.-flag vessels without the written consent of the Contracting Officer. The Contractor shall describe these shipments in the following format:

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>CONTRACT LINE ITEMS</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(g) If the final invoice does not include the required representation, the Government will reject and return it to the Contractor as an improper invoice for the purposes of the Prompt Payment clause of this contract. In the event there has been unauthorized use of non-U.S.-flag vessels in the performance of this contract, the Contracting Officer is entitled to equitably adjust the contract, based on the unauthorized use.

(h) The Contractor shall include this clause, including this paragraph (h), in all subcontractors under this contract that--
(1) Exceed the simplified acquisition threshold in Part 2 of the Federal Acquisition Regulation; and

(2) Are for a type of supplies described in paragraph (b)(3) of this clause.

(End of clause)

252.247-7024 NOTIFICATION OF TRANSPORTATION OF SUPPLIES BY SEA (MAR 2000)

(a) The Contractor has indicated by the response to the solicitation provision, Representation of Extent of Transportation by Sea, that it did not anticipate transporting by sea any supplies. If, however, after the award of this contract, the Contractor learns that supplies, as defined in the Transportation of Supplies by Sea clause of this contract, will be transported by sea, the Contractor --

(1) Shall notify the Contracting Officer of that fact; and

(2) Hereby agrees to comply with all the terms and conditions of the Transportation of Supplies by Sea clause of this contract.

(b) The Contractor shall include this clause; including this paragraph (b), revised as necessary to reflect the relationship of the contracting parties--

(1) In all subcontracts under this contract, if this contract is a construction contract; or

(2) If this contract is not a construction contract, in all subcontracts under this contract that are for--

(i) Noncommercial items; or

(ii) Commercial items that--

(A) The Contractor is reselling or distributing to the Government without adding value (generally, the Contractor does not add value to items that it subcontracts for f.o.b. destination shipment);

(B) Are shipped in direct support of U.S. military contingency operations, exercises, or forces deployed in humanitarian or peacekeeping operations; or

(C) Are commissary or exchange cargoes transported outside of the Defense Transportation System in accordance with 10 U.S.C. 2643.

(End of clause)
SECTION 00800 Special Contract Requirements

52.211-4010 VII Commencement, Prosecution, and Completion of Work APR 1984

52.211-12 Liquidated Damages--Construction SEP 2000

52.231-5000 Equipment Ownership and Operating Expense Schedule (Mar 1995) MAY 1999

52.236-4 Physical Data APR 1984

52.236-14 Availability and Use of Utility Services APR 1984

52.236-16 Alt I Quantity Surveys (Apr 1984) - Alternate I APR 1984

52.236-26 Preconstruction Conference FEB 1995

52.246-21 Warranty of Construction MAR 1994

52.249-5000 Basis for Settlement of Proposals MAY 1999

252.236-7001 Contract Drawings, Maps, and Specifications AUG 2000

52.236-4001 Contract Drawings, Maps, and Specifications After Award

252.242-7000 Postaward Conference DEC 1991

52.1000-4200 Contracting Officer for Contracts (MAR 1991) (LRD)

52.1000-4210 Required Insurance (APR 1984) (FAR 28.307-2)

52.2000-4201 Year 2000 Compliance (JUL 1998)
SECTION 00800 Special Contract Requirements

52.211-4010 VII COMMENCEMENT, PROSECUTION, AND COMPLETION OF WORK (APR 1984)
FAR 52.211-10

(a) The Contractor shall be required to (a) commence work under this contract within 10 calendar days after the date the Contractor receives the notice to proceed, (b) prosecute the work diligently, and (c) complete phase one of the project not later than 494 calendar days after receipt of Notice-to-Proceed and the entire work ready for use not later than 540. The time stated for completion shall include final cleanup of the premises.

(b) The Contractor shall complete turfing within 15 calendar days after the time specified above; except that if all other work except turfing is completed in:
 (1) The period 1 July to 14 August, the turfing shall be completed not later than the following 30 October; or
 (2) The period 1 November to 28 February, the turfing shall be completed not later than the following 15 April.

(c) The heating and air conditioning duct system shall be balanced in a timely manner consistent with the other contract work. The off-season system (heating or air-conditioning) adjustment shall be accomplished in the most advantageous season, regardless of the expiration of the contract completion date.

(d) The time stated for completion does not include final as-built drawings. The Contractor shall commence work on final as-built drawings upon his receipt of the approved preliminary as-built drawings. The Contractor shall have 60 calendar days to complete and return to the Contracting Officer all final as-built drawing work specified in the TECHNICAL PROVISIONS, DIVISION 1, section on AS-BUILT DRAWINGS.

(End of clause)

52.211-12 LIQUIDATED DAMAGES -- CONSTRUCTION (SEP 2000)

(a) If the Contractor fails to complete phase one of the work within the time specified in the contract, the Contractor shall pay liquidated damages to the Government in the amount of $471.23 for each calendar day of delay until the work is completed or accepted. If the Contractor fails to complete the entire work within the time specified in the contract, the Contractor shall pay an additional $47.33 per day in liquidated damages to the Government for a total amount of $515.00 for each calendar day of delay until the work is completed or accepted. Additionally, if the Contractor fails to complete phase one of the work prior to 15 September 2003, the Contractor shall pay an additional $833.33 per day in liquidated damages (storage fees for the flight simulator equipment) to the Government for each calendar day of delay until phase one of the work is completed or accepted.

(b) If the Government terminates the Contractor’s right to proceed, liquidated damages will continue to accrue until the work is completed. These liquidated damages are in addition to excess costs of repurchase under the Termination clause.

(End of clause)
52.231-5000 EQUIPMENT OWNERSHIP AND OPERATING EXPENSE SCHEDULE
MAR 1995)--EFARS

(a) This clause does not apply to terminations. See 52.249-5000, Basis for Settlement of Proposals and FAR Part 49.

(b) Allowable cost for construction and marine plant and equipment in sound workable condition owned or controlled and furnished by a contractor or subcontractor at any tier shall be based on actual cost data for each piece of equipment or groups of similar serial and series for which the Government can determine both ownership and operating costs from the contractor's accounting records. When both ownership and operating costs cannot be determined for any piece of equipment or groups of similar serial or series equipment from the contractor's accounting records, costs for that equipment shall be based upon the applicable provisions of EP 1110-1-8, Construction Equipment Ownership and Operating Expense Schedule, Region _III_. Working conditions shall be considered to be average for determining equipment rates using the schedule unless specified otherwise by the contracting officer. For equipment not included in the schedule, rates for comparable pieces of equipment may be used or a rate may be developed using the formula provided in the schedule. For forward pricing, the schedule in effect at the time of negotiations shall apply. For retroactive pricing, the schedule in effect at the time the work was performed shall apply.

(c) Equipment rental costs are allowable, subject to the provisions of FAR 31.105(d)(ii) and FAR 31.205-36. Rates for equipment rented from an organization under common control, lease-purchase arrangements, and sale-leaseback arrangements, will be determined using the schedule, except that actual rates will be used for equipment leased from an organization under common control that has an established practice of leasing the same or similar equipment to unaffiliated lessees.

(d) When actual equipment costs are proposed and the total amount of the pricing action exceeds the small purchase threshold, the contracting officer shall request the contractor to submit either certified cost or pricing data, or partial/limited data, as appropriate. The data shall be submitted on Standard Form 1411, Contract Pricing Proposal Cover Sheet.

(End of clause)

52.236-4 PHYSICAL DATA (APR 1984)

Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.

(a) The indications of physical conditions on the drawings and in the specifications are the result of site investigations by surveys, core borings, and reconnaissance.

(b) Weather conditions. Information regarding weather conditions is available for examination by the bidders in the Office of the Commander, Little Rock District, Corps of Engineers, 700 W. Capitol Ave., Little Rock, Arkansas 72201.

(c) Transportation facilities. It shall be the responsibility of the Contractor to make his own investigation of available roads for transportation, of load limits of bridges on the roads, and of other road conditions, which may affect transportation of materials, equipment, and personnel to the site of the work.

(d) The C-130 J Flight Simulator Facility Design Analysis is a five volume document and is available for review by contractors upon request. To make an appointment for review of the documents please contact Darrel L. Johnson at 501-324-5010, or send an e-mail request to darrel.l.johnson@swl02.usace.army.mil
52.236-14 AVAILABILITY AND USE OF UTILITY SERVICES (APR 1984)

(a) The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. Unless otherwise provided in the contract, the amount of each utility service consumed shall be charged to or paid for by the Contractor at prevailing rates charged to the Government or, where the utility is produced by the Government, at reasonable rates determined by the Contracting Officer. The Contractor shall carefully conserve any utilities furnished without charge.

(b) The Contractor, at its expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of each utility used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.

52.236-16 QUANTITY SURVEYS (APR 1984) - ALTERNATE I (APR 1984)

(a) Quantity surveys shall be conducted, and the data derived from these surveys shall be used in computing the quantities of work performed and the actual construction completed and in place.

(b) The Contractor shall conduct the original and final surveys and surveys for any periods for which progress payments are requested. All these surveys shall be conducted under the direction of a representative of the Contracting Officer, unless the Contracting Officer waives this requirement in a specific instance. The Government shall make such computations as are necessary to determine the quantities of work performed or finally in place. The Contractor shall make the computations based on the surveys for any periods for which progress payments are requested.

(c) Promptly upon completing a survey, the Contractor shall furnish the originals of all field notes and all other records relating to the survey or to the layout of the work to the Contracting Officer, who shall use them as necessary to determine the amount of progress payments. The Contractor shall retain copies of all such material furnished to the Contracting Officer.

52.236-26 PRECONSTRUCTION CONFERENCE (FEB 1995)

If the Contracting Officer decides to conduct a preconstruction conference, the successful offeror will be notified and will be required to attend. The Contracting Officer's notification will include specific details regarding the date, time, and location of the conference, any need for attendance by subcontractors, and information regarding the items to be discussed.

52.246-21 WARRANTY OF CONSTRUCTION (MAR 1994)

(a) In addition to any other warranties in this contract, the Contractor warrants, except as provided in paragraph (i) of this clause, that work performed under this contract conforms to the contract requirements and is free of any defect in equipment, material, or design furnished, or workmanship performed by the Contractor or any subcontractor or supplier at any tier.

(b) This warranty shall continue for a period of 1 year from the date of final acceptance of the work. If the Government takes possession of any part of the work before final acceptance, this warranty shall continue for a period of 1 year from the date the Government takes possession.
(c) The Contractor shall remedy at the Contractor's expense any failure to conform, or any defect. In addition, the Contractor shall remedy at the Contractor's expense any damage to Government-owned or controlled real or personal property, when that damage is the result of--

(1) The Contractor's failure to conform to contract requirements; or

(2) Any defect of equipment, material, workmanship, or design furnished.

(d) The Contractor shall restore any work damaged in fulfilling the terms and conditions of this clause. The Contractor’s warranty with respect to work repaired or replaced will run for 1 year from the date of repair or replacement.

(e) The Contracting Officer shall notify the Contractor, in writing, within a reasonable time after the discovery of any failure, defect, or damage.

(f) If the Contractor fails to remedy any failure, defect, or damage within a reasonable time after receipt of notice, the Government shall have the right to replace, repair, or otherwise remedy the failure, defect, or damage at the Contractor's expense.

(g) With respect to all warranties, express or implied, from subcontractors, manufacturers, or suppliers for work performed and materials furnished under this contract, the Contractor shall--

(1) Obtain all warranties that would be given in normal commercial practice;

(2) Require all warranties to be executed, in writing, for the benefit of the Government, if directed by the Contracting Officer; and

(3) Enforce all warranties for the benefit of the Government, if directed by the Contracting Officer.

(h) In the event the Contractor's warranty under paragraph (b) of this clause has expired, the Government may bring suit at its expense to enforce a subcontractor's, manufacturer's, or supplier's warranty.

(i) Unless a defect is caused by the negligence of the Contractor or subcontractor or supplier at any tier, the Contractor shall not be liable for the repair of any defects of material or design furnished by the Government nor for the repair of any damage that results from any defect in Government-furnished material or design.

(j) This warranty shall not limit the Government's rights under the Inspection and Acceptance clause of this contract with respect to latent defects, gross mistakes, or fraud.

(End of clause)

52.249-5000 BASIS FOR SETTLEMENT OF PROPOSALS

Actual costs will be used to determine equipment costs for a settlement proposal submitted on the total cost basis under FAR 49.206-2(b). In evaluating a terminations settlement proposal using the total cost basis, the following principles will be applied to determine allowable equipment costs:

(1) Actual costs for each piece of equipment, or groups of similar serial or series equipment, need not be available in the contractor's accounting records to determine total actual equipment costs.

(2) If equipment costs have been allocated to a contract using predetermined rates, those charges will be adjusted to actual costs.
(3) Recorded job costs adjusted for unallowable expenses will be used to determine equipment operating expenses.

(4) Ownership costs (depreciation) will be determined using the contractor’s depreciation schedule (subject to the provisions of FAR 31.205-11).

(5) License, taxes, storage and insurance costs are normally recovered as an indirect expense and unless the contractor charges these costs directly to contracts, they will be recovered through the indirect expense rate.

(End of Clause)

252.236-7001 CONTRACT DRAWINGS, MAPS, AND SPECIFICATIONS (AUG 2000)

(a) The Government will provide to the Contractor, without charge, one set of contract drawings and specifications, except publications incorporated into the technical provisions by reference, in electronic or paper media as chosen by the Contracting Officer.

(b) The Contractor shall--

(1) Check all drawings furnished immediately upon receipt;

(2) Compare all drawings and verify the figures before laying out the work;

(3) Promptly notify the Contracting Officer of any discrepancies;

(4) Be responsible for any errors that might have been avoided by complying with this paragraph (b); and

(5) Reproduce and print contract drawings and specifications as needed.

(c) In general--

(1) Large-scale drawings shall govern small-scale drawings; and

(2) The Contractor shall follow figures marked on drawings in preference to scale measurements.

(d) Omissions from the drawings or specifications or the misdescription of details of work that are manifestly necessary to carry out the intent of the drawings and specifications, or that are customarily performed, shall not relieve the Contractor from performing such omitted or misdescribed details of the work. The Contractor shall perform such details as if fully and correctly set forth and described in the drawings and specifications.

(e) The work shall conform to the specifications and the contract drawings identified on the following index of drawings:

<table>
<thead>
<tr>
<th>Title</th>
<th>File</th>
<th>Drawing No.</th>
</tr>
</thead>
</table>

(End of clause)

52.236-4001 CONTRACT DRAWINGS, MAPS, AND SPECIFICATIONS AFTER AWARD

The Government does not intend to issue the successful Contractor additional sets of plans and specifications after award. The Contractor must ensure that he maintains a legible copy of all plans, specifications, amendments issued during the solicitation phase of the procurement. The Contractor is responsible for
reproducing and printing contract drawings and specifications as needed. If additional CD-ROMs containing the solicitation are available, they will be provided to the Contractor upon request.

(End of Provision)

252.242-7000 POSTAWARD CONFERENCE (DEC 1991)

The Contractor agrees to attend any postaward conference convened by the contracting activity or contract administration office in accordance with Federal Acquisition Regulation subpart 42.5.

(End of clause)

52.1000-4200 CONTRACTING OFFICER FOR CONTRACTS (MAR 1991) (LRD)

The Contracting Officer who signs this contract will be the primary Contracting Officer on this contract. However, any Contracting Officer assigned to the Little Rock District and acting within his or her authority, may take formal action on this contract when a contract action needs to be taken and the primary Contracting Officer is away from the office.

52.1000-4210 REQUIRED INSURANCE (APR 1984) (FAR 28.307-2)

Any successful offeror under this solicitation shall procure and maintain during the entire period of his performance under this contract the following minimum insurance in accordance with FAR 52.228-5, INSURANCE--WORK ON A GOVERNMENT INSTALLATION:
(1) Workmen's Compensation in amounts required by applicable jurisdictional statutes. (FAR 28.307-2a)
(2) Employers Liability Insurance of at least $100,000. (FAR 28.307-2a)
(3) Comprehensive general liability insurance for bodily injury in the minimum limits of $500,000 per occurrence. No property damage liability insurance is required. (FAR 28.307-2(b))
(4) Comprehensive vehicle liability insurance covering the operation of all automobiles used in connection with the performance of the contract in the minimum limits of $200,000 per person and $500,000 per occurrence for bodily injury and $20,000 per occurrence for property damage. (FAR 28.3072(c))

(End of clause)
TABLE OF CONTENTS

SECTION 00900

ATTACHMENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. WAGE DECISION NO. AR010001, dated 09/07/01, Mod No. 1</td>
<td>3</td>
</tr>
<tr>
<td>2. AMENDMENTS</td>
<td></td>
</tr>
<tr>
<td>AMENDMENT NO. DATE</td>
<td></td>
</tr>
<tr>
<td>3. PROJECT SPECIFICATIONS</td>
<td>1309</td>
</tr>
</tbody>
</table>

*AMENDMENTS: Amendments issued to this solicitation affecting the contract will be a part of the resultant contract and will be listed above at the time of award. Applicable amendments will be physically located after The wage decision.
General Decision Number AR010001

Superseded General Decision No. AR000001

State: Arkansas

Construction Type: BUILDING

County(ies): PULASKI

BUILDING CONSTRUCTION PROJECTS (does not include residential construction consisting of single family and apartments up to an including 4 stories)

Modification Number Publication Date
0 03/02/2001
1 09/07/2001

COUNTY(ies): PULASKI

BRAR0005C 12/01/2000

Rates Fringes
BRICKLAYERS (excluding caulking and waterproofing) 18.46 3.80

* ELEC0295D 09/01/2001

Rates Fringes
ELECTRICIANS (including low voltage wiring for computers, fire/smoke alarms and telephones) 20.00 4.80+3 1/2%

Rates Fringes
ELEVATOR MECHANICS: 21.745 7.185+A

FOOTNOTE A: Vacation - Under five years - 6%; Over five years - 8% based on regular hourly rate for all hours worked. Paid Holidays - New Year's Day; Memorial Day; Independence Day; Labor Day; Thanksgiving Day; Day After Thanksgiving; and Christmas Day.

* PLUM0155C 08/01/2001

Rates Fringes
PLUMBERS/PIPEFITTERS (including HVAC work)
(excluding HVAC duct work)
Commercial buildings, schools, colleges, universities, motels, hotels, banks, branch banks, all three (3) stories and under and not over three (3) floors of remodeling and tenant finish out, at one time and under one contract, of existing high rise, commercial buildings, schools, colleges, universities, motels, hotels, banks and branch banks; Shopping centers, supermarkets, malls, fast foods, theaters, churches; Warehouses—one (1) story; Hospitals additions—one (1) and two (2) stories and not over two (2) floors of remodeling work, at one time and under one contract 17.60 4.07
All Other Work 20.00 4.07

SUAR1022A 09/06/1996

Rates Fringes
<table>
<thead>
<tr>
<th>Classification</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPENTERS:</td>
<td></td>
</tr>
<tr>
<td>Acoustical Installation</td>
<td>12.03</td>
</tr>
<tr>
<td>Drywall Framing/Hanging (including metal studs)</td>
<td>11.75</td>
</tr>
<tr>
<td>All Other Work</td>
<td>11.20</td>
</tr>
<tr>
<td>CAULKERS</td>
<td>13.50</td>
</tr>
<tr>
<td>CEMENT MASONS</td>
<td>10.00</td>
</tr>
<tr>
<td>DRYWALL FINISHERS</td>
<td>12.00</td>
</tr>
<tr>
<td>GLAZIERS</td>
<td>10.45</td>
</tr>
<tr>
<td>INSULATION INSTALLERS (BLOWN)</td>
<td>8.75</td>
</tr>
<tr>
<td>IRONWORKERS, Structural (including the structural steel frame for pre-engineered metal buildings)</td>
<td>12.33</td>
</tr>
<tr>
<td>IRONWORKERS, Reinforcing</td>
<td>10.92</td>
</tr>
<tr>
<td>LABORERS:</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>7.11</td>
</tr>
<tr>
<td>Brick Tender</td>
<td>8.28</td>
</tr>
<tr>
<td>Plaster Tender</td>
<td>8.31</td>
</tr>
<tr>
<td>Landscape</td>
<td>7.50</td>
</tr>
<tr>
<td>METAL BUILDING ERECTOR (excluding the structural steel frame)</td>
<td>9.07</td>
</tr>
<tr>
<td>PAINTERS:</td>
<td></td>
</tr>
<tr>
<td>Brush</td>
<td>10.55</td>
</tr>
<tr>
<td>Spray</td>
<td>10.40</td>
</tr>
<tr>
<td>PLASTERERS</td>
<td>13.39</td>
</tr>
<tr>
<td>ROOFERS:</td>
<td></td>
</tr>
<tr>
<td>Metal Roofs (excluding flashing and sheathing)</td>
<td>10.40</td>
</tr>
<tr>
<td>All Other Work (excluding flashing and sheathing)</td>
<td>11.35</td>
</tr>
<tr>
<td>SHEET METAL WORKERS:</td>
<td></td>
</tr>
<tr>
<td>HVAC Duct Work</td>
<td>12.65</td>
</tr>
<tr>
<td>All Other Work</td>
<td>11.84</td>
</tr>
<tr>
<td>SOFT FLOOR LAYERS</td>
<td>12.02</td>
</tr>
<tr>
<td>SPRINKLER FITTERS</td>
<td>14.42</td>
</tr>
<tr>
<td>TILE SETTERS</td>
<td>14.00</td>
</tr>
<tr>
<td>TILE SETTER FINISHERS</td>
<td>9.15</td>
</tr>
<tr>
<td>WATERPROOFERS</td>
<td>12.90</td>
</tr>
<tr>
<td>TRUCK DRIVERS:</td>
<td></td>
</tr>
<tr>
<td>Dump</td>
<td>7.65</td>
</tr>
<tr>
<td>POWER EQUIPMENT OPERATORS:</td>
<td></td>
</tr>
<tr>
<td>Asphalt Machine</td>
<td>8.75</td>
</tr>
<tr>
<td>Backhoes</td>
<td>10.64</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>9.00</td>
</tr>
<tr>
<td>Cranes</td>
<td>13.24</td>
</tr>
<tr>
<td>Graders</td>
<td>14.44</td>
</tr>
<tr>
<td>Rollers</td>
<td>8.25</td>
</tr>
<tr>
<td>Trackhoe</td>
<td>10.09</td>
</tr>
</tbody>
</table>

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

==

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29 CFR 5.5(a)(1)(v)).
In the listing above, the "SU" designation means that rates listed under that identifier do not reflect collectively bargained wage and fringe benefit rates. Other designations indicate unions whose rates have been determined to be prevailing.

WAGE DETERMINATION APPEALS PROCESS

1.) Has there been an initial decision in the matter? This can be:
 - an existing published wage determination
 - a survey underlying a wage determination
 - a Wage and Hour Division letter setting forth a position on a wage determination matter
 - a conformance (additional classification and rate) ruling

On survey related matters, initial contact, including requests for summaries of surveys, should be with the Wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial contact is not satisfactory, then the process described in 2.) and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

 Branch of Construction Wage Determinations
 Wage and Hour Division
 U. S. Department of Labor
 200 Constitution Avenue, N. W.
 Washington, D. C. 20210

2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

 Wage and Hour Administrator
 U.S. Department of Labor
 200 Constitution Avenue, N. W.
 Washington, D. C. 20210

The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.

3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to:

 Administrative Review Board
 U. S. Department of Labor
 200 Constitution Avenue, N. W.
 Washington, D. C. 20210

4.) All decisions by the Administrative Review Board are final.

END OF GENERAL DECISION
Volume No. 1 Specifications

C-130 J FLIGHT SIMULATOR FACILITY

LITTLE ROCK AIR FORCE BASE
PULASKI COUNTY, ARKANSAS

November 2001
INDEX OF TECHNICAL PROVISIONS

DIVISION 01 - GENERAL REQUIREMENTS
SECTION 01015 CONDITIONS
SECTION 01090 SOURCES FOR REFERENCE PUBLICATIONS
SECTION 01100 SPECIAL PROJECT PROCEDURES
SECTION 01270 MEASUREMENT AND PAYMENT
SECTION 01312 RESIDENT MANAGEMENT SYSTEM (RMS)
SECTION 01320 PROJECT SCHEDULE
SECTION 01330 SUBMITTAL PROCEDURES
SECTION 01410 ENVIRONMENT PROTECTION
SECTION 01415 METRIC MEASUREMENTS
SECTION 01451 CONTRACTOR QUALITY CONTROL
SECTION 01500 TEMPORARY CONSTRUCTION FACILITIES
SECTION 01510 GENERAL REQUIREMENTS
SECTION 01720 AS-BUILT DRAWINGS

DIVISION 02 - SITE WORK
SECTION 02220 DEMOLITION
SECTION 02230 CLEARING AND GRUBBING
SECTION 02300 EARTHWORK
SECTION 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS
SECTION 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS
SECTION 02364 TERMITICIDE TREATMENT MEASURES FOR SUBTERRANEAN TERMITE CONTROL
SECTION 02466 DRILLED FOUNDATION PIERS
SECTION 02510 WATER DISTRIBUTION SYSTEM
SECTION 02531 SANITARY SEWERS
SECTION 02555 PREFABRICATED UNDERGROUND COOLING DISTRIBUTION SYSTEM
SECTION 02556 GAS DISTRIBUTION SYSTEM
SECTION 02621 FOUNDATION DRAINAGE SYSTEM
SECTION 02630 STORM-DRAINAGE SYSTEM
SECTION 02722 AGGREGATE BASE COURSE (ARKANSAS)
SECTION 02741 HOT-MIX ASPHALT (HMA) FOR ROADS
SECTION 02748 BITUMINOUS TACK AND PRIME COATS
SECTION 02754 CONCRETE PAVEMENTS FOR SMALL PROJECTS
SECTION 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS
SECTION 02763 PAVEMENT MARKINGS
SECTION 02770 CONCRETE SIDEWALKS AND CURBS AND GUTTERS
SECTION 02811 UNDERGROUND SPRINKLER SYSTEMS
SECTION 02821 FENCING
SECTION 02922 SODDING
SECTION 02930 EXTERIOR PLANTING

DIVISION 03 - CONCRETE
SECTION 03100 STRUCTURAL CONCRETE FORMWORK
SECTION 03150 EXPANSION JOINTS, CONTRACTION JOINTS, AND WATERSTOPS
SECTION 03200 CONCRETE REINFORCEMENT
SECTION 03300 CAST-IN-PLACE STRUCTURAL CONCRETE

DIVISION 04 - MASONRY
SECTION 04200 MASONRY
DIVISION 05 - METALS
SECTION 05120 STRUCTURAL STEEL
SECTION 05210 STEEL JOISTS
SECTION 05300 STEEL DECKING
SECTION 05400 COLD-FORMED STEEL FRAMING
SECTION 05500 MISCELLANEOUS METAL

DIVISION 06 - WOODS & PLASTICS
SECTION 06100 ROUGH CARPENTRY
SECTION 06200 FINISH CARPENTRY

DIVISION 07 - THERMAL & MOISTURE PROTECTION
SECTION 07110 BITUMINOUS DAMPPROOFING
SECTION 07132 BITUMINOUS WATERPROOFING
SECTION 07212 MINERAL FIBER BLANKET THERMAL INSULATION
SECTION 07214 BOARD AND BLOCK INSULATION
SECTION 07416 STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM
SECTION 07600 SHEET METALWORK, GENERAL
SECTION 07840 FIRESTOPPING
SECTION 07900 JOINT SEALING

DIVISION 08 - DOORS & WINDOWS
SECTION 08110 STEEL DOORS AND FRAMES
SECTION 08120 ALUMINUM DOORS AND FRAMES
SECTION 08162 HORIZONTAL SLIDING, ACCORDIAN TYPE FIRE DOORS
SECTION 08210 WOOD DOORS
SECTION 08360 SECTIONAL OVERHEAD DOORS
SECTION 08700 BUILDERS' HARDWARE
SECTION 08810 GLASS AND GLAZING

DIVISION 09 - FINISHES
SECTION 09250 GYPSUM WALLBOARD
SECTION 09310 CERAMIC TILE
SECTION 09510 ACOUSTICAL CEILINGS
SECTION 09650 RESILIENT FLOORING
SECTION 09680 CARPET
SECTION 09720 WALLCOVERINGS
SECTION 09900 PAINTING, GENERAL

DIVISION 10 - SPECIALTIES
SECTION 10101 MISCELLANEOUS ITEMS
SECTION 10160 TOILET PARTITIONS
SECTION 10260 WALL AND CORNER PROTECTION
SECTION 10270 RAISED FLOOR SYSTEM
SECTION 10430 EXTERIOR SIGNAGE
SECTION 10440 INTERIOR SIGNAGE
SECTION 10800 TOILET ACCESSORIES

DIVISION 12 - FURNISHINGS
SECTION 12490 WINDOW TREATMENT

DIVISION 13 - SPECIAL CONSTRUCTION
SECTION 13080 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT
SECTION 13100 LIGHTNING PROTECTION SYSTEM
SECTION 13120 STANDARD METAL BUILDING SYSTEMS
SECTION 13720 ELECTRONIC SECURITY SYSTEM
SECTION 13851 FIRE DETECTION AND ALARM SYSTEM
SECTION 13920 FIRE PUMPS
SECTION 13930 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

DIVISION 14 - CONVEYING SYSTEMS
SECTION 14240 ELEVATORS, HYDRAULIC
SECTION 14602 CRANES, SINGLE-GIRDER BRIDGE, MONORAIL AND JIB

DIVISION 15 - MECHANICAL
SECTION 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT
SECTION 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS
SECTION 15190 GAS PIPING SYSTEMS
SECTION 15400 PLUMBING, GENERAL PURPOSE
SECTION 15569 WATER AND STEAM HEATING; OIL, GAS OR BOTH; UP TO 20 MBTUH
SECTION 15650 CENTRAL REFRIGERATED AIR-CONDITIONING SYSTEM
SECTION 15653 AIR-CONDITIONING SYSTEM (UNITARY TYPE)
SECTION 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM
SECTION 15951 DIRECT DIGITAL CONTROL FOR HVAC
SECTION 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS
SECTION 15995 COMMISSIONING OF HVAC SYSTEMS

DIVISION 16 - ELECTRICAL
SECTION 16070 SEISMIC PROTECTION FOR ELECTRICAL EQUIPMENT
SECTION 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL
SECTION 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND
SECTION 16403 MOTOR CONTROL CENTERS, SWITCHBOARDS AND PANELBOARDS
SECTION 16415 ELECTRICAL WORK, INTERIOR
SECTION 16445 TRANSIENT VOLTAGE SURGE SUPPRESSOR (TVSS)
SECTION 16710 PREMISES DISTRIBUTION SYSTEM
SECTION 16775 CABLE TV SYSTEMS

-- End of Table of Contents --
PART 1 GENERAL

1.1 TIME EXTENSIONS FOR UNUSUALLY SEVERE WEATHER

(a) This provision specifies the procedure for determination of time extensions for unusually severe weather in accordance with the contract clause entitled "Default (Fixed Price Construction)". In order for the Contracting Officer to award a time extension under this clause, the following conditions must be satisfied:

(1) The weather experienced at the project site during the contract period must be found to be unusually severe, that is, more severe than the adverse weather anticipated for the project location during any given month.

(2) The unusually severe weather must actually cause a delay to the completion of the project. The delay must be beyond the control and without the fault or negligence of the Contractor.

(b) The following schedule of monthly anticipated adverse weather delays is based on National Oceanic and Atmospheric Administration (NOAA) or similar data for the project location and will constitute the base line for monthly weather time evaluations. The Contractor's progress schedule must reflect these anticipated adverse weather delays in all weather dependent activities.

<table>
<thead>
<tr>
<th>MONTHLY ANTICIPATED ADVERSE WEATHER DELAY</th>
<th>WORK DAYS BASED ON (5) DAY WORK WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>FEB</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

(c) Upon acknowledgment of the Notice to Proceed (NTP) and continuing throughout the contract, the Contractor will record on the daily CQC report, the occurrence of adverse weather and resultant impact to normally scheduled work. Actual adverse weather delay days must prevent work on critical activities for 50 percent or more of the Contractor's scheduled work day. The number of actual adverse weather delay days shall include days impacted by actual adverse weather (even if adverse weather occurred in previous month), be calculated chronologically from the first to the last day of each month, and be recorded as full days. If the number of actual adverse weather delay days exceeds the number of days anticipated in paragraph (b), above, the Contracting Officer will convert any qualifying delays to calendar days, giving full consideration for equivalent fair weather work days, and issue a modification in accordance with the contract clause entitled "Default (Fixed Price Construction)".

1.2 ENVIRONMENTAL LITIGATION

(a) If the performance of all or any part of the work is suspended, delayed, or interrupted due to an order of a court of competent jurisdiction as a result of environmental litigation, as defined below, the Contracting Officer, at the request of the Contractor, shall determine whether the order is due in any part to the acts or omissions of the Contractor or a Subcontractor at any tier not required by the terms of this contract. If it is determined that the order is not due in any part to acts or omissions of the Contractor or a Subcontractor at any tier other than as required by the terms of this contract, such suspension, delay, or interruption shall be considered as if ordered by the Contracting Officer in the administration of this contract under the terms of the "Suspension of Work" clause of this contract. The period of such suspension, delay or interruption shall be considered unreasonable, and an adjustment shall be made for any increase in the cost of performance of this contract (excluding profit) as provided in...
that clause, subject to all the provisions thereof.

(b) The term "environmental litigation", as used herein, means a lawsuit alleging that the work will have an adverse effect on the environment or that the Government has not duly considered, either substantively or procedurally, the effect of the work on the environment.

1.3 PRE-WARRANTY CONFERENCE

Prior to contract completion and at a time designated by the Contracting Officer or his representative, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of CONTRACT CLAUSE: WARRANTY OF CONSTRUCTION of this specification. The Contracting Officer shall establish communication procedures for Contractor notification of warranty defects, priorities with respect to the type of defect and reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty.

In connection with these requirements the Contractor will furnish the name, telephone number, and address of a licensed and bonded company which is authorized to initiate and maintain warranty work action on behalf of the Contractor. This single point of contact will be located within the local service area of the warranted construction and will be responsive to Government inquiry on warranty work action and status. Systems such as HVAC and Controls need to be responded to within 4 hours of notice. Systems such as fire alarm and protection systems, probably in 24 hours. Systems such as general electrical and communications within 48 hours. Items such as roof leaks within 72 hours. Architectural and civil items within 10 days. This requirement does not relieve the Contractor of any of his responsibilities in connection with CONTRACT CLAUSE: WARRANTY OF CONSTRUCTION.

--- o o o ---
PART 1 GENERAL

1.1 REFERENCES

Various publications are referenced in other sections of the specifications to establish requirements for the work. These references are identified in each section by document number, date and title. The document number used in the citation is the number assigned by the sponsoring organization, e.g. ASTM B 564 Nickel Alloy Forgings. However, when the sponsoring organization has not assigned a number to a document, an identifying number has been assigned for reference purposes.

1.2 ORDERING INFORMATION

The addresses of the organizations whose publications are referenced in other sections of these specifications are listed below, and if the source of the publications is different from the address of the sponsoring organization, that information is also provided. Documents listed in the specifications with numbers which were not assigned by the sponsoring organization should be ordered from the source by title rather than by number.

ACI INTERNATIONAL (ACI)
P.O. Box 9094
Farmington Hills, MI 48333-9094
Ph: 248-848-3700
Fax: 248-848-3701
Internet: http://www.aci-int.org
AOK 6/00
LOK 6/00

AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI)
4301 North Fairfax Dr., Suite 425
ATTN: Pubs Dept.
Arlington, VA 22203
Ph: 703-524-8800
Fax: 703-528-3816
E-mail: ari@ari.org
Internet: www.ari.org
AOK 6/00
LOK 6/00

AIR CONDITIONING CONTRACTORS OF AMERICA (ACCA)
1712 New Hampshire Avenue, NW
Washington, DC 20009
Ph: 202-483-9370
FAX: 202-588-1217
Internet: www.acca.org
AOK 6/00
LOK 6/00

AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA)
Solicitation No. DACAO3-02-B-0009

LOK 6/00

AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA)
P.O. Box 5690
Grandbury, TX 76049-0690
Ph: 817-326-6300
Fax: 817-326-6306
Internet: http://www.awpa.com
AOK 8/00
LOK 6/00

APA - THE ENGINEERED WOOD ASSOCIATION (APA)
P.O. Box 11700
Tacoma, WA 98411-0700
Ph: 253-565-6600
Fax: 253-565-7265
Internet: www.apawood.org
AOK 8/00
LOK 6/00

ARCHITECTURAL WOODWORK INSTITUTE (AWI)
1952 Isaac Newton Square West
Reston, VA 20190
Ph: 703-733-0600
Fax: 703-733-0584
Internet: www.awinet.org
AOK 8/00
LOK 6/00

ASBESTOS CEMENT PIPE PRODUCERS ASSOCIATION (ACPPA)
1745 Jefferson Davis Highway, Suite 406
Arlington, VA 22202
Ph: 703-412-1153
Fax: 703-412-1152

ASME INTERNATIONAL (ASME)
Three Park Avenue
New York, NY 10016-5990
Ph: 212-591-7722
Fax: 212-591-7674
Internet: www.asme.org
AOK 8/00
LOK 6/00

ASPHALT INSTITUTE (AI)
Research Park Dr.
P.O. Box 14052
Lexington, KY 40512-4052
Ph: 606-288-4960
Fax: 606-288-4999
Internet: www.asphaltinstitute.org
AOK 8/00
LOK 6/00

ASSOCIATED AIR BALANCE COUNCIL (AABC)
1518 K St., NW, Suite 503
Washington, DC 20005
ASSOCIATION OF EDISON ILLUMINATING COMPANIES (AEIC)
600 No. 18th St.
P.O. Box 2641
Birmingham, AL 35291
Ph: 205-257-2530
Fax: 205-257-2540
Internet: http://www.aeic.org
AOK 8/00
LOK 6/00

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)
355 Lexington Ave.
17th floor
New York, NY 10017-6603
Ph: 212-297-2100
Fax: 212-370-9047
Internet: www.buildershardware.com
AOK 8/00
LOK 6/00

CALIFORNIA REDWOOD ASSOCIATION (CRA)
405 Enfrente Drive., Suite 200
Novato, CA 94949
Ph: 415-382-0662
Fax: 415-382-8531
Internet: www.calredwood.org
AOK 8/00
LOK 6/00

CARPET AND RUG INSTITUTE (CRI)
310 Holiday Ave.
Dalton, GA 30720
P.O. Box 2048
Dalton, GA 30722-2048
Ph: 706-278-0232
Fax: 706-278-8835
Internet: www.carpet-rug.com
AOK 8/00
LOK 6/00

CAST IRON SOIL PIPE INSTITUTE (CISPI)
5959 Shallowford Rd., Suite 419
Chattanooga, TN 37421
Ph: 423-892-0137
Fax: 423-892-0817
Internet: www.cispi.org
AOK 8/00
LOK 6/00

CODE OF FEDERAL REGULATIONS (CFR)
Order from:
COMMERCIAL ITEM DESCRIPTIONS (CID)
Order from:
General Services Administration
Federal Supply Service Bureau
470 E L'Enfant Plaza, S.W., Suite 8100
Washington, DC 20407
Ph: 202-619-8925
Internet: http://pub.fss.gsa.gov/h1-pub.html
LOK 6/00

CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
933 N. Plum Grove Rd.
Schaumburg, IL 60173-4758
Ph: 847-517-1200
Fax: 847-517-1206
Internet: www.crsi.org
AOK 8/00
LOK 6/00

COPPER DEVELOPMENT ASSOCIATION (CDA)
260 Madison Ave.
New York, NY 10016
Ph: 212-251-7200
Fax: 212-251-7234
E-mail: http://www.copper.org
AOK 8/00
LOK 6/00

CORPS OF ENGINEERS (COE)
Order CRD-C documents from:
U.S. Army Engineer Waterways Experiment Station
ATTN: Technical Report Distribution Section, Services
Branch, TIC
3909 Halls Ferry Rd.
Vicksburg, MS 39180-6199
Ph: 601-634-2664
Fax: 601-634-2388
Internet: www.libweb.wes.usace.army.mil/index.htm
AOK 10/00
LOK 6/00

DEPARTMENT OF COMMERCE (DOC)
Order From:
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Ph: 703-605-6000
Fax: 703-605-6900
Internet: http://www.ntis.gov
470 L'Enfant Plaza, S.W.
Washington, DC 20407
Ph: 202-619-8925
Fax: 202-619-8978
Internet: http://pub.fss.gsa.gov/

FEDERAL STANDARDS (FED-STD)
Order from:
General Services Administration
Federal Supply Service Bureau
470 E L'Enfant Plaza, S.W.
Washington, DC 20407
Ph: 202-619-8925
Fax: 202-619-8978
Internet: http://pub.fss.gsa.gov/

GLASS ASSOCIATION OF NORTH AMERICA (GANA)
2945 SW Wanamaker Drive, Suite A
Topeka, KS 66614-5321
Ph: 785-271-0208
Fax: 785-271-0166
Internet: www.glasswebsite.com
AOK 8/00
LOK 6/00

GYPSUM ASSOCIATION (GA)
810 First St. NE, Suite 510
Washington, DC 20002
Ph: 202-289-5440
Fax: 202-289-3707
Internet: www.gypsum.org
AOK 8/00
LOK 6/00

HYDRAULIC INSTITUTE (HI)
9 Sylvan Way, Suite 180
Parsippany, NJ 07054-3802
Ph: 888-786-7744 or 973-267-9700
Fax: 973-267-9055
Internet: www.pumps.org
AOK 8/00
LOK 6/00

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)
445 Hoes Ln, P. O. Box 1331
Piscataway, NJ 08855-1331
Ph: 732-981-0060 OR 800-701-4333
Fax: 732-981-9667
Internet: www.ieee.org
E-mail: customer.service@ieee.org
AOK 8/00
LOK 6/00

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)
P.O. Box 440
South Yarmouth, MA 02664
Ph: 508-394-4424
Fax: 508-394-1194
E-mail: Internet: www.icea.net
AOK 8/00
LOK 6/00

INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS (ICBO)
5360 Workman Mill Rd.
Whittier, CA 90601-2298
Ph: 800-284-4406
Ph: 310-699-0541
Fax: 310-692-3853
Internet: icbo.org
AOK 8/00
LOK 6/00

INTERNATIONAL TELECOMMUNICATION UNION (ITU)
Order from:
U.S. Dept of Commerce
National Technical Information Service
5285 Port Royal Road.
Springfield, VA 22161
Ph: 703605-6040
FAX: 703-605-6887
Internet: www.ntis.gov
For documents not avail from Dept of Commerce:
E-Mail: sales@itu.ch
Fax: 41.22.730.5194
Internet: www.itu.org
AOK 8/00
LOK 6/00

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)
127 Park St., NE
Vienna, VA 22180-4602
Ph: 703-281-6613
Fax: 703-281-6671
Internet: www.mss-hq.com
e-mail: info@mss-hq.com
AOK 8/00
LOK 6/00

MARBLE INSTITUTE OF AMERICA (MIA)
30 Eden Alley, Suite 301
Columbus, OH 43215
Ph: 614-228-6194
Fax: 614-461-1497
Internet: www.marble-institute.com
e-mail: miaadmin@marble-institute.com
AOK 8/00
LOK 6/00

MATERIAL HANDLING INDUSTRY (MHI)
8720 Red Oak Blvd., Suite 201
Charlotte, NC 28217-3992
Ph: 800-345-1815 or 704-676-1190
Fax: 704-676-1199
METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)
1300 Sumner Ave.
Cleveland, OH 44115-2851
Ph: 216-241-7333
Fax: 216-241-0105
Internet: www.mbma.com
e-mail: mbma@mbma.com
AOK 8/00
LOK 6/00

MIDWEST INSULATION CONTRACTORS ASSOCIATION (MICA)
2017 So. 139th Cir.
Omaha, NE 68144
Ph: 402-342-3463
Fax: 402-330-9702
Internet: www.micainsulation.org
e-mail: info@micainsulation.org
AOK 8/00
LOK 6/00

NACE INTERNATIONAL (NACE)
1440 South Creek Drive
Houston, TX 77084-4906
Ph: 281-228-6200
Fax: 281-228-6300
Internet: www.nace.org
AOK 8/00
LOK 6/00

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)
8 S. Michigan Ave, Suite 1000
Chicago, IL 60603
Ph: 312-782-4951
Fax: 312-332-0706
Internet: www.naamm.org
e-mail: naamm@gss.net
AOK 8/00
LOK 6/00

NATIONAL ASSOCIATION OF PLUMBING-HEATING-COOLING CONTRACTORS (NAPHCC)
180 S. Washington Street
P.O. Box 6808
Falls Church, VA 22040
Ph: 800-533-7694
Fax: 703-237-7442
Internet: www.naphcc.org
AOK 8/00
LOK 6/00

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
1300 N. 17th St., Suite 1847
Rosslyn, VA 22209
Ph: 703-841-3200
Cumberland Center, ME 04021
Ph: 207-829-6901
Fax: 207-829-4293
Internet: www.nelma.org
e-mail: nelma@javanet.com
AOK 8/00
LOK 6/00

NSF INTERNATIONAL (NSF)
ATTN: Publications
789 Dixboro Rd.
P.O. Box 130140
Ann Arbor, MI 48113-0140
Ph: 734-769-8010
Fax: 734-769-0109
Toll Free: 800-NSF-MARK
Internet: www.nsf.org
AOK 8/00
LOK 6/00

PLUMBING AND DRAINAGE INSTITUTE (PDI)
45 Bristol Dr.
South Easton, MA 02375
Ph: 508-230-3516 or 800-589-8956
Fax: 508-230-3529
Internet: www.pdionline.org
E-Mail: info@pdionline.org
AOK 8/00
LOK 6/00

SHEET METAL & AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
4201 Lafayette Center Dr.,
Chantilly, VA 20151-1209
Ph: 703-803-2980
Fax: 703-803-3732
Internet: http://www.smacna.org
e-mail: info@smacna.org
AOK 8/00
LOK 6/00

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE)
400 Commonwealth Dr.
Warrendale, PA 15096-0001
Ph: 724-776-4841
Fax: 724-776-5760
Internet: http://www.sae.org
e-mail: publications@sae.org
AOK 8/00
LOK 6/00

SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA)
400 Penn Center Boulevard, Suite 530
Pittsburgh, PA 15235
Ph: 412-829-0770
Fax: 412-829-0844
Internet: www.cypressinfo.org
SOUTHERN PINE INSPECTION BUREAU (SPIB)
4709 Scenic Highway
Pensacola, FL 32504-9094
Ph: 850-434-2611
Fax: 850-433-5594
e-mail: spib@spib.org
Internet: www.spib.org
AOK 8/00
LOK 6/00

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)
40 24th Street, 6th Floor
Pittsburgh, PA 15222-4656
Ph: 412-281-2331
Fax: 412-281-9992
Internet: www.sspc.org
AOK 8/00
LOK 6/00
NOTE: SSPC documents, except as noted otherwise, are available only as a part of the 1995 Steel Structures Painting Manual, 7th Edition @ $115.00.

STEEL DECK INSTITUTE (SDI)
P.O. Box 25
Fox River Grove, IL 60021-0025
Ph: 847-462-1930
Fax: 847-462-1940
Internet: http://www.sdi.org
e-mail: Steve@sdi.org
AOK 8/00
LOK 6/00

STEEL DOOR INSTITUTE (SDOI)
30200 Detroit Rd.
Cleveland, OH 44145-1967
Ph: 440-899-0010
Fax: 440-892-1404
Internet: www.steeldoor.org
AOK 8/00
LOK 6/00

STEEL JOIST INSTITUTE (SJI)
3127 Tenth Ave., North Ext.
Myrtle Beach, SC 29577-6760
Ph: 843-626-1995
Fax: 843-626-5565
Internet: www.steeljoist.org
AOK 8/00
LOK 6/00

TILE COUNCIL OF AMERICA (TCA)
100 Clemson Research Blvd
Anderson, SC 29625
Ph: 864-646-8453
--- End Of Section ---
SECTION 01100 - SPECIAL PROJECT PROCEDURES

1 GENERAL

1.1 SAFETY AND HEALTH REQUIREMENTS MANUAL (EM 385-1-1, SEPTEMBER 1996).

In accordance with CONTRACT CLAUSE Paragraph "ACCIDENT PREVENTION", this manual applies to all work under this contract. There are submittals and testing required by this manual which require Government Approval (GA) before certain phases of work can begin.

1.2 MANAGEMENT OF CONTRACTOR-GENERATED HAZARDOUS WASTES AND PETROLEUM PRODUCTS (40 CFR, PART 262)

Contractors generating hazardous wastes and petroleum products on the military base on which this contract is performed shall be responsible for their management responsibilities as described in 40 CFR, part 262 and with the Arkansas State Industrial Waste Management Regulations.

1.3 MONTHLY EXPOSURE REPORT

A monthly report of accident and exposure data shall be submitted by the Contractor. The report shall be submitted on SWD Form 743-J "MONTHLY EXPOSURE REPORT OF OPERATIONS AND ACTIVITIES" which will be provided to the Contractor at the pre-construction conference.

1.4 HAZARDOUS MATERIAL REPORTING

The Contractor shall submit completed Contractor Hazardous Material Reports (CHMR) for the duration of the contract in accordance with the following instructions:

Initially:

- Complete a CHMR for each hazardous material on site.

- Attach the corresponding Material Safety Data Sheet (MSDS) with each CHMR

Monthly:

- Complete Section 3 of the CHMR for each hazardous material on site

- Provide a new CHMR or each new hazardous material brought on site during the reporting period.

Hazardous materials are defined as all materials listed in OSHA and EPA regulations, including but not limited to cleaners, solvents, paints, compressed gases, fuels, glues, and chemicals. The CHMRs shall be submitted by the 15 of each month. A Hazardous Material Tracking Form (included at
the end of this section) shall be also be submitted each month with the CHMR and MSDS.

1.5 HAZARDOUS WASTE AND MATERIALS REPORTING

The Contractor shall notify the Contracting Officer upon encountering existing unanticipated material on the site that could jeopardize the safety of workers. The Government will be responsible for disposition of the waste if required. Hazardous materials or waste transported onto or within the Base shall be reported to the Base Fire Department prior to movement on Government property.

1.6 SPILL REPORTING

Upon verification of a release of any petroleum product over one gallon or any other hazardous waste or material, regardless of amount, the contractor shall notify the Base Fire Department at 911. The Base will determine the cleanup required. Upon release of a petroleum product less than one gallon and no threat of fire or explosion exists, the Contractor shall clean the contaminated area to remove all contaminants. Contamination in excess of 100 ppm of Total Petroleum Hydrocarbons shall be removed from the site. Costs of soil tests required as a result of spills shall be the Contractor's responsibility. Contaminated material shall be disposed of properly.

1.7 TEMPORARY EROSION CONTROL MEASURES

All construction that disturbs the ground cover, either natural or manmade, will be subject to erosion control measures. The contractor shall evaluate the scope of work to determine the level of erosion control measures to be implemented. The goal of this work is to prevent environmentally damaging non-point source pollution to waters of the state from vegetation, soil, and construction debris released from construction sites. The contractor is responsible for the design of temporary measures, and implementation of work procedures, which ensure compliance with the storm water permits issued to Little Rock AFB. Performance will be determined by the effectiveness of the program in preventing the base from exceeding the base's National Pollutant Discharge Elimination System (NPDES) permit limits established in paragraph B.

2 PRODUCTS (NOT APPLICABLE)

3 EXECUTION (NOT APPLICABLE)

--- o o o ---
PART 1 GENERAL

1.1 LUMP SUM PAYMENT ITEMS

Payment items for the work of this contract for which contract lump sum payments will be made are listed in the BIDDING SCHEDULE and described below. All costs for items of work, which are not specifically mentioned to be included in a particular lump sum or unit price payment item, shall be included in the listed lump sum item most closely associated with the work involved. The lump sum price and payment made for each item listed shall constitute full compensation for furnishing all plant, labor, materials, and equipment, and performing any associated Contractor quality control, environmental protection, meeting safety requirements, tests and reports, and for performing all work required for which separate payment is not otherwise provided.

1.1.1 C-130 Flight Simulator Facility

1.1.1.1 Payment

Payment will be made for costs associated with all work, excluding options, required by the plans and specifications for construction of the C-130 Flight Simulator Facility. This includes site preparation, site improvements, site civil, mechanical, and electrical utilities, and any other work not included in paragraphs below. This bid item excludes rock excavation associated with utility trenching. Refer to drawings for extent of work.

1.1.1.2 Unit of Measure

Unit of measure: lump sum.

1.1.2 Rock Excavation

1.1.2.1 Payment

Payment will be made for rock excavation encountered during underground utility work.

1.1.2.2 Unit of Measure

Unit of Measure: 10 Cubic Meters

1.1.3 Option 1

Audio Visual equipment for rooms 104, 105, 106, 107, 109, 110, 111, 228, and 235; and Main Briefing Room Theatre Seats W/Armrests and Writing Surfaces. Audio Visual equipment includes sound system, wall plate(s), cables, and connections from podium to speakers. Sound system shall be a complete and functional system. Refer to drawings for extent of work.

1.1.3.1 Payment
Payment will be made for costs associated with operations necessary for installation of audio/visual system equipment for rooms 104, 105, 106, 107, 109, 110, 111, 228, and 235 and furnishing and installing main briefing room theatre seats w/armrests and writing surfaces, including miscellaneous hardware associated therewith.

1.1.3.2 Unit of Measure

Unit of measure: lump sum.

1.1.4 Option 2

Public Address System Amplifier, Parking Lot Addition (Including Any Lighting), and Sod for areas disturbed by parking lot addition. Refer to drawings for extent of work.

1.1.4.1 Payment

Payment will be made for costs associated with operations necessary for: 1) construct parking lot addition including striping the parking lot, 2) install parking lot light fixtures including underground electrical conduit/cables (3) Public Address Amplifier and phone interface equipment.

1.1.4.2 Unit of Measure

Unit of measure: lump sum.

1.1.5 Option 3

Pavilion, mechanical equipment yard screen wall, and dumpster screen wall. Refer to drawings for extent of work.

1.1.5.1 Payment

Payment will be made for costs associated with construction of the Pavilion, Mechanical Yard Screen Walls, sidewalk to pavilion, and Dumpster Screen walls.

1.1.5.2 Unit of Measure

Unit of measure: lump sum.

1.1.6 Option 4

1.1.6.1 Payment

Payment will be made for costs associated with construction of rear service drive, as shown on drawing.

1.1.6.2 Unit of Measure

Unit of measure: lump sum.
1.1.7 Option 5

Burying Overhead Primary Electrical Lines from pole by building 1220 to building 1230. This option includes providing a two new transformers and new service entrance feeders/ conduits to building 1230.

1.1.7.1 Payment

Payment will be made for costs associated with burying overhead primary electrical lines and providing new services to building 1230 as shown on drawings.

1.1.7.2 Unit of Measure

Unit of measure: lump sum.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION (NOT APPLICABLE)
PART 1 - GENERAL REQUIREMENTS

1.1 GENERAL

The Government will use the Resident Management System for Windows (RMS-W) to assist in its monitoring and administration of this contract. In the event that the Windows 97 version of RMS has not been implemented, the Government and Contractor will use the DOS version. The Contractor shall use the Government-furnished Construction Contractor Module of RMS-Windows, referred to as RMS-QC (QC for Quality Control), to record, maintain, and submit various information throughout the contract period. This joint Government-Contractor use of RMS-W and RMS-QC will facilitate electronic exchange of information and overall management of the contract. RMS-QC provides the means for the Contractor to input, track, and electronically share information with the Government in the following areas:

- Administration
- Finances
- Quality Control
- Submittal Monitoring
- Scheduling
- Import/Export of Data

1.2 CORRESPONDENCE AND ELECTRONIC COMMUNICATIONS

For ease and speed of communications, both Government and Contractor will, to the maximum extent feasible, exchange correspondence and other documents in electronic format. Correspondence, pay requests and other documents comprising the official contract record shall also be provided in paper format, with signatures and dates where necessary. Paper documents will govern, in the event of discrepancy with the electronic version.

1.3 Other Factors

Particular attention is directed to Contract Clause, "Schedules for Construction Contracts", Contract Clause, "Payments", Section 01320, "Project Schedule", Section 01300, SUBMITTAL PROCEDURES, and Section 01451, CONTRACTOR QUALITY CONTROL, which have a direct relationship to the reporting to be accomplished through RMS-QC. Also, there is no separate payment for establishing and maintaining the RMS-QC database; all costs associated therewith shall be included in the contract pricing for the work.

1.4 RMS-QC SOFTWARE

RMS-QC is a Windows-based program that can be run on a stand-alone personal computer or on a network. The Government will make available the RMS-QC software to the Contractor after award of the construction contract. Prior to the Pre-Construction Conference, the Contractor shall be responsible to download, install and use the latest version of the RMS-QC software from the Government's RMS Internet Website. Upon specific justification and request by the Contractor, the Government can provide RMS-QC on 3-1/2" high-density
diskettes or CD-ROM. Any program updates of RMS-QC will be made available to the Contractor via the Government RMS Website as they become available.

1.5 SYSTEM REQUIREMENTS

The following listed hardware and software is the minimum system configuration that the Contractor shall have to run RMS-QC:

Hardware

IBM-compatible PC with 200 MHz Pentium or higher processor
32+ MB RAM
GB hard drive disk space for sole use by the RMS-QC system
3 1/2 inch high-density floppy drive
Compact disk (CD) Reader
Color monitor
Laser printer compatible with HP LaserJet III or better, with minimum 4 MB installed memory.
Connection to the Internet, minimum 28 BPS

Software

Microsoft (MS) Access 97 or newer version database software
MS Windows 95 or newer version operating system (MS Windows NT 4.0 or newer is recommended)
Word Processing software compatible with MS Word 97 or newer
Internet browser
The Contractor's computer system shall be protected by virus protection software that is regularly upgraded with all issued manufacturer's updates throughout the life of the contract.
Electronic mail (E-mail) compatible with MS Outlook

1.6 RMS-QC USER GUIDE

After contract award, the Contractor shall download instructions for the installation and use of RMS-QC from the Government RMS Internet Website; the Contractor can obtain the current address from the Government. In case of justifiable difficulties, the Government will provide the Contractor with a CD-ROM containing these instructions.

1.7 CONTRACTOR QUALITY CONTROL (CQC) TRAINING

The use of RMS-QC will be discussed with the Contractor's QC System Manager during the mandatory CQC Training class.

1.8 Video Training for RMS-QC

After contract award, the Contractor will be provided with a CD containing a training video on the use of RMS-QC.
1.9 CONTRACT DATABASE

Prior to the pre-construction conference, the Government shall provide the Contractor with basic contract award data to use for RMS-QC. The Government will provide data updates to the Contractor as needed, generally by files attached to E-mail. These updates will generally consist of submittal reviews, correspondence status, QA comments, and other administrative and QA data.

1.10 DATABASE MAINTENANCE

The Contractor shall establish, maintain, and update data for the contract in the RMS-QC database throughout the duration of the contract. The Contractor shall establish and maintain the RMS-QC database at the Contractor's site office. Data updates to the Government shall be submitted by E-mail with file attachments, e.g., daily reports, schedule updates, payment requests. If permitted by the Contracting Officer, a data diskette or CD-ROM may be used instead of E-mail (see Paragraph DATA SUBMISSION VIA COMPUTER DISKETTE OR CD-ROM). The RMS-QC database typically shall include current data on the following items:

1.11 ADMINISTRATION

1.11.1 Contractor Information

The database shall contain the Contractor's name, address, telephone numbers, management staff, and other required items. Within 14 calendar days of receipt of RMS-QC software from the Government, the Contractor shall deliver Contractor administrative data in electronic format via E-mail.

1.11.2 Subcontractor Information

The database shall contain the name, trade, address, phone numbers, and other required information for all subcontractors. A subcontractor must be listed separately for each trade to be performed. Each subcontractor/trade shall be assigned a unique Responsibility Code, provided in RMS-QC. Within 14 calendar days of receipt of RMS-QC software from the Government, the Contractor shall deliver subcontractor administrative data in electronic format via E-mail.

1.11.3 Requests for Information

RMS-QC includes a means for the Contractor to enter, log, and transmit requests for information (RFI) to the Government. RFIs can be exchanged electronically using the import/export functions of RMS-QC. The Contractor shall also provide the Government with a signed, printed copy of each RFI. All RFIs from the Contractor to the Government shall have the prefix "RFI" and shall be numbered sequentially beginning with RFI-0001.

1.11.4 Equipment

The Contractor's RMS-QC database shall contain a current list of equipment planned for use or being used on the jobsite, including the most recent and planned equipment inspection dates.
1.11.5 EM 385-1-1, Corps of Engineers Safety Manual and RMS Linkage

Upon request, the Contractor can obtain a copy of the current version of the Safety Manual, EM 385-1-1, on CD. Data on the CD will be accessible through RMS-QC, or in stand-alone mode.

1.11.6 Management Reporting

RMS-QC includes a number of reports that Contractor management can use to track the status of the project. The value of these reports is reflective of the quality of the data input, and is maintained in the various sections of RMS-QC. Among these reports are: Progress Payment Request worksheet, QA/QC comments, Submittal Register Status, Three-Phase Inspection checklists.

1.12 FINANCES

1.12.1 Pay Activity Data

The RMS-QC database shall include a list of pay activities that the Contractor shall develop in conjunction with the construction schedule. The sum of all pay activities shall be equal to the total contract amount, including modifications. Pay activities shall be grouped by Contract Line Item Number (CLIN), and the sum of the activities shall equal the amount of each CLIN. The total of all CLINs equals the Contract Amount.

1.12.2 Payment Requests

All progress payment requests shall be prepared using RMS-QC. The Contractor shall complete the payment request worksheet and include it with the payment request. The work completed under the contract, measured as percent or as specific quantities, shall be updated at least monthly. After the update, the Contractor shall generate a payment request report using RMS-QC. The Contractor shall submit the payment requests with supporting data by E-mail with file attachment(s). If permitted by the Contracting Officer, a data diskette may be used instead of E-mail. A signed paper copy of the approved payment request is also required, which shall govern in the event of discrepancy with the electronic version.

1.13 QUALITY CONTROL (QC)

RMS-QC provides a means to track implementation of the 3-phase QC Control System, prepare daily reports, identify and track deficiencies, document progress of work, and support other contractor QC requirements. The Contractor shall maintain this data on a daily basis. Entered data will automatically output to the RMS-QC generated daily report. The Contractor shall provide the Government a Contractor Quality Control (CQC) Plan within the time required in Section 01451, CONTRACTOR QUALITY CONTROL. Within seven calendar days of Government acceptance, the Contractor shall submit a data diskette or CD-ROM reflecting the information contained in the accepted CQC Plan: schedule, pay activities, features of work, submittal register, QC requirements, and equipment list.

1.13.1 Daily Contractor Quality Control (CQC) Reports.

RMS-QC includes the means to produce the Daily CQC Report. The Contractor may use other formats to record basic QC data. However, the Daily CQC...
Report generated by RMS-QC shall be the Contractor's official report. Data from any supplemental reports by the Contractor shall be summarized and consolidated onto the RMS-QC-generated Daily CQC Report. Daily CQC Reports shall be submitted as required by Section 01451, CONTRACTOR QUALITY CONTROL. Reports shall be submitted electronically to the Government using E-mail or diskette within 24 hours after the date covered by the report. Use of either mode of submittal shall be coordinated with the government representative. The Contractor shall also provide the Government a signed, printed copy of the daily CQC report.

1.13.2 Deficiency Tracking.

The Contractor shall use RMS-QC to track deficiencies. Deficiencies identified by the Contractor will be numerically tracked using QC Comments. The contractor shall maintain a current log of its QC comments in the RMS-QC database. The Government will log the deficiencies it has identified using its QA comments. The Government's QA comments will be included in its export file to the Contractor. The Contractor shall regularly update the correction status of both QC and QA comments.

1.13.3 Three-Phase Control Meetings

The Contractor shall maintain scheduled and actual dates and times of preparatory and initial control meetings in RMS-QC.

1.13.4 Accident/Safety Tracking.

The Government will issue safety comments, directions, or guidance whenever safety deficiencies are observed. The Government's safety comments will be included in its export file to the Contractor. The Contractor shall regularly update the correction status of the safety comments. In addition, the Contractor shall utilize RMS-QC to advise the Government of any accidents occurring on the jobsite. This brief supplemental entry is not to be considered as a substitute for completion of mandatory reports, e.g., ENG Form 3394 and OSHA Form 200.

1.13.5 Features of Work

The Contractor shall include a complete list of the features of work in the RMS-QC database. A feature of work may be associated with multiple pay activities. However, each pay activity (see subparagraph "Pay Activity Data" of paragraph "Finances") will only be linked to a single feature of work.

1.13.6 QC Requirements

The Contractor shall develop and maintain a complete list of QC testing, transferred and installed property, and user training requirements in RMS-QC. The Contractor shall update all data on these QC requirements as work progresses, and shall promptly provide this information to the Government via RMS-QC.

1.14 SUBMITTAL MANAGEMENT

The Government will provide the initial submittal register, ENG Form 4288, SUBMITTAL REGISTER, in electronic format. Thereafter, the Contractor shall maintain a complete list of all submittals, including completion of all data
columns as described in Section 01300, SUBMITTAL PROCEDURES. Dates on which submittals are received and returned by the Government will be included in its export file to the Contractor. The Contractor shall use RMS-QC to track and transmit all submittals. ENG Form 4025, submittal transmittal form, and the submittal register update, ENG Form 4288, shall be produced using RMS-QC. RMS will be used to update, store and exchange submittal registers and transmittals, but will not be used for storage of actual submittals.

1.15 SCHEDULE

The Contractor shall develop a construction schedule consisting of pay activities, in accordance with Contract Clause "Schedules for Construction Contracts", or Section 01320, PROJECT SCHEDULE, as applicable. This schedule shall be input and maintained in the RMS-QC database either manually or by using the Standard Data Exchange Format (SDEF) (see Section 01320 PROJECT SCHEDULE). The updated schedule data shall be included with each pay request submitted by the Contractor.

1.16 IMPORT/EXPORT OF DATA

RMS-QC includes the ability to export Contractor data to the Government and to import submittal register and other Government-provided data, and schedule data using SDEF.

1.17 IMPLEMENTATION

Contractor use of RMS-QC as described in the preceding paragraphs is mandatory. The Contractor shall ensure that sufficient resources are available to maintain its RMS-QC database, and to provide the Government with regular database updates. RMS-QC shall be an integral part of the Contractor's management of quality control.

1.18 DATA SUBMISSION VIA COMPUTER DISKETTE OR CD-ROM

The Government-preferred method for Contractor's submission of updates, payment requests, correspondence and other data is by E-mail with file attachment(s). For locations where this is not feasible, the Contracting Officer may permit use of computer diskettes or CD-ROM for data transfer. Data on the disks or CDs shall be exported using the RMS-QC built-in export function. If used, diskettes and CD-ROMs will be submitted in accordance with the following:

1.19 FILE MEDIUM

The Contractor shall submit required data on 3-1/2" double-sided high-density diskettes formatted to hold 1.44 MB of data, capable of running under Microsoft Windows 95 or newer. Alternatively, CD-ROMs may be used. They shall conform to industry standards used in the United States. All data shall be provided in English.

1.20 DISK OR CD-ROM LABELS

The Contractor shall affix a permanent exterior label to each diskette and CD-ROM submitted. The label shall indicate in English, the RMS-QC file name, full contract number, project name, project location, data date, name and telephone number of person responsible for the data.
1.21 FILE NAMES

The Government will provide the file names to be used by the Contractor with the RMS-QC software.

1.22 MONTHLY COORDINATION MEETING

The Contractor shall update the RMS-QC database each workday. At least monthly, the Contractor shall generate and submit an export file to the Government with schedule update and progress payment request. As required in Contract Clause "Payments", at least one week prior to submittal, the Contractor shall meet with the Government representative to review the planned progress payment data submission for errors and omissions. The Contractor shall make all required corrections prior to Government acceptance of the export file and progress payment request. Payment requests accompanied by incomplete or incorrect data submittals will be returned. The Government will not process progress payments until an acceptable RMS-QC export file is received.

1.23 NOTIFICATION OF NONCOMPLIANCE

The Contracting Officer will notify the Contractor of any detected noncompliance with the requirements of this specification. The Contractor shall take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, shall be deemed sufficient for the purpose of notification.

PART 2 – PRODUCTS (NOT APPLICABLE)

PART 3 – EXECUTION (NOT APPLICABLE)
PART 1 GENERAL

1.1 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-07 Schedules Initial Project Schedule; G. Preliminary Project Schedule; G. Periodic Schedule Updates; G.

Three copies of the schedules showing codes, values, categories, numbers, items, etc., as required.

SD-08 Statements Qualifications; FIO.

Documentation showing qualifications of personnel preparing schedule reports.

SD-09 Reports Narrative Report; G. Schedule Reports; G.

Three copies of the reports showing numbers, descriptions, dates, float, starts, finishes, durations, sequences, etc., as required.

1.2 QUALIFICATIONS

The Contractor shall designate an authorized representative who shall be responsible for the preparation of all required project schedule reports. This person shall have previously created and reviewed computerized schedules. Qualifications of this individual shall be submitted to the Contracting Officer for review with the Preliminary Project Schedule submission.

PART 2 PRODUCTS (Not Applicable)

PART 3 EXECUTION

3.1 GENERAL

Pursuant to the Contract Clause, SCHEDULE FOR CONSTRUCTION CONTRACTS a Project Schedule as described below shall be prepared. The scheduling of construction shall be the responsibility of the Contractor. Contractor management personnel shall actively participate in its development. Subcontractors and suppliers working on the project should also contribute in developing and maintaining an accurate Project Schedule. The approved Project Schedule shall be used to measure the progress of the work, to aid in evaluating time extensions, and to provide the basis of all progress payments.
3.2 BASIS FOR PAYMENT

The schedule shall be the basis for measuring Contractor progress. Lack of an approved schedule or scheduling personnel shall result in an inability of the Contracting Officer to evaluate Contractor progress for the purposes of payment. Failure of the Contractor to provide all information, as specified below, shall result in the disapproval of the entire Project Schedule submission and the inability of the Contracting Officer to evaluate Contractor progress for payment purposes. In the case where Project Schedule revisions have been directed by the Contracting Officer and those revisions have not been included in the Project Schedule, then the Contracting Officer may hold retainage up to the maximum allowed by contract, each payment period, until revisions to the Project Schedule have been made.

3.3 PROJECT SCHEDULE

The computer software system utilized by the Contractor to produce the Project Schedule shall be capable of providing all requirements of this specification. Failure of the Contractor to meet the requirements of this specification shall result in the disapproval of the schedule. Manual methods used to produce any required information shall require approval by the Contracting Officer.

3.3.1 Use of the Critical Path Method

The Critical Path Method (CPM) of network calculation shall be used to generate the Project Schedule. The Contractor shall provide the Project Schedule in either the Precedence Diagram Method (PDM) or the Arrow Diagram Method (ADM).

3.3.2 Level of Detail Required

With the exception of the initial and preliminary schedule submission, the Project Schedule shall include an appropriate level of detail. Failure to develop or update the Project Schedule or provide data to the Contracting Officer at the appropriate level of detail, as specified by the Contracting Officer, shall result in the disapproval of the schedule. The CQC completion, inspection, testing, training sessions, pre final inspection, final inspection, and notice activities shall be shown. The Contracting Officer will use, but is not limited to, the following conditions to determine the appropriate level of detail to be used in the Project Schedule.

3.3.2.1 Number of Activities

A minimum of 1000 activities will be shown on the schedule to achieve a level of detail needed by the Contracting Officer.

3.3.2.2 Activity Durations

Contractor submissions shall be required to follow the direction of the Contracting Officer regarding reasonable activity durations. Reasonable durations are those that allow the progress of activities to be accurately determined between payment periods. A rule of thumb, that the Contractor should use, is that less than 2 percent of all non-procurement activities. Original Durations shall be greater than 20 days. Maximum duration and/or amount allowed for any individual activity shall be identified on the schedule.
3.3.2.3 Procurement Activities

Tasks related to the procurement of long lead materials or equipment shall be included as separate activities in the project schedule. Long lead materials and equipment are those materials that have a procurement cycle of over 90 days. Examples of procurement process activities include, but are not limited to: submittals, approvals, procurement, fabrication, delivery, installation, start-up, and testing.

3.2.4 Contractor/Subcontractor Code

All construction activities will be coded as be performed by the prime contractor or a subcontractor. The code shall allow the reviewer to identify what contractor/subcontractor is performing the work.

3.3.2.5 Government Activities

Government and other agencies activities that could impact progress shall be shown. These activities include, but are not limited to: approvals, inspections, utility tie-in, Government Furnished Equipment (GFE) and notice to proceed for phasing requirements.

3.3.2.6 Work Areas

All activities shall be identified in the project schedule by the work area in which the activity occurs. Activities shall not be allowed to cover more than one work area. The work area of each activity shall be identified by the Work Area Code.

3.3.2.7 Modification or Claim Number

Any activity that is added or changed by contract modification or used to justify claimed time shall be identified by a mod or claim code that changed the activity. Activities shall not belong to more than one modification or claim item. The modification or claim number of each activity shall be identified by the Mod or Claim Number.

3.3.2.8 Category of Work

All Activities shall be identified in the project schedule according to the category of work which best describes the activity. Category of work refers, but is not limited to, to the procurement chain of activities including such items as submittals, approvals, procurement, fabrication, delivery, installation, start-up, and testing. The category of work for each activity shall be identified by the Category of Work Code.

3.3.3 Scheduled Project Completion

The schedule interval shall extend from notice-to-proceed to the contract completion date.

3.3.3.1 Project Start Date

The schedule shall start no earlier than the date that the Notice to Proceed (NTP) was acknowledged. The Contractor shall include as the first activity in the project schedule an activity called "Start Project". The "Start Project" activity shall have a "ES" constraint, a constraint date equal to the date that the NTP was acknowledged, and a zero day duration.
3.3.3.2 Constraint of Last Activity

Completion of the last activity in the schedule shall be constrained by the contract completion date. Calculation on project updates shall be such that if the early finish of the last activity falls after the contract completion date, then the float calculation shall reflect a negative float on the critical path. The Contractor shall include as the last activity in the project schedule an activity call "End Project". The "End Project" activity shall have: a "LF" constraint, a constraint date equal to the completion date for the project, and a zero day duration.

3.3.3.3 Early Project Completion

In the event the project schedule shows completion prior to the contract completion date, the Contractor shall identify those activities that have been accelerated and/or those activities that are scheduled in parallel to support the Contractor's "early" completion. Manpower and equipment loading shall be submitted with the schedule for all critical path activities and near critical path activities. Contractor shall specifically address each of the activities noted at every project schedule update period to assist the Contracting Officer to evaluate the Contractor's ability to actually complete prior to the contract period. The late completion date shall remain fixed on the contract required completion date, as revised by modifications.

3.3.4 Mobilization and Demob

Mobilization and demobilization cost are not separate costs, therefore all associated costs shall be apportioned throughout the contractor's schedule activities. No activity for mobilization and demobilization shall be included in the schedule.

3.3.5 Interim Completion Dates

Contractually specified interim completion dates shall also be constrained to show negative float if the early finish date of the last activity in that phase falls after the interim completion date.

3.3.6 Default Progress Data Disallowed

Actual Start and Finish dates shall not be automatically updated by default mechanisms that may be included in CPM scheduling software systems. Actual Start and Finish dates on the CPM schedule shall match those dates provided from Contractor Quality Control Reports. Failure of the Contractor to document the Actual Start and Finish dates on the Daily Quality Control report for every in progress or completed activity and insure that the data contained on the Daily Quality Control reports is the sole basis for schedule updating shall result in the disapproval of the Contractor's schedule and the inability of the Contracting Officer to evaluate Contractor progress for payment purposes.

3.3.7 Out-of-Sequence Progress
Activities that have posted progress without predecessors being completed (Out-of-Sequence Progress) shall be allowed only by the case-by-case approval of the Contracting Officer. The Contracting Officer may direct that changes in schedule logic be made to correct any or all out-of-sequence work.

3.3.8 Negative Lags

Lag durations contained in the project schedule shall not have a negative value.

3.4 PROJECT SCHEDULE SUBMISSIONS

The Contractor shall provide the submissions as described below. The data disk, reports, and network diagrams required for each submission are contained in paragraph SUBMISSION REQUIREMENTS.

3.4.1 Preliminary Project Schedule Submission

The Preliminary Project Schedule, defining the Contractor's planned operations for the first 60 calendar days shall be submitted for approval within 20 calendar days after Notice to Proceed is acknowledged. The approved preliminary schedule shall be used for payment purposes not to exceed 60 calendar days after Notice to Proceed.

3.4.2 Initial Project Schedule Submission

The Initial Project Schedule shall be submitted for approval within 50 calendar days after Notice to Proceed. The schedule shall provide a reasonable sequence of activities which represent work through the entire project and shall be at a reasonable level of detail. The Government will furnish review comments on the initial schedule with 21 days, for comment and incorporation into the schedule by the Contractor. The unapproved initial schedule shall be used for payment purposes not exceeding 30 days following the return of the Government's comments.

3.4.3 Periodic Schedule Updates

Based on the result of progress meetings, specified in "Periodic Progress Meetings," the Contractor shall submit periodic schedule updates. These submissions shall enable the Contracting Officer to assess Contractor's progress. If the Contractor fails or refuses to furnish the information and project schedule data, which in the judgment of the Contracting Officer or authorized representative, is necessary for verifying the contractor's progress, the Contractor shall be deemed not to have provided an estimate upon which progress payment may be made.

3.5 SUBMISSION REQUIREMENTS

The following items shall be submitted by the Contractor for the initial submission, and every periodic project schedule update throughout the life of the project:

3.5.1 Data Disks
Three data disks containing the project schedule shall be provided. Data on the disks shall be in the format specified by the Government at the Preconstruction meeting.

3.5.1.1 File Medium

Required data shall be submitted on CD-ROM, or 3.5 inch disk formatted to hold 1.44 MB of data, under the MS-DOS operating system.

3.5.1.2 Disk Label

A permanent exterior label shall be affixed to each disk submitted. The label shall indicate the type of schedule (Initial, Update, or Change), full contract number, project name, project location, data date, name and telephone number or person responsible for the schedule, and the MS-DOS version used to format the disk.

3.5.1.3 File Name

Each file submitted shall have a name related to either the schedule data date, project name, or contract number. The Contractor shall develop a naming convention that will insure that the names of the files submitted are unique. The Contractor shall submit the file naming convention to the Contracting Officer for approval.

3.5.2 Narrative Report

A Narrative Report shall be provided with each update of the project schedule. This report shall be provided as the basis of the Contractor's progress payment request. The Narrative Report shall include: a description of activities along the 4 most critical paths, a description of current and anticipated problem areas or delaying factors and their impact, and an explanation of corrective actions taken.

3.5.3 Approved Changes Verification

Only project schedule changes that have been previously approved by the Contracting Officer shall be included in the schedule submission. The Narrative Report shall specifically reference, on an activity by activity basis, all changes made since the previous period and relate each change to documented, approved schedule changes.

3.5.4 Schedule Reports

The format for each activity for the schedule reports listed below shall contain: Activity Numbers, Activity Description, Original Duration, Remaining Duration, Early Start Date, Early Finish Date, Late Start Date, Late Finish Date, Total Float. Actual Start and Actual Finish Dates shall be printed for those activities in-progress or completed.

3.5.4.1 Activity Report

A list of all activities sorted according to activity number and then sorted according to Early Start Date. For completed activities the Actual Start Date shall be used as the secondary sort.

3.5.4.2 Logic Report
A list of Preceding and Succeeding activities for every activity in ascending order by activity number and then sorted according to Early Start Date. For completed activities the Actual Start Date shall be used as the secondary sort.

3.5.4.3 Total Float Report

A list of all activities sorted in ascending order of total float. Activities which have the same amount of total float shall be listed in ascending order of Early Start Dates.

3.5.4.4 Responsibility sort listing

A responsibility sort listing subcontractor/contractor for each activity of work.

3.5.4.5 Anticipated Earnings Curves

Anticipated Earnings Curves based on late start, early start and anticipated start. Costs will be reflected on a monthly earnings basis and also an accumulated earnings basis.

3.5.5 Network Diagram

The network diagram shall be required on the initial schedule submission and on scheduled update submissions. The network diagram shall depict and display the order and interdependence of activities and the sequence in which the work is to be accomplished. The Contracting Officer will use, but is not limited to, the following conditions to review compliance with this paragraph.

3.5.5.1 Continuous Flow

Diagrams shall show a continuous flow from left to right with no arrows from right to left. The activity or event number, description, duration, and estimated earned value shall be shown on the diagram.

3.5.5.2 Project Milestone Dates

Dates shall be shown on the diagram for start of project, any contract required interim completion dates, and contract completion dates.

3.5.5.3 Critical Path

The critical path shall be clearly shown.

3.5.5.4 Banding

Activities shall be grouped to assist in the understanding of the activity sequence. Typically, this flow will group activities by category of work, work area and/or responsibility.

3.6 PERIODIC PROGRESS MEETINGS
Progress meetings to discuss payment shall include a monthly on-site meeting or other regular intervals mutually agreed to at the preconstruction conference. During this meeting the Contractor will describe, on an activity by activity basis, all proposed revisions and adjustments to the project schedule required to reflect the current status of the project. The Contracting Officer will approve activity progress, proposed revisions, and adjustments as appropriate.

3.6.1 Meeting Attendance

The Contractor’s Project Manager and Scheduler shall attend the regular progress meeting.

3.6.2 Update Submission Following Progress Meeting

A complete update of the project schedule containing all approved progress, revisions, and adjustments, based on the regular progress meeting, shall be submitted not later than 4 working days after the monthly progress meeting.

3.6.3 Progress Meeting Contents

Update information, including Actual Start Dates, Actual Finish Dates, Remaining Durations, and Cost to Date shall be subject to the approval of the Contracting Officer. The following minimum set of items which the Contractor shall address, on an activity by activity basis, during each progress meeting.

3.6.3.1 Start and Finish Dates

The Actual Start and Actual Finish dates for each activity currently in-progress or completed activities.

3.6.3.2 Time Completion

The estimated Remaining Duration for each activity in-progress. Time-based progress calculations must be based on Remaining Duration for each activity.

3.6.3.3 Cost Completion

The earnings for each activity started. Payment shall be based on earnings for each in-progress or completed activity. Payment for individual activities shall not be made for work that contains quality defects. A portion of the overall project amount may be retained based on delays of activities.

3.6.3.4 Logic Changes

All logic changes pertaining to Notice to Proceed on change orders, change orders to be incorporated into the schedule, Contractor proposed changes in work sequence, corrections to schedule logic for out-of-sequence progress, and other changes that have been made pursuant to contract provisions shall be specifically identified and discussed.

3.6.3.5 Other Changes
Other changes required due to delays in completion of any activity or group of activities are those delays beyond the Contractors control such as strikes and unusual weather. Also included are delays encountered due to submittals, Government Activities, deliveries or work stoppage which makes re-planning the work necessary, and when the schedule does not represent the actual prosecution and progress of the work.

3.7 REQUESTS FOR TIME EXTENSIONS

In the event the Contractor requests an extension of the contract completion date, he shall furnish such justification, project schedule data and supporting evidence as the Contracting Officer may deem necessary for a determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof of delay, based on revised activity logic, duration, and costs (updated to the specific date that the delay occurred) is obligatory to any approvals.

3.7.1 Justification of Delay

The project schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved with this request. The Contracting Officer's determination as to the number of allowable days of contract extension, shall be based upon the project schedule updates in effect for the time period in question and other factual information. Actual delays that are found to be caused by the Contractor's own actions, which result in the extension of the schedule, shall not be a cause for a time extension to the contract completion date.

3.7.2 Submission Requirements

The Contractor shall submit a justification for each request for a change in the contract completion date of under two weeks based upon the most recent schedule update at the time of the Notice to Proceed or constructive direction issued for the change. Such a request shall be in accordance with the requirements of other appropriate Contract Clauses and shall include, as a minimum:

 a. A list of affected activities, with their associated project schedule activity number.

 b. A brief explanation of the causes of the change.

 c. An analysis of the overall impact of the changes proposed.

 d. A sub-network of the affected area.

Activities impacted in each justification for change shall be identified by a unique activity code contained in the required data file.

3.7.3 Additional Submission Requirements

For any request for time extension for over 2 weeks, the Contracting Officer may request an interim update with revised activities for a
specific change request. The Contractor shall provide this disk within 4 days of the Contracting Officer's request.

3.8 DIRECTED CHANGES

If Notice to Proceed (NTP) is issued for changes prior to settlement of price and/or time, the Contractor shall submit proposed schedule revisions to the Contracting Officer within 2 weeks of the NTP being issued. The proposed revisions to the schedule will be approved by the Contracting Officer prior to inclusion of those changes within the project schedule. If the Contractor fails to submit the proposed revisions, the Contracting Officer may furnish the Contractor suggested revisions to the project schedule. The Contractor shall include these revisions in the project schedule until the Contractor submits revisions, and final changes and impacts have been negotiated. If the Contractor has any objections to the revisions furnished by the Contracting Officer, then the Contractor shall advise the Contracting Officer within 2 weeks of receipt of the revisions. Regardless of the objections, the Contractor will continue to update their schedule with the Contracting Officer's revisions until a mutual agreement in the revisions may be made. If the Contractor fails to submit alternative revisions within 2 weeks of receipt of the Contracting Officer's proposed revisions, the Contractor will be deemed to have concurred with the Contracting Officer's proposed revisions. The proposed revisions will then be the basis for an equitable adjustment for performance of the work.

3.9 OWNERSHIP OF FLOAT

Float available in the schedule, at any time, shall not be considered for the exclusive use of either the Government or the Contractor.
SECTION 01330

SUBMITTAL PROCEDURES

PART 1 GENERAL

1.1 SUBMITTAL IDENTIFICATION

Submittals required are identified by SD numbers and titles as follows:

SD-02 Shop Drawings
SD-03 Product Data
SD-04 Samples
SD-06 Test Reports
SD-07 Certificates
SD-08 Manufacturer's Instructions
SD-10 Operation and Maintenance Data

1.2 SUBMITTAL CLASSIFICATION

Submittals are classified as follows:

1.2.1 Government Approved

Government approval is required for extensions of design, critical materials, deviations, equipment whose compatibility with the entire system must be checked, and other items as designated by the Contracting Officer. Within the terms of the Contract Clause entitled "Specifications and Drawings for Construction," they are considered to be "shop drawings."

1.2.2 Information Only

All submittals not requiring Government approval will be for information only. They are not considered to be "shop drawings" within the terms of the Contract Clause referred to above.

1.3 APPROVED SUBMITTALS

The Contracting Officer's approval of submittals shall not be construed as a complete check, but will indicate only that the general method of construction, materials, detailing and other information are satisfactory. Approval will not relieve the Contractor of the responsibility for any error which may exist, as the Contractor under the Contractor Quality Control (CQC) requirements of this contract is responsible for dimensions, the design of adequate connections and details, and the satisfactory construction of all work. After submittals have been approved by the Contracting Officer, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
1.4 DISAPPROVED SUBMITTALS

The Contractor shall make all corrections required by the Contracting Officer and promptly furnish a corrected submittal in the form and number of copies specified for the initial submittal. If the Contractor considers any correction indicated on the submittals to constitute a change to the contract, a notice in accordance with the Contract Clause "Changes" shall be given promptly to the Contracting Officer.

1.5 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

PART 2 PRODUCTS (NOT USED)

PART 3 EXECUTION

3.1 GENERAL

The Contractor shall make submittals as required by the specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective sections. Units of weights and measures used on all submittals shall be the same as those used in the contract drawings. Each submittal shall be complete and in sufficient detail to allow ready determination of compliance with contract requirements. Prior to submittal, all items shall be checked and approved by the Contractor's Quality Control (CQC) System Manager and each item shall be stamped, signed, and dated by the CQC System Manager indicating action taken. Proposed deviations from the contract requirements shall be clearly identified. Submittals shall include items such as: Contractor's, manufacturer's, or fabricator's drawings; descriptive literature including (but not limited to) catalog cuts, diagrams, operating charts or curves; test reports; test cylinders; samples; O&M manuals (including parts list); certifications; warranties; and other such required submittals. Submittals requiring Government approval shall be scheduled and made prior to the acquisition of the material or equipment covered thereby. Samples remaining upon completion of the work shall be picked up and disposed of in accordance with manufacturer's Material Safety Data Sheets (MSDS) and in compliance with existing laws and regulations.

3.2 SUBMITTAL REGISTER

At the end of this section is a submittal register showing items of equipment and materials for which submittals are required by the specifications; this list may not be all inclusive and additional submittals may be required. The Contractor shall maintain a submittal register for the project in accordance with Section 01312 RESIDENT MANAGEMENT SYSTEM (RMS). Field Density report submittals are to be attached to the CQC daily report.

3.3 SCHEDULING

Submittals covering component items forming a system or items that are interrelated shall be scheduled to be coordinated and submitted concurrently. Certifications to be submitted with the pertinent drawings shall be so scheduled. Adequate time (a minimum of 30 calendar days
inclusive of mailing time) shall be allowed and shown on the register for review and approval. No delay damages or time extensions will be allowed for time lost in late submittals.

3.4 TRANSMITTAL FORM (ENG FORM 4025)

The sample transmittal form (ENG Form 4025) attached to this section shall be used for submitting both Government approved and information only submittals in accordance with the instructions on the reverse side of the form. These forms are included in the RMS-QC software that the Contractor is required to use for this contract. This form shall be properly completed by filling out all the heading blank spaces and identifying each item submitted. Special care shall be exercised to ensure proper listing of the specification paragraph and/or sheet number of the contract drawings pertinent to the data submitted for each item.

3.5 SUBMITTAL PROCEDURE

Submittals shall be made as follows:

3.5.1 Procedures

FIO - Submit 3 copies to US Army Corps of Engineers, Construction Branch, 700 West Capitol, Little Rock Arkansas, 72203-0867 (except for those items that the Central Arkansas Area Office (CAAO) is the primary reviewer) and one information copy to the CAAO, Corps of Engineers Construction Office, P.O. Box 219, Jacksonville, Arkansas, 72076 (Reverse if CAAO is the primary reviewer). One copy will be returned to Contractor. CAAO only submittals will be indicated on RMS.

GA - Submit 5 copies to US Army Corps of Engineers, Construction Branch, 700 West Capitol, Little Rock Arkansas, 72203-0867 and one copy to the CAAO, Corps of Engineers Construction Office, P.O. Box 219, Jacksonville, Arkansas, 72076. Two copies will be returned to Contractor.

3.5.2 Deviations

For submittals which include proposed deviations requested by the Contractor, the column "variation" of ENG Form 4025 shall be checked. The Contractor shall set forth in writing the reason for any deviations and annotate such deviations on the submittal. The Government reserves the right to rescind inadvertent approval of submittals containing unnoted deviations.

3.6 CONTROL OF SUBMITTALS

The Contractor shall carefully control his procurement operations to ensure that each individual submittal is made on or before the Contractor scheduled submittal date shown on the approved "Submittal Register."

3.7 GOVERNMENT APPROVED SUBMITTALS

Upon completion of review of submittals requiring Government approval, the submittals will be identified as having received approval by being so stamped and dated. 1 copy of the submittal will be retained by the Contracting Officer and 4 copies of the submittal will be returned to the Contractor. Architect/Engineer may retain one copy. The Government will
require a minimum of 30 calendar days for review of submittals exclusive of mailing time.

3.8 INFORMATION ONLY SUBMITTALS

Normally submittals for information only will not be returned. Approval of the Contracting Officer is not required on information only submittals. The Government reserves the right to require the Contractor to resubmit any item found not to comply with the contract. This does not relieve the Contractor from the obligation to furnish material conforming to the plans and specifications; will not prevent the Contracting Officer from requiring removal and replacement of nonconforming material incorporated in the work; and does not relieve the Contractor of the requirement to furnish samples for testing by the Government laboratory or for check testing by the Government in those instances where the technical specifications so prescribe.

3.9 STAMPS

Stamps used by the Contractor on the submittal data to certify that the submittal meets contract requirements shall be similar to the following:

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Firm Name)</td>
</tr>
</tbody>
</table>

_____ Approved

_____ Approved with corrections as noted on submittal data and/or attached sheets(s).

SIGNATURE: __

TITLE: ___

DATE: ___

-- End Of Section --
SUBMITTAL REGISTER

TITLE AND LOCATION
C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT CLASSIFICATION</th>
<th>ACTION CODE</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01320</td>
<td></td>
<td>SD-01</td>
<td>Preconstruction Submittals</td>
<td>G RE</td>
<td>3.4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initial Project Schedule</td>
<td>G RE</td>
<td>3.4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preliminary Project Schedule</td>
<td>G RE</td>
<td>3.4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Periodic Schedule Updates</td>
<td>G RE</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td>G RE</td>
<td>3.5.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qualifications</td>
<td>G RE</td>
<td>3.6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-09 Manufacturer’s Field Reports</td>
<td>G RE</td>
<td>3.6.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Narrative Report</td>
<td>G RE</td>
<td>3.6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02220</td>
<td></td>
<td>SD-03</td>
<td>Product Data</td>
<td>G RE</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Work Plan</td>
<td>G RE</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02230</td>
<td></td>
<td>SD-03</td>
<td>Product Data</td>
<td>G RE</td>
<td>3.4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salable Timber</td>
<td>G RE</td>
<td>3.4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02300</td>
<td></td>
<td>SD-03</td>
<td>Product Data</td>
<td>G RE</td>
<td>3.6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Earthwork</td>
<td>G RE</td>
<td>3.6.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02315</td>
<td></td>
<td>SD-06</td>
<td>Test Reports</td>
<td>G RE</td>
<td>3.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Testing</td>
<td>G RE</td>
<td>3.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02316</td>
<td></td>
<td>SD-06</td>
<td>Test Reports</td>
<td>G RE</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Testing</td>
<td>G RE</td>
<td>3.4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Field Density Tests</td>
<td>G RE</td>
<td>3.4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Testing of Backfill Materials</td>
<td>G RE</td>
<td>2.1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-03</td>
<td>Product Data</td>
<td>G RE</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)
<table>
<thead>
<tr>
<th>TRANS. NO.</th>
<th>SPEC. NO.</th>
<th>DESCRIPTION</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>02364</td>
<td></td>
<td>Termiticide Application Plan</td>
<td>G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02466</td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02466</td>
<td></td>
<td>SD-03 Product Data</td>
<td>G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Foundation Exterior</td>
<td>2.1 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Utilities and Vents</td>
<td>3.2.4 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Verification of Measurement</td>
<td>3.5 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Application Equipment</td>
<td>3.4.1 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-04 Samples</td>
<td>G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Termiticides</td>
<td>2.1 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-06 Test Reports</td>
<td>G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Equipment Calibration and Tank</td>
<td>3.4.1 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Measurement</td>
<td>G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Soil Moisture</td>
<td>3.3.1 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-07 Certificates</td>
<td>G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Qualifications</td>
<td>1.2 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Drilled Piers</td>
<td>3.1 G RE</td>
<td>G RE</td>
<td>G RE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-07 Certificates</td>
<td>G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Qualifications</td>
<td>1.3 G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>02364</td>
<td></td>
<td>Drilled Piers</td>
<td>3.1 G AE</td>
<td>G AE</td>
<td>G AE</td>
</tr>
<tr>
<td>CONTRACTOR:</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>G G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td>3.3.1</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriological Disinfection</td>
<td>3.3.1</td>
<td>G ED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer's Representative</td>
<td>1.3</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>3.1</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meters</td>
<td>2.8.5</td>
<td>G ED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEMENT</td>
<td>2.6</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution System</td>
<td>3.3.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution System</td>
<td>3.3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution System</td>
<td>3.3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution System</td>
<td>3.3.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe, Fittings, and Associated Materials</td>
<td>2.1</td>
<td>G ED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>SPEC</td>
<td>PARAGRAPH</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>MATERIAL NEEDED BY</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>02556</td>
<td></td>
<td>1.3.1</td>
<td>G E</td>
<td>ED</td>
<td>G E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.10</td>
<td>G R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.10.1</td>
<td>G R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utility Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training</td>
<td>3.11.1</td>
<td>G R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02621</td>
<td></td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials</td>
<td>2.1</td>
<td>G R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placeing Pipe</td>
<td>3.3</td>
<td>G R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe for Culverts and Storm</td>
<td>2.1</td>
<td>G R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resin</td>
<td>2.3.1</td>
<td>G R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipeline Testing</td>
<td>3.7</td>
<td>G R</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>DESCRIPTION</td>
<td>SECTION</td>
<td>PARAGRAPH #</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
<td>-------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>02630</td>
<td>Hydrostatic Test on Watertight Joints</td>
<td>02799</td>
<td>2.6</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td>02741</td>
<td>SD-03 Product Data</td>
<td>02799</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td>02748</td>
<td>SD-07 Certificates</td>
<td>02799</td>
<td>2.3</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td>02754</td>
<td>SD-03 Product Data</td>
<td>02799</td>
<td>1.6</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td>02760</td>
<td>SD-03 Product Data</td>
<td>02799</td>
<td>2.1</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer's Recommendations</td>
<td>02799</td>
<td>1.4.2.1</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td>02799</td>
<td>1.4</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td>02799</td>
<td>2.1</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>02799</td>
<td>2.1</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td>02763</td>
<td>SD-03 Product Data</td>
<td>02799</td>
<td>1.4</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td>02799</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composition Requirements</td>
<td>02799</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifications</td>
<td>02799</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td>02799</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sampling and Testing</td>
<td>02799</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>ACTION CODE</td>
<td>DATE OF ACTION</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02763</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compound</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(VOC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02770</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>2.1 G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality Control</td>
<td>3.8 G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02811</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sprinkler System</td>
<td>3.1 G AE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Framed Instructions</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Training</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sprinkler System</td>
<td>3.1 G AE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Tests</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sprinkler System</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sprinkler System</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02821</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chain Link Fence</td>
<td>2.1.1 G RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02922</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td>3.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY NO.</td>
<td>DESCRIPTION</td>
<td>SPEC REF</td>
<td>DESCRIPTION</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td>GOVERNMENT ACTION</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>02922</td>
<td>Chemical Treatment Material</td>
<td>1.4.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delivery</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finished Grade and Topsoil</td>
<td>3.2.1</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topsoil</td>
<td>2.2</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantity Check</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sod Establishment Period</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Record</td>
<td>3.9.3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application of Pesticide</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delivered Topsoil</td>
<td>1.4.1.2</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Amendments</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temporary Seeding</td>
<td>3.4</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment Calibration</td>
<td>3.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Test</td>
<td>3.1.4</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sod</td>
<td>2.1</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topsoil</td>
<td>2.2</td>
<td>G AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH Adjuster</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertilizer</td>
<td>2.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Material</td>
<td>2.3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Conditioner</td>
<td>2.3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pesticide</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02930</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>SPEC</td>
<td>TRANSMITTAL NO.</td>
<td>DESCRIPITION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>02930</td>
<td>SD-03</td>
<td>3.2.1</td>
<td>SD-03 Product Data</td>
<td>Finished Grade, Topsoil and Underground Utilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chemical Treatment Material</td>
<td>1.4.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Equipment</td>
<td>3.7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delivery</td>
<td>1.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plant Establishment Period</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintenance Record</td>
<td>3.9.2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Application of Pesticide</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delivered Topsoil</td>
<td>1.4.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soil Amendments</td>
<td>3.1.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mulch</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soil Test</td>
<td>3.1.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percolation Test</td>
<td>3.1.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plant Material</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Topsoil</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH Adjuster</td>
<td>2.3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fertilizer</td>
<td>2.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Organic Material</td>
<td>2.3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soil Conditioner</td>
<td>2.3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Organic Mulch</td>
<td>2.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mycorrhizal Fungi Inoculum</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pesticide</td>
<td>2.10</td>
</tr>
<tr>
<td>ACTIVITY NO.</td>
<td>SPECIFICATION NO.</td>
<td>DESCRIPTION</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td>ACTION CODE</td>
<td>APPROVAL NEEDED BY</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>02930</td>
<td>SD-10</td>
<td>Operation and Maintenance Data</td>
<td>3.9.5</td>
<td>G AE</td>
<td></td>
</tr>
<tr>
<td>03100</td>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>3.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03</td>
<td>Product Data</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03</td>
<td>Design</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03</td>
<td>Form Materials</td>
<td>2.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Fiber Voids</td>
<td>2.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07</td>
<td>Certificates</td>
<td>2.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03150</td>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03</td>
<td>Product Data</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Preformed Expansion Joint Filler</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Preformed Expansion Joint Filler</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Sealant</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Waterstops</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Waterstops</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Lubricant for Preformed Compression Seals</td>
<td>2.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Field-Molded Type</td>
<td>2.3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMIT</td>
<td>NO</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>PARAGRAPH</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>03150</td>
<td></td>
<td></td>
<td>Non-metallic Materials</td>
<td>SD-07 Certificates</td>
<td>2.4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preformed Expansion Joint Filler</td>
<td>SD-07 Certificates</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sealant</td>
<td>SD-07 Certificates</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Waterstops</td>
<td>SD-07 Certificates</td>
<td>2.4</td>
</tr>
<tr>
<td>03200</td>
<td></td>
<td></td>
<td>3.1</td>
<td>SD-02 Shop Drawings</td>
<td>SD-02 Shop Drawings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reinforcement</td>
<td>SD-03 Product Data</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welding</td>
<td>SD-07 Certificates</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reinforcing Steel</td>
<td>SD-03 Product Data</td>
<td>2.3</td>
</tr>
<tr>
<td>03300</td>
<td></td>
<td></td>
<td>1.5</td>
<td>SD-03 Product Data</td>
<td>SD-03 Product Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mixture Proportions</td>
<td>SD-06 Test Reports</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lightweight Aggregate Concrete</td>
<td>SD-06 Test Reports</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Testing and Inspection for Contractor Quality Control</td>
<td>SD-07 Certificates</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qualifications</td>
<td>SD-07 Certificates</td>
<td>1.3</td>
</tr>
<tr>
<td>04200</td>
<td></td>
<td></td>
<td>1.5</td>
<td>SD-02 Shop Drawings</td>
<td>SD-02 Shop Drawings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Masonry Work</td>
<td>SD-03 Product Data</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clay Brick</td>
<td>SD-03 Product Data</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insulation</td>
<td>SD-03 Product Data</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cold Weather Installation</td>
<td>SD-04 Samples</td>
<td>3.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>SD-04 Samples</td>
<td>3.1.2</td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB

<table>
<thead>
<tr>
<th>CONTRACTOR:</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
</table>

TRANSMITTAL SPEC NUMBER | DESCRIPTION | GOVERNMENT CLASSIFICATION | ACTION CODE | DATE OF ACTION | DATE RCD FROM CONTR | DATE RCD FROM OTHER REVIEWER | DATE RCD FROM APPR AUTH | DATE OF ACTION |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>04200</td>
<td>Concrete Masonry Units (CMU)</td>
<td>2.3</td>
<td>G RE</td>
<td>(a) (b) (c) (d)</td>
<td>(e) (f)</td>
<td>(g) (h)</td>
<td>(i) (j)</td>
<td>(k) (l)</td>
</tr>
<tr>
<td></td>
<td>Clay Brick</td>
<td>2.2</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anchors, Ties, and Bar</td>
<td>2.6</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positioners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expansion-Joint Materials</td>
<td>2.10</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joint Reinforcement</td>
<td>2.7</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>2.11</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efflorescence Test</td>
<td>3.21.3</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Testing of Mortar</td>
<td>3.21.1</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Testing of Grout</td>
<td>3.21.2</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay Brick</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete Masonry Units (CMU)</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Joint Keys</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anchors, Ties, and Bar</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positioners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expansion-Joint Materials</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joint Reinforcement</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reinforcing Steel Bars and Rods</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortar Admixtures</td>
<td>2.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grout Admixtures</td>
<td>2.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05120</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural Steel System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)
<table>
<thead>
<tr>
<th>NO.</th>
<th>TRANSMISSION SPEC.</th>
<th>DESCRIPTION</th>
<th>ACTIVITY NO.</th>
<th>PARAGRAPH NO.</th>
<th>GOVT. CLASSIFICATION</th>
<th>SD-02 SHOP DRAWINGS</th>
<th>SD-03 PRODUCT DATA</th>
<th>SD-04 SAMPLES</th>
<th>SD-07 CERTIFICATES</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>05120</td>
<td>Structural Connections</td>
<td>3.2.1</td>
<td>G</td>
<td>RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erection</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding</td>
<td>3.3</td>
<td>G</td>
<td>RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding</td>
<td>3.3</td>
<td>G</td>
<td>RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Strength Bolts and Nuts</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Steel Bolts and Nuts</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuts Dimensional Style</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washers</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding Inspector</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05210</td>
<td>SD-02 Shop Drawings</td>
<td>1.3</td>
<td>G</td>
<td>RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steel Joists</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05300</td>
<td>SD-02 Shop Drawings</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deck Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attachments</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deck Units</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attachments</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMITTAL NO.</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>ACTION</td>
<td>DATE OF ACTION</td>
<td>DATE FWD TO APPR AUTH</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE FWD TO OTHER REVIEWER</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM APPR AUTH</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td>Deck Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td>Deck Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachments</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framing Components</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td>Mill Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welds</td>
<td>3.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td>Miscellaneous Metal Items</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td>Grading and Marking</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td>Reinforcing Fabric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection Board</td>
<td>3.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td>Blanket insulation</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanket insulation</td>
<td>3.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMITTAL SPEC NO.</td>
<td>DESCRIPTION</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>DATE FWD TO APPR AUTH/DATE RCD FROM APPR AUTH</td>
<td>DATE FWD TO OTHER REVIEWER/DATE RCD FROM OTHER REVIEWER</td>
<td>DATE FWD TO OTHER REVIEWER/DATE RCD FROM OTHER REVIEWER</td>
<td>DATE FWD TO OTHER REVIEWER/DATE RCD FROM OTHER REVIEWER</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>07212</td>
<td>Pressure sensitive tape</td>
<td>2.5</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td>2.6</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07214</td>
<td>Application of Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07214</td>
<td>Block or board insulation</td>
<td>2.1</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td>2.2</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Block or Board Insulation</td>
<td>2.1</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adhesive</td>
<td>2.2.1</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Design</td>
<td>1.3</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifications</td>
<td>1.2.2</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Accessories</td>
<td>2.3</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof Panels</td>
<td>2.1</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Factory Color Finish</td>
<td>2.6</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fasteners</td>
<td>2.4</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Insulation</td>
<td>2.7</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Gaskets and Insulating</td>
<td>2.10</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Sealant</td>
<td>2.9</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Concealed Anchor Clips</td>
<td>2.2</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>TRANS. SPEC</td>
<td>DESCRIPTION</td>
<td>PARAGRAPH</td>
<td>MATERIAL NEEDED</td>
<td>GOVERNMENT classification</td>
<td>DATE OF ACTION</td>
<td>DATE RCD FROM REVIEWER</td>
<td>DATE RCD FROM APPR AUTH</td>
<td>MAILED TO CONTRACTOR</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>07416</td>
<td>Subpurlins</td>
<td>2.5</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPDM Rubber Boots</td>
<td>2.12</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uplift Resistance</td>
<td>1.4</td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural Standing Seam Metal</td>
<td>1.2.1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07600</td>
<td>SD-02 Shop Drawings</td>
<td>Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07840</td>
<td>SD-02 Shop Drawings</td>
<td>Firestopping Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Firestopping Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installer Qualifications</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspection</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07900</td>
<td>SD-03 Product Data</td>
<td>Backing</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bond-Breaker</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sealant</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Sealant</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08110</td>
<td>SD-02 Shop Drawings</td>
<td>Doors and Frames</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Fire Rated Doors</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TRANSMITTAL SPEC</td>
<td>DESCRIPTION</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08110</td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doors and Frames</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire Rated Doors</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Insulated Doors</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08120</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum Doors and Frames</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleaning</td>
<td>3.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finishes</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08162</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal sliding, accordion type</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fire doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal sliding, accordion type</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fire doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Work</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal sliding, accordion type</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fire doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM SUBMITTED</td>
<td>DESCRIPTION</td>
<td>PARAGRAPH</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08162</td>
<td>Horizontal sliding, accordian type fire doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08210</td>
<td>SD-02 Shop Drawings</td>
<td>Wood Doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire Doors</td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08360</td>
<td>SD-02 Shop Drawings</td>
<td>Sectional Overhead Door Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Design</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08700</td>
<td>SD-02 Shop Drawings</td>
<td>Exit Devices</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drawings</td>
<td>2.1</td>
<td></td>
<td>G RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Exit Device Accessories</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Schedule</td>
<td>Hardware</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPEC NO.</td>
<td>DESCRIPTION</td>
<td>SUBMIT</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>ACTION CODE</td>
<td>DATE OF ACTION</td>
<td>DATE RWD TO APPR AUTH</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RWD TO OTHER REVIEWER</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>08810</td>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>Installation</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insulating Glass</td>
<td>1.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insulating Glass</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glazing Accessories</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04</td>
<td>Samples</td>
<td>Insulating Glass</td>
<td>1.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insulating Glass</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07</td>
<td>Certificates</td>
<td>Insulating Glass</td>
<td>1.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insulating Glass</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09250</td>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>Steel Framing</td>
<td>2.6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel Framing</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control Joints</td>
<td>3.2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07</td>
<td>Certificates</td>
<td>Gypsum Wallboard</td>
<td>2.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gypsum Wallboard</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water-Resistant Gypsum Board</td>
<td>2.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel Framing</td>
<td>2.6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel Framing</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fire-Rated Gypsum Board</td>
<td>2.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09310</td>
<td>SD-03</td>
<td>Product Data</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMITTAL NO.</td>
<td>SPEC</td>
<td>SECTION</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>REMARKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09310</td>
<td></td>
<td></td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Setting-Bed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mortar, Grout</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mortar and Grout</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09510</td>
<td></td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Approved Detail Drawings</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceiling System</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceiling Attenuation Class and Test</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09650</td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resilient Flooring and Accessories</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmittal</td>
<td>Paragraph #</td>
<td>Description</td>
<td>Gov. Code</td>
<td>Contractor: Schedule Dates</td>
<td>Contractor Action</td>
<td>Approving Authority</td>
<td>Action Code</td>
<td>Date Action</td>
<td>Date Rcd From Contr</td>
<td>Date Rcd From Oth Approver</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>09650</td>
<td></td>
<td>Flooring</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td></td>
<td>Moisture Test</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molding</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface Preparation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regulatory Requirements</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

TITLE AND LOCATION
C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSMITTAL SPEC NO.</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Molding</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Moisture and Alkalinity Tests</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Data</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBMITTAL FORM
Jan 96
PREVIOUS EDITION IS OBSOLETE
PAGE 21 OF 41 PAGES
<table>
<thead>
<tr>
<th>TRANSMITTAL SPEC</th>
<th>DESCRIPTION</th>
<th>PARAGRAPH</th>
<th>GOVERNMENT CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAILED TO CONTRACTOR</th>
<th>DATE RCD FROM APPR AUTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>09680</td>
<td>Carpet</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpet</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpet</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpet</td>
<td>2.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleaning and Protection</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09720</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallcoverings</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer's Instructions</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean-Up</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09900</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallcoverings</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallcoverings</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paint</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixing and Thinning</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paint</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paint</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBMITTAL REGISTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE AND LOCATION</td>
<td>C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBMIT</td>
<td>ACTION</td>
<td>DATE FWD TO APPR AUTH</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM OTH REVIEWER</td>
<td>DATE RCD FROM OTH AUTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE FWD TO CONTR</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM APPR AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM OTH REVIEWER</td>
<td>DATE RCD FROM OTH AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE RCD FROM OTH REVIEWER</td>
<td>DATE RCD FROM OTH AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE RCD FROM OTH AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT ASSIGNMENT</td>
<td>CONTRACTOR: SCHEDULE DATE</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tested Items

1. **Raised Floor System**
 - **SD-04 Samples**
 - **SD-06 Test Reports**
 - **Tests**
 - **Testing of Electrical Resistance**
 - **SD-07 Certificates**
 - **Raised Floor System**
 - **SD-02 Shop Drawings**
 - **Approved Detail Drawings**
 - **SD-03 Product Data**
 - **Exterior Signs**
 - **SD-04 Samples**
 - **Exterior Signs**

2. **SD-02 Shop Drawings**
 - **Detail Drawings**
 - **SD-03 Product Data**
 - **Installation**
 - **SD-04 Samples**
 - **Interior Signage**

3. **SD-03 Product Data**
 - **Finishes**
 - **Accessory Items**
 - **SD-04 Samples**
 - **Finishes**
 - **Accessory Items**
<table>
<thead>
<tr>
<th>NO.</th>
<th>SPEC.</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT. CLASSIFICATION</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH/</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD TO CONTRA.</th>
<th>MAILED TO CONTR.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12490</td>
<td>SD-02 Shop Drawings</td>
<td>Approved Detail Drawings</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Window Treatments</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td>Window Treatments</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>13080</td>
<td>SD-02 Shop Drawings</td>
<td>Bracing</td>
<td>3.1</td>
<td>G</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resilient Vibration Isolation Devices</td>
<td></td>
<td>3.4</td>
<td>G</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment Requirements</td>
<td></td>
<td>G</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Bracing</td>
<td>3.1</td>
<td>G</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment Requirements</td>
<td></td>
<td>G</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td>13100</td>
<td>SD-02 Shop Drawings</td>
<td>Drawings</td>
<td>1.3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Materials</td>
<td>2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>13120</td>
<td>SD-02 Shop Drawings</td>
<td>Drawings</td>
<td>1.3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drawings</td>
<td>1.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Drawings</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design Analysis</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instruction Manuals</td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>SUBMITTAL SPEC</td>
<td>DESCRIPTION</td>
<td>GOVERNMENT CLASSIFICATION</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>REMARKS</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>13120</td>
<td>Erection</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifications</td>
<td>1.3.2</td>
<td></td>
</tr>
<tr>
<td>SD-04 Samples</td>
<td></td>
</tr>
<tr>
<td>Roofing and Siding</td>
<td></td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Gaskets and Insulating</td>
<td></td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Compounds</td>
<td></td>
</tr>
<tr>
<td>Sealant</td>
<td></td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Skylights</td>
<td></td>
</tr>
<tr>
<td>Wall Liners</td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>Metal Building Systems</td>
<td></td>
<td>1.3.2.1</td>
<td></td>
</tr>
<tr>
<td>Metal Building Systems</td>
<td></td>
<td>1.7.1</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td>Intrusion Detection System</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Spare Parts</td>
<td></td>
</tr>
<tr>
<td>Manufacturer's Instructions</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>Performance Verification Test</td>
<td></td>
</tr>
<tr>
<td>Materials and Equipment</td>
<td></td>
</tr>
<tr>
<td>13920</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
</tr>
<tr>
<td>SUBMITTAL REGISTER</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>TITLE AND LOCATION</td>
<td>C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Training Schedule</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Tests</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Acceptance Test</td>
<td>3.7.3 G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Pump Installation Drawings</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As-Built Drawings</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Pump Installation Related</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components and Equipment</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spare Parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Protection Specialist</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer's Representative</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Protection Specialist</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Test Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Test Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Diagrams</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-09 Manufacturer's Field Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Test Report</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Acceptance Test Report</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPEC NO</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SD-10 Operation</td>
<td>13920</td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td>SUBMIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire Pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load Calculations for Sizing Sway</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bracing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components and Equipment Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic Calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spare Parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprinkler System Drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As-Built Drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preliminary Tests Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Acceptance Test Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On-site Training Schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preliminary Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Acceptance Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire Protection Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprinkler System Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preliminary Tests Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C130J Flight Simulator Facility, Little Rock AFB

Final Acceptance Test Report

SD-07 Certificates

Fire Protection Specialist

Inspection

SD-10 Operation and Maintenance

Data

Wet Pipe Sprinkler System

SD-02 Shop Drawings

Elevator System

SD-03 Product Data

Training Data

Elevator System

SD-04 Samples

Finishes

SD-06 Test Reports

Testing

Test Procedures

SD-07 Certificates

Qualification Certificates

SD-08 Manufacturer's Instructions

Framed Instructions

SD-10 Operation and Maintenance

Data

Elevator System

SD-02 Shop Drawings

Wiring and Schematic diagrams

SUBMITTAL REGISTER

<table>
<thead>
<tr>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>ITEM SUBMITTED</th>
<th>ACTION CODE</th>
<th>DATE OF ACTION</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Acceptance Test Report</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Protection Specialist</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance Data</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Pipe Sprinkler System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finishes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualification Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer's Instructions</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framed Instructions</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance Data</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring and Schematic diagrams</td>
<td>G AE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE: SUBMITTAL REGISTER

<table>
<thead>
<tr>
<th>CONTRACT NO.</th>
<th>CONSTRUCTION FACILITY, LOCATION</th>
<th>CONTRACTOR</th>
<th>SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C130J Flight Simulator Facility, Little Rock AFB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD-02 Shop Drawings
- Coupling and Bracing 3.1
- SD-03 Product Data
 - Hoist Hook Assembly 2.2.2 G AE
 - Heat Treatment G AE
 - Bridge Crane System G G
 - Hoist 2.1 G AE
 - Spare Parts G
- SD-06 Test Reports
 - Electrification System Tests G RE
- Acceptance Testing 3.2 G RE
- SD-07 Certificates
 - Hoist 2.1 G RE
 - Track Design G RE
 - Motor Controller 2.7.2 G RE
 - Electric Hoists 2.1.2 G RE
 - Trolleys 2.3 G RE
 - Wiring 2.7 G RE
 - Contact Conductors G RE
 - Hoist Controls 2.1.1 G RE
 - Overcurrent Protection 2.7 G RE
 - Grounding 2.7 G RE
- SD-10 Operation and Maintenance
 - Data
 - Operation Manuals G RE
 - Maintenance Manuals G RE

REMARKS
- (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)
Flexible Couplings or Joints
- **Paragraph**: 3.3
- **Contractor**: SD-03 Product Data
- **Grading**: G
- **Material Needed By**: Approval needed by contractor
- **Date of Action**: Date of action
- **Date Rcd From Contr.**: Date received from contractor
- **Date Rcd From Other Reviewer**: Date received from other reviewer
- **Date of Action**: Date of action
- **Mailed to Contr.**: Mailed to contractor
- **Remarks**: N/A

Contractor Designed Bracing
- **Paragraph**: 1.2.4
- **Contractor**: SD-07 Certificates
- **Grading**: G
- **Material Needed By**: Approval needed by contractor
- **Date of Action**: Date of action
- **Date Rcd From Contr.**: Date received from contractor
- **Date Rcd From Other Reviewer**: Date received from other reviewer
- **Date of Action**: Date of action
- **Mailed to Contr.**: Mailed to contractor
- **Remarks**: N/A

Flexible Ball Joints
- **Paragraph**: 2.2
- **Contractor**: SD-04 Samples
- **Material Needed By**: Approval needed by contractor
- **Date of Action**: Date of action
- **Date Rcd From Contr.**: Date received from contractor
- **Date Rcd From Other Reviewer**: Date received from other reviewer
- **Date of Action**: Date of action
- **Mailed to Contr.**: Mailed to contractor
- **Remarks**: N/A

SD-04 Samples
- **Contractor**: SD-02 Shop Drawings
- **Material Needed By**: Approval needed by contractor
- **Date of Action**: Date of action
- **Date Rcd From Contr.**: Date received from contractor
- **Date Rcd From Other Reviewer**: Date received from other reviewer
- **Date of Action**: Date of action
- **Mailed to Contr.**: Mailed to contractor
- **Remarks**: N/A
<p>| TRANSMITTAL SPEC NO. | DESCRIPTION | GOVT CLASSIFICATION | ACTION CODE | APPROVAL BY DATE OF ACTION | MATERIAL NEEDED BY DATE OF ACTION | DATE FWD TO APPR AUTH DATE RCD FROM CONTR | DATE FWD TO OTHER REVIEWER DATE RCD FROM OTHER REVIEWER | DATE RCD FROM OTH AUTH DATE OF ACTION | MAILED TO CONTR DATE RCD FROM OTH AUTH REMARKS |
|---------------------|-------------|---------------------|-------------|-----------------------------|-----------------------------------|--|---|-----------------------------------|---------------------------------|-------------------------------------|--------------------------|
| 15400 (a) (b) | Tests, Flushing and Disinfection | 3.7 G | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | Backflow Prevention Assembly |
| | Tests |
| | SD-07 Certificates |
| | Materials and Equipment |
| | SD-08 Manufacturer's Instructions |
| | Plumbing System |
| | SD-10 Operation and Maintenance |
| | Data |
| | Plumbing System |
| 15569 (a) (b) | SD-01 Preconstruction Submittals |
| | Tests |
| | SD-03 Product Data |
| | Manufacturer's Catalog Data |
| | Spare Parts Data |
| | Water Treatment Plan |
| | Heating and Fuel Systems Test |
| | Procedures |
| | Welding Procedures |
| | Qualification |
| | Welding Qualification |
| | SD-04 Samples |
| | Heating System |
| | SD-06 Test Reports |
| | Heating System and Fuel System |
| | Tests |</p>
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>NO.</th>
<th>SPEC</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>PARAGRAPH #</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water Treatment Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15569</td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bolts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boiler Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Posted Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heating System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water Treatment System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15650</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tests</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Demonstrations</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Central Refrigerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air-Conditioning System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Central Refrigerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air-Conditioning System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water Treatment Systems</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spare Parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualifications</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verification of Dimensions</td>
<td>1.7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manufacturer's Multi-Year</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compressor Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR: C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR ACTION:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPROVING AUTHORITY:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTION CODE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE OF ACTION:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE RCD FROM CONTR.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE RCD FROM OTHER REVIEWER:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE RCD FROM APPR AUTH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMARKS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15650 Central Refrigerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-Conditioning System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posted Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-09 Manufacturer’s Field Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Performance Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation Manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Treatment System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15653 SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-Conditioning System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-Conditioning System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spare Parts Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Performance Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSMITTAL SPEC

<table>
<thead>
<tr>
<th>NO.</th>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15653</td>
<td></td>
<td>SD-07 Certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air-Conditioning System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service Organizations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Framed Instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verification of Dimensions 1.4.1</td>
</tr>
<tr>
<td>15895</td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Schedules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field Training Schedule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-02 Shop Drawings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Supply, Distribution, Ventilation, and Exhaust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components and Equipment Data G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15895</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welding Qualification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
</tr>
<tr>
<td>CONTRACTOR:</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>SUBMITTAL REGISTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE AND LOCATION</td>
<td>C130J FLIGHT SIMULATOR FACILITY, LITTLE ROCK AFB</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>GOVERNMENT</td>
<td>ACTION</td>
</tr>
<tr>
<td>ITEM SUBMITTED</td>
<td>CLASSIFICATION</td>
<td>CODE</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>15895</td>
<td>Test Procedures</td>
<td>Welding Procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td>HVAC Control System</td>
<td>3.1.1</td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Service Organizations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipment Compliance Booklet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commissioning Procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performance Verification Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commissioning Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performance Verification Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Storage Tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance and Repair Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
</tr>
<tr>
<td>ORDER</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>15990</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15995</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>TRANSMITTAL NO.</td>
<td>SPEC</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>15995</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>16070</td>
<td>SD-02 Shop Drawings</td>
<td>Lighting Fixtures in Buildings</td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>Equipment Requirements</td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Lighting Fixtures in Buildings</td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Equipment Requirements</td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>Contractor Designed Bracing</td>
</tr>
<tr>
<td>16370</td>
<td>SD-02 Shop Drawings</td>
<td>Electrical Distribution System</td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>As-Built Drawings</td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Manufacturer's Catalog</td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Material, Equipment, and Fixture</td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td>Field Testing</td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Test Reports</td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td>Certificates</td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>Electrical Distribution System</td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>As-Built Drawings</td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPEC NO.</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>16375 SD-03 Product Data</td>
<td>G</td>
<td>Manufacturer's Catalog Data</td>
</tr>
<tr>
<td>Material, Equipment, and Fixture</td>
<td>G</td>
<td>Lists</td>
</tr>
<tr>
<td>Installation Procedures</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td>G</td>
<td>Factory Test</td>
</tr>
<tr>
<td>Field Testing</td>
<td>G</td>
<td>Test Reports</td>
</tr>
<tr>
<td>Cable Installation Reports</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td>G</td>
<td>Materials and Equipment</td>
</tr>
<tr>
<td>Cable Splicer Qualification</td>
<td>G</td>
<td>Cable Installer Qualifications</td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance Data</td>
<td>G</td>
<td>Electrical Distribution System</td>
</tr>
<tr>
<td>16403 SD-02 Shop Drawings</td>
<td>G</td>
<td>Drawings</td>
</tr>
<tr>
<td>Shop Drawings</td>
<td>G</td>
<td>2.2.1</td>
</tr>
<tr>
<td>Switchboards</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>Panelboards</td>
<td>G</td>
<td>2.6</td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td>G</td>
<td>Equipment</td>
</tr>
<tr>
<td>Factory Tests</td>
<td>G</td>
<td>2.8</td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>DESCRIPTION</td>
<td>PARAGRAPH #</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>16403</td>
<td>Factory Tests</td>
<td>2.8</td>
</tr>
<tr>
<td>16415</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interior Electrical Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As-Built Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer's Catalog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material, Equipment, and Fixture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lists</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation Procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Test Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Test Reports</td>
<td></td>
</tr>
<tr>
<td>16445</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Brochures/Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-Site Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials and Equipment</td>
<td></td>
</tr>
<tr>
<td>16710</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Premises Distribution System</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Record Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Record Keeping and Documentation</td>
<td>1.8</td>
</tr>
<tr>
<td>NO</td>
<td>FIELD</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>ITEM SUBMITTED</td>
<td>GOVERNMENT CLASSIFICATION</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTION</td>
<td>MATERIAL NEEDED BY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APPROVAL NEEDED BY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONTRACTOR ACTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACTION CODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACTION CODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACTION CODE</td>
</tr>
<tr>
<td>16710</td>
<td>Spare Parts</td>
<td>3.1.2</td>
</tr>
<tr>
<td></td>
<td>Manufacturer's Recommendations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifications</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Premises Distribution System</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Materials and Equipment</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Installers</td>
<td></td>
</tr>
<tr>
<td>16775</td>
<td>SD-03 Product Data</td>
<td>3.4</td>
</tr>
</tbody>
</table>
1.1 GENERAL REQUIREMENTS

The Contractor shall perform the work minimizing environmental pollution and damage as the result of construction operations. Environmental pollution and damage is the presence of chemical, physical, or biological elements or agents which adversely affect human health or welfare; unfavorably alter ecological balances of importance to human life; affect other species of importance to humankind; or degrade the utility of the environment for aesthetic, cultural and/or historical purposes. The control of environmental pollution and damage requires consideration of land, water, and air, and includes management of visual aesthetics, noise, solid waste, as well as other pollutants. The environmental resources within the project boundaries and those affected outside the limits of permanent work shall be protected during the entire duration of this contract.

1.1.1 Subcontractors

The Contractor shall ensure compliance with this section by subcontractors.

1.1.2 Environmental Protection Plan

The Contractor shall submit an environmental protection plan within 15 days after receipt of the notice to proceed. Approval of the Contractor's plan will not relieve the Contractor of responsibility for adequate and continuing control of pollutants and other environmental protection measures. The environmental protection plan shall include, erosion control measures, structures and general plans, but shall not be limited to the following:

a. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.

b. Procedures to be implemented to provide the required environmental protection, to comply with the applicable laws and regulations, and to correct pollution due to accident, natural causes, or failure to follow the procedures of the environmental protection plan.

c. Location of the solid waste disposal area. All unlicensed off-site disposal areas are subject to prior Government approval.

d. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials.

e. Environmental monitoring plans for the job site, including land, water, air, and noise monitoring.

f. Traffic control plan including measures to reduce erosion of temporary roadbeds by construction traffic, especially during wet
weather, and the amount of mud transported onto paved public roads by vehicles or runoff.

g. Methods of protecting surface and ground water during construction activities.

h. Plan showing the proposed activity in each portion of the work area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas.

i. Drawing of borrow area location. Protection measures required at the work site shall apply to the borrow areas including final restoration for subsequent beneficial use of the land.

j. A recycling and waste prevention plan with a list of measures to reduce consumption of energy and natural resources; for example: the possibility to shred fallen trees and use them as mulch shall be considered as an alternative to burning or burial.

k. Training for Contractor's personnel during the construction period.

1.1.3 Permits

The Contractor shall obtain all needed permits or licenses. The Government will not obtain any permits for this project; see Contract Clause PERMITS AND RESPONSIBILITIES. The Contractor shall be responsible for implementing the terms and requirements of the appropriate permits as needed and for payment of all fees.

1.1.4 Preconstruction Survey

Prior to starting any onsite construction activities, the Contractor and the Contracting Officer shall make a joint condition survey after which the Contractor shall prepare a brief report indicating on a layout plan the condition of trees, shrubs and grassed areas immediately adjacent to work sites and adjacent to the assigned storage area and access routes as applicable. The Contractor shall provide a site survey report with photos and video of the total site. Both the Contracting Officer and the Contractor upon mutual agreement as to its accuracy and completeness will sign this report.

1.1.5 Meetings

The Contractor shall meet with representatives of the Contracting Officer to alter the environmental protection plan as needed for compliance with the environmental pollution control program.

1.1.6 Notification

The Contracting Officer will notify the Contractor in writing of any observed noncompliance with the previously mentioned Federal, State or local laws or regulations, permits, and other elements of the Contractor's environmental protection plan. The Contractor shall, after receipt of such notice, inform the Contracting Officer of proposed corrective action and take such action when approved. If the Contractor fails to comply promptly, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No time extensions
shall be granted or costs or damages allowed to the Contractor for any such suspensions.

1.1.7 Litigation

If work is suspended, delayed, or interrupted due to a court order of competent jurisdiction, the Contracting Officer will determine whether the order is due in any part to the acts or omissions of the Contractor, or subcontractors at any tier, not required by the terms of the contract. If it is determined that the order is not due to Contractor's failing, such suspension, delay, or interruption shall be considered as ordered by the Contracting Officer in the administration of the contract under the contract clause SUSPENSION OF WORK.

1.1.8 Previously Used Equipment

The Contractor shall thoroughly clean all construction equipment previously used at other sites before it is brought into the work areas, ensuring that soil residuals are removed and that egg deposits from plant pests are not present; the Contractor shall consult with the USDA jurisdictional office for additional cleaning requirements.

1.1.9 Payment

No separate payment will be made for work covered under this section; all costs associated with this section shall be included in the contract unit and/or lump sum prices in the Bidding Schedule.

1.2 LAND RESOURCES

The Contractor shall confine all activities to areas defined by the drawings and specifications. Prior to the beginning of any construction, the Contractor shall identify the land resources to be preserved within the work area.

1.2.1 Work Area Limits

Prior to any construction, the Contractor shall mark the areas that need not be disturbed under this contract. Isolated areas within the general work area that are to be saved and protected shall also be marked or fenced. Monuments and markers shall be protected before construction operations commence. Where construction operations are to be conducted during darkness, the markers shall be visible. The Contractor's personnel shall be knowledgeable of the purpose for marking and/or protecting particular objects.

1.2.2 Unprotected Erodible Soils

Earthwork brought to final grade shall be finished as indicated. Side slopes and back slopes shall be protected as soon as practicable upon completion of rough grading. All earthwork shall be planned and conducted to minimize the duration of exposure of unprotected soils. Except in cases where the constructed feature obscures borrow areas, quarries, and waste material areas, these areas shall not initially be totally cleared. Clearing of such areas shall progress in reasonably sized increments as needed to use the developed areas as approved by the Contracting Officer.
1.2.3 Disturbed Areas

The Contractor shall effectively prevent erosion and control sedimentation through approved methods including, but not limited to, the following:

a. Retardation and control of runoff. Runoff from the construction site or from storms shall be controlled, retarded, and diverted to protected drainage courses by means of diversion ditches, benches, berms, and by any measures required by area wide plans under the Clean Water Act.

b. Erosion and sedimentation control devices. The Contractor shall construct or install temporary and permanent erosion and sedimentation control features as indicated on the drawings. Berms, dikes, drains, sedimentation basins, grassing, and mulching shall be maintained until permanent drainage and erosion control facilities are completed and operative.

c. Sediment basins. Sediment from construction areas shall be trapped in temporary or permanent sediment basins in accordance with the drawings. The basins shall accommodate the runoff of a local 5-year storm. After each storm, the basins shall be pumped dry and accumulated sediment shall be removed to maintain basin effectiveness. Overflow shall be controlled by paved weirs or by vertical overflow pipes. The collected topsoil sediment shall be reused for fill on the construction site, and/or stockpiled for use at another site. The Contractor shall institute effluent quality monitoring programs as required by State and local environmental agencies.

1.2.4 Contractor Facilities and Work Areas

The Contractor's field offices, staging areas, stockpile storage, and temporary buildings shall be placed in areas designated on the drawings or as directed by the Contracting Officer. Temporary movement or relocation of Contractor facilities shall be made only when approved. Borrow areas shall be managed to minimize erosion and to prevent sediment from entering nearby waters. Spoil areas shall be managed and controlled to limit spoil intrusion into areas designated on the drawings and to prevent erosion of soil or sediment from entering nearby waters. Spoil areas shall be developed in accordance with the grading plan indicated on the drawings. Temporary excavation and embankments for plant and/or work areas shall be controlled to protect adjacent areas from despoilment.

1.3 WATER RESOURCES

The Contractor shall keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters. Toxic or hazardous chemicals shall not be applied to soil or vegetation when such application may cause contamination of the fresh water reserve. Monitoring of water areas affected by construction shall be the Contractor's responsibility. The Contractor shall monitor all water areas affected by construction activities.
1.3.1 Washing and Curing Water

Wastewaters directly derived from construction activities shall not be allowed to enter water areas. Wastewaters shall be collected and placed in retention ponds where suspended material can be settled out or the water evaporates to separate pollutants from the water. Analysis shall be performed and results reviewed and approved before water in retention ponds is discharged.

1.4 AIR RESOURCES

Equipment operation and activities or processes performed by the Contractor in accomplishing the specified construction shall be in accordance with the State's rules and all Federal emission and performance laws and standards. Ambient Air Quality Standards set by the Environmental Protection Agency shall be maintained. Monitoring of air quality shall be the Contractor's responsibility. The Contractor shall monitor all air areas affected by the construction activities. Monitoring results will be periodically reviewed by the Government to ensure compliance.

1.4.1 Particulates

Dust particles; aerosols and gaseous by-products from construction activities; and processing and preparation of materials, such as from asphaltic batch plants; shall be controlled at all times, including weekends, holidays and hours when work is not in progress. The Contractor shall maintain excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and other work areas within or outside the project boundaries free from particulates which would cause the air pollution standards to be exceeded or which would cause a hazard or a nuisance. Sprinkling, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators or other methods will be permitted to control particulates in the work area. Sprinkling, to be efficient, must be repeated to keep the disturbed area damp at all times. The Contractor must have sufficient, competent equipment available to accomplish these tasks. Particulate control shall be performed as the work proceeds and whenever a particulate nuisance or hazard occurs.

1.4.2 Hydrocarbons and Carbon Monoxide

Hydrocarbons and carbon monoxide emissions from equipment shall be controlled to Federal and State allowable limits at all times.

1.4.3 Odors

Odors shall be controlled at all times for all construction activities, processing and preparation of materials.

1.4.4 Sound Intrusions

The Contractor shall keep construction activities under surveillance and control to minimize environment damage by noise. The Contractor shall comply with the provisions of the state's rules.
1.5 WASTE DISPOSAL

Disposal of wastes shall be as specified in Section 02220 DEMOLITION and as specified below.

1.5.1 Solid Wastes

Solid wastes (excluding clearing debris) shall be placed in containers, which are emptied on a regular schedule. Handling and disposal shall be conducted to prevent contamination. Segregation measures shall be employed so that no hazardous or toxic waste will become co-mingled with solid waste. The Contractor shall transport solid waste off Government property and dispose of it in compliance with Federal, State, and local requirements for solid waste disposal.

1.5.2 Chemical Wastes

Chemicals shall be dispensed ensuring no spillage to ground or water. Periodic inspections of dispensing areas to identify leakage and initiate corrective action shall be performed and documented. The Government will periodically review this documentation. Chemical waste shall be collected in corrosion resistant, compatible containers. Collection drums shall be monitored and removed to a staging or storage area when contents are within 150 mm 6 inches of the top. Wastes shall be disposed of in accordance with Federal and local laws and regulations.

1.5.3 Hazardous Wastes

The Contractor shall take sufficient measures to prevent spillage of hazardous and toxic materials during dispensing and shall collect waste in suitable containers observing compatibility. The Contractor shall transfer hazardous waste to the Air Force’s DRMO. Spills of hazardous or toxic materials shall be immediately reported to the Contracting Officer. Cleanup and cleanup costs due to spills shall be the Contractor’s responsibility.

1.5.4 Burning

Burning is not allowed.

1.6 POST CONSTRUCTION CLEANUP

The Contractor shall clean up all areas used for construction.

--- o o o ---
SECTION 01415 - METRIC MEASUREMENTS

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

1.2 GENERAL

This project includes metric units of measurements. The metric units used are the International System of Units (SI) developed and maintained by the General Conference on Weights and Measures (CGPM); the name International System of Units and the international abbreviation SI were adopted by the 11th CGPM in 1960. A number of circumstances require that both metric SI units and English inch-pound (I-P) units be included in a section of the specifications. When both metric and I-P measurements are included, the section may contain measurements for products that are manufactured to I-P dimensions and then expressed in mathematically converted metric value (soft metric) or, it may contain measurements for products that are manufactured to an industry recognized rounded metric (hard metric) dimensions but are allowed to be substituted by I-P products to comply with the law. Dual measurements are also included to indicate industry and/or Government standards, test values or other controlling factors, such as the code requirements where I-P values are needed for clarity or to trace back to the referenced standards, test values or codes.

1.3 USE OF MEASUREMENTS

Measurements shall be either in SI or I-P units as indicated, except for soft metric measurements or as otherwise authorized. When only SI or I-P measurements are specified for a product, the product shall be procured in the specified units (SI or I-P) unless otherwise authorized by the Contracting Officer. The Contractor shall be responsible for all associated labor and materials when authorized to substitute one system of units for another and for the final assembly and performance of the specified work and/or products.

1.3.1 Hard Metric

A hard metric measurement is indicated by a SI value with no expressed correlation to an I-P value, i.e., where a SI value is not an exact mathematical conversion of an I-P value, such as the use of 100 mm in lieu of 4 inches. Hard metric measurements are often used for field data such as distance from one point to another or distance above the floor. Products
are considered to be hard metric when they are manufactured to metric dimensions or have an industry recognized metric designation.

1.3.2 Soft Metric

a. A soft metric measurement is indicated by a SI value, which is a mathematical conversion of the I-P value shown in parentheses (e.g. 38.1 mm (1-1/2 inches)). Soft metric measurements are used for measurements pertaining to products, test values, and other situations where the I-P units are the standard for manufacture, verification, or other controlling factor. The I-P value shall govern while the metric measurement is provided for information.

b. A soft metric measurement is also indicated for products that are manufactured in industry designated metric dimensions but are required by law to allow substitute I-P products. These measurements are indicated by a manufacturing hard metric product dimension followed by the substitute I-P equivalent value in parentheses (e.g., 190 x 190 x 390 mm (7-5/8 x 7-5/8 x 15-5/8 inches)).

1.3.3 Neutral

A neutral measurement is indicated by an identifier, which has no expressed relation to either a SI or an I-P value (e.g., American Wire Gage (AWG) which indicates thickness but in itself is neither SI nor I-P).

1.4 COORDINATION

Discrepancies, such as mismatches or product unavailability, arising from use of both metric and non-metric measurements and discrepancies between the measurements in the specifications and the measurements in the drawings shall be brought to the attention of the Contracting Officer for resolution.

1.5 RELATIONSHIP TO SUBMITTALS

Submittals for Government approval or for information only shall cover the SI or I-P products actually being furnished for the project. The Contractor shall submit the required drawings and calculations in the same units used in the contract documents describing the product or requirement unless otherwise instructed or approved. The Contractor shall use ASTM E 380 and ASTM E 621 as the basis for establishing metric measurements required to be used in submittals.
SECTION 01451 – CONTRACTOR QUALITY CONTROL

1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

1.2 PAYMENT

Separate payment will not be made for providing and maintaining an effective Quality Control program, and all costs associated therewith shall be included in the applicable unit prices or lump-sum prices contained in the Bidding Schedule.

2 PRODUCTS (NOT APPLICABLE)

3 EXECUTION

3.1 GENERAL

The Contractor is responsible for quality control and shall establish and maintain an effective quality control system in compliance with the Contract Clause titled "Inspection of Construction." The quality control system shall consist of plans, procedures, and organization necessary to produce an end product which complies with the contract requirements. The system shall cover all construction operations, both onsite and offsite, and shall be keyed to the proposed construction sequence. The CQC Manager and Senior Manager will be held responsible for the quality of work on the job and is subject to removal by the Contracting Officer for non-compliance with quality requirements specified in the contract. The Senior Manager in this context shall mean the individual with the responsibility for the overall management of the project including quality and production.

3.2 QUALITY CONTROL PLAN

3.2.1 General

The Contractor shall furnish for review by the Government the Contractor Quality Control (CQC) Plan proposed to implement the requirements of the Contract Clause titled "Inspection of Construction." The plan shall identify personnel, procedures, control, instructions, test, records, and forms to be used. Construction will be permitted to begin only after acceptance of the CQC Plan.
3.2.2 Content of the CQC Plan

The CQC Plan shall include, as a minimum, the following to cover all construction operations, both onsite and offsite, including work by subcontractors, fabricators, suppliers, and purchasing agents:

a. A description of the quality control organization, including a chart showing lines of authority and acknowledgment that the CQC staff shall implement the three phase control system for all aspects of the work specified. The staff shall include a CQC System Manager who shall report to the project superintendent.

b. The name, qualifications (in resume format), duties, responsibilities, and authorities of each person assigned a CQC function.

c. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the contract. The CQC System Manager shall issue letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities. Copies of these letters shall also be furnished to the Government.

d. Procedures for scheduling, reviewing, certifying, and managing submittals, including those of subcontractors, offsite fabricators, suppliers, and purchasing agents. These procedures shall be in accordance with Section 01300 SUBMITTAL PROCEDURES.

e. Control, verification, and acceptance testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities will be approved by the Contracting Officer.)

f. Procedures for tracking preparatory, initial, and follow-up control phases and control, verification, and acceptance tests including documentation.

g. Procedures for tracking construction deficiencies from identification through acceptable corrective action. These procedures shall establish verification that identified deficiencies have been corrected.

h. Reporting procedures, including proposed reporting formats.

i. Survey Control.

j. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks, has separate control requirements, and may be identified by different trades or disciplines, or it may be work by the same trade in a different environment. Although each section of the specifications may generally be considered as a definable feature of work, there are frequently more than one definable features under a particular section. This list will be agreed upon during the coordination meeting.
3.2.3 Acceptance of Plan

Acceptance of the Contractor's plan is required prior to the start of construction. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Government reserves the right to require the Contractor to make changes in his CQC Plan and operations including removal of personnel, as necessary, to obtain the quality specified.

3.2.4 Notification of Changes

After acceptance of the CQC Plan, the Contractor shall notify the Contracting Officer in writing of any proposed change. Proposed changes are subject to acceptance by the Contracting Officer.

3.3 COORDINATION MEETING

After the Preconstruction Conference, before start of construction, and prior to acceptance by the Government of the CQC Plan, the Contractor shall meet with the Contracting Officer or Authorized Representative and discuss the Contractor's quality control system. The CQC Plan shall be submitted for review a minimum of 15 calendar days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details shall be developed, including the forms for recording the CQC operations, control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting shall be prepared by the Government and signed by both the Contractor and the Contracting Officer. The minutes shall become a part of the contract file. There may be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings and/or address deficiencies in the CQC system or procedures which may require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION

3.4.1 General

The requirements for the CQC organization are a full time CQC System Manager, with no other duties and sufficient number of additional qualified personnel to ensure contract compliance. This shall include a fulltime inspector aide and shop drawing clerk (one person). The Contractor shall provide a CQC organization which shall be at the site at all times during progress of the work and with complete authority to take any action necessary to ensure compliance with the contract. All CQC staff members shall be subject to acceptance by the Contracting Officer.

3.4.2 CQC System Manager

The Contractor shall identify as CQC System Manager an individual within the onsite work organization who shall be responsible for overall management of CQC and have the authority to act in all CQC matters for the Contractor. The CQC System Manager shall have a minimum of 5 years construction experience on construction similar to this contract. The CQC System Manager shall be a graduate engineer; graduate architect; or a graduate of a 4 year Construction Management program. This CQC System Manager shall be on the site at all times during construction and shall be employed by the prime Contractor. The CQC System Manager shall be assigned as System Manager and shall have no other duties. An alternate for the CQC System Manager shall be identified in the plan to serve in the event of the
System Manager's absence. The requirements for the alternate shall be the same as for the designated CQC System Manager.

3.4.3 CQC Personnel

Where needed, the Contractor shall provide as part of the CQC organization specialized personnel to assist the CQC System Manager for the following areas: Full Time CQC Inspector, Full Time RMS clerk (shop drawing), electrical, mechanical, civil, and full time Masonry Inspector (while work in progress). These individuals may be employees of the prime or subcontractor; are responsible to the CQC System Manager; are to be available at the construction site during work on their areas of responsibility; and have the necessary documented education and/or experience in accordance with the experience matrix listed herein.

Experience Matrix

<table>
<thead>
<tr>
<th>Area</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Civil</td>
<td>Graduate Civil Engineer with 2 years experience in the type of work being performed on this project or technician with 5 yrs related experience</td>
</tr>
<tr>
<td>b. Mechanical</td>
<td>Graduate Mechanical Engineer with 2 yrs experience or person with 5 yrs related experience</td>
</tr>
<tr>
<td>c. Electrical</td>
<td>Graduate Electrical Engineer with 2 yrs related experience or person with 5 yrs related experience</td>
</tr>
<tr>
<td>d. Architectural</td>
<td>Graduate Architect with 2 yrs experience or person with 5 yrs related experience</td>
</tr>
<tr>
<td>e. CQC Inspector</td>
<td>Minimum of 5 yrs experience construction experience on projects similar in scope and magnitude as this project.</td>
</tr>
<tr>
<td>f. RMS Clerk</td>
<td>The RMS shall have computer skills in DOS, Windows, and Word Perfect type programs.</td>
</tr>
<tr>
<td>g. Masonry Inspector</td>
<td>As Required per Section 04200.</td>
</tr>
</tbody>
</table>

3.4.4 Additional Requirement

In addition to the above experience and education requirements the CQC System Manager shall have completed the course entitled "Construction Quality Management For Contractors". This course is periodically offered at Little Rock District Corps of Engineers, Federal Office Building, 700 W. Capitol, Little Rock, AR. The course will also be offered on an as-needed basis for specific contracts when the proposed CQC System Manager has not previously attended the training. The Contracting Officer or Authorized Representative shall be informed at the Preconstruction Conference if this service is needed. A nominal charge will apply to cover reproduction of the required manual. The CQC System Manager may be accepted, at the Contracting Officer's discretion, conditioned upon completion of the course.

SECTION 01451 – Page 4
3.4.5 Organizational Changes

The Contractor shall maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, the Contractor shall revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer for acceptance.

3.5 SUBMITTALS

Submittals shall be made as specified in Section 01330 SUBMITTAL PROCEDURES. The CQC organization shall be responsible for certifying that all submittals are in compliance with the contract requirements.

3.6 CONTROL

Contractor Quality Control is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control shall be conducted by the CQC System Manager for each definable feature of work as follows:

3.6.1 Preparatory Phase

This phase shall be performed prior to beginning work on each definable feature of work, after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase shall include:

a. A review of each paragraph of applicable specifications.

c. A check to assure that all materials and/or equipment have been tested, submitted, and approved.

d. Review of provisions that have been made to provide required control inspection and testing.

e. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the contract.

f. A physical examination of required materials, equipment, and sample work to assure that they are on hand, conform to approved shop drawings or submitted data, and are properly stored.

g. A review of the appropriate activity hazard analysis to assure safety requirements are met.

h. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards for that feature of work.

i. A check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.

j. Discussion of the initial control phase.

k. The Government shall be notified at least 48 hours in advance of beginning the preparatory control phase. This phase shall include
a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. The results of the preparatory phase actions shall be documented by separate minutes prepared by the CQC System Manager and attached to the daily CQC report. The Contractor shall instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.

3.6.2 Initial Phase

This phase shall be accomplished at the beginning of a definable feature of work. The following shall be accomplished:

a. A check of work to ensure that it is in full compliance with contract requirements. Review minutes of the preparatory meeting.

b. Verify adequacy of controls to ensure full contract compliance. Verify required control inspection and testing.

c. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.

d. Resolve all differences.

e. Check safety to include compliance with and upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.

f. The Government shall be notified at least 48 hours in advance of beginning the initial phase. Separate minutes of this phase shall be prepared by the CQC System Manager and attached to the daily CQC report. Exact location of initial phase shall be indicated for future reference and comparison with follow-up phases.

g. The initial phase should be repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.

3.6.3 Follow-up Phase

Daily checks shall be performed to assure control activities, including control testing, are providing continued compliance with contract requirements, until completion of the particular feature of work. The checks shall be made a matter of record in the CQC documentation. Final follow-up checks shall be conducted and all deficiencies corrected prior to the start of additional features of work which may be affected by the deficient work. The Contractor shall not build upon nor conceal non-conforming work.

3.6.4 Additional Preparatory and Initial Phases

Additional preparatory and initial phases shall be conducted on the same definable features of work if the quality of on-going work is unacceptable, if there are changes in the applicable CQC staff, onsite production supervision or work crew, if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.
3.6.5 Deficiency Tracking System

The CQC System Manager shall maintain a deficiency tracking and closeout system that will identify deficiencies not only in written records, but also at the location of the deficiency on the worksite. The system should document at a minimum the description, date deficiency noted, current status, and date corrected. The system should make all parties concerned aware of the deficiency until correction is accomplished and prevent the defective work from being built upon or concealed. The Contractor shall maintain a master deficiency list at the job site with a copy of each deficiency notice issued as backup documentation. A deficiency is defined as any work or material in place that does not fully comply with the contract, or which will result in completed work that does not fully comply with the contract.

3.6.6 As-Built Drawings

The CQC staff will be responsible for maintaining the As-Built Drawings.

3.7 TESTS

3.7.1 Testing Procedure

The Contractor shall perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, the Contractor shall furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and/or acceptance tests when specified. The Contractor shall procure the services of a Corps of Engineers approved testing laboratory or establish an approved testing laboratory at the project site. The Contractor shall perform the following activities and record and provide the following data:

a. Verify that testing procedures comply with contract requirements.

b. Verify that facilities and testing equipment are available and comply with testing standards.

c. Check test instrument calibration data against certified standards.

d. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.

e. Results of all tests taken, both passing and failing tests, shall be recorded on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the sequential control number identifying the test shall be given. If approved by the Contracting Officer, actual test reports may be submitted later with a reference to the test number and date taken. An information copy of tests performed by an offsite or commercial test facility shall be provided directly to the Contracting Officer. Failure to submit timely test reports as stated may result in nonpayment for related work performed and disapproval of the test facility for this contract.
3.7.2 Testing Laboratories

3.7.2.1 Capability Check

The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt, and steel shall meet criteria detailed in ASTM D 3740 and ASTM E 329.

3.7.3 Onsite Laboratory

The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.7.4 Furnishing or Transportation of Samples for Testing

Costs incidental to the transportation of samples or materials shall be borne by the Contractor. Samples of materials for test verification and acceptance testing by the Government shall be delivered to the U. S. Army Engineer Waterways Experiment Station at the following address:

Commander and Director
U.S. Army Engineer Waterways Experiment Station
ATTN: CEWES-GS
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Coordination for each specific test, exact delivery location, and dates will be made through the Area/Resident Office.

3.8 COMPLETION INSPECTION

3.8.1 Punch-Out Inspection

Not more than 14 days in advance of the completion of all work or any increment thereof established by a completion time stated in the Special Clause entitled "Commencement, Prosecution, and Completion of Work," or stated elsewhere in the specifications; the CQC System Manager shall conduct an inspection of the work and develop a punch list of items which do not conform to the approved drawings and specifications, all outstanding work to be completed, and a complete list of all outstanding submittals and/or administration items required to complete the work. Such a list of deficiencies shall be included in the CQC documentation, as required by paragraph DOCUMENTATION below, and shall include the estimated date by which the deficiencies will be corrected. The CQC System Manager or staff shall make a second inspection to ascertain that all deficiencies have been corrected. Once this is accomplished, the Contractor shall give 14 day notice to the Contracting Officer's Representative (COR) that the facility is ready for the Government Pre-Final inspection. In addition, the contractor shall compile a closeout list consisting of all outstanding work to be completed, including administrative items.

3.8.2 Pre-Final Inspection

The Government will perform this inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. The Contractor's CQC System
Manager shall ensure that all items on this list have been corrected before notifying the Government so that a Final inspection with the customer can be scheduled. Any items noted on the Pre-Final inspection shall be corrected in a timely manner. These inspections and any deficiency corrections required by this paragraph shall be accomplished within the time slated for completion of the entire work or any particular increment thereof if the project is divided into increments by separate completion dates.

3.8.3 Final Acceptance Inspection

The Contractor's Quality Control Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Representative shall be in attendance at this inspection. Additional Government personnel including, but not limited to, those from Post Civil Facility Engineer user groups, and major commands may also be in attendance. The final acceptance inspection will be formally scheduled by the Contracting Officer based upon results of the Pre-Final inspection. Notice shall be given to the Contracting Officer at least 14 days prior to the final acceptance inspection and shall include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date scheduled for the final acceptance inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with the contract clause titled "Inspection of Construction".

3.9 DOCUMENTATION

The Contractor shall maintain current records providing factual evidence that required quality control activities and/or tests have been performed and a complete record of all work performed each day. These records shall include the work of subcontractors and suppliers and shall be on an acceptable form that includes, as a minimum, the following information:

a. Contractor/subcontractor and their area of responsibility.

b. Operating plant/equipment with hours worked, idle, or down for repair.

c. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.

d. Test and/or control activities performed with results and references to specifications/drawings requirements. The control phase should be identified (Preparatory, Initial, Follow-up). List deficiencies noted along with corrective action.

e. Quantity of materials received at the site with statement as to acceptability, storage, and reference to specifications/drawings requirements.

f. Submittals reviewed, with contract reference, by whom, and action taken.

g. Off-site surveillance activities, including actions taken.

h. Job safety evaluations stating what was checked, results, and instructions or corrective actions.
i. Instructions given/received and conflicts in plans and/or specifications.

j. Contractor's verification statement.

These records shall indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. These records shall cover both conforming and deficient features and shall include a statement that equipment and materials incorporated in the work and workmanship comply with the contract. The original and one copy of these records in report form shall be furnished to the Government daily within 24 hours after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, one report shall be prepared and submitted for every 7 days of no work and on the last day of a no work period. All calendar days shall be accounted for throughout the life of the contract. The first report following a day of no work shall be for that day only. Reports shall be signed and dated by the CQC System Manager. The report from the CQC System Manager shall include copies of test reports and copies of reports prepared by all subordinate quality control personnel.

3.10 SAMPLE FORMS

The following forms will be provided the Contractor at the preconstruction meeting:

1. Sample of Typical Contractor Quality Control Report.
2. Master Deficiency List.
4. Initial Inspection Checklist.
5. Preparatory Inspection Checklist.
7. Compaction Equipment Record.
9. ENG Form 144, Paint Service Record.
10. Accident Prevention Plan.

3.11 NOTIFICATION OF NONCOMPLIANCE

The Contracting Officer will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor shall take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, shall be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders shall be made the subject of claim for extension of time or for excess costs or damages by the Contractor.
PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

1.1.1 Site Plan

The Contractor shall prepare a site plan indicating the proposed location and dimensions of any area to be fenced and used by the Contractor, the number of trailers to be used, avenues of ingress/egress to the fenced area and details of the fence installation. Any areas which may have to be graveled to prevent the tracking of mud shall also be identified. The Contractor shall also indicate if the use of a supplemental or other staging area is desired.

1.1.2 Identification of Employees

The Contractor shall be responsible for furnishing to each employee and for requiring each employee engaged on the work to display identification as approved and directed by the Contracting Officer. Prescribed identification shall immediately be delivered to the Contracting Officer for cancellation upon release of any employee. When required, the Contractor shall obtain and provide fingerprints of persons employed on the project. Contractor and subcontractor personnel shall wear identifying markings on hard hats clearly identifying the company for whom the employee works.

1.1.3 Employee Parking

Contractor employees shall park privately owned vehicles in an area designated by the Contracting Officer. This area will be within reasonable walking distance of the construction site. Contractor employee parking shall not interfere with existing and established parking requirements of the military installation.

1.1.4 Telephone

The Contractor shall make arrangements and pay all costs for telephone facilities desired.

1.2 BULLETIN BOARD, PROJECT SIGN, AND PROJECT SAFETY SIGN

1.2.1 Bulletin Board

Immediately upon beginning of work, the Contractor shall provide a weatherproof glass-covered bulletin board not less than 915 by 1220 mm in size for displaying the Equal Employment Opportunity poster, a copy of the wage decision contained in the contract, Wage Rate Information poster, and other information approved by the Contracting Officer. The bulletin board shall be located at the project site in a conspicuous place easily accessible to all employees, as approved by the Contracting Officer. Legible copies of the aforementioned data shall be displayed until work is
completed. Upon completion of work the bulletin board shall be removed by and remain the property of the Contractor.

1.2.2 Project and Safety Signs

The requirements for the signs (see attachment at the end of this section), their content, and location shall be as shown on the drawings. Exact location and name of sponsor, to be placed on the sign, shall be determined by the Contracting Officer. Verify with the Contracting Officer, the exact text to be placed on the signs prior to construction of the signs. The background color shall be brown with white lettering. The signs shall be erected within 15 days after receipt of the notice to proceed. The data required by the safety sign shall be corrected daily, with light colored metallic or non-metallic numerals. Upon completion of the project, the signs shall be removed from the site.

1.3 PROTECTION AND MAINTENANCE OF TRAFFIC

During construction the Contractor shall provide access and temporary relocated roads as necessary to maintain traffic. The Contractor shall maintain and protect traffic on all affected roads during the construction period except as otherwise specifically directed by the Contracting Officer. Measures for the protection and diversion of traffic, including the provision of watchmen and flagmen, erection of barricades, placing of lights around and in front of equipment and the work, and the erection and maintenance of adequate warning, danger, and direction signs, shall be as required by the State and local authorities having jurisdiction. The traveling public shall be protected from damage to person and property. The Contractor's traffic on roads selected for hauling material to and from the site shall interfere as little as possible with public traffic. The Contractor shall investigate the adequacy of existing roads and the allowable load limit on these roads. The Contractor shall be responsible for the repair of any damage to roads caused by construction operations.

1.3.1 Haul Roads

The Contractor shall, at its own expense, construct access and haul roads necessary for proper prosecution of the work under this contract. Haul roads shall be constructed with suitable grades and widths; sharp curves, blind corners, and dangerous cross traffic shall be avoided. The Contractor shall provide necessary lighting, signs, barricades, and distinctive markings for the safe movement of traffic. The method of dust control, although optional, shall be adequate to ensure safe operation at all times. Location, grade, width, and alignment of construction and hauling roads shall be subject to approval by the Contracting Officer. Lighting shall be adequate to assure full and clear visibility for full width of haul road and work areas during any night work operations. Upon completion of the work, haul roads designated by the Contracting Officer shall be removed.

1.3.2 Barricades

The Contractor shall erect and maintain temporary barricades to limit public access to hazardous areas. Such barricades shall be required whenever safe
public access to paved areas such as roads, parking areas or sidewalks is prevented by construction activities or as otherwise necessary to ensure the safety of both pedestrian and vehicular traffic. Barricades shall be securely placed, clearly visible with adequate illumination to provide sufficient visual warning of the hazard during both day and night.

1.4 CONTRACTOR'S TEMPORARY FACILITIES

1.4.1 Administrative Field Offices

The Contractor shall provide and maintain administrative field office facilities within the construction area at the designated site. Government office and warehouse facilities will not be available to the Contractor's personnel.

1.4.2 Work Area

As soon as practicable, but not later than 15 days after the date established for commencement of work, the Contractor shall furnish and erect temporary project safety fencing at the work site. The safety fencing shall be maintained by the Contractor during the life of the contract and, upon completion and acceptance of the work, shall become the property of the Contractor and shall be removed from the work site. The fence shall be an orange barrier fence with 6mm cable strung through the top of the fabric (minimum height 1.22 meters) around the construction site. Fence posts may be driven (minimum 460mm), in lieu of concrete bases, where soil conditions permit. If chain link fencing is substituted for plastic fabric fencing, the Contractor shall use new or like new fence fabric and posts shall be braced at corners and intermediate points to ensure the fabric is maintained in a taut condition and does not sag. The fence barrier shall be maintained in a proper manner and repairs promptly made whenever it degrades. Trailers, materials, or equipment shall not be placed or stored outside the fenced area unless such trailers, materials, or equipment are assigned a separate and distinct storage area by the Contracting Officer away from the vicinity of the construction site but within the military boundaries. Trailers, equipment, or materials shall not be open to public view with the exception of those items which are in support of ongoing work on any given day. Materials shall not be stockpiled outside the fence in preparation for the next day's work. At the end of each work day mobile equipment, such as tractors, wheeled lifting equipment, cranes, trucks, and like equipment, shall be parked within the fenced area.

1.4.3 Supplemental Storage Area

Upon Contractor's request, the Contracting Officer will designate another or supplemental area for the Contractor's use and storage of trailers, equipment, and materials. This area may not be in close proximity of the construction site but shall be within the military boundaries. Fencing of materials or equipment will not be required at this site; however, the Contractor shall be responsible for cleanliness and orderliness of the area.
used and for the security of any material or equipment stored in this area. Utilities will not be provided to this area by the Government.

1.4.4 Appearance of Trailers

Trailers utilized by the Contractor for administrative or material storage purposes shall present a clean and neat exterior appearance and shall be in a state of good repair. Trailers which, in the opinion of the Contracting Officer, require exterior painting or maintenance will not be allowed on the military property.

1.4.5 Maintenance of Storage Area

Fencing shall be kept in a state of good repair and proper alignment. Should the Contractor elect to traverse with construction equipment or other vehicles grassed or unpaved areas which are not established roadways, such areas shall be covered with a layer of gravel as necessary to prevent rutting and the tracking of mud onto paved or established roadways; gravel gradation shall be at the Contractor's discretion. Grass located within the boundaries of the construction site shall be mowed for the duration of the project. Grass and vegetation along fences, buildings, under trailers, and in areas not accessible to mowers shall be edged or trimmed neatly.

1.4.6 Security Provisions

Adequate outside security lighting shall be provided at the Contractor's temporary facilities. The Contractor shall be responsible for the security of its own equipment; in addition, the Contractor shall notify the appropriate law enforcement agency requesting periodic security checks of the temporary project field office.

1.5 PLANT COMMUNICATION

Whenever the Contractor has the individual elements of its plant so located that operation by normal voice between these elements is not satisfactory, the Contractor shall install a satisfactory means of communication, such as telephone or other suitable devices. The devices shall be made available for use by Government personnel.

1.6 TEMPORARY PROJECT SAFETY FENCING

As soon as practicable, but not later than 15 days after the date established for commencement of work, the Contractor shall furnish and erect temporary project safety fencing at the work site. The safety fencing shall be maintained by the Contractor during the life of the contract and, upon completion and acceptance of the work, shall become the property of the Contractor and shall be removed from the work site. The fence shall be an orange barrier fence with 6mm cable strung through the top of the fabric (minimum height 1.22 meters) around the construction site. Fence posts may be driven (minimum 460mm), in lieu of concrete bases, where soil conditions permit.
1.7 CLEANUP

Construction debris, waste materials, packaging material and the like shall be removed from the work site daily. Any dirt or mud which is tracked onto paved or surfaced roadways shall be cleaned away. Materials resulting from demolition activities which are salvageable shall be stored within the fenced area described above or at the supplemental storage area. Stored material not in trailers, whether new or salvaged, shall be neatly stacked when stored.

1.8 RESTORATION OF STORAGE AREA

Upon completion of the project and after removal of trailers, materials, and equipment from within the fenced area, the fence shall be removed and will become the property of the Contractor. Areas used by the Contractor for the storage of equipment or material, or other use, shall be restored to the original or better condition. Gravel used to traverse grassed areas shall be removed and the area restored to its original condition, including top soil and seeding as necessary.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)
CUT LINE

6'-0" SQUARE

FACE OF SIGN

GROUNDF LINE

FRONT ELEVATION

1/2" PLYWOOD

2'-6"

2'-6"

6'-0" SQUARE

CUT LINE

PROJECT SAFETY SIGN DETAILS
N.T.S.
CUT LINE

FACE OF SIGN

6'-0" SQUARE

4"X4" POST

GROUND LINE

4'-6"

3'-0"

3'-0"

2'-6"

FRONT ELEVATION

FACE OF SIGN

12" PLYWOOD

PROJECT SIGN DETAILS

SIDE ELEVATION

3, 3/8 " DIA. BOLTS
(GALV. OR CAD. PLATED)

N.T.S.

SECTION 01500 Page 7
SAFETY

THIS PROJECT HAS BEEN
ACCIDENT FREE
FOR THE PAST DAYS
OUR RECORD IS DAYS
LETS BEAT THAT RECORD!

US Army Corps of Engineers
Little Rock District

GENERAL CONTRACTOR
(NAME OF FIRM)

NOTE: LETTERING STYLES TO BE SIMILAR TO THOSE ILLUSTRATED

PROJECT SAFETY SIGN LAYOUT
1.1 REFERENCES AND TERMS

1.1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ENGINEER MANUAL PUBLICATIONS (EM)

EM 385-1-1 (1996) Safety and Health Requirements

CODE OF FEDERAL REGULATIONS (CFR)

29 CFR, PT 1910 (1990) Occupational Safety and Health Standards
29 CFR, PT 1926 (1992) Safety and Health Regulations for Construction

1.1.2 TERMS

References to the "Contracting Officer" (CO) shall mean the Contracting Officer or the designated representative of the Contracting Officer. This is applicable to all specifications sections.

1.2 WORK SCHEDULE

Little Rock Air Force Base normal duty hours are 7:30 a.m. to 4:30 p.m. all days of the week except Saturday, Sunday and Federal Holidays. The Contractor is solely responsible for determining the necessary work hours to complete this project within the contract construction time. The Contractor shall work extended shifts and weekends if required to complete this project on time. Digging permits and base utility outages will only be processed during normal hours (0730-1630 Monday-Friday, excluding Federal Holidays). Inspections, coordination meetings, training, performance testing, 3-phase inspection meetings, Tool Box safety meetings, concrete pre-placement inspections, etc. will be conducted between the hours of 0730 to 1600 hours Monday-Friday, excluding Federal Holidays. No work will be performed at any time other than normal work week without obtaining written approval of the Contracting Officer. (If weekend or evening work is required at least seven (7) calendar days due to utility outages or other requirements, such work shall be with prior approval of the Contracting Officer, and accomplished at no additional cost to the Government.) The requirement for advance notice and concurrence from the Contracting Officer is to permit our evaluating if we need to provide inspection for extended shifts. Our intent is to not limit the Contractor's schedule, unless required by security, but instead to coordinate activities with the Corps and Air Force agencies. However, the contractor is advised that escorts and
shop personnel may or may not be available on holidays, weekends, and Air Force down days, and certain activities such as utility outages, concrete placements, and coordination meetings may not be possible. This will not be cause for delay under the Contract. Other unaffected construction activities may proceed. A tentative schedule of the Contractor's work and inspection activities for each week shall be prepared and faxed to the resident office no later than Monday morning of that week. It will identify any anticipated holiday or weekend work and request approval of any anticipated deviations in allowable working hours. The cost for extended shifts, weekend and holiday work is part of the base bid for this project and shall not result in additional costs to the Government. The Government is responsible for the costs for additional Government inspectors.

1.3 UTILITIES

Existing electrical service to the facilities will be maintained until new electrical service is in place and ready for operation. Utility interruptions will be approved by the Contracting Officer. The Contractor shall submit a schedule outage/installation plan for all utility outages 30 days after notice to proceed. This plan will be reviewed by the Contracting Officer (COR). The plan must be approved prior to implementing any work. The Contractor shall submit to the Contracting Officer a written request for such work at least two (2) weeks prior to the desired date. Telecommunication lines shall not be interrupted during construction. Electrical, water, sewer, and gas systems shall not be interrupted without prior approval of the COR.

1.3.1 Outages

The Contractor shall obtain written permission or approval from the Contracting Officer for any utility outage. The outage request shall be submitted by the Contractor in accordance with the following and shall indicate the proposed work and length of outage.

1.3.2 Water, Sewer, and Gas

Water outages will be performed by Base Civil Engineering. At least 24 hours written advance notice is required prior to shutting off water, sewer, or gas utilities. A service outage shall not exceed 4 hours unless otherwise approved by the Contracting Officer. Tapping of utilities without outages shall be accomplished where possible, and shall be in accordance with good commercial practice.

1.3.3 Electrical

At least 72 hours written advance notice is required prior to shutting off electrical utilities. Electrical primary power outages will be performed by 314th Civil Engineers Squadron. The outage shall not exceed 4 hours unless otherwise approved by the Contracting Officer. "Hot" line work will not be allowed. Any electrical outage exceeding 4 hours the Contractor shall provide a generator. Contractor shall size generator and make complete connection. Contractor shall disconnect and remove generator once electrical work is complete.
1.3.4 Postponement of Outages

The Government reserves the right to postpone for 7 days, any scheduled outages. There shall be no outages when the outside temperature is expected to be below 35 degrees F.

1.3.5 Turning Utilities On and Off

Government personnel shall perform all shutting off and turning on of valves and switches necessary to accomplish scheduled outage.

1.4 PROTECTION OF EXISTING FACILITIES

The Contractor shall conduct and schedule his work in a manner to cause as little disruption as possible to the existing facilities and operation.

1.5 STREET CLOSURES AND TRAFFIC SAFETY

Street closures for utility line crossings may be accomplished after at least 72 hours advance notice prior to date of desired closure. One lane shall be kept open to traffic at all times. Special efforts will be made not to interfere with traffic flow or create safety hazards to traffic.

1.6 MOWING

Grass and weedy vegetation within the areas utilized by the Contractor, including work areas, administrative areas, and storage areas, shall be kept mowed to control vegetative growth. Vegetation shall be mowed to a height of three inches when it reaches a height of six inches. Mowing shall be done with a rotary mower. Mowing shall be done during periods and in such a manner that the soil and grass will not be damaged. Areas adjacent to trees, shrubs, fences, buildings, etc. shall be hand trimmed. The Government may, after notice to the Contractor and at the discretion of the Contracting Officer, mow the Contractor's areas at any time the vegetation height exceeds 6 inches and all costs incurred by the Government for performing such work will be deducted from the contract.

1.7 GOVERNMENT-FURNISHED UTILITIES

Utilities will be furnished by the Government to the Contractor free of charge as provided in the CLAUSE: AVAILABILITY AND USE OF UTILITY SERVICES and as specified below. The Contractor shall carefully conserve any utilities furnished by the Government.

1.8 PORTABLE SANITARY FACILITIES

The Contractor shall provide portable sanitary facilities.

1.9 COMPLIANCE WITH ARKANSAS DEPARTMENT OF HEALTH

All work performed under this contract shall conform to the requirements of the Arkansas Department of Health. The Contractor shall pay all fees required to obtain plumbing permit.
1.10 WATER

Water service free of charge will be available to the Contractor on Base. The Contractor shall provide connections to water main lines and be allowed use of water for construction purposes. Temporary connections shall be removed by the Contractor at the end of the work and before final inspection. Temporary water shutoffs, affecting more than the immediate work area, will require a 7-day written advance notice to the Base Civil Engineer.

1.11 ELECTRICITY

Government furnished electricity will be available from existing electrical utility service lines. The Contractor shall furnish all panels, circuit breakers, wiring, transformers and all other incidentals necessary to meet the needs of the equipment used in the work.

1.12 WORK AREA AND STORAGE AREA

The Contracting Officer will assign the Contractor’s work and storage area.

1.13 TRASH DISPOSAL/CONSTRUCTION DEBRIS - LITTLE ROCK AIR FORCE BASE

Debris shall be removed from the Base promptly, and as feasible, all equipment and materials shall be removed or secured at the end of each day. The Contractor is responsible for the daily cleanup of all construction areas and construction debris that has escaped from the construction site. The Contractor shall exercise caution in not disturbing adjacent facilities, finishes, materials, grounds and other items not a part of this project. The Contractor shall clean daily all areas outside the project area of dirt, dust, and debris generated by this Contract. The Contractor shall use designated haul routes for both delivery and removals. Haul routes are noted on the drawings. All debris generated by the Contract shall be properly disposed of by the Contractor off the base. A contract hauler performs Trash/debris hauling on the Little Rock Air Force Base. The construction Contractor may contract separately with the hauler for disposal facilities. Removal of debris and other material shall be handled, transported, stored, and disposed of by the Contractor and his Subcontractors in accordance with all applicable federal, state or local laws, ordinances, regulations, court orders or other types of rules or rulings having the effect of laws. All hazardous waste shall be disposed of through DRMO. These restrictions shall apply both on and off base. Contractor shall submit for approval the name and location of the proposed landfill site and types of material for which the site is certified. Contractor shall also submit with the regular progress reports, tickets showing yardage, tonnage dumped, and estimates by yds or lbs of each type of material dumped, i.e. 2.3 cubic meters of sheetrock, 1171 square meters of carpet, etc. This submittal is required before progress payments can be made and also applies to any disposal by subcontractors. The Contractor is required to take all precautions to prevent spillage of materials from Contractor vehicles on base pavements. The Contractor shall
provide adequate labor and equipment to keep paved areas free of debris, and to contain loose materials at all times.

1.14 SITE VISITATION

The Contractor is responsible to visit the project site prior to, and during, the course of construction to verify existing conditions, actual sizes, and other requirements outlined in the other sections of the specifications.

1.15 BASE REGULATIONS

The Contractor shall conform to all base regulations and directives pertaining to security, safety, debris removal, fire, traffic and personnel clearances, insofar as they pertain to the Contractor's activities on Little Rock Air Force Base. Contractor shall ensure conformance by all of his employees. Security requirements are subject to change. The Contractor can expect to be questioned and to present identification proof each time accessing the base. Entry to the Base under elevated security levels is limited to the main entrance for contractors. Entry may take as much as 30 minutes or more. Deliveries may have to be met at the front gate and escorted to the site. Delivery of concrete shall be closely coordinated to assure adequate inspectors and escorts are available.

1.16 BASE PASS

All Contractor personnel are required to present photo identification to receive a Base pass. A Base pass is required for vehicles parked on Base property (Security Regulation 840, MAO1 125-2, and AFR 125-17). Base passes are obtained as directed by the Corps of Engineer Little Rock Construction Resident Office and/or Base Security Police. Prior to the start of construction, a letter that identifies all Contractor personnel and indicates hours of operation shall be sent to the Base Security Police Office. All vehicles will be required to have current registration, insurance and state inspection.

1.17 RECEIPT OF MATERIALS

The Contractor shall have a representative available on Base to receive all materials and equipment arriving on Base. The Contractor shall coordinate with Little Rock Air Force Base for security requirements. The Contractor may have to directly escort deliveries or coordinate with the Air Force for escorts.

1.18 FIRE PROTECTION

The Contractor will be responsible for conformance with base fire regulations and NFPA 241, including Appendix A. These regulations are available for review during duty hours in the Base Fire Station located in Building 110. Fire extinguishers required during the construction period shall be furnished and maintained by the Contractor and removed by him upon acceptance of the facility by the Contracting Officer. No welding/cutting and open flame operation shall be allowed in facilities when automatic fire detection and suppression systems are out of service unless the Contractor posts a
fire guard for 24 hours after welding/cutting and open flame operation or certifies the facility fire safe.

1.19 WELDING PERMIT

Prior to performing any welding, cutting or brazing, the Contractor must obtain a properly completed AF Form 592 (Burning Permit) from the Civil Engineering project inspector. A permit is needed per job, per day. Contractor shall return all welding, cutting, or brazing permits to the Fire Department at the end of each week, as a minimum. The Contractor shall maintain a fully charged fire extinguisher on site at all times regardless as to whether or not welding, cutting, or brazing is being performed.

1.20 CONSTRUCTION PERMIT

A properly completed AF Form 103, Base Civil Engineering Work Clearance Request, will be obtained by the Contractor prior to his performing any excavation. A separate AF Form 103 is required for each excavation to be accomplished. Submit a request for AF Form 103 a minimum of 14 calendar days and a maximum of 28 days prior to desired start of excavation. The Contractor shall allow 14 calendar days for processing. Each request shall be in writing and designate the location of the proposed excavation and the scheduled date. The completed AF Form 103 will contain information for locating existing utilities and telephone lines. The Contractor will keep the AF Form 103 at the excavation site and will comply with instructions for hand excavation and with other methods of safeguarding the buried utilities. In addition to the requirement to obtain a construction permit and prior to any excavation, the Contractor shall perform a pipe/cable location survey using a variety of modern locating equipment suitable for locating various types of pipe and cable. The Contractor shall use a signal generating locator such as a Goldak Gold Digger 4400 for metallic pipe and cable. For non-metallic pipe use a vibration generator such as a Fuji Tecom PL-130 or an RD-500. For non-metallic sewer pipe use a snake with attached generator. The Contractor shall mark all locations on the ground. The Contractor shall submit a sketch showing the found locations of utilities to the Contracting Officer for approval prior to beginning excavation. The Contracting Officer will provide available information as to the existence and location of known utilities with the approved construction permit. The Contractor shall be responsible for repairing damage to utilities, whether known or unknown, due to any failure on his part to form a rigorous survey.

1.21 EXCAVATION PERMIT

The Contractor shall obtain an approved Base Civil Engineering Work Clearance Request, AF Form 103, from the BCE prior to performing any excavation work (21 days written notice is required). Any damage to underground utilities, communication lines, etc., will be the responsibility of the Contractor if the approval is not obtained. Digging within three feet of underground communication or electrical power cables shall be performed by hand until the cable is exposed. The BCE will be notified three days prior to hand excavation. A representative from Communications and GTE shall mark underground cable locations prior to excavation. Once the cable is exposed,
mechanical excavation may be used if there is no chance of damaging the cable. The Contractor shall be responsible for any damage to the cable by excavation procedures if the cable location has been previously marked.

1.22 CULTURAL RESOURCE MANAGEMENT

For the protection of cultural, historic and prehistoric resources, the Contractor must submit a signed certification that the selected land borrow area is free of all materials of this type. This includes anything of an archeological nature as well as any Native American sites to include tribal burial ground.

1.23 BURIED CABLES AND LINES

The Contractor shall notify the Contracting Officer or his representative one working day prior to digging or performing other earthwork, as required by the approved excavation permit. If the Contractor fails to provide notification, the Contractor shall be liable for any damages to any buried telephone cables or lines regardless of care exercised or drawings followed. The Government shall not grant time extensions nor pay additional costs incurred because of delays, unless the Contractor has properly notified the Government one working day in advance of the desired digging date.

1.24 OCCUPANCY OF GOVERNMENT FACILITIES

When the Contractor has complete or partial occupancy of any building or facility, he shall be responsible for properly informing Base Civil Engineering (BCE) of any condition which would jeopardize the building or its contents, such as loss of heat, air conditioning, danger of pipes freezing, loss of electric power, water, sewer or gas services or loss of building security. He/she shall call telephone number 987-6434 and inform the Civil Engineering (CE) Construction Inspector or, if after duty hours, call 987-6553, CE Service Call. Contractor is responsible for correcting all situations under the scope of this contract or caused by him/her, but shall call BCE for situations not covered by this contract, or emergency situations beyond his control.

1.25 CHLOROFLUOROCARBON (CFC) REFRIGERANTS

1.25.1 Restrictions, Precautions and Controls

The Contractor shall not vent or cause to be vented chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants (R-11, R-12, R-22, R-113, R-114, R-115, R-501, R-502, or any other mixtures containing CFCs) to the atmosphere during repair or maintenance work on the equipment covered by this Contract. The Contractor shall have available refrigerant recovery or reclaim equipment to perform the work. Contractor personnel who operate refrigerant reclaim or recycling equipment shall possess the necessary state and local certificates for operating that equipment. Contractor shall be responsible for meeting all requirements, permitting the licensing and certification required by state or local ordinance to work on refrigeration systems. Replacement compressors and other replacement equipment used in repairing CFC-containing
systems shall be compatible with CFC replacement refrigerants. If such would result in an increase in cost, the Contractor shall notify the Contracting Officer prior to the replacement.

1.25.2 Ballast and Lamp Disposal

All ballasts from demolished light fixtures shall be examined for markings, labels, etc. that identify the presence (or absence) of PCB's. If no identifying Non-PCB characteristics can be determined, the ballast shall be considered as being PCB ballast. It shall be containerized, processed through the Centralized Accumulation Point (CAP), and then turned in to DRMO for PCB disposal. The ballasts that are clearly identifiable as Non-PCB may be recycled or disposed as solid wastes. The hours of the CAP office are 0700 to 1600, M-F, 987-8073. The Contractor must call DRMO in advance for a turn-in appointment @ 987-3715. The Contractor shall not attempt to (1) turn-in PCB ballast without processing said items through the CAP and (2) deliver same to DRMO without an appointment.

1.25.3 Container

Contractor shall store all PCB ballasts in either new UN approved steel or plastic open head drums as specified in 49 CFR 178.504 and 509. All used and/or reconditioned containers are unacceptable. The steel or plastic drums may not exceed 55 gallons in size. The total weight of container and PCB ballasts must not exceed the inscribed manufacturer container weight specifications. Contractor may store PCB containers on-site up to one week (five days), at which time the container shall be turned in to DRMO. The Contractor may turn in PCB containers at a more frequent rate, e.g., daily, etc., if so desired. PCB containers shall be stored within the confines of the immediate project site. The PCB containers shall not be exposed to the elements, placed in the open, nor allowed to collect rainwater. When not in use, each PCB container shall be covered with its appropriate lid. Contractor shall label each container as specified in 40 CFR 761 and 49 CFR 172.101. The number of PCB ballasts in each container shall be provided to the contract inspector prior to turn in to DRMO. Detached light fixtures that are clearly identified as having non-PCB ballasts shall be placed in government supplied dumpsters which will be picked up, on site, by the Base Recycling Center. The Contractors shall be responsible for all QA/QC functions required in segregating PCB ballasts from non-PCB ballasts. The CAP will not perform any inspection, segregation, or identification of said ballast for the Contractor. The Contractor is fiscally responsible for any improper disposal of PCB ballasts. The Arkansas Department of Environmental Quality shall be notified should any Contractor be found violating any State or Federal regulations on PCB ballast disposal. Fluorescent lamps shall be packaged, processed through the CAP, and then delivered to DRMO. Contractor may store fluorescent tubes in their original container or an appropriately sized cardboard box. In the event a cardboard box is used, each tube shall be protected from breakage by using appropriate egg crate or bubble-wrap packing.
1.26 SAFETY REGULATIONS

The Contractor shall comply with all Base, OSHA, and EPA safety regulations.

1.27 OPERATION AND MAINTENANCE INSTRUCTIONS, SPARE PARTS LISTS, SPARE PARTS, SPECIAL TOOLS, INVENTORIES OF INSTALLED PROPERTIES AND TRAINING OF OPERATING AND SERVICE PERSONNEL

The Contractor shall be responsible for the preparation, coordination, execution and submittal of six copies of all operation and maintenance instructions, training of operating and service personnel, spare parts lists, special tools, and inventories of installed properties furnished under this contract. The equipment manuals, maintenance instructions, and training shall be for all system installations provided in this contract, including those technical provision sections that do not have specific O&M or training requirements, and shall be in sufficient detail to facilitate normal maintenance and troubleshooting by persons with minimum experience with the installed equipment.

1.27.1 Submittal Requirements

All systems of these specifications shall be submitted to the Contracting Officer for approval with the equipment or systems shop drawings. Failure to submit this information will result in disapproval and return of the shop drawings. After approval, all equipment or systems instructions, parts lists, test reports and other similar data shall be assembled in binders in the number of copies specified and in the order specified or directed by the Contracting Officer. Approved operation and maintenance instructions shall be provided 30 days prior to scheduling training of operating and service personnel. The Contractor shall coordinate the content of each instruction period required in the Technical Provisions of these specifications (if an instruction period is not included in the specification, a minimum of two hours shall be required) with the Contracting Officer's representative prior to the actual start of the training period. The Contractor shall videotape (VHS format) all instructional training utilizing color video equipment. Video cassettes shall be submitted in two copies to the Contracting Officer prior to acceptance of the facility.

1.27.2 Operation and Maintenance Manuals and As-Built Drawings

Reference Contract Clause DFARS 52.227-7030, TECHNICAL DATA--WITHHOLDING OF PAYMENT.

Operation and Maintenance Manuals will be prepared and delivered for review and acceptance by the Contracting Officer prior to the final prove out, testing and training for each system, to be described within the Operation and Maintenance Manuals.

As allowed by the referenced clause, the Contracting Officer may, until such data is accepted by the Government, withhold payment to the Contractor of 1% of the total contract price for the Operation
and Maintenance Manuals and 0.5% of the total contract for the As-Built Drawings.

The percentage of the contract for the Operation and Maintenance Manuals and the As-Built Drawings will be shown on the Contractor's Progress Schedule or Network Analysis Schedule as applicable.

1.27.3 Non-Acceptance Actions

The Government may take possession of any completed or partially completed work, as provided for under the CLAUSE: USE AND POSSESSION PRIOR TO COMPLETION. If the installed equipment and/or systems thereto, have not been accepted by the Government due to the Contractor's failure to submit the above specified items, the Contractor shall operate and maintain such plant or system at no additional cost to the Government until such time that the specified items have been received, approved and any subsequent testing, check-out and/or training has been completed.

1.27.4 Work Completion and Close Out Plan (Military Construction)

No less than sixty days in advance of the request for a Pre-final Inspection, the contractor shall prepare and submit a Work Completion and Close Out Plan - comprehensive plan and schedule for the completion of all contract close out activities and requirements necessary to assure work completion and acceptance. The plan shall be organized to address the following minimum requirements:

a. Final Testing Plan. The contractor shall conduct a thorough review of the Technical Provision Sections and Drawings to identify all required testing to be performed either by specific reference in the Contract, or if not defined, an operations test to demonstrate proper operation and function. Each test shall identify Specification Section and paragraph number, drawing number or other identifier, and the person or unit responsible for conducting the test. Pre-requisites for each test shall be identified. For example: 1) the test & balance for the HVAC system has to be completed prior to the final functional test; 2) preliminary fire alarm system test has to be completed by the contractor prior to scheduling the final performance test for witness by the Fire Department. A minimum of ten days written notice shall be provided, individually, for each preliminary and final performance testing activity. All testing shall be completed prior to training and work completion.

b. Training Plan. Training shall be provided for each and every operating system installed in the project. Specific training requirements are identified in the various Technical Provision Sections. Training or demonstration, as applicable, shall also be provided for systems where specific training requirements were not stated. The contractor shall prepare a list of training sessions required to meet these requirements. Each session may cover more than one system in the case where multiple systems operate together, overlap, or are otherwise related to one another. In identifying the sessions, consideration shall be given to the user shops organization and every effort shall be made to correlate sessions to the shops that will need the training. For example: training combined into a
single session should be targeted to a specific shop or group of shops. Typical military installation shop organizations include: alarm shop, fire department, plumbing shop, HVAC shop, controls/EMCS shops, exterior electrical shop, and electrical shop. Pre-requisites for training are completion of functional testing, approval and availability of O&Ms, and submission of a training outline. The one-year warranty of construction shall not start on any system that training has not been completed. All training sessions shall be video taped by the contractor in VHS format with two copies of the training tapes turned over to the COR. A minimum of ten days written notice shall be provided for each training session. A training outline shall accompany the written notice of each training session. The Government reserves the right to one weeks notice of any revisions in the training schedule by the contractor. Unless otherwise approved by the COR, all training shall be scheduled on Tuesdays through Thursdays (Government holidays excluded). All training shall be accomplished prior to work completion and start of the one-year construction warranty. In the event that the Government agrees to carry a training session past beneficial occupancy, or the contractor is unable to complete the training, the one-year warranty of construction on the associated system or work will not begin until training for the item has been completed.

c. Operations & Maintenance Manuals. O&M Manual requirements are outlined in each respective specification section. In addition, the contractor shall review the drawings and note any requirements, stated thereon, and prepare a list of all O&M Manuals. The O&M Manuals for the various technical provision sections shall be consolidated by systems into bound manuals. Typical systems are HVAC system, plumbing systems, electrical systems, architectural items (i.e. motorized video screens, overhead door, door hardware, etc.), fire suppression system and fire alarm system. O&M Manuals shall be submitted and approved prior to scheduling training for any specific system. The contractor is encouraged to initially submit, as early as possible, a single copy of O&M Manuals for review and comment. After obtaining approval of the initial copy, prepare the required number of copies for turnover to the COR. Each bounded O&M systems manual shall: 1) be organized by section and equipment, 2) be indexed, 3) include a table of contents in the front, 4) be edited and highlighted for specific equipment installed, and 5) contain a spare parts list.

d. Warranties. In addition to the standard one-year construction warranty, the contractor shall obtain all required special warranties and standard manufacture warranties greater than one year, and turn them over to the Government. A list of all special warranties shall be prepared.

e. Keys, Spare Parts and Materials. A review of each Technical Provisions Section shall be made and all spare parts and spare materials identified for turnover listed. Examples are electrical box keys, fire alarm panel/pull station keys, padlock keys, spare floor tile, carpet, ceiling tile, wall covering, sprinkler heads, fuses, generator and compressor filters, and HVAC filters.

f. Submittals. The CQCM shall conduct a review of all outstanding submittal items and identify submittals that are proposed
for deletion as non-applicable, and all submittals that are overdue or remaining. The organization responsible for assembling the outstanding submittals shall be identified as part of the list. A due date for submission shall be assigned. As part of the review the CQCM will highlight any specific submittals that are a pre-requisite to testing or training and cross-index them.

g. As-Built Drawings. The preliminary as-built drawings are due at the time of the Pre-final Inspection and shall be included in the Close Out Plan. All amendments, RFIs and modifications shall have been incorporated.

1.27.4.1 The plan shall be in a form that enables identifying the party directly responsible (prime contractor, subcontractor, supplier, Government, etc.) for each action, submittal or activity identified. The plan shall be listed as a submittal in the submittal register and the close out processes or testing, training, notifications, and inspections shall be reflected in the contractor's schedule.

1.27.4.2 The plan shall include a simplified flow chart schedule or arrow diagram reflecting all training, testing, notices, inspections, and submittals, showing the interdependency of the activities and necessary pre-requisite actions. All Contractor Quality Control close out inspection activities shall be included. Examples are: 1) the CQC Managers Completion Inspection, 2) certification of deficiencies corrected and Pre-final Inspection Notice, and 3) certification of completion of Pre-final punch list and Final Inspection Notice. The advance notification requirements and preconditions for Pre-final and Final Inspections are contained in the Technical Provisions section for Contractor Quality Control. An example is contained at the end of this section.

1.27.4.3 The plan shall include a tabular listing of all the actions, submittals, activities, etc., reflecting suspense or due dates for the accomplishment of each, consistent with completion of all work on schedule.

1.27.4.4 A listing of any equipment or materials that are expected to arrive late and possibly impact completion and acceptance shall be identified and the best available information on their status provided.

1.27.4.5 Following receipt of the Work Completion and Close Out Plan, a meeting between the Corps Office, the contractor and his major subcontractors shall be scheduled and held to discuss the plan and any comments or concerns arising from it.

1.27.4.6 Work completion and acceptance is contingent upon:

a. Completion of all construction, manufacturing, erection, assembly, installation, connection, finishing, adjustment, functional testing, training and final cleanup described in the Contract.

b. Completion of all administrative tasks identified above as having to be completed prior to beneficial occupancy.
c. Correction of all Final Inspection punch list items except for those specifically agreed by the Resident Office to be carried past beneficial occupancy.

d. A functional facility usable by the user.

e. Transfer of real property by ENG Form 1354 to the user.

1.28 FLIGHT SIMULATOR CONSTRUCTION PHASING REQUIREMENTS

The Flight Simulator Facility is to be completed in two phases. Phase I (one) is required to be completed 494 days after notice to proceed. Phase two is required to be completed 540 days after notice to proceed. The Air Force and their Contractors will occupy and begin installing the Flight Simulator and associated equipment into phase I rooms after Phase I is complete. The following rooms are required to be completed or partially completed as indicated below for the phase I portion of this contract:

<table>
<thead>
<tr>
<th>Room #</th>
<th>Room Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Entrance Lobby</td>
<td>Provide access from front doors to the fully operational fire and security panels. Provide clear dust covers over panels. Panel indicators must be visible.</td>
</tr>
<tr>
<td>118</td>
<td>Communications</td>
<td>All work must be complete as required to support all rooms required for phase I completion. This include systems in other communication rooms required to support phase I rooms.</td>
</tr>
<tr>
<td>119</td>
<td>Electrical</td>
<td>All work must be complete as required to support all rooms required for phase I completion. This include systems in other electrical rooms required to support phase I rooms.</td>
</tr>
<tr>
<td>120</td>
<td>Mechanical</td>
<td>All work must be complete as required to support all rooms required for phase I completion.</td>
</tr>
<tr>
<td>129</td>
<td>Mechanical</td>
<td>All work must be complete as required to support all rooms required for phase I completion. This include systems in other mechanical rooms required to support phase I rooms.</td>
</tr>
<tr>
<td>130</td>
<td>Corridor</td>
<td>Access required from corridor 157 to rooms 162 and 163</td>
</tr>
<tr>
<td>133</td>
<td>Corridor</td>
<td>All work must be complete</td>
</tr>
<tr>
<td>134</td>
<td>ASMT</td>
<td>All work must be complete</td>
</tr>
</tbody>
</table>
All work must be complete as required to support all rooms required for phase I completion. This include systems in other Electrical rooms required to support phase I rooms.

All work must be complete.

All work must be complete from corridor 152 to corridors 133 and 130.

All work must be complete from corridor 152 to corridors 133 and 130.

All work must be complete.

All work must be complete as required to support all rooms required for phase I completion. This include systems in other Mechanical rooms required to support phase I rooms.

All work must be complete as required to support all rooms required for phase I completion. This include systems in other Electrical rooms required to support phase I rooms.

All work must be complete.

All work must be complete.
<table>
<thead>
<tr>
<th>Room Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 Electrical</td>
<td>All work must be complete as required to support all rooms required for phase I completion. This include systems in other Electrical rooms required to support phase I rooms.</td>
</tr>
<tr>
<td>229 Electrical</td>
<td>All work must be complete as required to support all rooms required for phase I completion. This include systems in other Electrical rooms required to support phase I rooms.</td>
</tr>
<tr>
<td>240 Stairs</td>
<td>All work must be complete</td>
</tr>
<tr>
<td>241 Security Vault</td>
<td>All work must be complete</td>
</tr>
<tr>
<td>242 Brief/DeBrief</td>
<td>Complete sheetrock and structural wall between 241 and 242.</td>
</tr>
<tr>
<td>244 Corridor</td>
<td>Complete portions of hallway between 240 and 241.</td>
</tr>
<tr>
<td>256 Communications</td>
<td>All work must be complete as required to support all rooms required for phase I completion. This include systems in other communication rooms required to support phase I rooms.</td>
</tr>
</tbody>
</table>

1.28.1 Construction Phasing Notes

a. All rooms required to be completed for phase I shall be completely finished and ready for occupancy. This includes all electrical, communication, and mechanical systems. These rooms shall be completely sealed off from the remaining construction areas.

b. Dust control shall be implemented to prevent any dust from penetrating the phase I completed rooms. This includes dust that may penetrate above ceilings, in duct work, conduits, etc.

c. Commissioning of the HVAC system is not required until phase II is completed. The HVAC is required to be operational. Temporary testing and balancing of the system shall be made to support Phase I areas.

d. The communications, electrical and mechanical systems which support phase I rooms, are required to be tested prior to occupancy of phase I rooms.

e. The Fire Alarm system shall be completed tested per NFPA and specification requirements, ready for occupancy prior to phase I occupancy.
f. Other rooms such as the main electrical, mechanical, and communications shall be sufficiently completed to support the infrastructure of the completed phase I rooms.

g. Phase I rooms are scheduled to be turned over the Air Force 494 days after Notice to proceed. The Air Force will begin the installation of the Flight Simulators equipment within the phase I rooms. The Contractor shall not occupy phase I rooms after they are completed, except as approved by the Contracting Officer.

h. The Air Force personnel will enter into the building through room 150 (hydraulic room) and from exterior doors of the simulator bay (rooms 149 and 151). The Contractor shall provide an access corridor to these doors for Air Force access.

i. The simulator will be delivered to the outside access doors of the simulator bays. The road between the new facility and Buildings 1230B and 1230A shall be available after completion of phase I construction. The concrete and paved areas to the flight simulators and loading dock shall be complete and ready for use when phase I is complete. The road will be used for delivery of the Flight Simulator and other equipment.

j. Drawings A104, and A105 show the location of phase I rooms.

k. The front entry sidewalk and doors shall be accessible for security and fire personnel at the end of phase I.

l. The Contractor is responsible for determining the construction schedule to achieve the Phase I and Phase II completion dates. The Contractor is expected to provide an adequate construction crew to complete this project on time.

m. The mechanical equipment yard and associated equipment shall be complete as necessary to support phase I.

n. Telephone, data and fiber optics-secure LAN shall be complete. This includes any circuits from main electrical and communication rooms (such as 118, 219, and 256).

o. The sprinkler system for Phase I rooms shall be complete and tested prior to completion of Phase I.

p. The security system shall be complete and operational prior to completion of phase I.

q. The Contractor is responsible for maintenance and operation of all systems until completion/acceptance of all work.

r. Communication Manholes and ducts shall be complete with pull wire 2 weeks prior to completion of Phase I. Notify Contracting Officer when complete so that LRAFB communication personnel can install main trunk lines.

s. Due to the criticality of completing this project on time the Contractor may work extended hours and weekends if required to complete this project on time. The Contractor is responsible for
determining the necessary work hours to meet the contract schedule. No work will be performed at any time other than normal work week without obtaining written approval of the Contracting Officer. If weekend or evening work is required then submit a request to the Contracting Officer at least seven (7) calendar days prior to when extended shift work is required. Extended shifts, weekend or holiday work requires approval by the Contracting Officer, and accomplished at no additional cost to the Government. The requirement for advance notice and concurrence from the Contracting Officer is to permit our evaluation to determine if we need to provide additional inspectors for the extended shifts.

PART 2 PRODUCTS (NOT USED)

PART 3 EXECUTION (NOT USED)
PART 1 GENERAL

1.1 PAYMENT FOR FINAL AS-BUILT DRAWINGS

No separate payment will be made for the work covered under this section of the specifications. All costs in connection therewith shall be included in the contract sum-job price for the work to be performed under the contract.

1.2 SUBMITTALS

The following shall be submitted in accordance with Section 01300 - SUBMITTAL PROCEDURES.

SD-04 Drawings

The Contractor shall submit three data sets of as-built drawings in digital format compatible in Autocad software (Version 14 or higher) on 90 mm 1.44 MB diskettes or read only CD-ROM to the Contracting Officer. The Contracting Officers approval and receipt of printed as-built drawings and digital drawing files fulfill the Contractor’s obligation for furnishing as-built drawings under this contract.

1.3 AS-BUILT DRAWINGS

The as-built drawings shall be a record of the construction as installed and completed by the Contractor. They shall include the information shown on the contract set of drawings and a record of deviations, modifications, or changes from those drawings, however minor, which were incorporated into the work, additional work not appearing on the contract drawings, and changes which are made after final inspection of the work. If additional work changes the as-built conditions after submission of the as-built drawings, the Contractor shall furnish revised or additional drawings to depict as-built conditions. CAD files are to be updated for as-built changes. CAD files shall be submitted on CD. Blue line drawings shall reflect the final as built conditions.

1.4 PRELIMINARY AS-BUILT DRAWINGS

1.4.1 Preparation

The Contractor shall maintain one set of paper prints which shall show the as-built conditions and which shall be kept current and available on the jobsite at all times. Changes from the contract plans which are made in the work or additional information uncovered in the course of construction shall be accurately and neatly recorded as they occur by means of details and notes. The as-built marked prints shall be jointly inspected for accuracy and completeness by the Contracting Officer and the Contractor prior to submission of each monthly pay estimate. The drawings shall show the following information, but not be limited thereto:
(1) The location and description of utility lines or other installations of any kind or description known to exist within the construction area. Exterior utilities shall be located in both the horizontal and vertical planes. Dimensions shall be within an accuracy of approximately 6 inches. Vertical location shall be referenced to finished grade or floor level and the horizontal location referenced to a permanent structure such as the face of a building or street curb.

(2) The location and dimensions of changes within the building or structure.

(3) Correct grade or alignment of roads, structures, or utilities if changes were made from contract plans.

(4) Correct elevations if changes were made in site grading.

(5) Changes in details of design or additional information obtained from shop drawings prepared or furnished by the Contractor including but not limited to fabrication, erection, installation plans and placing details, pipe sizes, insulation material, dimensions of equipment foundations, etc.

(6) The topography and grades of drainage constructed or affected as a part of the construction.

(7) Changes or modifications resulting from the final inspection.

(8) Where contract drawings or specifications allow options, the option selected for construction shall be shown on the as-built drawings.

(9) All construction room numbers on all applicable drawings shall be revised to reflect the actual signage room numbers.

(10) Architectural room finish schedule shall be revised to reflect actual colors and materials installed.

(11) Mechanical equipment schedules and/or equipment shown on other drawings shall be revised to reflect actual equipment and/or material installed.

(12) The cover sheet shall indicate "FINAL AS-BUILT DRAWING, COMPLETED (FILL IN DATE COMPLETED)".

1.4.2 Review

As part of the prefinal inspection, the preliminary as-built drawings will be reviewed. They must comply with this specification prior to scheduling the final inspection, and/or prior to substantial completion of the project.

1.4.3 Submittal to Contracting Officer for Review and Approval

Three copies of the preliminary as-built marked prints shall be delivered to the Contracting Officer before the time of final inspection for his review and approval. Final inspection will not be scheduled by the
Contracting Officer until preliminary as-built drawings have been approved. The review by Government personnel will be expedited to the maximum extent possible. Upon approval, one copy of the as-built marked prints will be returned to the Contractor for use in preparation of final as-built drawings. If upon review, the drawings are found to contain errors and/or omissions, they shall be returned to the Contractor for corrections. The Contractor shall complete the corrections and return the drawings to the Contracting Officer within ten (10) calendar days.

1.5 FINAL AS-BUILT DRAWINGS

1.5.1 Preparation

After review of the as-built prints, the Contracting Officer will return to the Contractor one copy of the approved as-built drawings. The Contractor shall prepare final as-built drawings to correctly show all features of the project as it has been constructed. The actual submittal will be as described in paragraph SUBMITTALS above.

1.5.2 Approval and Acceptance

Failure to submit as-built drawings as required herein shall be cause for withholding payment due the Contractor for final as-built drawings under this contract. Approval and acceptance of final as-built drawings shall be accomplished before final payment is made to the Contractor.

1.5.3 As-Built Notation

When final revisions have been completed, each drawing shall be lettered or stamped with the words "DRAWING OF WORK AS-BUILT" in letters at least 3/16" high placed below the title block between the border and the trim line. The date of completion and the words "REVISED AS-BUILT" shall be placed in the revision block above the latest existing revision notation. All marking on the reverse side of the drawings indicating previous revisions shall be removed.

1.5.4 Title Blocks

The title block to be used for any new as-built drawings shall be similar to that used on the original drawings.

1.5.6 Reproduction

Reproduction required under paragraph: FINAL AS-BUILT DRAWINGS, above shall be furnished on a CD in AutoCAD format. All active and reference files shall be located on the CD. Provide 2 copies of the CD. Provide three copies of the full size prints and 3 copies of half size blue line prints of the final As-Built drawings. All drawings shall be either full size or half size scaled.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ENGINEERING MANUALS (EM)

1.2 GENERAL REQUIREMENTS

The work includes demolition, salvage of identified items and materials, and removal of resulting rubbish and debris. Rubbish and debris shall be removed from Government property daily, unless otherwise directed, to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Contracting Officer. In the interest of occupational safety and health, the work shall be performed in accordance with EM 385-1-1, Section 23, Demolition, and other applicable Sections. In the interest of conservation, salvage shall be pursued to the maximum extent possible; salvaged items and materials shall be disposed of as specified.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Work Plan; G, RE

The procedures proposed for the accomplishment of the work. The procedures shall provide for safe conduct of the work, including procedures and methods to provide necessary supports, lateral bracing and shoring when required, careful removal and disposition of materials specified to be salvaged, protection of property which is to remain undisturbed, coordination with other work in progress, and timely disconnection of utility services. The procedures shall include a detailed description of the methods and equipment to be used for each operation, and the sequence of operations in accordance with EM 385-1-1.

1.4 DUST CONTROL
The amount of dust resulting from demolition shall be controlled to prevent the spread of dust to occupied portions of the construction site and to avoid creation of a nuisance in the surrounding area. Use of water will not be permitted when it will result in, or create, hazardous or objectionable conditions such as ice, flooding and pollution.

1.5 PROTECTION

1.5.1 Protection of Personnel

During the demolition work the Contractor shall continuously evaluate the condition of the structure being demolished and take immediate action to protect all personnel working in and around the demolition site. No area, section, or component of floors, roofs, walls, columns, pilasters, or other structural element will be allowed to be left standing without sufficient bracing, shoring, or lateral support to prevent collapse or failure while workmen remove debris or perform other work in the immediate area.

1.5.2 Protection of Structures

Floors, roofs, walls, columns, pilasters, and other structural components that are designed and constructed to stand without lateral support or shoring, and are determined to be in stable condition, shall remain standing without additional bracing, shoring, or lateral support until demolished, unless directed otherwise by the Contracting Officer. The Contractor shall ensure that no elements determined to be unstable are left unsupported and shall be responsible for placing and securing bracing, shoring, or lateral supports as may be required as a result of any cutting, removal, or demolition work performed under this contract.

1.5.3 Protection of Existing Property

Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The Contractor shall take necessary precautions to avoid damage to existing items to remain in place, to be reused, or to remain the property of the Government; any damaged items shall be repaired or replaced as approved by the Contracting Officer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract.

1.5.4 Protection From the Weather

The interior of buildings to remain; salvageable materials and equipment shall be protected from the weather at all times.

1.5.5 Protection of Trees

Trees within the project site which might be damaged during demolition, and which are indicated to be left in place, shall be protected by a 1.8 m high fence. The fence shall be securely erected a minimum of 1.5 m from the trunk of individual trees or follow the outer perimeter of branches or clumps of trees. Any tree designated to remain that is damaged during the
work under this contract shall be replaced in kind or as approved by the Contracting Officer.

1.5.6 Environmental Protection

The work shall comply with the requirements of Section 01410 ENVIRONMENT PROTECTION.

1.6 BURNING

The use of burning at the project site for the disposal of refuse and debris will not be permitted.

1.7 USE OF EXPLOSIVES

Use of explosives will not be permitted.

1.8 AVAILABILITY OF WORK AREAS

Areas in which the work is to be accomplished will be available throughout the duration of construction.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION

3.1 EXISTING STRUCTURES

Existing structures indicated shall be removed to 1 meter below grade. Slabs shall be removed. Sidewalks, curbs, gutters and street light bases shall be removed as indicated.

3.2 UTILITIES

Disconnection of utility services, with related meters and equipment, are specified in Section 02316. Existing utilities shall be removed as indicated. When utility lines are encountered that are not indicated on the drawings, the Contracting Officer shall be notified prior to further work in that area.

3.3 FILLING

Holes, open basements and other hazardous openings shall be filled in accordance with Section 02315 FILLING AND BACKFILLING FOR BUILDINGS.

3.4 DISPOSITION OF MATERIAL

Title to material and equipment to be demolished, except Government salvage and historical items, is vested in the Contractor upon receipt of notice to proceed. The Government will not be responsible for the condition, loss or damage to such property after notice to proceed.

3.4.1 Salvageable Items and Material

Contractor shall salvage items and material to the maximum extent possible.
3.4.1.1 Material Salvaged for the Government

Material salvaged for the Government shall be stored in a place designated by the Contracting Officer. The following items are identified as items to be delivered to the Government: Street light fixtures and poles and Ballfield lighting fixtures.

3.4.1.2 Material Salvaged for the Contractor

Material salvaged for the Contractor shall be stored as approved by the Contracting Officer and shall be removed from Government property before completion of the contract. Material salvaged for the Contractor shall not be sold on the site.

3.4.1.3 Historical Items

Historical items shall be removed in a manner to prevent damage. The following historical items shall be delivered to the Government for disposition: Corner stones, contents of corner stones, and document boxes wherever located on the site.

3.4.2 Unsalvageable Material

Concrete, masonry, and other noncombustible material, except concrete permitted to remain in place, shall be disposed of as directed by the Contracting Officer. Combustible material shall be disposed of off the site.

3.5 CLEAN UP

Debris and rubbish shall be removed from basement and similar excavations. Debris shall be removed and transported in a manner that prevents spillage on streets or adjacent areas. Local regulations regarding hauling and disposal shall apply.

3.6 PAVEMENTS

Existing pavements designated for removal shall be saw cut and removed in accordance with the details shown on the drawings and to the limits and depths indicated on the drawings.

-- End Of Section --
SECTION 02230
CLEARING AND GRUBBING

PART 1 GENERAL

1.1 DEFINITIONS

1.1.1 Clearing

Clearing shall consist of the felling, trimming, and cutting of trees into sections and the satisfactory disposal of the trees and other vegetation designated for removal, including down timber, snags, brush, and rubbish occurring in the areas to be cleared.

1.1.2 Grubbing

Grubbing shall consist of the removal and disposal of stumps, roots larger than 75 mm in diameter, and matted roots from the designated grubbing areas.

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Materials Other Than Salable Timber; G, RE

Written permission to dispose of such products on private property shall be filed with the Contracting Officer.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION

3.1 CLEARING

Trees, stumps, roots, brush, and other vegetation in areas to be cleared shall be cut off flush with or below the original ground surface, except such trees and vegetation as may be indicated or directed to be left standing. Trees designated to be left standing within the cleared areas shall be trimmed of dead branches 40 mm or more in diameter and shall be trimmed of all branches the heights indicated or directed. Limbs and branches to be trimmed shall be neatly cut close to the bole of the tree or main branches. Cuts more than 40 mm in diameter shall be painted with an approved tree-wound paint. Trees and vegetation to be left standing shall be protected from damage incident to clearing, grubbing, and construction operations by the erection of barriers or by such other means as the circumstances require. Clearing shall also include the removal and disposal of structures that obstruct, encroach upon, or otherwise obstruct the work.
3.2 GRUBBING

Material to be grubbed, together with logs and other organic or metallic debris not suitable for foundation purposes, shall be removed to a depth of not less than 455 mm below the original surface level of the ground in areas indicated to be grubbed and in areas indicated as construction areas under this contract, such as areas for buildings, and areas to be paved. Depressions made by grubbing shall be filled with suitable material and compacted to make the surface conform with the original adjacent surface of the ground.

3.3 TREE REMOVAL

Where indicated or directed, trees and stumps that are designated as trees shall be removed from areas outside those areas designated for clearing and grubbing. This work shall include the felling of such trees and the removal of their stumps and roots as specified in paragraph GRUBBING. Trees shall be disposed of as specified in paragraph DISPOSAL OF MATERIALS.

3.4 DISPOSAL OF MATERIALS

Logs, stumps, roots, brush, rotten wood, and other refuse from the clearing and grubbing operations, shall be disposed of outside the limits of Government-controlled land at the Contractor's responsibility except when otherwise directed in writing. Such directive will state the conditions covering the disposal of such products and will also state the areas in which they may be placed.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 136 (1996a) Sieve Analysis of Fine and Coarse Aggregates

ASTM D 422 (1963; R 1998) Particle-Size Analysis of Soils

ASTM D 1140 (1997) Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve

ASTM D 1556 (1990; R1996) Density and Unit Weight of Soil in Place by the Sand-Cone Method.

ASTM D 1557 (1998) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu. m.))

ASTM D 2167 (1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D 2487 (1998) Classification of Soils for Engineering Purposes (Unified Soil Classification System)

ASTM D 2922 (1996) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

ASTM D 3017 (1988; R 1996el) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

1.2 DEFINITIONS

1.2.1 Satisfactory Materials

Satisfactory materials shall comprise any materials classified by ASTM D 2487 as GW, GP, GM, GP-GM, GW-GM, GC, GP-GC, GM-GC, SW, SP, SM, SC,SW-SC, CL, ML,. Satisfactory materials for grading shall be comprised of stones
less than 150 mm, except for fill material for pavements which shall be comprised of stones less than 75 mm in any dimension.

1.2.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include man-made fills; trash; refuse; backfills from previous construction; and material classified as satisfactory which contains root and other organic matter or frozen material. The Contracting Officer shall be notified of any contaminated materials.

1.2.3 Cohesionless and Cohesive Materials

Cohesionless materials include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM will be identified as cohesionless only when the fines are nonplastic. Testing required for classifying materials shall be in accordance with ASTM D 4318, ASTM C 136, ASTM D 422, and ASTM D 1140.

1.2.4 Degree of Compaction

Degree of compaction required is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557 abbreviated as a percent of laboratory maximum density.

1.2.5 Topsoil

Material suitable for topsoils obtained from areas indicated on the drawings is defined as ASTM D5268.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Earthwork; G, RE

Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.

Procedure and location for disposal of unused satisfactory material. Blasting plan when blasting is permitted. Proposed source of borrow material.

SD-06 Test Reports

Testing; G, RE
Within 24 hours of conclusion of physical tests, 6 copies of test results, including calibration curves and results of calibration tests.

SD-07 Certificates
Testing; G, RE

Qualifications of the commercial testing laboratory or Contractor's testing facilities.

1.4 SUBSURFACE DATA

Subsurface soil boring logs are shown on the drawings. The subsoil investigation report and samples of materials taken from subsurface investigations may be examined at the Corps of Engineers Resident Office. These data represent the best subsurface information available; however, variations may exist in the subsurface between boring locations.

1.5 CLASSIFICATION OF EXCAVATION

No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation.

1.6 BLASTING

Blasting will not be permitted.

1.7 UTILIZATION OF EXCAVATED MATERIALS

Unsatisfactory materials removed from excavations shall be disposed of in an authorized disposal area outside the limits of Government Property. Satisfactory material removed from excavations shall be used, insofar as practicable, in the construction of fills, embankments, subgrades, shoulders, bedding (as backfill), and for similar purposes. No satisfactory excavated material shall be wasted without specific written authorization. Satisfactory material authorized to be wasted shall be disposed of in designated areas approved for surplus material storage or designated waste areas as directed. Newly designated waste areas on Government-controlled land shall be cleared and grubbed before disposal of waste material thereon. Coarse rock from excavations shall be stockpiled and used for constructing slopes or embankments adjacent to streams, or sides and bottoms of channels and for protecting against erosion. No excavated material shall be disposed of to obstruct the flow of any stream, endanger a partly finished structure, impair the efficiency or appearance of any structure, or be detrimental to the completed work in any way.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION

3.1 STRIPPING OF TOPSOIL

Where indicated or directed, topsoil shall be stripped to a depth of 100 millimeters. Topsoil shall be spread on areas already graded and prepared for topsoil, or transported and deposited in stockpiles convenient to areas that are to receive application of the topsoil later, or at locations
indicated or specified. Topsoil shall be kept separate from other excavated materials, brush, litter, objectionable weeds, roots, stones larger than 50 mm in diameter, and other materials that would interfere with planting and maintenance operations. Any surplus of topsoil from excavations and grading shall be stockpiled in locations indicated. Topsoil required in excess of that obtained from the site shall be imported from off-site sources obtained by the Contractor.

3.2 GENERAL EXCAVATION

The Contractor shall perform excavation of every type of material encountered within the limits of the project to the lines, grades, and elevations indicated and as specified. Grading shall be in conformity with the typical sections shown and the tolerances specified in paragraph FINISHING. Satisfactory excavated materials shall be transported to and placed in fill or embankment within the limits of the work. Unsatisfactory materials encountered within the limits of the work shall be excavated below grade and replaced with satisfactory materials as directed. Such excavated material and the satisfactory material ordered as replacement shall be included in excavation. Surplus satisfactory excavated material not required for fill or embankment and unsatisfactory excavated material shall be disposed of off site. During construction, excavation and fill shall be performed in a manner and sequence that will provide proper drainage at all times. Material required for fill or embankment in excess of that produced by excavation within the grading limits shall be excavated from the borrow areas indicated or from other approved areas selected by the Contractor as specified.

3.2.1 Ditches, Gutters, and Channel Changes

Excavation of ditches, gutters, and channel changes shall be accomplished by cutting accurately to the cross sections, grades, and elevations shown. Ditches and gutters shall not be excavated below grades shown. Excessive open ditch or gutter excavation shall be backfilled with satisfactory, thoroughly compacted, material or with suitable stone or cobble to grades shown. Material excavated shall be disposed of as shown or as directed, except that in no case shall material be deposited less than 1 meter from the edge of a ditch.

The Contractor shall maintain excavations free from detrimental quantities of leaves, brush, sticks, trash, and other debris until final acceptance of the work.

3.2.2 Drainage Structures

Excavations shall be made to the lines, grades, and elevations shown, or as directed. Trenches and foundation pits shall be of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations as shown. Rock or other hard foundation material shall be cleaned of loose debris and cut to a firm, level, stepped, or serrated surface. Loose disintegrated rock and thin strata shall be removed. When concrete or masonry is to be placed in an excavated area, the bottom of the excavation shall not be disturbed. Excavation to the final grade level shall not be made until just before the concrete or masonry is to be placed.

3.3 SELECTION OF BORROW MATERIAL
Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from approved sources, either private or within the limits of the project site, selected by the Contractor. The Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.

3.4 OPENING AND DRAINAGE OF EXCAVATION AND BORROW PITS

Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.5 BACKFILL

Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure. Ground surface on which backfill is to be placed shall be prepared as specified in paragraph PREPARATION OF GROUND SURFACE FOR EMBANKMENTS. Compaction requirements for backfill materials shall also conform to the applicable portions of paragraphs PREPARATION OF GROUND SURFACE FOR EMBANKMENTS, EMBANKMENTS, and SUBGRADE PREPARATION, and Section 02630 STORM-DRAINAGE SYSTEM; and Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.6 PREPARATION OF GROUND SURFACE FOR EMBANKMENTS

3.6.1 General Requirements

Ground surface on which fill is to be placed shall be stripped of live, dead, or decayed vegetation, rubbish, debris, and other unsatisfactory material; plowed, disked, or otherwise broken up to a depth of 200 mm; pulverized; moistened or aerated as necessary; thoroughly mixed; and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. The prepared ground surface shall be scarified and moistened or aerated as required just prior to placement of embankment materials to assure adequate bond between embankment material and the prepared ground surface.
3.6.2 Frozen Material

Embarkment shall not be placed on a foundation which contains frozen material, or which has been subjected to freeze-thaw action. This prohibition encompasses all foundation types, including the natural ground, all prepared subgrades (whether in an excavation or on an embankment) and all layers of previously placed and compacted earth fill which become the foundations for successive layers of earth fill. All material that freezes or has been subjected to freeze-thaw action during the construction work, or during periods of temporary shutdowns, such as, but not limited to, nights, holidays, weekends, winter shutdowns, or earthwork operations, shall be removed to a depth that is acceptable to the Contracting Officer and replaced with new material. Alternatively, the material will be thawed, dried, reworked, and recompressed to the specified criteria before additional material is placed. The Contracting Officer will determine when placement of fill shall cease due to cold weather. The Contracting Officer may elect to use average daily air temperatures, and/or physical observation of the soils for his determination. Embankment material shall not contain frozen clumps of soil, snow, or ice.

3.7 EMBANKMENTS

3.7.1 Earth Embankments

Earth embankments shall be constructed from satisfactory materials free of organic or frozen material and rocks with any dimension greater than 75 mm. The material shall be placed in successive horizontal layers of loose material not more than 200 millimeters in depth. Each layer shall be spread uniformly on a soil surface that has been moistened or aerated as necessary, and scarified or otherwise broken up so that the fill will bond with the surface on which it is placed. After spreading, each layer shall be plowed, disked, or otherwise broken up; moistened or aerated as necessary; thoroughly mixed; and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Compaction requirements for the upper portion of earth embankments forming subgrade for pavements shall be identical with those requirements specified in paragraph SUBGRADE PREPARATION. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.8 SUBGRADE PREPARATION

3.8.1 Construction

Subgrade shall be shaped to line, grade, and cross section, and compacted as specified. This operation shall include plowing, disk ing, and any moistening or aerating required to obtain specified compaction. Soft or otherwise unsatisfactory material shall be removed and replaced with satisfactory excavated material or other approved material as directed. Rock encountered in the cut section shall be excavated to a depth of 150 mm below finished grade for the subgrade. Low areas resulting from removal of unsatisfactory material or excavation of rock shall be brought up to required grade with satisfactory materials, and the entire subgrade shall be shaped to line, grade, and cross section and compacted as specified. After rolling, the surface of the subgrade for roadways shall not show deviations greater than 13 millimeter when tested with a 3 meter straightedge applied both parallel and at right angles to the centerline of the area.
3.8.2 Compaction

Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Except for paved areas and railroads, each layer of the embankment shall be compacted to at least 90 percent of laboratory maximum density.

3.8.2.1 Subgrade for Pavements

<table>
<thead>
<tr>
<th>Depth Below Pavement (or Shoulder)</th>
<th>Percentage of Laboratory Maximum Density Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill</td>
<td>Cut</td>
</tr>
<tr>
<td>mm</td>
<td>mm <ENG>Inches</ENG> mm <ENG>Inches</ENG></td>
</tr>
<tr>
<td>From To</td>
<td>Cohesive Materials Cohesionless Materials Cohesive Materials Cohesionless Materials</td>
</tr>
</tbody>
</table>

Substrate for pavements shall be compacted to at least 95 percent laboratory maximum density for the depth below the surface of the pavement shown. When more than one soil classification is present in the subgrade, the top 150 mm of subgrade shall be scarified, windrowed, thoroughly blended, reshaped, and compacted.

3.9 FINISHING

The surface of excavations, embankments, and subgrades shall be finished to a smooth and compact surface in accordance with the lines, grades, and cross sections or elevations shown. The degree of finish for graded areas shall be within 30 mm of the grades and elevations indicated except that the degree of finish for subgrades shall be specified in paragraph SUBGRADE PREPARATION. Gutters and ditches shall be finished in a manner that will result in effective drainage. The surface of areas to be turfed shall be finished to a smoothness suitable for the application of turfing materials.

3.10 PLACING TOPSOIL

On areas to receive topsoil, the compacted subgrade soil shall be scarified to a 50 mm depth for bonding of topsoil with subsoil. Topsoil then shall be spread evenly to a thickness of 100 mm and graded to the elevations and slopes shown. Topsoil shall not be spread when frozen or excessively wet or dry. Material required for topsoil in excess of that produced by excavation within the grading limits shall be obtained from offsite areas.
3.11 TESTING

Testing shall be performed by an approved commercial testing laboratory or by the Contractor subject to approval. If the Contractor elects to establish testing facilities, no work requiring testing will be permitted until the Contractor's facilities have been inspected and approved by the Contracting Officer. Field in-place density shall be determined in accordance with ASTM D 1556 and ASTM D 2922. When ASTM D 2922 is used, the calibration curves shall be checked and adjusted using the sand cone method as described in ASTM D 1556 or balloon method as described in ASTM D 2167. ASTM D 2922 results in a wet unit weight of soil and when using this method ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017; the calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed by the Contracting Officer. When test results indicate, as determined by the Contracting Officer, that compaction is not as specified, the material shall be removed, replaced and recompacted to meet specification requirements. Tests on recompacted areas shall be performed to determine conformance with specification requirements. Inspections and test results shall be certified by a registered professional civil engineer. These certifications shall state that the tests and observations were performed by or under the direct supervision of the engineer and that the results are representative of the materials or conditions being certified by the tests. The following number of tests, if performed at the appropriate time, will be the minimum acceptable for each type operation.

3.11.1 Fill and Backfill Material Gradation

One test per 500 cubic meters stockpiled or in-place source material. Gradation of fill and backfill material shall be determined in accordance with ASTM D 422.

3.11.2 In-Place Densities

a. One test per 250 square meters, or fraction thereof, of each lift of fill or backfill areas compacted by other than hand-operated machines.

b. One test per 250 square meters, or fraction thereof, of each lift of fill or backfill areas compacted by hand-operated machines.

c. One test per 50 linear meters, or fraction thereof, of each lift of embankment or backfill for roads.

3.11.3 Check Tests on In-Place Densities

If ASTM D 2922 is used, in-place densities shall be checked by ASTM D or ASTM D 1556 or ASTM 2167 one out of every 10 tests by ASTM-D 2922.

3.11.4 Moisture Contents

In the stockpile, excavation, or borrow areas, a minimum of two tests per day per type of material or source of material being placed during stable
weather conditions shall be performed. During unstable weather, tests shall be made as dictated by local conditions and approved by the Contracting Officer.

3.11.5 Optimum Moisture and Laboratory Maximum Density

Tests shall be made for each type material or source of material including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test per 500 cubic meters of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density.

3.11.6 Tolerance Tests for Subgrades

Continuous checks on the degree of finish specified in paragraph SUBGRADE PREPARATION shall be made during construction of the subgrades.

3.12 SUBGRADE AND EMBANKMENT PROTECTION

During construction, embankments and excavations shall be kept shaped and drained. Ditches and drains along subgrade shall be maintained to drain effectively at all times. The finished subgrade shall not be disturbed by traffic or other operation and shall be protected and maintained by the Contractor in a satisfactory condition until ballast, subbase, base, or pavement is placed. Density testing shall be performed immediately prior to placing aggregate base material. The storage or stockpiling of materials on the finished subgrade will not be permitted. No subbase, base course, ballast, or pavement shall be laid until the subgrade has been checked and approved, and in no case shall subbase, base, surfacing, pavement, or ballast be placed on a dry, muddy, spongy, or frozen subgrade.

-- End Of Section --
SECTION 02315
EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 1556 (1990; R 1996) Density and Unit Weight of Soil in Place by the Sand-Cone Method

ASTM D 1557 (1991) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.))

ASTM D 2167 (1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D 2216 (1992) Laboratory Determination of Water (Moisture) Content of Soil, and Rock

ASTM D 2487 (1993) Classification of Soils for Engineering Purposes (Unified Soil Classification System)

ASTM D 2922 (1996) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

ASTM D 2937 (1994) Density of Soil in Place by the Drive-Cylinder Method

ASTM D 3017 (1988; R 1993) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

ASTM D 4318 (1995a) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

1.2 DEGREE OF COMPACTION

Degree of compaction is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557, abbreviated as percent laboratory maximum density.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that
will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-06 Test Reports

Testing; G, RE

Copies of all laboratory and field test reports within 24 hours of the completion of the test.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Satisfactory Materials

2.1.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include man-made fills, trash, refuse, or backfills from previous construction. Unsatisfactory material also includes material classified as satisfactory which contains root and other organic matter, frozen material, and stones larger than 75 mm. The Contracting Officer shall be notified of any contaminated materials.

2.1.3 Cohesionless and Cohesive Materials

Cohesionless materials include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM, GP-GM, GW-GM, SW-SM, SP-SM, and SM shall be identified as cohesionless only when the fines are nonplastic.

2.1.4 Expansive Soils

Expansive soils are defined as soils that have a plasticity index equal to or greater than 15 when tested in accordance with ASTM D 4318.

2.1.5 Non-Expansive Fill Material

Non-expansive fill shall be satisfactory material having a plasticity index of 5 to 12 when tested in accordance with ASTM 4318 Wet Preparation Method.

2.2 CAPILLARY WATER BARRIER

Capillary Water Barrier shall consist of clean, crushed, nonporous rock, crushed gravel, or uncrushed gravel. The maximum particle size shall be 37.5 mm and no more than 2 percent by weight shall pass the 4.75 mm size sieve.

PART 3 EXECUTION
3.1 CLEARING AND GRUBBING

Clearing and grubbing is specified in Section 02230 CLEARING AND GRUBBING.

3.2 TOPSOIL

Topsoil shall be stripped to a depth of 100 millimeters below existing grade within the designated excavations and grading lines and deposited in storage piles for later use. Excess topsoil shall be disposed as specified for excess excavated material.

3.3 EXCAVATION

Excavation shall conform to the dimensions and elevations indicated for each building, structure, and footing except as specified, and shall include trenching for utility and foundation drainage systems to a point 1.5 m beyond the building line of each building and structure, and all work incidental thereof. Excavation shall extend a sufficient distance from walls and footings to allow for placing and removal of forms. Excavations below indicated depths will not be permitted except to remove unsatisfactory material. Unsatisfactory material encountered below the grades shown shall be removed as directed Satisfactory material removed below the depths indicated, without specific direction of the Contracting Officer, shall be replaced, at no additional cost to the Government, with satisfactory materials to the indicated excavation grade; except that concrete footings shall be increased in thickness to the bottom of the overdepth excavations and over-break in rock excavation. Satisfactory material shall be placed and compacted as specified in paragraph FILLING AND BACKFILLING. Determination of elevations and measurements of approved overdepth excavation of unsatisfactory material below grades indicated shall be done under the direction of the Contracting Officer.

3.4 DRAINAGE AND DEWATERING

3.4.1 Drainage

Surface water shall be directed away from excavation and construction sites to prevent erosion and undermining of foundations. Diversion ditches, dikes and grading shall be provided and maintained as necessary during construction. Excavated slopes and backfill surfaces shall be protected to prevent erosion and sloughing. Excavation shall be performed so that the site, the area immediately surrounding the site, and the area affecting operations at the site shall be continually and effectively drained.

3.4.2 Dewatering

Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 900 mm of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 2 meters below the working level.
3.5 SHORING

Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving.

3.6 CLASSIFICATION OF EXCAVATION

Excavation will be unclassified regardless of the nature of material encountered.

3.7 BLASTING

Blasting will not be permitted.

3.8 UTILITY AND DRAIN TRENCHES

Trenches for underground utilities systems and drain lines shall be excavated to the required alignments and depths. The bottoms of trenches shall be graded to secure the required slope and shall be tamped if necessary to provide a firm pipe bed. Recesses shall be excavated to accommodate bells and joints so that pipe will be uniformly supported for the entire length. Rock, where encountered, shall be excavated to a depth of at least 150 mm below the bottom of the pipe, and the overdepth shall be backfilled with satisfactory material placed and compacted in conformance with paragraph FILLING AND BACKFILLING.

3.9 BORROW

Where satisfactory materials are not available in sufficient quantity from required excavations, approved materials shall be obtained as specified in Section 02300 EARTHWORK.

3.10 EXCAVATED MATERIALS

Satisfactory excavated material required for fill or backfill shall be placed in the proper section of the permanent work required under this section or shall be separately stockpiled if it cannot be readily placed. Satisfactory material in excess of that required for the permanent work and all unsatisfactory material shall be disposed of as specified in Section 02300 EARTHWORK.

3.11 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE

Excavation to final grade shall not be made until just before concrete is to be placed. Only excavation methods that will leave the foundation rock in a solid and unshattered condition shall be used. Approximately level surfaces shall be roughened, and sloped surfaces shall be cut as indicated into rough steps or benches to provide a satisfactory bond. Shales shall be protected from slaking and all surfaces shall be protected from erosion resulting from ponding or flow of water.

3.12 SUBGRADE PREPARATION
Unsatisfactory material in surfaces to receive fill or in excavated areas shall be removed and replaced with satisfactory materials as directed by the Contracting Officer. The surface shall be scarified to a depth of 150 mm before the fill is started. Sloped surfaces steeper than 1 vertical to 4 horizontal shall be plowed, stepped, benched, or broken up so that the fill material will bond with the existing material. When subgrades are less than the specified density, the ground surface shall be broken up to a minimum depth of 150 mm, pulverized, and compacted to the specified density. When the subgrade is part fill and part excavation or natural ground, the excavated or natural ground portion shall be scarified to a depth of 300 mm and compacted as specified for the adjacent fill. Material shall not be placed on surfaces that are dry, muddy, frozen, or contain frost. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment well suited to the soil being compacted. Material shall be moistened or aerated as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Density testing shall be performed immediately prior to placing capillary water barrier material. Minimum subgrade density shall be as specified in paragraph FILLING AND BACKFILLING.

3.13 FILLING AND BACKFILLING

Satisfactory materials shall be used in bringing fills and backfills to the lines and grades indicated and for replacing unsatisfactory materials. Satisfactory materials shall be placed in horizontal layers not exceeding 200 mm in loose thickness, or 150 mm when hand-operated compactors are used. After placing, each layer shall be plowed, disked, or otherwise broken up, moistened or aerated as necessary, thoroughly mixed and compacted as specified. Backfilling shall not begin until construction below finish grade has been approved, underground utilities systems have been inspected, tested and approved, forms removed, and the excavation cleaned of trash and debris. Backfill shall be brought to indicated finish grade. Backfill shall not be placed in wet or frozen areas. Where pipe is coated or wrapped for protection against corrosion, the backfill material up to an elevation 600 mm above sewer lines and 300 mm above other utility lines shall be free from stones larger than 25 mm in any dimension. Heavy equipment for spreading and compacting backfill shall not be operated closer to foundation or retaining walls than a distance equal to the height of backfill above the top of footing; the area remaining shall be compacted in layers not more than 100 mm in compacted thickness with power-driven hand tampers suitable for the material being compacted. Backfill shall be placed carefully around pipes or tanks to avoid damage to coatings, wrappings, or tanks. Backfill shall not be placed against foundation walls prior to 7 days after completion of the walls. As far as practicable, backfill shall be brought up evenly on each side of the wall and sloped to drain away from the wall. Each layer of fill and backfill shall be compacted to not less than the percentage of maximum density specified below:

<table>
<thead>
<tr>
<th>Percent Laboratory maximum density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesive material</td>
</tr>
</tbody>
</table>

Fill, embankment, and backfill
Under structures, building slabs, steps, paved areas, around footings, and in trenches
90 95

Under sidewalks and grassed areas
85 90

Non-expansive materials
95

Subgrade

Under building slabs, steps, and paved areas, top 300 mm
90 95

Under sidewalks, top 150 mm
90 90

Approved compacted subgrades that are disturbed by the Contractor's operations or adverse weather shall be scarified and compacted as specified herein before the required density prior to further construction thereon. Recompaction over underground utilities and heating lines shall be by hand tamping.

3.14 TESTING

Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. Testing shall be performed by an approved commercial testing laboratory or may be performed by the Contractor subject to approval. Field in-place density shall be determined in accordance with ASTM D 1556, ASTM D 2167, or ASTM D 2922. When ASTM D 2922 is used, the calibration curves shall be checked and adjusted if necessary by the procedure described in ASTM D 2922, paragraph ADJUSTING CALIBRATION CURVE. ASTM D 2922 results in a wet unit weight of soil and when using this method ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed by the Contracting Officer. ASTM D 2937 shall be used only for soft, fine-grained, cohesive soils. The following number of tests, if performed at the appropriate time, shall be the minimum acceptable for each type operation.

3.14.1 In-Place Densities

In-place density and moisture content test results shall be included with the Contractor's daily construction quality control reports.

3.14.1.1 In-Place Density of Subgrades

One test per 250 square meters or fraction thereof.

3.14.1.2 In-Place Density of Fills and Backfills

One test per 250 square meters or fraction thereof of each lift for fill or backfill areas compacted by other than hand or hand-operated machines. The density for each lift of fill or backfill materials for trenches, pits,
Section 3.14.2 Moisture Content

In the stockpile, excavation or borrow areas, a minimum of two tests per day per type of material or source of materials being placed is required during stable weather conditions. During unstable weather, tests shall be made as dictated by local conditions and approved moisture content shall be tested in accordance with ASTM D 2216.

Section 3.14.3 Optimum Moisture and Laboratory Maximum Density

Tests shall be made for each type material or source of material, including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test per 500 cubic meters of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density will be made.

Section 3.15 Capillary Water Barrier

Capillary water barrier under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor.

Section 3.16 Grading

Areas within 1.5 m outside of each building and structure line shall be constructed true-to-grade, shaped to drain, and shall be maintained free of trash and debris until final inspection has been completed and the work has been accepted.

Section 3.17 Spreading Topsoil

Areas outside the building lines from which topsoil has been removed shall be topsoiled. The surface shall be free of materials that would hinder planting or maintenance operations. The subgrade shall be pulverized to a depth of 50 mm by diskng or plowing for the bonding of topsoil with the subsoil. Topsoil shall then be uniformly spread, graded, and compacted to 100 mm thickness to the elevations and slopes shown, and left free of surface irregularities. Topsoil shall be compacted by one pass of a cultipacker, roller, or other approved equipment weighing 1.46 kN/m to 2.34 kN/m of roller. Topsoil shall not be placed when the subgrade is frozen, excessively wet, extremely dry, or in a condition otherwise detrimental to seeding, planting, or proper grading.
3.18 PROTECTION

Settlement or washing that occurs in graded, topsoiled, or backfilled areas prior to acceptance of the work, shall be repaired and grades reestablished to the required elevations and slopes.

-- End Of Section --
SECTION 02316
EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 1556 (1990; R 1996) Density and Unit Weight of Soil in Place by the Sand-Cone Method

ASTM D 1557 (1998) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu. m.))

ASTM D 2167 (1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D 2487 (1998) Classification of Soils for Engineering Purposes (Unified Soil Classification System)

ASTM D 2922 (1996) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

ASTM D 3017 (1988; R1996el) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

ASTM D 6103 Standard Test Method for Flow Consistency of Controlled Low Strength Material

ASTM D 6023 Standard Test Method for Unit Weight, Yield, Cement Content, and Air Content (Gravimetric) of Controlled Low Strength Material

ASTM D 4832 Standard Test Method for Preparation and Testing of Controlled Low Strength Material

1.2 MEASUREMENT AND PAYMENT

Rock encountered in utility trenching outside the limits of the building site shall be paid for as follows:

1.2.1 Rock Excavation

Rock excavation shall be measured and paid for by the number of cubic meters of acceptably excavated rock material. The material shall be measured
in place, but volume shall be based on a maximum 750 mm width for pipes 300 mm in diameter or less, and a maximum width of 400 mm greater than the outside diameter of the pipe for pipes over 300 mm in diameter. The measurement shall include all authorized overdepth rock excavation as determined by the Contracting Officer. For manholes and other appurtenances, volumes of rock excavation shall be computed on the basis of 300 mm outside of the wall lines of the structures. Payment for rock excavation will be made in addition to the price bid for the trench excavation, and will include all necessary drilling and blasting and all incidentals necessary to excavate and dispose of the rock. Backfill replacing rock excavation will not be paid for separately, but will be included in the unit price for rock excavation.

1.3 DEGREE OF COMPACTION

Degree of compaction shall be expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 MFR Submittal for Marking Tapes
SD-06 Test Reports
 Field Density Tests; G, RE
 Testing of Backfill Materials; G, RE
 Mix Design for Controlled Low-Strength Material; G, RE

Copies of all laboratory and field test reports within 24 hours of the completion of the test.

1.5 CLASSIFICATION OF EXCAVATION

No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Satisfactory Materials

Satisfactory materials shall comprise any materials classified by ASTM D 2487 as GW, GP, GM, GP-GM, GW-GM, GC, GP-GC, GM-GC, SW, SP, SM, SW-SC,CL, or ML.

2.1.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include man-made fills, trash, refuse, or backfills from previous construction.
Unsatisfactory material also includes material classified as satisfactory which contains root and other organic matter, frozen material, and stones larger than 75 mm. The Contracting Officer shall be notified of any contaminated materials.

2.1.3 Cohesionless and Cohesive Materials

Cohesionless materials shall include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials shall include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM shall be identified as cohesionless only when the fines are nonplastic.

2.1.4 Rock

Rock shall consist of boulders measuring 1/2 cubic meter or more and materials that cannot be removed without systematic drilling and blasting such as rock material in ledges, bedded deposits, unstratified masses and conglomerate deposits, and below ground concrete or masonry structures, exceeding 1/2 cubic meter in volume.

2.1.5 Unstable Material

Unstable material shall consist of materials too wet to properly support the utility pipe, conduit, or appurtenant structure.

2.1.6 Select Granular Material

Select granular material shall consist of well-graded sand, gravel, crushed gravel, crushed stone or crushed slag composed of hard, tough and durable particles, and shall contain not more than 10 percent by weight of material passing a 0.075 mm mesh sieve and no less than 95 percent by weight passing the 25 mm sieve. The maximum allowable aggregate size shall be 75 millimeters, or the maximum size recommended by the pipe manufacturer, whichever is smaller.

2.1.7 Initial Backfill Material

Initial backfill shall consist of select granular material or satisfactory materials free from rocks 35 millimeters or larger in any dimension or free from rocks of such size as recommended by the pipe manufacturer, whichever is smaller. When the pipe is coated or wrapped for corrosion protection, the initial backfill material shall be free of stones larger than 35 millimeters in any dimension or as recommended by the pipe manufacturer, whichever is smaller.

2.1.8 Controlled Low-Strength Material (CLSM)

Controlled Low-Strength Material (CLSM).

Mix Design. Use the sample mix proportions given in the table below as a guide to proportioning CLSM. Adjust the mix design to account for differences in specific gravities and bleeding rate, and to comply with the testing requirements. Use the absolute volume method to design the mix.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Kilograms per Cubic Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample CLSM Mix Design</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 02316 Page 3
Cement 12-30
Fly Ash 90-150
Sand (saturated 1700-1800
 surface-dry condition)
Water 120-300

Submit for approval the proposed mix design with trial batch testing data
before use. Include the weight, specific gravity, material source and other
material requirements for each ingredient, and the results of the
flowability, unit weight, and strength tests from the trial batch.
Previously used and successful mix designs may be submitted without
retesting if the material sources have not changed.

If bleed water does not appear on the surface immediately after the CLSM
levels off, adjust the mix design in small increments. Continue this process
incrementally until the mixture bleeds freely.

2.2 PLASTIC MARKING TAPE

Plastic marking tape shall be acid and alkali-resistant polyethylene film,
152 mm wide with minimum thickness of 0.102 mm. Tape shall have a minimum
strength of 12.1 MPa lengthwise and 10.3 MPa crosswise. The tape shall be
manufactured with integral wires, foil backing or other means to enable
detection by a metal detector when the tape is buried up to 1 meter deep.
The tape shall be of a type specifically manufactured for marking and
locating underground utilities. The metallic core of the tape shall be
encased in a protective jacket or provided with other means to protect it
from corrosion. Tape color shall be as specified in TABLE 1 and shall bear
a continuous printed inscription describing the specific utility.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Electric</td>
</tr>
<tr>
<td>Yellow</td>
<td>Gas, Oil, Dangerous Materials</td>
</tr>
<tr>
<td>Orange</td>
<td>Telephone, Telegraph, Television,</td>
</tr>
<tr>
<td></td>
<td>Police, and Fire Communications</td>
</tr>
<tr>
<td>Blue</td>
<td>Water Systems</td>
</tr>
<tr>
<td>Green</td>
<td>Sewer Systems</td>
</tr>
</tbody>
</table>

PART 3 EXECUTION

3.1 EXCAVATION

Excavation shall be performed to the lines and grades indicated. Rock
excavation shall include removal and disposition of material defined as rock
in paragraph MATERIALS. Earth excavation shall include removal and disposal
of material not classified as rock excavation. During excavation, material
satisfactory for backfilling shall be stockpiled in an orderly manner at a
distance from the banks of the trench equal to 1/2 the depth of the
excavation, but in no instance closer than 600 mm. Excavated material not
required or not satisfactory for backfill shall be removed from the site or
shall be disposed of by the Contractor. Grading shall be done as may be
necessary to prevent surface water from flowing into the excavation, and any
water accumulating shall be removed to maintain the stability of the bottom
and sides of the excavation. Unauthorized overexcavation shall be
backfilled in accordance with paragraph BACKFILLING AND COMPACTION at no additional cost to the Government.

3.1.1 Trench Excavation Requirements

The trench shall be excavated as recommended by the manufacturer of the pipe to be installed. Trench walls below the top of the pipe shall be sloped, or made vertical, and of such width as recommended in the manufacturer's installation manual. Where no manufacturer's installation manual is available, trench walls shall be made vertical. Trench walls more than 2 meters high shall be shored, cut back to a stable slope, or provided with equivalent means of protection for employees who may be exposed to moving ground or cave in. Vertical trench walls more than 2 meters high shall be shored. Trench walls which are cut back shall be excavated to at least the angle of repose of the soil. Special attention shall be given to slopes which may be adversely affected by weather or moisture content. The trench width below the top of pipe shall not exceed 600 mm plus pipe outside diameter (O.D.) for pipes of less than 600 mm inside diameter and shall not exceed 900 mm plus pipe outside diameter for sizes larger than 600 mm inside diameter. Where recommended trench widths are exceeded, redesign, stronger pipe, or special installation procedures shall be utilized by the Contractor. The cost of redesign, stronger pipe, or special installation procedures shall be borne by the Contractor without any additional cost to the Government.

3.1.1.1 Bottom Preparation

The bottoms of trenches shall be accurately graded to provide uniform bearing and support for the bottom quadrant of each section of the pipe. Bell holes shall be excavated to the necessary size at each joint or coupling to eliminate point bearing. Stones of 75 millimeters or greater in any dimension, or as recommended by the pipe manufacturer, whichever is smaller, shall be removed to avoid point bearing.

3.1.1.2 Removal of Unyielding Material

Where overdepth is not indicated and unyielding material is encountered in the bottom of the trench, such material shall be removed 100 millimeters below the required grade and replaced with suitable materials as provided in paragraph BACKFILLING AND COMPACTION.

3.1.1.3 Removal of Unstable Material

Where unstable material is encountered in the bottom of the trench, such material shall be removed to the depth directed and replaced to the proper grade with select granular material as provided in paragraph BACKFILLING AND COMPACTION. When removal of unstable material is required due to the Contractor's fault or neglect in performing the work, the resulting material shall be excavated and replaced by the Contractor without additional cost to the Government.

3.1.1.4 Excavation for Appurtenances

Excavation for manholes, catch-basins, inlets, or similar structures shall be of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations as shown. Rock shall be cleaned of loose debris and cut to a firm surface either level,
stepped, or serrated, as shown or as directed. Loose disintegrated rock and thin strata shall be removed. Removal of unstable material shall be as specified above. When concrete or masonry is to be placed in an excavated area, special care shall be taken not to disturb the bottom of the excavation. Excavation to the final grade level shall not be made until just before the concrete or masonry is to be placed.

3.1.1.5 Jacking, Boring, and Tunneling

Unless otherwise indicated, excavation shall be by open cut except that sections of a trench may be jacked, bored, or tunneled if, in the opinion of the Contracting Officer, the pipe, cable, or duct can be safely and properly installed and backfill can be properly compacted in such sections.

3.1.2 Stockpiles

Stockpiles of satisfactory materials shall be placed and graded as specified. Stockpiles shall be kept in a neat and well drained condition, giving due consideration to drainage at all times. The ground surface at stockpile locations shall be cleared, grubbed, and sealed by rubber-tired equipment. excavated satisfactory and unsatisfactory materials shall be separately stockpiled. Stockpiles of satisfactory materials shall be protected from contamination which may destroy the quality and fitness of the stockpiled material. If the Contractor fails to protect the stockpiles, and any material becomes unsatisfactory, such material shall be removed and replaced with satisfactory material from approved sources at no additional cost to the Government. Locations of stockpiles of satisfactory materials shall be subject to prior approval of the Contracting Officer.

3.2 BACKFILLING AND COMPACTION

Backfill material shall consist of satisfactory material, select granular material, or initial backfill material as required. Backfill shall be placed in layers not exceeding 150 mm loose thickness for compaction by hand operated machine compactors, and 200 mm loose thickness for other than hand operated machines, unless otherwise specified. Each layer shall be compacted to at least 95 percent maximum density for cohesionless soils and 90 percent maximum density for cohesive soils, unless otherwise specified.

3.2.1 Trench Backfill

Trenches shall be backfilled to the grade shown. The trench shall be backfilled to 0.5 meters above the top of pipe prior to performing the required pressure tests. The joints and couplings shall be left uncovered during the pressure test.

3.2.1.1 Replacement of Unyielding Material

Uynyielding material removed from the bottom of the trench shall be replaced with select granular material or initial backfill material.

3.2.1.2 Replacement of Unstable Material

Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm loose thickness.
3.2.1.3 Bedding and Initial Backfill

Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least 0.3 meters above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe.

3.2.1.4 Final Backfill

The remainder of the trench, except for special materials for roadways, railroads and airfields, shall be filled with satisfactory material. Backfill material shall be placed and compacted as follows:

a. Roadways, Railroads, and Airfields: Backfill shall be placed up to the elevation at which the requirements in Section 02300 EARTHWORK control. Water flooding or jetting methods of compaction will not be permitted.

b. Sidewalks, Turfed or Seeded Areas and Miscellaneous Areas: Backfill shall be deposited in layers of a maximum of 300 mm loose thickness, and compacted to 85 percent maximum density for cohesive soils and 90 percent maximum density for cohesionless soils. Compaction by water flooding or jetting will not be permitted. This requirement shall also apply to all other areas not specifically designated above.

3.2.2 Backfill for Appurtenances

After the manhole, catchbasin, inlet, or similar structure has been constructed and the concrete has been allowed to cure for 7 days, backfill shall be placed in such a manner that the structure will not be damaged by the shock of falling earth. The backfill material shall be deposited and compacted as specified for final backfill, and shall be brought up evenly on all sides of the structure to prevent eccentric loading and excessive stress.

3.3 SPECIAL REQUIREMENTS

Special requirements for both excavation and backfill relating to the specific utilities are as follows:

3.3.1 Gas Distribution

Trenches shall be excavated to a depth that will provide not less than 450 mm of cover in rock excavation and not less than 600 mm of cover in other excavation. Trenches shall be graded as specified for pipe-laying requirements in Section 02556 GAS DISTRIBUTION SYSTEM.

3.3.2 Water Lines

Trenches shall be of a depth to provide a minimum cover of 1.3 meters from the existing ground surface, or from the indicated finished grade, whichever is lower, to the top of the pipe.
3.3.3 Heat Distribution System

Initial backfill material shall be free of stones larger than 6.3 mm in any dimension.

3.3.4 Electrical Distribution System

Direct burial cable and conduit or duct line shall have a minimum cover of 600 mm from the finished grade, unless otherwise indicated. Special trenching requirements for direct-burial electrical cables and conduits are specified in Section 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND.

3.3.5 Plastic Marking Tape

Warning tapes shall be installed directly above the pipe, at a depth of 450 millimeters below finished grade unless otherwise shown.

3.3.6 Controlled Low-Strength Material (CLSM)

Discharge CLSM into the work after the completion of the required testing and acceptance of the installation. Bring up the fill material uniformly to the subgrade elevation. Placing of material over CLSM may commence as soon as the surface water is gone or as directed.

3.4 TESTING

Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government.

3.4.1 Testing Facilities

Tests shall be performed by an approved commercial testing laboratory or may be tested by facilities furnished by the Contractor. No work requiring testing will be permitted until the facilities have been inspected and approved by the Contracting Officer.

3.4.2 Testing of Backfill Materials

Classification of backfill materials shall be determined in accordance with ASTM D 2487 and the moisture-density relations of soils shall be determined in accordance with ASTM D 1557. A minimum of one soil classification and one moisture-density relation test shall be performed on each different type of material used for bedding and backfill.

3.4.3 Field Density Tests

Tests shall be performed in sufficient numbers to ensure that the specified density is being obtained. A minimum of one field density test per lift of backfill for every 30 meters of installation shall be performed. One moisture density relationship shall be determined for every 1500 cubic meters of material used. Field in-place density shall be determined in accordance with ASTM D 1556, ASTM D 2167 and ASTM D 2922. When ASTM D 2922 is used, the calibration curves shall be checked and adjusted using the sand cone method as described in paragraph Calibration of the ASTM publication. ASTM D 2922 results in a wet unit weight of soil and when using this method, ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall be checked.
along with density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gauges shall be made at the beginning of a job, on each different type of material encountered, at intervals as directed by the Contracting Officer. Copies of calibration curves, results of calibration tests, and field and laboratory density tests shall be furnished to the Contracting Officer. Trenches improperly compacted shall be reopened to the depth directed, then refilled and compacted to the density specified at no additional cost to the Government.

3.4.4 Testing of CLSM

Provide ample CLSM for field testing. Perform one of each test per day or 40 cubic yards, whichever is smaller. The testing methods are as follows:

a. Flow Test. Flow tests shall be conducted in accordance with ASTM D 6103. To be acceptable, the diameter of the CLSM spread must equal or exceed 200 mm.

b. Unit Weight. Unit weight tests shall be conducted in accordance with ASTM D 6023. A deviation of 5\% in measured unit weight from the approved mix design value will be cause for rejection of a CLSM batch.

c. Strength Test. Compressive strength tests shall be conducted in accordance with ASTM D 4832. Strength shall be measured at 28 days. The Contractor may test CLSM strength earlier than 28 days to confirm the material placed has reached the minimum required strength. Report all cylinder breaks. To be acceptable, the compressive strength must be more than 700kPa and less than 8000 kPa. If 28-day strengths exceed 8000kPa, adjust the mix design to reduce strength.

-- End Of Section --
TERMITICIDE TREATMENT MEASURES FOR SUBTERRANEAN TERMITE CONTROL

PART 1 GENERAL

1.1 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Termiticide Application Plan; G, RE

Termiticide application plan with proposed sequence of treatment work with dates and times. The termiteicide trade name, EPA registration number, chemical composition, formulation, concentration of original and diluted material, application rate of active ingredients, method of application, area/volume treated, amount applied; and the name and state license number of the state certified applicator shall be included.

Termiticides; G, RE

Manufacturer's label and Material Safety Data Sheet (MSDS) for termiteicides proposed for use.

Foundation Exterior; G, RE

Written verification that other site work will not disturb the treatment.

Utilities and Vents; G, RE

Written verification that utilities, vents have been located.

Verification of Measurement; G, RE

Written verification that the volume of termiteicide used meets the application rate.

Application Equipment

A listing of equipment to be used.

SD-04 Samples

Termiticides; G, RE

Termiticide samples obtained during application, upon request.

SD-06 Test Reports

Equipment Calibration and Tank Measurement; G, RE
Certification of calibration tests conducted on the equipment used in the termiticide application.

Soil Moisture; G, RE

Soil moisture test result.

SD-07 Certificates

Qualifications; G, RE

Qualifications and state license number of the termiticide applicator.

1.2 QUALIFICATIONS

The Contractor's principal business shall be pest control. The Contractor shall be licensed and the termiticide applicators certified in the state where the work is to be performed. Termiticide applicators shall also be certified in the U.S. Environmental Protection Agency (EPA) pesticide applicator category which includes structural pest control.

1.3 SAFETY REQUIREMENTS

The Contractor shall formulate, treat, and dispose of termiticides and their containers in accordance with label directions. Use the clothing and personal protective equipment specified on the labeling for use during all phases of the application.

1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery

Termiticide material shall be delivered to the site in the original unopened containers bearing legible labels indicating the EPA registration number and manufacturer's registered uses. All other materials to be used on site for the purpose of termite control shall be delivered in new or otherwise good condition as supplied by the manufacturer or formulator.

1.4.2 Storage

Materials shall be stored in designated areas and in accordance with manufacturer's labels. Termiticides and related materials shall be kept under lock and key when unattended.

1.4.3 Handling

Termiticides shall be handled in accordance with manufacturer's labels. Manufacturer's warnings and precautions shall be observed. Materials shall be handled preventing contamination by dirt, water, and organic material. Protect termiticides from sunlight as recommended by the manufacturer.

1.5 INSPECTION

Termiticides shall be inspected upon arrival at the job site for conformity to type and quality in accordance with paragraph TERMITICIDE. Each label
shall bear evidence of registration under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended. Other materials shall be inspected for conformance with specified requirements. Unacceptable materials shall be removed from the job site.

1.6 WARRANTY

The Contractor shall provide a 5-year written warranty against infestations or reinfestations by subterranean termites of the buildings or building additions constructed under this contract. Warranty shall include annual inspections of the buildings or building additions.

PART 2 PRODUCTS

2.1 TERMITICIDES

Termiticides shall be currently registered by the EPA. Termiticide shall be selected for maximum effectiveness and duration after application. The selected termiticide shall be suitable for the soil and climatic conditions at the project site.

PART 3 EXECUTION

3.1 TECHNICAL REPRESENTATIVE

The certified installation pest management coordinator shall be the technical representative, and shall be present at all meetings concerning treatment measures for subterranean termites. They may be present during treatment application.

3.2 SITE PREPARATION

Site preparation shall be in accordance with Sections 02230 CLEARING AND GRUBBING, 02300 EARTHWORK, 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS, 02921 SEEDING, 02922 SODDING, and 02930 EXTERIOR PLANTING. Work related to final grades, landscape plantings, foundations, or any other alterations to finished construction which might alter the condition of treated soils, shall be coordinated with this specification.

3.2.1 Ground Preparation

Food sources shall be eliminated by removing debris from clearing and grubbing and post construction wood scraps such as ground stakes, form boards, and scrap lumber from the site, before termiticide application begins.

3.2.2 Verification

Before work starts, the Contractor shall verify that final grades are as indicated and smooth grading has been completed in accordance with Section 02300 EARTHWORK. Soil particles shall be finely graded with particles no larger than 25 mm and compacted to eliminate soil movement to the greatest degree.

3.2.3 Foundation Exterior
The Contractor shall provide written verification that final grading and landscape planting operations will not disturb treatment of the soil on the exterior sides of foundation walls, grade beams, and similar structures.

3.2.4 Utilities and Vents

The Contractor shall provide written verification that the location and identity of HVAC ducts and vents, water and sewer lines, and plumbing have been accomplished prior to the termiticide application.

3.3 SITE CONDITIONS

The following conditions shall determine the time of application.

3.3.1 Soil Moisture

Soils to be treated shall be tested immediately before application. Soil moisture content shall be tested to a minimum depth of 75 mm. The soil moisture shall be as recommended by the termiticide manufacturer. The termiticide will not be applied when soil moisture exceeds manufacturer's recommendations because termiticides do not adhere to the soil particles in saturated soils.

3.3.2 Runoff and Wind Drift

Termiticide shall not be applied during or immediately following heavy rains. Applications shall not be performed when conditions may cause runoff or create an environmental hazard. Applications shall not be performed when average wind speed exceeds 16 km per hour. The termiticide shall not be allowed to enter water systems, aquifers, or endanger humans or animals.

3.3.2.1 Vapor Barriers and Waterproof Membranes

Termiticide shall be applied prior to placement of a vapor barrier or waterproof membrane.

3.3.2.2 Utilities and Vents

Prior to application, HVAC ducts and vents located in treatment area shall be turned off and blocked to protect people and animals from termiticide.

3.3.3 Placement of Concrete

Concrete covering treated soils shall be placed as soon as the termiticide has reached maximum penetration into the soil. Time for maximum penetration shall be as recommended by the manufacturer.

3.4 TERMITICIDE TREATMENT

3.4.1 Equipment Calibration and Tank Measurement

Immediately prior to commencement of termiticide application, calibration tests shall be conducted on the application equipment to be used and the application tank shall be measured to determine the volume and contents. These tests shall confirm that the application equipment is operating within the manufacturer's specifications and will meet the specified requirements.
The Contractor shall provide written certification of the equipment calibration test results within 1 week of testing.

3.4.2 Mixing and Application

Formulating, mixing, and application shall be performed in the presence of the Contracting Officer or the technical representative. A closed system is recommended as it prevents the termiticide from coming into contact with the applicator or other persons. Water for formulating shall only come from designated locations. Filling hoses shall be fitted with a backflow preventer meeting local plumbing codes or standards. Overflow shall be prevented during the filling operation. Prior to each day of use, the equipment used for applying termiticides shall be inspected for leaks, clogging, wear, or damage. Any repairs are to be performed immediately.

3.4.3 Treatment Method

For areas to be treated, the Contractor shall establish complete and unbroken vertical and/or horizontal soil poison barriers between the soil and all portions of the intended structure which may allow termite access to wood and wood related products. Application shall not be made to areas which serve as crawl spaces or for use as a plenum air space.

3.4.3.1 Surface Application

Surface application shall be used for establishing horizontal barriers. Surface applicants shall be applied as a coarse spray and provide uniform distribution over the soil surface. Termiticide shall penetrate a minimum of 25 mm into the soil, or as recommended by the manufacturer.

3.4.3.2 Rodding and Trenching

Rodding and trenching shall be used for establishing vertical soil barriers. Trenching shall be to the depth of the foundation footing. Width of trench shall be as recommended by the manufacturer, or as indicated. Rodding or other approved method may be implemented for saturating the base of the trench with termiticide. Immediately after termiticide has reached maximum penetration as recommended by the manufacturer, backfilling of the trench shall commence. Backfilling shall be in 150 mm rises or layers. Each rise shall be treated with termiticide.

3.4.4 Sampling

The Contracting Officer may draw from stocks at the job site, at any time and without prior notice, samples of the termiticides used to determine if the amount of active ingredient specified on the label is being applied.

3.5 VERIFICATION OF MEASUREMENT

Once termiticide application has been completed, tank contents shall be measured to determine the remaining volume. The total volume measurement of used contents for the application shall equal the established application rate for the project site conditions. The Contractor shall provide written verification of the measurements.

3.6 CLEAN UP, DISPOSAL, AND PROTECTION
Once application has been completed, the Contractor shall proceed with clean up and protection of the site without delay.

3.6.1 Clean Up

The site shall be cleaned of all material associated with the treatment measures, according to label instructions, and as indicated. Excess and waste material shall be removed and disposed off site.

3.6.2 Disposal of Termiticide

The Contractor shall dispose of residual termiticides and containers off Government property, and in accordance with label instructions and EPA criteria.

3.6.3 Protection of Treated Area

Immediately after the application, the area shall be protected from other use by erecting barricades and providing signage as required or directed. Signage shall be in accordance with Section 10430 EXTERIOR SIGNAGE. Signage shall be placed inside the entrances to crawl spaces and shall identify the space as treated with termiticide and not safe for children and animals.

3.7 CONDITIONS FOR SATISFACTORY TREATMENT

3.7.1 Equipment Calibrations and Measurements

Where results from the equipment calibration and tank measurements tests are unsatisfactory, re-treatment will be required.

3.7.2 Testing

Should an analysis, performed by a third party, indicate that the samples of the applied termiticide contain less than the amount of active ingredient specified on the label, and/or if soils are treated to a depth less than specified or approved, re-treatment will be required.

3.7.3 Disturbance of Treated Soils

Soil and fill material disturbed after treatment shall be re-treated before placement of slabs or other covering structures.

3.7.4 Termites Found Within the Warranty Period

If live subterranean termite infestation or termite damage is discovered during the warranty period, the Contractor shall re-treat the site.

3.8 RE-TREATMENT

Where re-treatment is required, the Contractor shall:

a. Re-treat the soil and/or perform other treatment as necessary for prevention or elimination of subterranean termite infestation.

b. Repair damage caused by termite infestation.
-- End Of Section --
SECTION 02466

DRILLED FOUNDATION PIERS

12/97

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 615/A 615M (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Caissons; G, AE

Detailed records in an approved form, for each caisson, showing shaft and bell diameters, depths of test holes, top and bottom elevations, bearing strata description, casing description, water conditions, concrete strength, concrete volume, rock elevations, dates of excavation and concrete placement, and other pertinent information. Upon completion of caisson work, the Contractor shall provide a record of centerline locations based on the survey of the registered surveyor or engineer provided by the Contractor. In addition, corrective measures shall be similarly recorded. A complete tabulation of all records pertaining to approved caissons shall be delivered to the Contracting Officer.

SD-03 Product Data

Drilled Foundation Drilled Piers; G, AE

A certified copy of the survey. Lines and levels shall be established and drilled pier centerline locations staked and maintained by a registered surveyor or engineer provided by the Contractor. Offset hubs shall be set to provide location control during drilling operations.

SD-08 Statements
Qualifications; G, AE

Qualifications of the foundation system Contractor shall show that he has been engaged in the successful installation of drilled foundation drilled piers for at least 5 years.

SD-18 Records

Drilled Foundation Drilled Piers; G, AE

Detailed records in an approved form, for each drilled pier, showing shaft diameters, depths of test holes, top and bottom elevations, bearing strata description, casing description, water conditions, concrete strength, concrete volume, rock elevations, dates of excavation and concrete placement, and other pertinent information. Upon completion of drilled pier work, the Contractor shall provide a record of centerline locations based on the survey of the registered surveyor or engineer provided by the Contractor. In addition, corrective measures shall be similarly recorded. A complete tabulation of all records pertaining to approved drilled piers shall be delivered to the Contracting Officer.

1.3 QUALIFICATIONS

1.3.1 Specialty Subcontractor

The work shall be performed by a specialty subcontractor, specializing in the specified foundation system and having experience installing the specified foundation system under similar subsurface conditions. The Contractor shall be prepared to provide rock bits and core barrels sufficient to penetrate the cemented sandstone caprock and hard shale formations that underlie the site.

1.4 PROJECT/SITE CONDITIONS

1.4.1 Subsurface Data

The subsurface investigation report and samples of materials, as taken from subsurface investigations, are available for examination at the U.S. Army Corps of Engineers, Little Rock District, Geotechnical Branch, Little Rock, Arkansas.

1.4.2 Drilled Pier Drilling Equipment

Drilled pier drilling equipment shall have the minimum torque capacity and downward force capacity for the contract site conditions.

1.5 SEQUENCE OF WORK

1.5.1 Drilled Pier Excavation

Excavation of drilled piers or groups of drilled piers shall be performed so that reinforcing steel and concrete placement is a continuous operation performed the same day that the excavation is completed. Excavations shall not be left open overnight.
1.5.2 Acceptance

Concrete shall be placed within 3 hours after approval of the completed excavation.

1.6 SUPERVISION, INSPECTION, AND SAFETY

1.6.1 Contractor Supervision

The Contractor shall provide for the supervision of all phases of drilled pier construction. Supervision shall be the Contractor's responsibility as outlined in Quality Control provisions of the SPECIAL CLAUSES. Each drilled pier excavation shall be checked by the Contractor for its depth, water removal, cleanup, workmanship, and for all tolerance requirements before any concrete is placed.

1.6.2 Government Inspection

The Contractor shall hire an independent Geotechnical testing firm to evaluate each excavation. The Contractor shall furnish the Contracting Officer all necessary equipment required for proper inspection of drilled pier excavations. This inspection in no way relieves the Contractor of his responsibilities as outlined in paragraph Contractor Supervision. The Contractor shall notify the Contracting Officer at least 7 days prior to drilling and placing of the piers. Little Rock District Geotechnical Branch personnel shall be responsible for inspection of the initial five piers. If additional visits to the job site are required for this initial inspection due to the Contractor's failure to coordinate drilling or construction at the time specified, the Contractor will pay for subsequent visits to the job site by the Geotechnical Branch representative by forfeiting an amount equal to $400.00 per day for each additional inspection day required.

1.6.3 Safety Precautions for Workmen and Inspectors

All inspections shall be made from ground level. No personnel shall be allowed into a drilled pier excavation.

PART 2 PRODUCTS

2.1 CONCRETE WORK

Concrete work shall be in accordance with requirements of Section 03300CAST-IN-PLACE STRUCTURAL CONCRETE, as modified herein:

2.1.1 Coarse Aggregate

Maximum size of coarse aggregate shall be 19 mm.

2.1.2 Reinforcing Steel

Reinforcing steel shall conform to ASTM A 615/A 615M Grade 60. Steel shall be tied into cages and inserted securely in the drilled piers, in position and alignment, as shown, prior to concrete placement.

2.1.3 Strength

Concrete strength shall be as indicated on the Drawings.
PART 3 EXECUTION

3.1 PREPARATION

a. Excavate Drilled Piers to established depths and dimensions shown. Bottoms of drilled piers shall be cleaned of loose or soft material and leveled. Excavated material shall be disposed of in accordance with Section 02300 EARTHWORK.

b. In drilling drilled piers, the surrounding soil and the earth walls shall be adequately and securely protected against cave-ins, displacement of the surrounding earth, and retention of ground water, by means of temporary steel casings. Casings shall have outside diameters not less than indicated shaft sizes, shall be a minimum of 6.4 mm thick, and shall not be removed if the structural integrity of the caisson will be impaired, as determined by the Contracting Officer. Temporary steel casings shall be withdrawn, as the concrete is being placed, maintaining sufficient head of concrete within the casing to prevent extraneous material from falling in from the sides and mixing with the concrete. Casings may be jerked upward a maximum of 100 mm to break the bottom seal, but thereafter shall be removed with a smooth, continuous motion.

c. The inside of steel casings shall be thoroughly cleaned and oiled before reuse.

d. The temporary casing shall be in place from the caisson top to the ground surface until the concrete has set if the elevation of the top of the drilled pier is below the adjacent ground surface.

e. The outside diameter of permanent casing shall be the same as the nominal shaft diameter. Wall thickness of permanent casings shall be a minimum of 6 millimeters.

Note: The Contractor may petition the COR for a waiver of the casing requirements if it is established that the site conditions at the time of installation do not warrant the use of full depth casing. However, the Contractor should be prepared to provide casing for bidding purposes.

f. Water that flows into the excavations shall be continuously removed and all water shall be removed from the excavation bottom, to the extent possible, prior to concrete placement. The maximum permissible depth of water will be 50 mm. In the event of a severe water condition that makes it impossible or impractical to dewater the excavation, concrete shall be placed using underwater tremie after water movement has stabilized.

g. A record of all inspections, with related construction changes in connection therewith, shall be kept by the Contractor. The Contractor shall provide support personnel for inspection and testing procedures.

3.2 INSTALLATION
a. Concrete shall be continuously placed by methods that ensure against segregation and dislodging of excavation sidewalls, and shall completely fill the shaft. Concrete shall be placed by pumping or drop chutes in dry holes and by tremie or pumping in wet holes. The discharge shall be kept a minimum of 1 m below the fresh concrete surface during placement. Drilling of drilled piers or driving of casings shall not be within 6 m of concrete placed within the last 3 days.

b. Concrete shall be brought to a true level surface inside the shaft and a full width cross key formed, or dowels installed, should it become necessary to interrupt placing concrete in any drilled pier. Prior to placing additional concrete, surfaces shall be cleaned of laitance and slush with one-to-one portland cement grout. The grout shall have a water-cement ratio not exceeding that of the concrete.

c. Concrete shall be vibrated for upper 1524 mm of drilled pier.

d. Templates shall be used to position and hold steel reinforcing and dowels during concrete pouring operations.

e. Contractor shall have sufficient equipment on site to drill into any rock that is encountered during drilling.

3.3 TOLERANCES

a. Any drilled pier out of center or plumb beyond the tolerance specified shall be corrected as necessary to comply with the tolerances and the Contractor shall bear any cost of correction.

b. Cross sections of shafts shall not be less than design dimensions nor greater than design dimensions by plus 75 mm unless approved or directed by the Contracting Officer.

c. Drilled piers shall be installed with top location deviating a maximum of 25 mm for 600 mm diameter piers or 31.75 mm for 762 mm diameter piers from centerline locations.

d. Vertical drilled piers shall be installed plumb within a maximum of 38 mm for the first 3 m and within 13 mm for each 3 m of additional depth.

3.4 PROTECTION

Protection shall be provided around top of the excavation to prevent debris from being dislodged into the excavation and concrete.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 88M (1996) Seamless Copper Water Tube (Metric)
ASTM C 76M (1999a) Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe (Metric)
ASTM D 1784 (1999a) Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds
ASTM D 1785 (1999) Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
ASTM D 2241 (1996b) Poly(Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series)
ASTM F 477 (1999) Elastomeric Seals (Gaskets) for Joining Plastic Pipe

ASME INTERNATIONAL (ASME)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA B300 (1992) Hypochlorites
AWWA B301 (1992) Liquid Chlorine
AWWA C110 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids
AWWA C153 (1994; Errata Nov 1996) Ductile-Iron Compact Fittings, 3 In. Through 24 In. (76 mm through 610 mm) and 54 In. through 64 In. (1,400 mm through 1,600 mm) for Water Service

AWWA C500 (1993; C500a) Metal-Sealed Gate Valves for Water Supply Service

AWWA C502 (1994; C502a) Dry-Barrel Fire Hydrants

AWWA C509 (1994; Addendum 1995) Resilient-Seated Gate Valves for Water Supply Service

AWWA C651 (1992) Disinfecting Water Mains

AWWA C701 (1988) Cold-Water Meters - Turbine Type, for Customer Service

AWWA C706 (1996) Direct-Reading, Remote-Registration Systems for Cold-Water Meters

AWWA C900 (1997; C900a) Polyvinyl Chloride (PVC) Pressure Pipe, 4 In. Through 12 In., for Water Distribution

ASBESTOS CEMENT PIPE PRODUCERS ASSOCIATION (ACPPA)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 49 (1994) Hazardous Chemicals Data

NSF INTERNATIONAL (NSF)

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC Paint 21 (1991) White or Colored Silicone Alkyd Paint
SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (Without Lead and Chromate Pigments)

1.2 PIPING

This section covers water distribution and service lines, and connections to building service at a point approximately 1.5 m outside buildings and structures to which service is required. The Contractor shall have a copy of the manufacturer's recommendations for each material or procedure to be utilized available at the construction site at all times.

1.2.1 Service Lines

Piping for water service lines shall be polyvinyl chloride (PVC) plastic unless otherwise shown or specified.

1.2.2 Distribution Lines 80 mm or Larger

Piping for water distribution lines 80 mm or larger shall be polyvinyl chloride (PVC) unless otherwise shown or specified.

1.2.3 Sprinkler Supply Lines

Piping for water lines supplying sprinkler systems for building fire protection shall conform to NFPA 24 from the point of connection with the water distribution system to the building 1.5 m line.

1.2.4 Potable Water Lines

Piping and components of potable water systems which come in contact with the potable water shall conform to NSF 61.

1.2.5 Plastic Piping System

Plastic piping system components (PVC, polyethylene, thermosetting resin and reinforced plastic mortar pressure) intended for transportation of potable water shall comply with NSF 14 and be legibly marked with their symbol.

1.2.6 Excavation, Trenching, and Backfilling

Excavation, trenching, and backfilling shall be in accordance with the applicable provisions of Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS, except as modified herein.

1.3 MANUFACTURER'S REPRESENTATIVE

The Contractor shall have a manufacturer's field representative present at the jobsite during the installation and testing of PE, RTRP, and/or RPMF pipe to provide technical assistance and to verify that the materials are being installed in accordance with the manufacturer's prescribed procedures. When the representative feels that the Contractor is installing and testing the PE, RTRP, and/or RPMF pipe in a satisfactory manner, certification shall be written to note which individuals employed by the Contractor are capable of properly installing the pipe. The field representative shall advise the Contractor of unsatisfactory conditions immediately when they occur. Such
conditions include improper diameter of pipe ends, damaged interior liner, poorly prepared joints, improper curing of joints, moving pipe before joints are cured, bending pipe to follow abrupt changes in trench contours, leaving pipe ends open in trench overnight, not properly drying joints after rain storms, exceeding effective adhesive life, sharp objects in trench bed, backfill that could damage pipe, improper procedure for concrete encasement of pipe, omission of thrust blocks at changes in direction or any other condition which could have an adverse effect on the satisfactory completion and operation of the piping system.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Materials List; G, FIO.

List all materials required and the manufacturer's data for each material listed 30 days prior to use on the project.

Installation; G, RE.

The manufacturer's recommendations for each material or procedure to be utilized.

Waste Water Disposal Method; G, RE.

The method proposed for disposal of waste water from hydrostatic tests and disinfection, prior to performing hydrostatic tests.

Satisfactory Installation; G, RE.

A statement signed by the principal officer of the contracting firm stating that the installation is satisfactory and in accordance with the contract drawings and specifications, and the manufacturer's prescribed procedures and techniques, upon completion of the project and before final acceptance.

SD-06 Test Reports

Bacteriological Disinfection; G, ED.

Test results from commercial laboratory verifying disinfection.

SD-07 Certificates

Manufacturer's Representative; G, RE.

The name and qualifications of the manufacturer's representative and written certification from the manufacturer that the representative is technically qualified in all phases of PE, RTRP, and/or RFMP pipe laying and jointing and experienced to supervise
the work and train the Contractor's field installers, prior to commencing installation.

Installation; G, RE.

A statement signed by the manufacturer's field representative certifying that the Contractor's personnel are capable of properly installing the pipe on the project.

Meters; G, ED.

Manufacturer's certificate stating that each meter furnished has been tested for accuracy of registration and compliance with the accuracy and capacity requirements of the appropriate AWWA standard.

1.5 HANDLING

Pipe and accessories shall be handled to ensure delivery to the trench in sound, undamaged condition, including no injury to the pipe coating or lining. If the coating or lining of any pipe or fitting is damaged, the repair shall be made by the Contractor in a satisfactory manner, at no additional cost to the Government. No other pipe or material shall be placed inside a pipe or fitting after the coating has been applied. Pipe shall be carried into position and not dragged. Use of pinch bars and tongs for aligning or turning pipe will be permitted only on the bare ends of the pipe. The interior of pipe and accessories shall be thoroughly cleaned of foreign matter before being lowered into the trench and shall be kept clean during laying operations by plugging or other approved method. Before installation, the pipe shall be inspected for defects. Material found to be defective before or after laying shall be replaced with sound material without additional expense to the Government. Rubber gaskets that are not to be installed immediately shall be stored in a cool and dark place.

1.5.1 Plastic Pipe and Fittings

Polyvinyl Chloride (PVC) and fittings shall be handled and stored in accordance with the manufacturer's recommendations. Storage facilities shall be classified and marked in accordance with NFPA 704, with classification as indicated in NFPA 49 and NFPA 325-1.

PART 2 PRODUCTS

2.1 PIPE

Pipe shall conform to the respective specifications and other requirements specified below.

2.1.1 Plastic Pipe

2.1.1.1 PVC Plastic Pipe

Pipe, couplings and fittings shall be manufactured of material conforming to ASTM D 1784, Class 12454B.
a. Pipe Less Than 100 mm Diameter:

(1) Elastomeric-Gasket Joint: Pipe shall conform to dimensional requirements of ASTM D 1785 Schedule 40, with joints meeting the requirements of 1.03 MPa working pressure, 1.38 MPa hydrostatic test pressure, unless otherwise shown or specified, or it may be pipe conforming to requirements of ASTM D 2241, elastomeric joint, with the following applications:

<table>
<thead>
<tr>
<th>SDR</th>
<th>Maximum Working Pressure MPa</th>
<th>Minimum Hydrostatic Pressure MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0.689</td>
<td>0.917</td>
</tr>
<tr>
<td>21</td>
<td>0.827</td>
<td>1.103</td>
</tr>
<tr>
<td>17</td>
<td>1.034</td>
<td>1.379</td>
</tr>
<tr>
<td>13.5</td>
<td>1.379</td>
<td>1.834</td>
</tr>
</tbody>
</table>

b. Pipe 100 through 300 mm Diameter: Pipe, couplings and fittings shall conform to AWWA C900, Class 150, CIOD pipe dimensions, elastomeric-gasket joint, unless otherwise shown or specified.

2.1.2 Copper Tubing

Copper tubing shall conform to ASTM B 88M, Type K, annealed.

2.2 FITTINGS AND SPECIALS

2.2.1 PVC Pipe System

a. For pipe 100 mm diameter and larger, fittings and specials shall be iron, bell end in accordance with AWWA C110, 1.03 MPa pressure rating unless otherwise shown or specified, except that profile of bell may have special dimensions as required by the pipe manufacturer; or fittings and specials may be of the same material as the pipe with elastomeric gaskets, all in conformance with AWWA C900. Iron fittings and specials shall be cement-mortar lined (standard thickness) in accordance with AWWA C104. Fittings shall be bell and spigot or plain end pipe, or as applicable. Ductile iron compact fittings shall be in accordance with AWWA C153.

2.2.2 Copper Tubing System

Fittings and specials shall be flared and conform to ASME B16.26.

2.3 JOINTS

2.3.1 Plastic Pipe Jointing

2.3.1.1 PVC Pipe

Joints, fittings, and couplings shall be as specified for PVC pipe. Joints connecting pipe of differing materials shall be made in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer.

2.3.2 Copper Tubing Jointing
Joints shall be compression-pattern flared and shall be made with the specified fittings.

2.4 VALVES

2.4.1 Check Valves

Check valves shall be designed for a minimum working pressure of 1.03 MPa or as indicated. Valves shall have a clear waterway equal to the full nominal diameter of the valve. Valves shall open to permit flow when inlet pressure is greater than the discharge pressure, and shall close tightly to prevent return flow when discharge pressure exceeds inlet pressure. The size of the valve, working pressure, manufacturer's name, initials, or trademark shall be cast on the body of each valve. Valves 50 mm and larger shall be outside lever and spring type.

a. Valves shall be iron body, bronze mounted, shall have flanged ends, and shall be the non-slam type. Flanges shall be the Class 125 type conforming to ASME B16.1.

2.4.2 Gate Valves

Gate valves shall be designed for a working pressure of not less than 1.03 MPa. Valve connections shall be as required for the piping in which they are installed. Valves shall have a clear waterway equal to the full nominal diameter of the valve, and shall be opened by turning counterclockwise. The operating nut or wheel shall have an arrow, cast in the metal, indicating the direction of opening.

a. Valves 80 mm and larger shall be iron body, bronze mounted, and shall conform to AWWA C500. Flanges shall not be buried. An approved pit shall be provided for all flanged connections.

b. Resilient-Seated Gate Valves: For valves 80 to 300 mm in size, resilient-seated gate valves shall conform to AWWA C509

2.4.3 Indicator Post for Valves

Each valve shown on the drawings with the designation "P.I.V." shall be equipped with indicator post conforming to the requirements of NFPA 24. Operation shall be by a wrench which shall be attached to each post.

2.5 VALVE BOXES

Valve boxes shall be cast iron or concrete, except that concrete boxes may be installed only in locations not subjected to vehicular traffic. Cast-iron boxes shall be extension type with slide-type adjustment and with flared base. The minimum thickness of metal shall be 5 mm. Concrete boxes shall be the standard product of a manufacturer of precast concrete equipment. The word "WATER" shall be cast in the cover. The box length shall adapt, without full extension, to the depth of cover required over the pipe at the valve location.

2.6 VALVE PITS

Valve pits shall be constructed at locations indicated or as required above and in accordance with the details shown. Concrete shall have compressive
strength of 21 MPa in accordance with Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE.

2.7 FIRE HYDRANTS

Hydrants shall be dry-barrel type conforming to AWWA C502 with valve opening at least 125 mm in diameter and designed so that the flange at the main valve seat can be removed with the main valve seat apparatus remaining intact, closed and reasonably tight against leakage and with a breakable valve rod coupling and breakable flange connections located no more than 200 mm above the ground grade. Hydrants shall have a 150 mm bell connection, two 65 mm hose connections and one 115 mm pumper connection. Outlets shall have American National Standard fire-hose coupling threads. Working parts shall be bronze. Design, material, and workmanship shall be equal to the latest stock pattern ordinarily produced by the manufacturer. Hydrants shall be painted with 1 coat of red iron oxide, zinc oxide primer conforming to SSPC Paint 25 and 2 finish coats of silicone alkyd paint conforming to SSPC Paint 21, of the installation's standard colors or as directed by the Contracting Officer. Suitable bronze adapter for each outlet, with caps, shall be furnished.

2.8 MISCELLANEOUS ITEMS

2.8.1 Service Clamps

Service clamps shall have a pressure rating not less than that of the pipe to be connected and shall be either the single or double flattened strap type. Clamps shall have a galvanized malleable-iron body with cadmium plated straps and nuts. Clamps shall have a rubber gasket cemented to the body.

2.8.2 Tapping Sleeves

Tapping sleeves of the sizes indicated for connection to existing main shall be the cast gray, ductile, or malleable iron, split-sleeve type with flanged or grooved outlet, and with bolts, follower rings and gaskets on each end of the sleeve. Construction shall be suitable for a maximum working pressure of 1.03 MPa. Bolts shall have square heads and hexagonal nuts. Longitudinal gaskets and mechanical joints with gaskets shall be as recommended by the manufacturer of the sleeve. When using grooved mechanical tee, it shall consist of an upper housing with full locating collar for rigid positioning which engages a machine-cut hole in pipe, encasing an elastomeric gasket which conforms to the pipe outside diameter around the hole and a lower housing with positioning lugs, secured together during assembly by nuts and bolts as specified, pretorqued to 67.8 Newton meters.

2.8.3 Service Boxes

Service boxes shall be cast iron or concrete and shall be extension service boxes of the length required for the depth of the line, with either screw or slide-type adjustment. The boxes shall have housings of sufficient size to completely cover the service stop or valve and shall be complete with identifying covers.

2.8.4 Disinfection
Chlorinating materials shall conform to the following:

Chlorine, Liquid: AWWA B301.

Hypochlorite, Calcium and Sodium: AWWA B300.

2.8.5 Meters

Meters shall be the type and size shown on the drawings or specified. Meters of each of the various types furnished and installed shall be supplied by one manufacturer.

2.8.5.1 Turbine Type

Turbine type meters shall conform to AWWA C701 Class I. The main casing shall be bronze with stainless steel external fasteners. Registers shall be straight-reading type, shall be open and shall read in cubic meters. Connections shall be suitable to the type of pipe and conditions encountered. Register type shall be a direct reading remote register designed in accordance with AWWA C706. Meters shall comply with the accuracy and capacity requirements of AWWA C701.

2.8.6 Meter Boxes

Meter boxes shall be of cast iron, concrete, or plastic. The boxes shall be of sufficient size to completely enclose the meter and shutoff valve or service stop. Meter boxes set in paved areas subject to vehicular traffic shall be cast iron, or concrete with cast iron lid and cast iron meter reader lid. Boxes set in sidewalks, not subject to vehicular traffic, shall use concrete covers with cast iron meter reader lids. Plastic boxes and lids shall not. Box height shall extend from invert of the meter to final grade at the meter location. The lid shall have the word "WATER" cast in it.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Cutting of Pipe

Cutting of pipe shall be done in a neat and workmanlike manner without damage to the pipe. Unless otherwise recommended by the manufacturer and authorized by the Contracting Officer, cutting shall be done with an approved type mechanical cutter. Wheel cutter shall be used when practicable. Copper tubing shall be cut square and all burrs shall be removed. Squeeze type mechanical cutters shall not be used for ductile iron.

3.1.2 Adjacent Facilities

3.1.2.1 Sewer Lines

Where the location of the water pipe is not clearly defined in dimensions on the drawings, the water pipe shall not be laid closer horizontally than 3 m from a sewer except where the bottom of the water pipe will be at least 300 mm above the top of the sewer pipe, in which case the water pipe shall not be laid closer horizontally than 1.8 m from the sewer. Where water lines
cross under gravity-flow sewer lines, the sewer pipe, for a distance of at least 3 m each side of the crossing, shall be fully encased in concrete or shall be made of pressure pipe with no joint located within 900 mm horizontally of the crossing. Water lines shall in all cases cross above sewage force mains or inverted siphons and shall be not less than 600 mm above the sewer main. Joints in the sewer main, closer horizontally than 900 mm to the crossing, shall be encased in concrete.

3.1.2.2 Water Lines

Water lines shall not be laid in the same trench with sewer lines, gas lines, fuel lines, or electric wiring.

3.1.2.3 Copper Tubing Lines

Copper tubing shall not be installed in the same trench with ferrous piping materials.

3.1.2.4 Nonferrous Metallic Pipe

Where nonferrous metallic pipe, e.g. copper tubing, crosses any ferrous piping material, a minimum vertical separation of 300 mm shall be maintained between pipes.

3.1.2.5 Casing Pipe

Water pipe shall be encased in a sleeve of rigid conduit for the lengths shown. Where sleeves are required, in all other cases, the pipe sleeve shall be reinforced concrete in accordance with ASTM C 76M and Class IV as specified for storm drains in Section 02630 STORM-DRAINAGE SYSTEM. A minimum clearance of at least 50 mm between the inner wall of the sleeve and the maximum outside diameter of the sleeved pipe and joints shall be provided. Suitable pipe support shall be provided for the water pipe through the sleeve.

3.1.2.6 Structures

Where water pipe is required to be installed within 1 m of existing structures, the water pipe shall be sleeved as required in Paragraph "Casing Pipe". The Contractor shall install the water pipe and sleeve ensuring that there will be no damage to the structures and no settlement or movement of foundations or footings.

3.1.3 Joint Deflection

3.1.3.1 Offset for Flexible Plastic Pipe

Maximum offset in alignment between adjacent pipe joints shall be as recommended by the manufacturer and approved by the Contracting Officer, but shall not exceed 5 degrees.

3.1.4 Placing and Laying

Pipe and accessories shall be carefully lowered into the trench by means of derrick, ropes, belt slings, or other authorized equipment. Water-line materials shall not be dropped or dumped into the trench. Abrasion of the pipe coating shall be avoided. Except where necessary in making connections
with other lines or as authorized by the Contracting Officer, pipe shall be
laid with the bells facing in the direction of laying. The full length of
each section of pipe shall rest solidly upon the pipe bed, with recesses
evacuated to accommodate bells, couplings, and joints. Pipe that has the
grade or joint disturbed after laying shall be taken up and relaid. Pipe
shall not be laid in water or when trench conditions are unsuitable for the
work. Water shall be kept out of the trench until joints are complete.
When work is not in progress, open ends of pipe, fittings, and valves shall
be securely closed so that no trench water, earth, or other substance will
enter the pipes or fittings. Where any part of the coating or lining is
damaged, the repair shall be made by and at the Contractor's expense in a
satisfactory manner. Pipe ends left for future connections shall be valved,
plugged, or capped, and anchored, as shown.

3.1.4.1 Plastic Pipe Installation

PVC pipe shall be installed in accordance with AWWA M23.

3.1.4.2 Piping Connections

Where connections are made between new work and existing mains, the
connections shall be made under pressure, using standard methods as approved
by the Contracting Officer. Connections to existing asbestos-cement pipe
shall be made in accordance with ACPFA Work Practices.

3.1.4.3 Penetrations

Pipe passing through walls of valve pits and structures shall be provided
with ductile-iron or Schedule 40 steel wall sleeves. Annular space between
walls and sleeves shall be filled with rich cement mortar. Annular space
between pipe and sleeves shall be filled with mastic.

3.1.4.4 Flanged Pipe

Flanged pipe shall only be installed above ground or with the flanges in
valve pits.

3.1.5 Jointing

3.1.5.1 PVC Plastic Pipe Requirements

 a. Joints shall be elastomeric gasket as specified in AWWA C900.
 Preformed rubber-ring gaskets for elastometric-gasket joints shall
 be made in accordance with ASTM F 477 and as specified. Pipe ends
 marked to indicate when the pipe is fully seated. The gasket shall
 be prelubricated to prevent displacement. The gasket and ring
 groove in the bell or coupling shall match. The manufacturer of
 the pipe or fitting shall supply the elastomeric gasket. Couplings
 shall be provided with stops or centering rings to assure that the
 coupling is centered on the joint.

3.1.5.2 Copper Tubing Requirements

Joints shall be made with flared fittings. The flared end tube shall be
pulled tightly against the tapered part of the fitting by a nut which is
part of the fitting, so there is metal-to-metal contact.
3.1.5.3 Transition Fittings

Connections between different types of pipe and accessories shall be made with transition fittings approved by the Contracting Officer.

3.1.6 Installation of Service Lines

Service lines shall include the pipeline connecting building piping to water distribution lines to the connections with the building service at a point approximately 1.5 m outside the building where such building service exists. Where building services are not installed, the Contractor shall terminate the service lines approximately 1.5 m from the site of the proposed building at a point designated by the Contracting Officer. Such service lines shall be closed with plugs or caps. All service stops and valves shall be provided with service boxes. Service lines shall be constructed in accordance with the following requirements:

3.1.6.1 Service Lines Larger than 50 mm

Service lines larger than 50 mm shall be connected to the main by a tapped saddle, tapping sleeve and valve, service clamp or reducing tee, depending on the main diameter and the service line diameter, and shall have a gate valve. Lines 80 mm and larger may use rubber-seated butterfly valves as specified above, or gate valves.

3.1.6.2 Service Lines for Sprinkler Supplies

Water service lines used to supply building sprinkler systems for fire protection shall be connected to the water distribution main in accordance with NFPA 24.

3.1.7 Setting of Fire Hydrants, Meters, Valves and Valve Boxes

3.1.7.1 Location of Fire Hydrants

Fire hydrants shall be located and installed as shown. Each hydrant shall be connected to the main with a 150 mm branch line having at least as much cover as the distribution main. Hydrants shall be set plumb with pumper nozzle facing the roadway, with the center of the lowest outlet not less than 450 mm above the finished surrounding grade, and the operating nut not more than 1.2 m above the finished surrounding grade. Fire hydrants designated on the drawings as low profile shall have the lowest outlet not less than 450 mm above the finished surrounding grade, the top of the hydrant not more than 600 mm above the finished surrounding grade. Except where approved otherwise, the backfill around hydrants shall be thoroughly compacted to the finished grade immediately after installation to obtain beneficial use of the hydrant as soon as practicable. The hydrant shall be set upon a slab of concrete not less than 100 mm thick and 400 mm square. Not less than 2 cubic meters of free-draining broken stone or gravel shall be placed around and beneath the waste opening of dry barrel hydrants to ensure drainage.

3.1.7.2 Location of Meters

Meters and meter boxes shall be installed at the locations shown on the drawings. The meters shall be centered in the boxes to allow for reading and ease of removal or maintenance.
3.1.7.3 Location of Valves

After delivery, valves, including those in hydrants, shall be drained to prevent freezing and shall have the interiors cleaned of all foreign matter before installation. Stuffing boxes shall be tightened and hydrants and valves shall be fully opened and fully closed to ensure that all parts are in working condition. Check, pressure reducing, vacuum, and air relief valves shall be installed in valve pits. Valves and valve boxes shall be installed where shown or specified, and shall be set plumb. Valve boxes shall be centered on the valves. Boxes shall be installed over each outside gate valve unless otherwise shown. Where feasible, valves shall be located outside the area of roads and streets. Earth fill shall be tamped around each valve box or pit to a distance of 1.2 m on all sides of the box, or the undisturbed trench face if less than 1.2 m.

3.1.7.4 Location of Service Boxes

Where water lines are located below paved streets having curbs, the boxes shall be installed directly back of the curbs. Where no curbing exists, service boxes shall be installed in accessible locations, beyond the limits of street surfacing, walks and driveways.

3.1.8 Tapped Tees and Crosses

Tapped tees and crosses for future connections shall be installed where shown.

3.1.9 Thrust Restraint

Plugs, caps, tees and bends deflecting 11.25 degrees or more, either vertically or horizontally, on waterlines 100 mm in diameter or larger, and fire hydrants shall be provided with thrust restraints. Valves shall be securely anchored or shall be provided with thrust restraints to prevent movement. Thrust restraints shall be thrust blocks.

3.1.9.1 Thrust Blocks

Thrust blocking shall be concrete of a mix not leaner than: 1 cement, 2-1/2 sand, 5 gravel; and having a compressive strength of not less than 14 MPa after 28 days. Blocking shall be placed between solid ground and the hydrant or fitting to be anchored. Unless otherwise indicated or directed, the base and thrust bearing sides of thrust blocks shall be poured directly against undisturbed earth. The sides of thrust blocks not subject to thrust may be poured against forms. The area of bearing shall be as shown or as directed. Blocking shall be placed so that the fitting joints will be accessible for repair. Steel rods and clamps, protected by galvanizing or by coating with bituminous paint, shall be used to anchor vertical down bends into gravity thrust blocks.

3.2 HYDROSTATIC TESTS

Where any section of a water line is provided with concrete thrust blocking for fittings or hydrants, the hydrostatic tests shall not be made until at least 5 days after installation of the concrete thrust blocking, unless otherwise approved.
3.2.1 Pressure Test

After the pipe is laid, the joints completed, fire hydrants permanently installed, and the trench partially backfilled leaving the joints exposed for examination, the newly laid piping or any valved section of piping shall, unless otherwise specified, be subjected for 1 hour to a hydrostatic pressure test of 1.38 MPa. Water supply lines designated on the drawings shall be subjected for 1 hour to a hydrostatic pressure test of 1.38 MPa. Each valve shall be opened and closed several times during the test. Exposed pipe, joints, fittings, hydrants, and valves shall be carefully examined during the partially open trench test. Joints showing visible leakage shall be replaced or remade as necessary. Cracked or defective pipe, joints, fittings, hydrants and valves discovered in consequence of this pressure test shall be removed and replaced with sound material, and the test shall be repeated until the test results are satisfactory. The requirement for the joints to remain exposed for the hydrostatic tests may be waived by the Contracting Officer when one or more of the following conditions is encountered:

a. Wet or unstable soil conditions in the trench.

b. Compliance would require maintaining barricades and walkways around and across an open trench in a heavily used area that would require continuous surveillance to assure safe conditions.

c. Maintaining the trench in an open condition would delay completion of the project.

The Contractor may request a waiver, setting forth in writing the reasons for the request and stating the alternative procedure proposed to comply with the required hydrostatic tests. Backfill placed prior to the tests shall be placed in accordance with the requirements of Section 02316EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS.

3.2.2 Leakage Test

Leakage test shall be conducted after the pressure tests have been satisfactorily completed. The duration of each leakage test shall be at least 2 hours, and during the test the water line shall be subjected to not less than 1.38 MPa pressure. Water supply lines designated on the drawings shall be subjected to a pressure equal to 1.38 MPa. Leakage is defined as the quantity of water to be supplied into the newly laid pipe, or any valved or approved section, necessary to maintain pressure within 34.5 kPa of the specified leakage test pressure after the pipe has been filled with water and the air expelled. Piping installation will not be accepted if leakage exceeds the allowable leakage which is determined by the following formula:

\[L = 0.0001351ND(P \text{ raised to 0.5 power}) \]

\[L = \text{Allowable leakage in gallons per hour} \]
\[N = \text{Number of joints in the length of pipeline tested} \]
\[D = \text{Nominal diameter of the pipe in inches} \]
\[P = \text{Average test pressure during the leakage test, in psi gauge} \]

Should any test of pipe disclose leakage greater than that calculated by the above formula, the defective joints shall be located and repaired until the
leakage is within the specified allowance, without additional cost to the Government.

3.2.3 Time for Making Test

Except for joint material setting or where concrete thrust blocks necessitate a 5-day delay, pipelines jointed with rubber gaskets, mechanical or push-on joints, or couplings may be subjected to hydrostatic pressure, inspected, and tested for leakage at any time after partial completion of backfill. Cement-mortar lined pipe may be filled with water as recommended by the manufacturer before being subjected to the pressure test and subsequent leakage test.

3.2.4 Concurrent Hydrostatic Tests

The Contractor may elect to conduct the hydrostatic tests using either or both of the following procedures. Regardless of the sequence of tests employed, the results of pressure tests, leakage tests, and disinfection shall be as specified. Replacement, repair or retesting required shall be accomplished by the Contractor at no additional cost to the Government.

a. Pressure test and leakage test may be conducted concurrently.

b. Hydrostatic tests and disinfection may be conducted concurrently, using the water treated for disinfection to accomplish the hydrostatic tests. If water is lost when treated for disinfection and air is admitted to the unit being tested, or if any repair procedure results in contamination of the unit, disinfection shall be reaccomplished.

3.3 BACTERIAL DISINFECTION

3.3.1 Bacteriological Disinfection

Before acceptance of potable water operation, each unit of completed waterline shall be disinfected as prescribed by AWWA C651. From several points in the unit, personnel from the Contractor's commercial laboratory shall take at least 3 water samples from different points, approved by the Contracting Officer, in proper sterilized containers and perform a bacterial examination in accordance with state approved methods. The commercial laboratory shall be certified by the state's approving authority for examination of potable water. The disinfection shall be repeated until tests indicate the absence of pollution for at least 2 full days. The unit will not be accepted until satisfactory bacteriological results have been obtained.

3.4 CLEANUP

Upon completion of the installation of water lines, and appurtenances, all debris and surplus materials resulting from the work shall be removed.

-- End Of Section --
SECTION 02531

SANITARY SEWERS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 270 (1997a) Mortar for Unit Masonry

ASTM C 828 (1998) Low-Pressure Air Test of Vitrified Clay Pipe Lines

ASTM C 924 (1989; R 1997) Concrete Pipe Sewer Lines by Low-Pressure Air Test Method

ASTM D 3034 (1998) Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings

ASTM D 3212 (1996a) Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals

ASTM F 794 (1997) Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter

ASTM F 949 (1996a) Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe with a Smooth Interior and Fittings

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 49 (1994) Hazardous Chemicals Data

UNI-BELL PVC PIPE ASSOCIATION (UBPPA)

UBPPA UNI-B-6 (1990) Recommended Practice for the Low-Pressure Air Testing of Installed Sewer Pipe
1.2 GENERAL REQUIREMENTS

The construction required herein shall include appurtenant structures and building sewers to points of connection with the building drains 1.5 m outside the building to which the sewer system is to be connected. The Contractor shall replace damaged material and redo unacceptable work at no additional cost to the Government. Excavation and backfilling is specified in Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Backfilling shall be accomplished after inspection by the Contracting Officer. Before, during, and after installation, plastic pipe and fittings shall be protected from any environment that would result in damage or deterioration to the material. The Contractor shall have a copy of the manufacturer's instructions available at the construction site at all times and shall follow these instructions unless directed otherwise by the Contracting Officer. Solvents, solvent compounds, lubricants, elastomeric gaskets, and any similar materials required to install the plastic pipe shall be stored in accordance with the manufacturer's recommendation and shall be discarded if the storage period exceeds the recommended shelf life. Solvents in use shall be discarded when the recommended pot life is exceeded.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

List of all materials required and the manufacturer's data for each material listed 30 days prior to use on the project.

SD-07 Certificates

Certificates of compliance stating the type of cement used in manufacture of concrete pipe, fittings and precast manholes.

PART 2 PRODUCTS

2.1 PIPE

Pipe shall conform to the respective specifications and other requirements specified below.
2.1.1 PVC Pipe

ASTM D 3034, Type PSM with a maximum SDR of 35, Size 380 mm or less in diameter. ASTM F 949 for corrugated sewer pipes with a smooth interior. UBPPA UNI-B-9 and ASTM F 794, Series 46, for ribbed sewer pipe with smooth interior, size 200 mm through 1200 mm diameters. PVC shall be certified by the compounder as meeting the requirements of ASTM D 1784, cell Class 12454B. The pipe stiffness shall be greater than or equal to 735/D for cohesionless material pipe trench backfills.

2.2 REQUIREMENTS FOR FITTINGS

Fittings shall be compatible with the pipe supplied and shall have a strength not less than that of the pipe. Fittings shall conform to the respective specifications and other requirements specified below.

2.2.1 Fittings for PVC Pipe

ASTM D 3034 for type PSM pipe. ASTM F 949 for corrugated sewer pipe with a smooth interior. UBPPA UNI-B-9 and ASTM F 794, Series 46, for ribbed sewer pipe with smooth interior.

2.3 JOINTS

Joints installation shall comply with the manufacturer's instructions. Fittings and gaskets utilized for waste drains or industrial waste lines shall be certified by the manufacturer as oil resistant.

2.3.1 Plastic Pipe Jointing

Flexible plastic pipe (PVC) gasketed joints shall conform to ASTM D 3212.

2.4 BRANCH CONNECTIONS

Branch connections shall be made by use of regular fittings or solvent cemented saddles as approved. Saddles for PVC pipe shall conform to Table 4 of ASTM D 3034.

2.5 FRAMES AND COVERS

Frames and covers shall be cast iron. Cast iron frames and covers shall be as indicated or shall be of type suitable for the application, circular, without vent holes. The word "Sewer" shall be stamped or cast into covers so that it is plainly visible.

2.6 CEMENT MORTAR

Cement mortar shall conform to ASTM C 270, Type M with Type II cement.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Adjacent Facilities
3.1.1.1 Water Lines

Where the location of the sewer is not clearly defined by dimensions on the drawings, the sewer shall not be closer horizontally than 3 m to a water-supply main or service line, except that where the bottom of the water pipe will be at least 300 mm above the top of the sewer pipe, the horizontal spacing may be a minimum of 2 m. Where gravity-flow sewers cross above water lines, the sewer pipe for a distance of 3 m on each side of the crossing shall be fully encased in concrete or shall be acceptable pressure pipe with no joint closer horizontally than 1 m to the crossing. The thickness of the concrete encasement including that at the pipe joints shall be not less than 100 mm.

3.1.1.2 Roads

Water pipe shall be encased in a sleeve of rigid conduit for the lengths shown. Where sleeves are required, in all other cases, the pipe sleeve shall be as specified for storm drains in Section 02630 STORM-DRAINAGE SYSTEM. A minimum clearance of at least 50 mm between the inner wall of the sleeve and the maximum outside diameter of the sleeved pipe and joints shall be provided. Sand bedding shall be provided for the water pipe through the sleeve. Sleeves of ferrous material shall be provided with the corrosion protection as required for the conditions encountered at the site of installation.

3.1.1.3 Structural Foundations

Where sewer pipe is to be installed within 1 m of an existing or proposed building or structural foundation such as a retaining wall, control tower footing, water tank footing, or any similar structure, the sewer pipe shall be sleeved as specified above. Contractor shall ensure there is no damage to these structures, and no settlement or movement of foundations or footing.

3.1.2 Pipe Laying

a. Pipe shall be protected during handling against impact shocks and free fall; the pipe interior shall be free of extraneous material.

b. Pipe laying shall proceed upgrade with the spigot ends of bell-and-spigot pipe and tongue ends of tongue-and-groove pipe pointing in the direction of the flow. Each pipe shall be laid accurately to the line and grade shown on the drawings. Pipe shall be laid and centered so that the sewer has a uniform invert. As the work progresses, the interior of the sewer shall be cleared of all superfluous materials.

c. Before making pipe joints, all surfaces of the portions of the pipe to be joined shall be clean and dry. Lubricants, primers, and adhesives shall be used as recommended by the pipe manufacturer. The joints shall then be placed, fitted, joined, and adjusted to obtain the degree of water tightness required.

3.1.2.1 Trenches

Trenches shall be kept free of water and as dry as possible during bedding, laying, and jointing and for as long a period as required. When work is not
in progress, open ends of pipe and fittings shall be satisfactorily closed so that no trench water or other material will enter the pipe or fittings.

3.1.2.2 Backfill

As soon as possible after the joint is made, sufficient backfill material shall be placed along the pipe to prevent pipe movement off line or grade. Plastic pipe shall be completely covered to prevent damage from ultraviolet light.

3.1.2.3 Width of Trench

If the maximum width of the trench at the top of the pipe, as specified in Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS, is exceeded for any reason other than by direction, the Contractor shall install, at no additional cost to the Government, concrete cradling, pipe encasement, or other bedding required to support the added load of the backfill.

3.1.2.4 Jointing

Joints between different pipe materials shall be made as specified, using approved jointing materials.

3.1.2.5 Handling and Storage

Pipe, fittings and joint material shall be handled and stored in accordance with the manufacturer's recommendations. Storage facilities for plastic pipe, fittings, joint materials and solvents shall be classified and marked in accordance with NFPA 704, with classification as indicated in NFPA 49 and NFPA 325-1.

3.1.3 Leakage Tests

Lines shall be tested for leakage by low pressure air testing, infiltration tests or exfiltration tests, as appropriate. Low pressure air testing for PVC pipe shall be as prescribed in UBPPA UNI-B-6. Low pressure air testing procedures for other pipe materials shall use the pressures and testing times prescribed in ASTM C 828 and ASTM C 924, after consultation with the pipe manufacturer. Prior to infiltration or exfiltration tests, the trench shall be backfilled up to at least the lower half of the pipe. If required, sufficient additional backfill shall be placed to prevent pipe movement during testing, leaving the joints uncovered to permit inspection. Visible leaks encountered shall be corrected regardless of leakage test results. When the water table is 600 mm or more above the top of the pipe at the upper end of the pipeline section to be tested, infiltration shall be measured using a suitable weir or other device acceptable to the Contracting Officer. When the Contracting Officer determines that infiltration cannot be properly tested, an exfiltration test shall be made by filling the line to be tested with water so that a head of at least 600 mm is provided above both the water table and the top of the pipe at the upper end of the pipeline to be tested. The filled line shall be allowed to stand until the pipe has reached its maximum absorption, but not less than 4 hours. After absorption, the head shall be re-established. The amount of water required to maintain this water level during a 2-hour test period shall be measured. Leakage as measured by either the infiltration test or exfiltration test shall not exceed 94 L per 1 mm diameter per km of pipeline per day. When
leakage exceeds the maximum amount specified, satisfactory correction shall be made and retesting accomplished. Testing, correction, and retesting shall be made at no additional cost to the Government.

3.1.4 Test for Deflection

When flexible pipe is used, a deflection test shall be made on the entire length of the installed pipeline not less than 60 days after the completion of all work including the leakage test, backfill, and placement of any fill, grading, paving, concrete, or superimposed loads. Deflection shall be determined by use of a deflection device or by use of a spherical, spheroidal, or elliptical ball, a cylinder, or circular sections fused to a common shaft. The ball, cylinder, or circular sections shall have a diameter or minor diameter as applicable, of 92.5 percent of the inside diameter of the pipe. A tolerance of plus 0.5 percent will be permitted. The ball, cylinder, or circular sections shall be of a homogeneous material throughout, shall have a density greater than 1.0 as related to water at 4.0 degrees C, and shall have a surface brinell hardness of not less than 150. The device shall be center bored and through bolted with a 6 mm minimum diameter steel shaft having a yield strength of 480 MPa or more, with eyes at each end for attaching pulling cables. The eye shall be suitably backed with flange or heavy washer; a pull exerted on the opposite end of the shaft shall produce compression throughout the remote end of the ball, cylinder or circular section. Circular sections shall be spaced so that the distance from the external faces of the front and back sections shall equal or exceed the diameter of the circular section. Failure of the ball, cylinder, or circular section to pass freely through a pipe run, either by being pulled through or by being flushed through with water, shall be cause for rejection of that run. When a deflection device is used for the test in lieu of the ball, cylinder, or circular sections described, such device shall be approved prior to use. The device shall be sensitive to 1.0 percent of the diameter of the pipe being measured and shall be accurate to 1.0 percent of the indicated dimension. Installed pipe showing deflections greater than 7.5 percent of the normal diameter of the pipe, or 5 percent for RPMP, shall be retested by a run from the opposite direction. If the retest also fails, the suspect pipe shall be replaced at no cost to the Government.

3.2 CONCRETE CRADLE AND ENCASEMENT

The pipe shall be supported on a concrete cradle, or encased in concrete where indicated or directed.

3.3 INSTALLATION OF WYE BRANCHES

Wye branches shall be installed where sewer connections are indicated or where directed. Cutting into piping for connections shall not be done except in special approved cases. When the connecting pipe cannot be adequately supported on undisturbed earth or tamped backfill, the pipe shall be encased in concrete backfill or supported on a concrete cradle as directed. Concrete required because of conditions resulting from faulty construction methods or negligence by the Contractor shall be installed at no additional cost to the Government. The installation of wye branches in an existing sewer shall be made by a method which does not damage the integrity of the existing sewer. One acceptable method consists of removing one pipe section, breaking off the upper half of the bell of the next lower section and half of the running bell of wye section. After placing the new section, it shall be rotated so that the broken half of the bell will be at
the bottom. The two joints shall then be made with joint packing and cement mortar.

3.4 CONNECTING TO EXISTING MANHOLES

Pipe connections to existing manholes shall be made so that finish work will conform as nearly as practicable to the applicable requirements specified for new manholes, including all necessary concrete work, cutting, and shaping. The connection shall be centered on the manhole. Holes for the new pipe shall be of sufficient diameter to allow packing cement mortar around the entire periphery of the pipe but no larger than 1.5 times the diameter of the pipe. Cutting the manhole shall be done in a manner that will cause the least damage to the walls.

3.5 BUILDING CONNECTIONS

Building connections shall include the lines to and connection with the building waste drainage piping at a point approximately 1.5 m outside the building, unless otherwise indicated. Where building drain piping is not installed, the Contractor shall terminate the building connections approximately 1.5 m from the site of the building at a point and in a manner designated.

3.6 CLEANOUTS AND OTHER APPURTENANCES

Cleanouts and other appurtenances shall be installed where shown on the drawings or as directed by the Contracting Officer, and shall conform to the detail of the drawings.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53 (1998) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless

ASTM A 105/A 105M (1998) Carbon Steel Forgings for Piping Applications

ASTM A 106 (1997a) Seamless Carbon Steel Pipe for High-Temperature Service

ASTM A 234/A 234M (1997) Piping Fittings of Wrought Carbon Steel for Moderate and High-Temperature Service

ASTM B 88 (1996) Seamless Copper Water Tube

ASTM C 591 (1994) Unfaced Preformed Rigid Cellular Polysocyanurate Thermal Insulation

ASTM D 1248 (1984; R 1989) Polyethylene Plastics Molding and Extrusion Materials

ASTM D 1384 (1997a) Corrosion Test for Engine Coolants in Glassware

ASTM D 2564 (1996a) Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems

ASTM D 5686 (1995) "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Pipe Fittings, Adhesive Bonded Joint Type Epoxy Resin, for Condensate Return Lines
1.2 SYSTEM DESCRIPTION

The system consists of a buried prefabricated chilled water and low temperature hot water dual temperature distribution system including service connections to a point 150 mm inside of the building. The contract drawings show the specific arrangement of piping, sizes and grades of pipe, and other details. The system is designed for an operating pressure of 860 kPa and an operating temperature of 7 degrees C for chilled water.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Distribution System; GA

Detail drawings consisting of fabrication and assembly drawings, for all parts of the work in sufficient detail to check conformity with the requirements of the contract documents, prior to installation. Detail drawings shall also contain complete piping, wiring and schematic diagrams and any other details to demonstrate
that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout, method of compensation for pipe expansion and contraction, anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearances required for maintenance and operation. The drawings shall clearly identify any proposed deviations from the requirements of the contract documents.

SD-03 Product Data

Distribution System; FIO

Data composed of catalog cuts, brochures, circulars, specifications and product data, and printed information in sufficient detail and scope to verify compliance with the requirements of the contract documents.

SD-07 Certificates

Distribution System; FIO

The manufacturer's or system fabricator's written certification stating that the distribution system furnished meets all the requirements of this specification.

Welding; FIO

Prior to welding operations, a copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators.

SD-10 Operation and Maintenance Data

Distribution System; GA

Six copies of operation and 6 copies of maintenance manuals for the equipment furnished, 1 complete set prior to performance testing and the remainder upon acceptance. Operation manuals shall detail the step-by-step procedures required for equipment startup, operation, and shutdown. Operation manuals shall include the manufacturer's name, model number, parts list, and brief description of all equipment and their basic operating features. Maintenance manuals shall list routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides. Maintenance manuals shall include piping and equipment layout and simplified wiring and control diagrams of the equipment system as installed. Manuals shall be approved prior to the field performance testing.

1.4 DELIVERY AND STORAGE

After delivery to the jobsite, all materials and equipment shall be protected from anything which could cause damage to the material or equipment. Pipe shall be sealed at each end to keep the interior clean and free of dirt and debris. Fittings shall be kept together and their interior surfaces shall remain clean. Insulation shall be kept dry and clean.
1.5 FIELD MEASUREMENTS

The Contractor shall become familiar with all details of the work, verify all dimensions in the field and shall advise the Contracting Officer of any discrepancy before performing the work.

1.6 WELDING

Piping shall be welded in accordance with qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests and the tests shall be performed at the work site if practicable. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record. Structural members shall be welded in accordance with Section 05055 WELDING, STRUCTURAL.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

System components shall be standard products of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. The system shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site.

2.2 PIPING AND CASING MATERIALS

2.2.1 General

Metallic pressure pipe, fittings, and piping accessories shall conform to the requirements of ASME B31.1 and shall be types suitable for the temperature and pressure of the water.

2.2.2 Piping

2.2.2.1 Steel Pipe

Piping shall conform to ASTM A 53, Grade B, standard weight, black or to ASTM A 106, Grade B, standard weight.

2.2.2.2 Copper Tubing

Copper tubing shall conform to ASTM B 88, Type K or L.

2.2.3 Casings

2.2.3.1 Polyvinyl Chloride (PVC) Casing

PVC casings shall conform to ASTM D 1784, Class 12454-B with a minimum thickness equal to the greater of 1/100 the diameter of the casing or 1.50 mm.
2.2.3.2 Polyethylene (PE) Casing

Polyethylene casings shall conform to ASTM D 1248, Type III, Class C, Category 3 or 4, Grade P 34 with thickness as follows:

<table>
<thead>
<tr>
<th>Casing Diameter (in mm)</th>
<th>Minimum Thickness (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 and smaller</td>
<td>3</td>
</tr>
<tr>
<td>250 to 450</td>
<td>4</td>
</tr>
<tr>
<td>450 to 600</td>
<td>5</td>
</tr>
<tr>
<td>over 600</td>
<td>6</td>
</tr>
</tbody>
</table>

2.2.3.3 Reinforced Thermosetting Resin Pipe (RTRP) Casing

RTRP casing shall be of the same material as the pipe, with casing thickness as follows:

<table>
<thead>
<tr>
<th>Casing Diameter (in mm)</th>
<th>Minimum Thickness (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 and smaller</td>
<td>1.2</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>2.7</td>
</tr>
<tr>
<td>350</td>
<td>2.9</td>
</tr>
<tr>
<td>400 to 450</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>3.2</td>
</tr>
<tr>
<td>600</td>
<td>3.9</td>
</tr>
</tbody>
</table>

2.3 PIPING CONNECTIONS

2.3.1 Steel Pipe

Steel pipe smaller than 20 mm may be threaded; otherwise, all steel pipe shall be welded. Steel welding fittings shall conform to the requirements of ASTM A 105/A 105M or ASTM A 234/A 234M. Welding fittings shall also conform to ASME B16.9 for butt weld fittings and ASME B16.11 for socket-weld fittings. Long radius buttwelding elbows conforming to ASME B16.9 shall be used whenever space permits. Pipe Threads shall conform to ASME B1.20.1. Pipe to be threaded shall be schedule 80.

2.3.2 Copper Pipe

Copper pipe shall be brazed or connected using an insulated pipe coupling. Wrought copper or cast copper alloy solder joint pressure fittings shall conform to MSS SP-73. Insulated pipe couplings for copper pipe shall be cast bronze containing an O-ring seal on each end and shall be jacketed and sealed to act as an expansion joint.

2.3.3 Plastic Pipe Casing

a. Pipe, fittings, flanges, and couplings shall have end connections of the adhesive bell and spigot type. Threaded piping, including pipe, fittings, flanges, and couplings, will not be permitted.
b. Flanged Connections: Flat face flanged connections shall be provided between plastic piping and metal piping. Plastic flanges shall be suitable for connection to ASME Class 150 flanges.

c. RTRP Piping Sizes: When piping sizes other than 50, 75, 100, 150, and 200 mm are indicated, the next larger piping size shall be provided. The connecting system piping shall be of the same size or increased to meet the next size of RTRP piping.

2.3.3.1 General

Plastic fittings shall be made of the same type and grade of material as the piping to which they will be connected and shall be furnished by the manufacturer who supplies the pipe. Fittings shall have temperature and pressure ratings not less than those of the connecting piping.

2.3.3.2 Polyvinyl Chloride (PVC)

Polyvinyl chloride (PVC) pipe shall be solvent welded or connected using bell and spigot connections. The solvent used to connect fittings and pipe shall conform to the requirements of ASTM D 2564. Bell and spigot joints utilizing elastomeric seals shall conform to the requirements of ASTM D 3139. The elastomeric seals shall conform to ASTM F 477.

2.3.3.3 Reinforced Thermosetting Resin Plastic (RTRP)

Reinforced thermosetting resin plastic pipe shall be joined using fittings and adhesive furnished by the pipe manufacturer in accordance with ASTM D 5686.

2.4 END SEALS

2.4.1 General

Each preinsulated section of piping shall have a complete sealing of the insulation to provide a permanent water and vapor seal at each end of the preinsulated section of piping. Preinsulated sections of piping modified in the field shall be provided with an end seal which is equivalent to the end seals furnished with the preinsulated section of piping. End seals must be tested and certified in accordance with paragraph Casing and End Seal Testing and Certification.

2.4.2 Types

End seals provided shall be one of the following types:

a. Carrying the outer casing over tapered pipe insulation ends and extending it to the carrier pipe. Sufficient surface bonding area shall be provided between the casing and the carrier pipe.

b. Using specially designed molded caps made of polyethylene or rubber of standard manufactured thickness. A minimum 40 mm surface bonding area shall be provided between the cap and both the casing and carrier pipe.

c. Using elastomer-ring end seals designed and dimensioned to fit in the annular space between the casing and the carrier pipe.
d. Using a waterproof mastic seal vapor barrier over the exposed insulation ends.

e. Shrink sleeves.

2.4.3 Casing and End Seal Testing and Certification

Testing and certification procedures by an independent testing laboratory shall demonstrate that casings and end seals are capable of resisting penetration of water into the casing and insulation. The test shall be performed on the type of prefabricated system to be furnished. If more than one type of prefabricated system is to be used, then the tests shall be performed on each type. The test shall consist of hot and cold cycle testing followed by immersion in a water filled chamber with a head pressure. The hot and cold cycle testing shall consist of 14 days of temperature cycling. A fluid with a temperature of 5 degrees C shall circulate through the carrier pipe alternating every 24-hours with a fluid with a temperature of 95 degrees C circulating through the carrier pipe for a low temperature hot water or dual temperature service or 24 degrees for a chilled water service. While the hot and cold cycle test is being performed, the test sample is either buried or encased in dry bedding sand with a minimum of 300 mm of sand all around the test sample. The carrier pipe size of the test sample shall be 80 mm in diameter and shall be restrained during the test period. The insulation thickness shall not exceed the maximum thickness provided for the piping in the project. Transition time for temperature cycle testing shall not exceed 15 minutes in going from cold to hot and 30 minutes in going from hot to cold. The fluid in the carrier pipe may be water, oil or heat transfer fluid. Following the hot and cold cycling test, the test sample shall be immersed in a water filled chamber. The pressure on the highest point of the test sample shall not be less than 60 kPa subjected over the entire length of the 2.4 m test sample of prefabricated pipe. The water shall contain a dye penetrant, which will be used to check for end seal leakage. The pressure in the chamber must be held for not less than 48 hours. Upon completion of this pressure test, the test sample shall be cut open. With the use of a light that will readily show the presence of the dye that was in the water, the test sample shall be inspected. Evidence of the dye inside the test sample shall indicate that the end seal is not acceptable and cannot be certified.

2.5 INSULATION

2.5.1 Factory Applied Insulation

Prefabricated pipe and fittings shall be insulated in the factory. Foam insulation for prefabricated insulated pipe and fittings shall be polyurethane foam meeting the requirements of ASTM C 591 having a density not less than 32 kg per cubic meter. The polyurethane foam shall completely fill the annular space between the carrier pipe and the casing. Insulation thickness shall be a minimum of 20 mm. The insulation thermal conductivity factor shall not exceed the numerical value of 0.02 W/mK at 24 degrees C, when tested in accordance with ASTM C 518. Manufacturer shall certify that the insulated pipe is free of insulation voids.

2.5.2 Field Applied Insulation
Field applied insulation for fittings, and field casing closures, if required, and other piping system accessories shall be polyurethane matching the pipe insulation. Thickness shall match adjacent piping insulation thickness. Buried fittings and accessories shall have field applied polyurethane insulation to match adjacent piping and shall be protected with a covering matching the pipe casing. Shrink sleeves with a minimum thickness of 1.3 mm shall be provided over casing connection joints.

2.6 TREATED WATER

A 30 percent concentration by volume of industrial grade propylene glycol shall be provided for the system. Glycol shall be tested in accordance with ASTM D 1384 with less than 0.013 mm penetration per year for all system metals. The glycol shall contain corrosion inhibitors. Silicate based inhibitors shall not be used. The solution shall be compatible with pump seals, other elements of the system, and water treatment chemicals used within the system.

PART 3 EXECUTION

3.1 INSTALLATION

For all preinsulated, prefabricated systems, the Contractor shall obtain the services of a trained representative of the pipe system manufacturer to instruct the Contractor's work forces in the installation procedures to ensure that the system is installed in accordance with the manufacturer's published instructions and the plans and specifications. The manufacturer's representative shall be a person who regularly performs such duties for the manufacturer. The Contractor shall furnish the Contracting Officer a list of names of personnel trained and certified by the pipe system manufacturer in the installation of this system. Only personnel whose names appear on the list will be allowed to install the system. The list shall not be more than 1 year old.

3.2 PIPELINE SYSTEMS

3.2.1 Buried Insulated Systems

Buried insulated systems shall consist of carrier pipe, insulation, casing, end seals, fittings and accessories as specified.

3.3 INSTALLATION OF PIPELINE SYSTEMS

The piping system furnished shall be installed in accordance with the piping system manufacturer's instructions. Piping shall be installed without springing or forcing other than what has been calculated for cold spring. Pipe ends shall have burrs removed by reaming and shall be installed to permit free expansion and contraction without damage to joints or hangers. Nonmetallic pipe cut in the field shall be machined to fit couplings or joints and shall be coated or treated to match standard factory coated ends. Copper tubing shall not be installed in the same trench with ferrous piping materials. When nonferrous metallic pipe (e.g., copper tubing) crosses any ferrous piping material, a minimum vertical separation of 300 mm shall be maintained between pipes. Connections between different types of pipe and accessories shall be made with transition fittings approved by the manufacturer of the piping system.
3.3.1 Pitching of Horizontal Piping

Horizontal piping shall be pitched at a grade of not less than 40 mm in 1 m toward the drain points unless otherwise indicated.

3.3.2 Open Ends

Open ends of pipelines and equipment shall be properly capped or plugged during installation to keep dirt and other foreign matter out of the system.

3.3.3 Cutting Prefabricated Piping Sections

Where prefabricated pipe sections are field cut, new end seals similar to the factory applied end seal shall be provided and installed in accordance with the manufacturer's instructions.

3.3.4 Joints

3.3.4.1 Welded Joints

Welded joints between sections of pipe and between pipe and fittings shall be provided where specified or indicated.

3.3.4.2 Threaded Joints

Threaded joints shall not be used belowground. Joints shall be made tight with polytetrafluoroethylene tape applied to the male threads only. Not more than 3 threads shall show after the joint is made up.

3.3.4.3 Brazed Joints

Brazed joints for copper pipe and fittings shall conform to CDA Tube Handbook. Brazing alloys melting above 593.3 degrees C shall be utilized.

3.3.4.4 Nonmetallic Pipe Joints

Nonmetallic pipe joints shall be installed in accordance with the written instructions of the manufacturer.

3.3.5 Field Casing Closures

Field insulation and encasement of joints shall be accomplished after the visual and pressure tests specified are completed. Field insulation and encasement shall be in accordance with the manufacturer's written instructions. Thickness dimensions of the insulation and casing materials shall not be less than those of the adjoining prefabricated section. Insulating material shall be foamed in place polyurethane. Care should be taken to ensure that field closures are made under conditions of temperature and cleanliness required to produce a sound, continuous vapor barrier. A standard polyethylene heat shrink sleeve shall be installed over the casing and shall have a 150 mm minimum overlap at each end.

3.3.6 Markers for Underground Piping

Markers for underground piping shall be placed as indicated approximately 600 mm to the right of the distribution system and referenced to the flow direction in the supply line. The marker shall be concrete 150 mm square or
round section 600 mm long. The top edge of the marker shall have a minimum 10 mm chamfer all around. The letters CHW, LHW, and DTW shall be impressed or cast on the top of the markers to indicate the type of system that is being identified. Each letter shall be formed with a V-shaped groove and shall have a width of stroke at least 6 mm at the top and depth of 6 mm. The top of the marker shall protrude not more than 25 mm above finished grade.

3.4 EARTHWORK

Earthwork shall be performed in accordance with Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS.

3.5 ELECTRICAL WORK

Electrical work shall be performed in accordance with either Section 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND or Section 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL.

3.6 TESTING

Tests shall be conducted before, during, and after installation of the system. All instruments, equipment, facilities, and labor required to properly conduct the tests shall be provided by the Contractor. Test pressure gauges for a specific test shall have dials indicating not less than 1-1/2 times nor more than 2 times the test pressure. It shall be the Contractor's responsibility to make the pipe system workable at his expense.

3.6.1 Carrier Pipe Cleaning and Testing

Distribution piping shall be tested as required before backfilling and with all joints exposed. The area between joints may be backfilled as necessary to prevent pipe movement.

3.6.1.1 Cleaning Carrier Pipe

Prior to testing, the interior of the carrier pipe shall be cleaned of foreign materials by thorough flushing with clean water. Water shall be circulated at a velocity between 2 and 3 m/s for a minimum of 4 hours. If required, temporary and/or supplementary pumps shall be provided to ensure that required velocity is achieved. System strainers shall be cleaned after the flushing operation is complete. Temporary strainers shall be installed as required. After flushing, the water shall remain in the piping system for testing of the system. All air shall be removed from the system prior to starting the tests.

3.6.1.2 Hydrostatic Pressure Cycling and Tests

Hydrostatic pressure cycling shall have 4 cycles. Each cycle shall consist of a 10 minute period at 1000 kPa followed by a 5 minute period at a pressure less than 350 kPa. The next cycle shall begin immediately following the completion of the previous cycle. Pressure rise and drop shall not exceed 690 kPa per minute. The pressure gauge shall be located and the pressure measured at the opposite end of the system from where the pressure is applied. After completion of the hydrostatic pressure cycling, the first hydrostatic pressure test shall be performed. During the first hydrostatic pressure test, the system shall be proven tight at a pressure of
1-1/2 times the working pressure up to 1000 kPa. This pressure shall be held for a minimum of 1 hour. The method of pressurizing the system shall be disconnected from the system before starting the 1 hour pressure holding period. If the pressure cannot be held for the specified length of time, the cause of pressure loss shall be determined, corrected and the hydrostatic pressure cycling and first hydrostatic pressure test shall be repeated until the system can hold the required pressure for at least 1 hour. After successful completion of the first hydrostatic pressure test, the water shall be drained out of the piping system and the piping system filled with treated water as defined in paragraph TREATED WATER for the remaining tests and for permanent operation of the system. The hydrostatic pressure cycling and tests shall be repeated after the system has been filled with treated water, using the same test conditions and criteria.

3.6.1.3 Final Hydrostatic Test

After successful completion of the operational test, the system shall be pressurized to 1-1/2 times the working pressure up to 1000 kPa. This pressure shall be held for a minimum of 4 hours. Means of pressurizing shall be disconnected prior to the start of the 4-hour pressure holding period. If the pressure cannot be held for the specified length of time, the cause of the pressure loss shall be determined, corrected, and all of the hydrostatic pressure cycling and tests repeated.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN GAS ASSOCIATION (AGA)

AGA Manual

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI B109.2

(1992) Diaphragm Type Gas Displacement Meters (500 Cubic Feet per Hour Capacity and Over)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 2513

(1998) Thermoplastic Gas Pressure Pipe, Tubing, and Fittings

ASTM D 2683

(1995) Socket-Type Polyethylene Fittings for Outside Diameter-Controlled Polyethylene Pipe and Tubing

ASTM D 3261

ASTM D 3350

(1998a) Polyethylene Plastics Pipe and Fittings Materials

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B16.40

(1985; R 1994) Manually Operated Thermoplastic Gas Shutoffs and Valves in Gas Distribution Systems

ASME B31.8

CODE OF FEDERAL REGULATIONS (CFR)

49 CFR 192

Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards

COMMERCIAL ITEM DESCRIPTION (CID)
CID A-A-2962 (Rev A) Enamel, Alkyd (Metric)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

NACE INTERNATIONAL (NACE)

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (Without Lead and Chromate Pigments)

SSPC SP 1 (1982) Solvent Cleaning

SSPC SP 3 (1995) Power Tool Cleaning

SSPC SP 7/NACE 4 (1994) Brush-Off Blast Cleaning

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Pipe, Fittings, and Associated Materials; G, ED

Drawings shall contain complete schematic and piping diagrams and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout and anchorage of the system and appurtenances, and equipment relationship to other parts of the work including clearances for maintenance and operation.

SD-03 Product Data

Materials and Equipment; G, ED

A complete list of equipment and materials, including manufacturer's descriptive and technical literature, performance charts and curves, catalog cuts, and installation instructions, including, but not limited to the following:

a. Dielectric Unions and Flange Kits.
b. Meters.

c. Pressure Reducing Valves.

d. Regulators.

Spare Parts Data; G, RE

Spare parts lists for each different item of material and equipment specified, after approval of the detail drawings and not later than 3 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply.

Connections to Existing Lines; G, RE

Notification of the Contractor's schedule for making connections to existing gas lines, at least 10 days in advance.

Jointing Polyethylene and Fiberglass Piping; G, RE

A copy of qualified jointing procedures, training procedures, qualifications of trainer, and training test results for joiners and inspectors.

Connection and Abandonment Plan; G, RE

A copy of procedures for gas line tie in, hot taps, abandonment/removal or demolition, purging, and plugging as applicable in accordance with ASME B31.8.

SD-07 Certificates

Utility Work; G, RE

Certification from the Operating Agency/Utility Company that work for which the Utility is responsible has been completed.

Training; G, RE

A copy of each inspector's and jointer's training certificate with respective test results.

1.3 GENERAL REQUIREMENTS

1.3.1 Standard Products

Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Asbestos or products containing asbestos shall not be used. Equipment shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site. Valves, flanges, and fittings shall be marked in accordance with MSS SP-25.
1.3.2 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work.

1.3.3 Handling

Pipe and components shall be handled carefully to ensure a sound, undamaged condition. Particular care shall be taken not to damage pipe coating. No pipe or material of any kind shall be placed inside another pipe or fitting after the coating has been applied, except as specified in paragraph INSTALLATION. Plastic pipe shall be handled in conformance with AGA Manual.

PART 2 PRODUCTS

2.1 PIPE, FITTINGS, AND ASSOCIATED MATERIALS

2.1.1 Polyethylene Pipe, Tubing, Fittings and Joints

<table>
<thead>
<tr>
<th>SDR</th>
<th>Design Pressure at 23 degrees C (73 Degrees F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S = 8.62 MPa (1,250 psi)</td>
</tr>
<tr>
<td>11</td>
<td>550 kPa (80 psig)</td>
</tr>
<tr>
<td>13.5</td>
<td>415 kPa (60 psig)</td>
</tr>
<tr>
<td>17</td>
<td>345 kPa (50 psig)</td>
</tr>
<tr>
<td>21</td>
<td>275 kPa (40 psig)</td>
</tr>
<tr>
<td>26</td>
<td>207 kPa (30 psig)</td>
</tr>
</tbody>
</table>

S = 11 MPa (1,600 psi)

11 690 MPa (100 psig)
13.5 550 kPa (80 psig)
17 415 kPa (60 psig)
21 345 kPa (50 psig)
26 275 kPa (40 psig)

Polyethylene pipe, tubing, fittings and joints shall conform to ASTM D 3350 and ASTM D 2513, pipe designations PE 2406 and PE 3408, rated SDR 11 or less, as specified in ASME B31.8. Pipe sections shall be marked as required by ASTM D 2513. Butt fittings shall conform to ASTM D 3261 and socket fittings shall conform to ASTM D 2683. Fittings shall match the service rating of the pipe.

2.1.2 Insulating Joint Materials

Insulating joint materials shall be provided between flanged or threaded metallic pipe systems where shown to isolate galvanic or electrolytic action.

2.1.2.1 Threaded Joints

Joints for threaded pipe shall be steel body nut type dielectric type unions with insulating gaskets.

2.1.2.2 Flanged Joints
Joints for flanged pipe shall consist of full face sandwich-type flange insulating gasket of the dielectric type, insulating sleeves for flange bolts and insulating washers for flange nuts.

2.1.3 Gas Transition Fittings

Gas transition fittings shall be manufactured steel fittings approved for jointing steel and polyethylene pipe. Approved transition fittings are those that conform to AGA Manual requirements for transition fittings.

2.2 VALVES

Valves shall be suitable for shutoff or isolation service and shall conform to the following:

2.2.1 Polyethylene Valves

Polyethylene valves shall conform to ASME B16.40. Polyethylene valves, in sizes 15 mm to 150 mm, may be used with polyethylene distribution and service lines, in lieu of steel valves, for underground installation only.

2.3 PRESSURE REGULATORS

Regulators shall have ferrous bodies, shall provide backflow and vacuum protection, and shall be designed to meet the pressure, load and other service conditions.

2.3.1 Service Line Regulators

Pressure regulators for individual service lines shall have ferrous bodies. Regulator shall be capable of reducing distribution line pressure to pressures required for users. Regulators shall be provided where gas will be distributed at pressures in excess of 2.5 kPa. Pressure relief shall be set at a lower pressure than would cause unsafe operation of any connected user. Regulators for liquified petroleum gas shall be adjusted to 2.5 to 3 kPa. Pressure relief for liquified petroleum gas shall be set at 4 kPa. Regulator shall have single port with orifice diameter no greater than that recommended by the manufacturer for the maximum gas pressure at the regulator inlet. Regulator valve vent shall be of resilient materials designed to withstand flow conditions when pressed against the valve port. Regulator shall be capable of regulating downstream pressure within limits of accuracy and shall be capable of limiting the buildup of pressure under no-flow conditions to 50 percent or less of the discharge pressure maintained under flow conditions. Regulator shall have a self contained service regulator. Regulator pipe connections shall not exceed 50 mm size.

2.4 METERS

Meters shall conform to ANSI B109.2. Meters shall be pipe mounted and be provided with a strainer immediately upstream. Meters shall be suitable for accurately measuring and handling gas at pressures, temperatures, and flow rates indicated. Meters shall have a pulse switch initiator capable of operating up to speeds of 500 pulses per minute with no false pulses and shall require no field adjustments. Initiators shall provide the maximum number of pulses up to 500 per minute that is obtainable from the manufacturer. It shall provide not less than one pulse per 2.83 cubic meter of gas.
2.5 PROTECTIVE COVERING MATERIALS

Continuously extruded polyethylene and adhesive coating system materials shall conform to NACE RP0185, Type A.

PART 3 EXECUTION

3.1 EXCAVATION AND BACKFILLING

Earthwork shall be as specified in Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS.

3.2 SERVICE LINES AND EMERGENCY GAS SUPPLY CONNECTION

Service lines shall be constructed of materials specified for gas mains and shall extend from a gas main to and including the point of delivery within 1.5 meters of the building. The point of delivery is the meter set assembly. The service lines shall be connected to the gas mains as indicated. Where indicated, service line shall be provided with an isolation valve of the same size as the service line. The service lines shall be as short and as straight as practicable between the point of delivery and the gas main and shall not be bent or curved laterally unless necessary to avoid obstructions or otherwise permitted. Service lines shall be laid with as few joints as practicable using standard lengths of pipe. Shorter lengths shall be used only for closures. Polyethylene or fiberglass service lines shall not be installed aboveground except as permitted in ASME B31.8.

3.3 WORKMANSHIP AND DEFECTS

Pipe, tubing, and fittings shall be clear and free of cutting burrs and defects in structure or threading and shall be thoroughly brushed and blown free of chips and scale. Defective pipe, tubing, or fittings shall be replaced and shall not be repaired.

3.4 PROTECTIVE COVERING

3.4.1 Protective Covering for Underground Steel Pipe

Except as otherwise specified, protective coverings shall be applied mechanically in a factory or field plant especially equipped for the purpose. Valves and fittings that cannot be coated and wrapped mechanically shall have the protective covering applied by hand, preferably at the plant that applies the covering to the pipe. Joints shall be coated and wrapped by hand. Hand coating and wrapping shall be done in a manner and with materials that will produce a covering equal in thickness to that of the covering applied mechanically.

3.4.2 Protective Covering for Aboveground Piping Systems

Finish painting shall conform to the applicable paragraphs of Section 09900 PAINTING, GENERAL and as follows:

3.4.2.1 Ferrous Surfaces
Shop primed surfaces shall be touched up with ferrous metal primer same type paint as the shop primer. Surfaces that have not been shop primed shall be solvent-cleaned in accordance with SSPC SP 1. Surfaces that contain loose rust, loose mill scale, and other foreign substances shall be mechanically cleaned by power wire brushing in accordance with SSPC SP 3 or brush-off blast cleaned in accordance with SSPC SP 7/NACE 4 and primed with ferrous metal primer in accordance with SSPC Paint 25. Primed surfaces shall be finished with two coats of exterior alkyd paint conforming to CID A-A-2962 Type I, Class A, Grade B.

3.4.2.2 Nonferrous Surfaces

Nonferrous surfaces shall not be painted.

3.4.3 Protective Covering for Piping in Valve Boxes and Manholes

Piping in valve boxes or manholes shall receive protective coating as specified for underground steel pipe.

3.5 INSTALLATION

Gas distribution system and equipment shall be installed in conformance with the manufacturer's recommendations and applicable sections of ASME B31.8, AGA Manual and 49 CFR 192. Abandoning existing gas piping shall be done in accordance with ASME B31.8. Pipe shall be cut without damaging the pipe. Unless otherwise authorized, cutting shall be done by an approved type of mechanical cutter. Wheel cutters shall be used where practicable. On steel pipe 150 mm and larger, an approved gas-cutting-and-beveling machine may be used. Cutting of plastic pipe shall be in accordance with AGA Manual. Valve installation in plastic pipe shall be designed to protect the plastic pipe against excessive torsional or shearing loads when the valve is operated and from other stresses which may be exerted through the valve or valve box.

3.5.1 Installing Pipe Underground

Service lines shall be graded as indicated. Service lines shall have 485 mm minimum cover; and shall be placed on firmly compacted select material for the full length. Trench shall be excavated below pipe grade, bedded with bank sand, and compacted to provide full-length bearing. Laying the pipe on blocks to produce uniform grade will not be permitted. The pipe shall be clean inside before it is lowered into the trench and shall be kept free of water, soil, and all other foreign matter that might damage or obstruct the operation of the valves, regulators, meters, or other equipment. When work is not in progress, open ends of pipe or fittings shall be securely closed by expandable plugs or other suitable means. Minor changes in line or gradient of pipe that can be accomplished through the natural flexibility of the pipe material without producing permanent deformation and without overstressing joints may be made when approved. Changes in line or gradient that exceed the limitations specified shall be made with fittings. When cathodic protection is furnished, electrically insulated joints or flanges shall be provided. When polyethylene piping is installed underground, foil backed magnetic tape shall be placed above the pipe to permit locating with a magnetic detector. After laying of pipe and testing, trench shall be backfilled in accordance with Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITY SYSTEMS.
3.5.2 Installing Pipe Aboveground

Aboveground piping shall be protected against dirt and other foreign matter as specified for underground piping. Joints in steel pipe shall be welded; however, joints in pipe 40 mm in diameter and smaller may be threaded; joints may also be threaded to accommodate the installation of valves. Flanges shall be of the weld neck type to match wall thickness of pipe.

3.6 PIPE JOINTS

Pipe joints shall be designed and installed to effectively sustain the longitudinal pullout forces caused by the contraction of piping or superimposed loads.

3.6.1 Threaded Steel Joints

Threaded joints in steel pipe shall have tapered threads evenly cut and shall be made with UL approved graphite joint sealing compound for gas service or polytetrafluoroethylene tape applied to the male threads only. Caulking of threaded joints to stop or prevent leaks will not be permitted.

3.6.2 Polyethylene Pipe Jointing Procedures

Jointing procedures shall conform to AGA Manual. Indiscriminate heat fusion joining of plastic pipe or fittings made from different polyethylene resins by classification or by manufacturer shall be avoided if other alternative joining procedures are available. If heat fusion joining of dissimilar polyethylenes is required, special procedures are required. The method of heat fusion joining dissimilar polyethylene resins shall be tested in accordance with paragraph TESTS, subparagraph Destructive Tests of Plastic Pipe Joints.

3.6.3 Connections Between Metallic and Plastic Piping

Connections shall be made only outside, underground, and with approved transition fittings.

3.7 VALVE BOXES

Valve boxes of cast iron not less than 4.7 mm thick shall be installed at each underground valve except where concrete or other type of housing is indicated. Valve boxes shall be provided with locking covers that require a special wrench for removal. Wrench shall be furnished for each box. The word "gas" shall be cast in the box cover. When the valve is located in a roadway, the valve box shall be protected by a suitable concrete slab at least 1 square meter. When in a sidewalk, the top of the box shall be in a concrete slab 600 mm square and set flush with the sidewalk. Boxes shall be adjustable extension type with screw or slide-type adjustments. Valve boxes shall be separately supported, not resting on the pipe, so that no traffic loads can be transmitted to the pipe. Valves shall only be located in valve boxes or inside of buildings.

3.8 PRESSURE REGULATOR INSTALLATION

3.8.1 Service Line Regulators
A shutoff valve, meter set assembly, and service regulator shall be installed on the service line outside the building, 450 mm above the ground on the riser. An insulating joint shall be installed on the inlet side of the meter set assembly and service regulator and shall be constructed to prevent flow of electrical current. A 10 mm tapped fitting equipped with a plug shall be provided on both sides of the service regulator for installation of pressure gauges for adjusting the regulator. All service regulator vents and relief vents shall terminate in the outside air in rain and insect resistant fittings. The open end of the vent shall be located where gas can escape freely into the atmosphere, away from any openings into the building and above areas subject to flooding.

3.9 METER INSTALLATION

Meters shall be installed in accordance with ASME B31.8. Permanent gas meters shall be installed with provisions for isolation and removal for calibration and maintenance, and shall be suitable for operation in conjunction with an energy monitoring and control system.

3.10 CONNECTIONS TO EXISTING LINES

Connections between new work and existing gas lines, where required, shall be made in accordance with ASME B31.8, using proper fittings to suit the actual conditions. When connections are made by tapping into a gas main, the connecting fittings shall be the same size as the pipe being connected.

3.10.1 Connection to Government Owned/Operated Gas Lines

The Contractor shall provide connections to the existing gas lines in accordance with approved procedures. Deactivation of any portion of the existing system shall only be done at the valve location shown on the drawings. Reactivation of any existing gas lines will only be done by the Government. The Contractor's Connection and Abandonment Plan shall be submitted and approved prior to making any connections to existing gas lines. This plan shall include the Operating Agency's required procedures which may be obtained from the Contracting Officer. The Contractor shall notify the Contracting Officer, in writing, 10 days before connections to existing lines are to be made.

a. If facilities are abandoned in place, they shall be physically disconnected from the piping system. The open ends of all abandoned facilities shall be purged, capped, plugged or otherwise effectively sealed. Abandonment shall not be completed until it has been determined that the volume of gas or liquid hydrocarbons contained within the abandoned section poses no potential hazard. Air or inert gas may be used for purging, or the facility may be filled with water or other inert material. If air is used for purging, the Contractor shall ensure that a combustible mixture is not present after purging.

b. Service lines abandoned from the active mains shall be disconnected as close to the main as practicable.

c. All valves left in the abandoned segment shall be closed.

d. All aboveground valves, risers, and vault and valve box covers shall be removed. Vault and valve box voids shall be filled with suitable compacted backfill material.
3.11 TESTS

3.11.1 Destructive Tests of Plastic Pipe Joints

Each day, prior to making polyethylene heat fusion joints, a joint of each size and type to be installed that day shall be made by each person performing joining of plastic pipe that day and destructively tested. At least 3 longitudinal straps shall be cut from each joint. Each strap shall be visually examined, shall not contain voids or discontinuities on the cut surfaces of the joint area, and shall be deformed by bending, torque, or impact, and if failure occurs, it must not initiate in the joint area. If a joint fails the visual or deformation test, the qualified joiner who made that joint shall not make further field joints in plastic pipe on this job until that person has been retrained and requalified. The results of the destructive tests shall be recorded to include the date and time of the tests, size and type of the joints, ambient conditions, fusion iron temperature and names of inspectors and joiners.

3.11.2 Pressure and Leak Tests

The system of gas mains and service lines shall be tested after construction and before being placed in service using air as the test medium. The normal operating pressure for the system is 415 kPa. The test pressure is 80 kPa. Prior to testing the system, the interior shall be blown out, cleaned and cleared of all foreign materials. All meters, regulators, and controls shall be removed before blowing out and cleaning and reinsalled after clearing of all foreign materials. Testing of gas mains and service lines shall be done with due regard for the safety of employees and the public during the test. Persons not working on the test operations shall be kept out of the testing area while testing is proceeding. The test shall be made on the system as a whole or on sections that can be isolated. Joints in sections shall be tested prior to backfilling when trenches must be backfilled before the completion of other pipeline sections. The test shall continue for at least 24 hours from the time of the initial readings to the final readings of pressure and temperature. The initial test readings of the instrument shall not be made for at least 1 hour after the pipe has been subjected to the full test pressure, and neither the initial nor final readings shall be made at times of rapid changes in atmospheric conditions. The temperatures shall be representative of the actual trench conditions. There shall be no indication of reduction of pressure during the test after corrections have been made for changes in atmospheric conditions in conformity with the relationship \(T(1)P(2) = T(2)P(1) \), in which \(T \) and \(P \) denote absolute temperature and pressure, respectively, and the numbers denote initial and final readings. During the test, the entire system shall be completely isolated from all compressors and other sources of air pressure. Each joint shall be tested by means of soap and water or an equivalent nonflammable solution prior to backfilling or concealing any work. The testing instruments shall be approved by the Contracting Officer. All labor, materials and equipment for conducting the tests shall be furnished by the Contractor and shall be subject to inspection at all times during the tests. The Contractor shall maintain safety precautions for air pressure testing at all times during the tests.

-- End Of Section --
SECTION 02621

FOUNDATION DRAINAGE SYSTEM

01/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 33 (1999ael) Concrete Aggregates

ASTM D 3034 (1998) Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings

ASTM D 3212 (1996a) Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals

ASTM F 405 (1997) Corrugated Polyethylene (PE) Tubing and Fittings

ASTM F 667 (1997) Large Diameter Corrugated Polyethylene Tubing and Fittings

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Materials List; G, FIO.

List of all materials required and the manufacturer's data for each material listed 30 days prior to use on the project.

SD-04 Samples

Materials; G, RE.
Two randomly selected samples of each type of pipe and fitting, prior to delivery of materials to the site.

SD-07 Certificates

Materials; G, RE.

Certifications from the manufacturers attesting that materials meet specification requirements.

1.3 DELIVERY, STORAGE AND HANDLING

Materials placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Plastic pipe shall not be exposed to direct sunlight for more than 6 months from time of manufacturer to installation.

PART 2 PRODUCTS

2.1 MATERIALS

Pipe for foundation drainage system shall be of the type and size indicated. Appropriate transitions, adapters, or joint details shall be used where pipes of different types or materials are connected.

2.1.1 Plastic Pipe

Plastic pipe shall contain ultraviolet inhibitor to provide protection from exposure to direct sunlight.

2.1.1.1 Corrugated Polyethylene (PE) Drainage Pipe

The Contractor shall furnish ASTM F 405 heavy duty for pipe 80 to 150 mm in diameter inclusive in diameter. Fittings shall be pipe manufacturer's standard type and shall conform to the indicated specification.

2.1.1.2 Polyvinyl Chloride (PVC) Pipe

ASTM F 758, Type PS 46, ASTM D 3034, or ASTM F 949 with a minimum pipe stiffness of 317 kPa.

2.1.1.3 Circular Perforations in Plastic Pipe

Circular holes shall be cleanly cut, not more than 8 mm or less than 5 mm in diameter, and arranged in rows parallel to the longitudinal axis of the pipe. Perforations shall be approximately 75 mm apart, center-to-center, along rows. The rows shall be approximately 38 mm apart and arranged in a staggered pattern so that all perforations lie at the midpoint between perforations in adjacent rows. The rows shall be spaced over not more than 155 degrees of circumference. The spigot or tongue end of the pipe shall not be perforated for a length equal to the depth of the socket and perforations shall continue at uniform spacing over the entire length of the pipe. Manufacturer's standard perforated pipe which essentially meets these requirements may be used with prior approval of the Contracting Officer.
2.1.1.4 Slotted Perforations in Plastic Pipe

Circumferential slots shall be cleanly cut so as not to restrict the inflow of water and uniformly spaced along the length and circumference of the tubing. Width of slots shall not exceed 3 mm or be less than 0.79 mm. The length of individual slots shall not exceed 32 mm on 75 mm diameter tubing; 10 percent of the tubing inside nominal circumference on 100 to 200 mm diameter tubing; and 65 mm on 250 mm diameter tubing. Rows of slots shall be symmetrically spaced so that they are fully contained in quadrants of the pipe. Slots shall be centered in the valleys of the corrugations of profile wall pipe. The water inlet area shall be a minimum of 1058 square millimeters per linear meter of tubing. Manufacturer's standard perforated pipe which essentially meets these requirements may be used with prior approval of the Contracting Officer.

2.1.2 Fittings

Fittings shall be of compatible materials for pipe, of corresponding weight and quality, and as specified herein.

2.1.3 Cleanouts and Piping Through Walls

Cleanout pipe and fittings and piping through walls and footings shall be cast-iron soil pipe. Each cleanout shall have a brass ferrule and a cast-brass screw-jointed plug with socket or raised head for wrench.

2.1.4 Cover and Wrapping Materials for Open Joints in Drain Tile

Cover material may be tar paper, roofing paper, reinforced building paper, glass fiber fabric, or other similar type material. Wrapping material shall be 18-14 mesh, 0.25 mm diameter nonferrous wire cloth.

2.1.5 Bedding and Pervious Backfill for Foundation Drains

Bedding and pervious backfill shall be coarse aggregate conforming to ASTM C 33, size number 4.75 mm.

2.1.6 Filter Fabric

Filter fabric shall be a pervious sheet of polyester, nylon, or polypropylene filaments woven or otherwise formed into a uniform pattern with distinct and measurable openings. The filter fabric shall provide an equivalent opening size (AOS) no finer than the US Standard Sieve No. 120 and no coarser than the US Standard Sieve No. 70. AOS is defined as the number of the US Standard sieve having openings closest in size to the filter fabric openings. The fabric shall have a minimum physical strength of 445 N per meter in any direction when tested in accordance with ASTM D 5034 using the grab test method with 645.2 square mm jaws and a constant rate of travel of 304.8 mm per minute. Elongation at failure shall be between 30 and 70 percent. The fabric shall be constructed so that the filaments will retain their relative position with respect to each other. The edges of the fabric shall be salvaged or otherwise finished to prevent the outer material from pulling away from the fabric.
3.1 GENERAL REQUIREMENTS

3.1.1 Extent

Foundation drainage shall be furnished and installed as a complete system as shown.

3.1.2 Outlet Connections

Foundation pipe shall be connected to the storm drainage system as shown and specified in Section 02630 STORM-DRAINAGE SYSTEM.

3.1.3 Drainage Lines

Drainage lines shall be constructed of perforated pipe.

3.1.4 Outlet Lines

Outlet lines shall be constructed of closed-joint nonperforated pipe.

3.2 INSTALLATION

3.2.1 Trenching and Excavation

Required trenching and excavation shall be in accordance with Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Trenches shall be kept dry during installation of drainage system. Changes in direction of drain lines shall be made with 1/8 bends. Wye fittings shall be used at intersections.

3.2.2 Bedding

Graded bedding, minimum 150 mm in depth, shall be placed in the bottom of trench for its full width and length and compacted as specified prior to laying of foundation drain pipe. Each section shall rest firmly upon the bedding, through the entire length, with recesses formed for bell joints. Except for recesses for bell joints, the bedding shall fully support the lower quadrant of the pipe.

3.2.3 Pipe Laying

Drain lines shall be laid to true grades and alignment with a continuous fall in the direction of flow. Bells of pipe sections shall face upgrade. Interior of pipe shall be cleaned thoroughly before being laid. When drain lines are left open for connection to discharge lines, the open ends shall be temporarily closed and the location marked with wooden stakes. Perforated pipe shall be laid with perforations facing down. Any length that has had its grade or joints disturbed shall be removed and relaid at no additional cost to the Government. Perforated corrugated polyethylene drainage tubing and plastic piping shall be installed in accordance with manufacturer's specifications and as specified herein. Tubing and piping with physical imperfections shall not be installed.

3.2.4 Jointing

3.2.4.1 Perforated Pipes
Perforated types of drain pipes shall be laid with closed joints.

3.2.4.2 PVC Pipe

PVC pipe joints shall be in accordance with ASTM D 3034, ASTM D 3212, or ASTM F 949.

3.2.4.3 Corrugated Polyethylene

Corrugated polyethylene (PE) pipe joints shall be in accordance with ASTM F 405 or ASTM F 667.

3.2.5 Outlet Lines

The outlet end of drain lines connecting with an open gutter or outfall shall be finished as shown.

3.2.6 Backfilling

After joints and connections have been inspected and approved, the specified pervious backfill material shall be placed for the full width of the trench and full width between pipe and adjacent walls and 300 mm above the top of the pipe. The backfill shall be placed preventing displacement of or injury to the pipe or tile. A protective covering, as specified, shall be placed over the pervious backfill for the full width of the trench before regular backfill is placed. Backfill shall be compacted as specified in Section 02316 EXCAVATION, TRENCHING AND BACKFILLING FOR UTILITIES SYSTEMS.

3.2.7 Cleanouts

Cleanouts shall be provided in locations indicated. Cleanouts in unpaved areas shall be set in 305 by 305 by 102 mm concrete blocks.

-- End Of Section --
SECTION 02630

STORM-DRAINAGE SYSTEM

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AMERICAN RAILWAY ENGINEERING AND MAINTENANCE-OF-WAY ASSOCIATION (AREMA)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 48M (1994 el) Gray Iron Castings (Metric)
ASTM A 536 (1999el) Ductile Iron Castings
ASTM C 76M (1999a) Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe (Metric)
ASTM C 231 (1997el) Air Content of Freshly Mixed Concrete by the Pressure Method
ASTM C 270 (1997) Mortar for Unit Masonry
ASTM C 478M (1997) Precast Reinforced Concrete Manhole Sections (Metric)
ASTM C 789 (1998) Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers
ASTM C 850 (1998) Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers with Less Than 2 Ft. of Cover Subjected to Highway Loadings

ASTM C 924M (1998) Concrete Pipe Sewer Lines by Low-Pressure Air Test Method (Metric)

ASTM C 1103M (1994) Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines (Metric)

ASTM D 1557 (1998) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.))

ASTM D 1752 (1984; R 1996el) Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction

ASTM D 2167 (1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D 2922 (1996el) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

ASTM D 3017 (1988; R 1996el) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

ASTM F 1417 (1992; R 1998) Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Materials List; G, FIO

List of all materials required and the manufacturer's data for each material listed 30 days prior to use on the project.

Placing Pipe; G, RE
Printed copies of the manufacturer's recommendations for installation procedures of the material being placed, prior to installation.

SD-04 Samples

Pipe for Culverts and Storm Drains; G, RE

Samples of the following materials, before work is started: G.

SD-07 Certificates

Resin Certification; G, RE
Pipeline Testing; G, RE
Hydrostatic Test on Watertight Joints; G, RE
Determination of Density; G, RE
Frame and Cover for Gratings; G, RE

Certified copies of test reports demonstrating conformance to applicable pipe specifications, before pipe is installed. Certification on the ability of frame and cover or gratings to carry the imposed live load.

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery and Storage

Materials delivered to site shall be inspected for damage, unloaded, and stored with a minimum of handling. Materials shall not be stored directly on the ground. The inside of pipes and fittings shall be kept free of dirt and debris. Before, during, and after installation, plastic pipe and fittings shall be protected from any environment that would result in damage or deterioration to the material. The Contractor shall have a copy of the manufacturer's instructions available at the construction site at all times and shall follow these instructions unless directed otherwise by the Contracting Officer. Solvents, solvent compounds, lubricants, elastomeric gaskets, and any similar materials required to install plastic pipe shall be stored in accordance with the manufacturer's recommendations and shall be discarded if the storage period exceeds the recommended shelf life. Solvents in use shall be discarded when the recommended pot life is exceeded.

1.3.2 Handling

Materials shall be handled in a manner that ensures delivery to the trench in sound, undamaged condition. Pipe shall be carried to the trench, not dragged.

PART 2 PRODUCTS

2.1 PIPE FOR CULVERTS AND STORM DRAINS

Pipe for culverts and storm drains shall be of the sizes indicated and shall conform to the requirements specified.

2.1.1 Concrete Pipe
ASTM C 76M, Class III.

2.2 DRAINAGE STRUCTURES

2.2.1 Precast Reinforced Concrete Box

For highway loadings with 600 mm of cover or more or subjected to dead load only, ASTM C 789; for less than 600 mm of cover subjected to highway loading, ASTM C 850.

2.3 MISCELLANEOUS MATERIALS

2.3.1 Concrete

Unless otherwise specified, concrete and reinforced concrete shall conform to the requirements for 24 MPa concrete under Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. The concrete mixture shall have air content by volume of concrete, based on measurements made immediately after discharge from the mixer, of 5 to 7 percent when maximum size of coarse aggregate exceeds 37.5 mm. Air content shall be determined in accordance with ASTM C 231. The concrete covering over steel reinforcing shall not be less than 25 mm thick for covers and not less than 40 mm thick for walls and flooring. Concrete covering deposited directly against the ground shall have a thickness of at least 75 mm between steel and ground. Expansion-joint filler material shall conform to ASTM D 1751, or ASTM D 1752, or shall be resin-impregnated fiberboard conforming to the physical requirements of ASTM D 1752.

2.3.2 Mortar

Mortar for pipe joints, connections to other drainage structures, and brick or block construction shall conform to ASTM C 270, Type M, except that the maximum placement time shall be 1 hour. The quantity of water in the mixture shall be sufficient to produce a stiff workable mortar but in no case shall exceed 10 liters of water per sack of cement. Water shall be clean and free of harmful acids, alkalies, and organic impurities. The mortar shall be used within 30 minutes after the ingredients are mixed with water. The inside of the joint shall be wiped clean and finished smooth. The mortar head on the outside shall be protected from air and sun with a proper covering until satisfactorily cured.

2.3.3 Precast Reinforced Concrete Manholes

Precast reinforced concrete manholes shall conform to ASTM C 478M. Joints between precast concrete risers and tops shall be made with flexible watertight, rubber-type gaskets meeting the requirements of paragraph JOINTS.

2.3.4 Frame and Cover for Gratings

Frame and cover for gratings shall be cast gray iron, ASTM A 48M, Class 35B; cast ductile iron, ASTM A 536, Grade 65-45-12; or cast aluminum, ASTM B 26/B 26M, Alloy 356.O16. Weight, shape, size, and waterway openings for grates and curb inlets shall be as indicated on the plans.

2.3.5 Joints
2.3.5.1 Flexible Watertight Joints

a. Materials: Flexible watertight joints shall be made with plastic or rubber-type gaskets for concrete pipe and with factory-fabricated resilient materials for clay pipe. The design of joints and the physical requirements for plastic gaskets shall conform to AASHTO M 198, and rubber-type gaskets shall conform to ASTM C 443M. Factory-fabricated resilient joint materials shall conform to ASTM C 425. Gaskets shall have not more than one factory-fabricated splice, except that two factory-fabricated splices of the rubber-type gasket are permitted if the nominal diameter of the pipe being gasketed exceeds 1.35 m.

b. Test Requirements: Watertight joints shall be tested and shall meet test requirements of paragraph HYDROSTATIC TEST ON WATERTIGHT JOINTS. Rubber gaskets shall comply with the oil resistant gasket requirements of ASTM C 443M. Certified copies of test results shall be delivered to the Contracting Officer before gaskets or jointing materials are installed. Alternate types of watertight joint may be furnished, if specifically approved.

2.4 DOWNSPOUT BOOTS

Boots used to connect exterior downspouts to the storm-drainage system shall be of gray cast iron conforming to ASTM A 48M, Class 30B or 35B. Shape and size shall be as indicated.

2.5 RESILIENT CONNECTORS

Flexible, watertight connectors used for connecting pipe to manholes and inlets shall conform to ASTM C 923.

2.6 HYDROSTATIC TEST ON WATERTIGHT JOINTS

2.6.1 Concrete

A hydrostatic test shall be made on the watertight joint types as proposed. Only one sample joint of each type needs testing; however, if the sample joint fails because of faulty design or workmanship, an additional sample joint may be tested. During the test period, gaskets or other jointing material shall be protected from extreme temperatures which might adversely affect the performance of such materials. Performance requirements for joints in reinforced and nonreinforced concrete pipe shall conform to AASHTO M 198 or ASTM C 443M.

PART 3 EXECUTION

3.1 EXCAVATION FOR PIPE CULVERTS, STORM DRAINS, AND DRAINAGE STRUCTURES

Excavation of trenches, and for appurtenances and backfilling for culverts and storm drains, shall be in accordance with the applicable portions of Section 02316 "Excavation, Trenching, and Backfilling for Utilities Systems".

3.1.1 Trenching
The width of trenches at any point below the top of the pipe shall be not greater than the outside diameter of the pipe plus 600 mm to permit satisfactory jointing and thorough tamping of the bedding material under and around the pipe. Sheetings and bracing, where required, shall be placed within the trench width as specified. Contractor shall not overexcavate. Where trench widths are exceeded, redesign with a resultant increase in cost of strong pipe or special installation procedures will be necessary. Cost of this redesign and increased cost of pipe or installation shall be borne by the Contractor without additional cost to the Government.

3.1.2 Removal of Unstable Material

Where wet or otherwise unstable soil incapable of properly supporting the pipe, as determined by the Contracting Officer, is unexpectedly encountered in the bottom of a trench, such material shall be removed to the depth required and replaced to the proper grade with select granular material, compacted as provided in paragraph BACKFILLING. When removal of unstable material is due to the fault or neglect of the Contractor in his performance of shoring and sheeting, water removal, or other specified requirements, such removal and replacement shall be performed at no additional cost to the Government.

3.2 BEDDING

The bedding surface for the pipe shall provide a firm foundation of uniform density throughout the entire length of the pipe.

3.2.1 Concrete Pipe Requirements

When no bedding class is specified or detailed on the drawings, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform to the lowest one-fourth of the outside portion of circular pipe or to the lower curved portion of pipe arch for the entire length of the pipe or pipe arch. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall be not more than the length, depth, and width required for properly making the particular type of joint.

3.2.2 Plastic Pipe

Bedding for PVC and PE pipe shall meet the requirements of ASTM D 2321. Bedding, haunching, and initial backfill shall be either Class IB or II material.

3.3 PLACING PIPE

Each pipe shall be thoroughly examined before being laid; defective or damaged pipe shall not be used. Plastic pipe shall be protected from exposure to direct sunlight prior to laying, if necessary to maintain adequate pipe stiffness and meet installation deflection requirements. Pipelines shall be laid to the grades and alignment indicated. Proper facilities shall be provided for lowering sections of pipe into trenches. Lifting lugs in vertically elongated metal pipe shall be placed in the same vertical plane as the major axis of the pipe. Pipe shall not be laid in water, and pipe shall not be laid when trench conditions or weather are unsuitable for such work. Diversion of drainage or dewatering of trenches during construction shall be provided as necessary. Deflection of installed flexible pipe shall not exceed the following limits:
<table>
<thead>
<tr>
<th>TYPE OF PIPE</th>
<th>MAXIMUM ALLOWABLE DEFLECTION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Not less than 30 days after the completion of backfilling, the Government may perform a deflection test on the entire length of installed flexible pipe using a mandrel or other suitable device. Installed flexible pipe showing deflections greater than those indicated above shall be retested by a run from the opposite direction. If the retest also fails, the suspect pipe shall be replaced at no cost to the Government.

3.3.1 Concrete, Clay, PVC and Ribbed PVC Pipe

Laying shall proceed upgrade with spigot ends of bell-and-spigot pipe and tongue ends of tongue-and-groove pipe pointing in the direction of the flow.

3.3.2 Jacking Pipe Through Fills

Methods of operation and installation for jacking pipe through fills shall conform to requirements specified in Volume 1, Chapter 1, Part 4 of AREMA Manual.

3.4 JOINTING

3.4.1 Flexible Watertight Joints

Gaskets and jointing materials shall be as recommended by the particular manufacturer in regard to use of lubricants, cements, adhesives, and other special installation requirements. Surfaces to receive lubricants, cements, or adhesives shall be clean and dry. Gaskets and jointing materials shall be affixed to the pipe not more than 24 hours prior to the installation of the pipe, and shall be protected from the sun, blowing dust, and other deleterious agents at all times. Gaskets and jointing materials shall be inspected before installing the pipe; any loose or improperly affixed gaskets and jointing materials shall be removed and replaced. The pipe shall be aligned with the previously installed pipe, and the joint pushed home. If, while the joint is being made the gasket becomes visibly dislocated the pipe shall be removed and the joint remade.

3.5 DRAINAGE STRUCTURES

3.5.1 Manholes and Inlets

Construction shall be of reinforced concrete, plain concrete, brick, precast reinforced concrete, precast concrete segmental blocks, prefabricated corrugated metal, or bituminous coated corrugated metal; complete with frames and covers or gratings; and with fixed galvanized steel ladders where indicated. Pipe studs and junction chambers of prefabricated corrugated metal manholes shall be fully bituminous-coated and paved when the connecting branch lines are so treated. Pipe connections to concrete manholes and inlets shall be made with flexible, watertight connectors.

3.5.2 Walls and Headwalls
Construction shall be as indicated.

3.6 BACKFILLING

3.6.1 Backfilling Pipe in Trenches

After the pipe has been properly bedded, selected material from excavation or borrow, at a moisture content that will facilitate compaction, shall be placed along both sides of pipe in layers not exceeding 150 mm in compacted depth. The backfill shall be brought up evenly on both sides of pipe for the full length of pipe. The fill shall be thoroughly compacted under the haunches of the pipe. Each layer shall be thoroughly compacted with mechanical tampers or rammers. This method of filling and compacting shall continue until the fill has reached an elevation of at least 300 mm above the top of the pipe. The remainder of the trench shall be backfilled and compacted by spreading and rolling or compacted by mechanical rammers or tampers in layers not exceeding 60 millimeters. Tests for density shall be made as necessary to ensure conformance to the compaction requirements specified below. Where it is necessary, in the opinion of the Contracting Officer, that sheeting or portions of bracing used be left in place, the contract will be adjusted accordingly. Untreated sheeting shall not be left in place beneath structures or pavements.

3.6.2 Backfilling Pipe in Fill Sections

For pipe placed in fill sections, backfill material and the placement and compaction procedures shall be as specified below. The fill material shall be uniformly spread in layers longitudinally on both sides of the pipe, not exceeding 150 mm in compacted depth, and shall be compacted by rolling parallel with pipe or by mechanical tamping or ramming. Prior to commencing normal filling operations, the crown width of the fill at a height of 300 mm above the top of the pipe shall extend a distance of not less than twice the outside pipe diameter on each side of the pipe or 4 m, whichever is less. After the backfill has reached at least 300 mm above the top of the pipe, the remainder of the fill shall be placed and thoroughly compacted in layers not exceeding 200 mm.

3.6.3 Movement of Construction Machinery

When compacting by rolling or operating heavy equipment parallel with the pipe, displacement of or injury to the pipe shall be avoided. Movement of construction machinery over a culvert or storm drain at any stage of construction shall be at the Contractor's risk. Any damaged pipe shall be repaired or replaced.

3.6.4 Compaction

3.6.4.1 General Requirements

Cohesionless materials include gravels, gravel-sand mixtures, sands, and gravelly sands. Cohesive materials include clayey and silty gravels, gravel-silt mixtures, clayey and silty sands, sand-clay mixtures, clays, silts, and very fine sands. When results of compaction tests for moisture-density relations are recorded on graphs, cohesionless soils will show straight lines or reverse-shaped moisture-density curves, and cohesive soils will show normal moisture-density curves.
3.6.4.2 Minimum Density

Backfill over and around the pipe and backfill around and adjacent to drainage structures shall be compacted at the approved moisture content to the following applicable minimum density, which will be determined as specified below.

a. Under airfield and heliport pavements, paved roads, streets, parking areas, and similar-use pavements including adjacent shoulder areas, the density shall be not less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material, up to the elevation where requirements for pavement subgrade materials and compaction shall control.

b. Under unpaved or turfed traffic areas, density shall not be less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material.

c. Under nontraffic areas, density shall be not less than that of the surrounding material.

3.6.5 Determination of Density

Testing shall be the responsibility of the Contractor and performed at no additional cost to the Government. Testing shall be performed by an approved commercial testing laboratory or by the Contractor subject to approval. Tests shall be performed in sufficient number to ensure that specified density is being obtained. Laboratory tests for moisture-density relations shall be made in accordance with ASTM D 1557 except that mechanical tampers may be used provided the results are correlated with those obtained with the specified hand tamper. Field density tests shall be determined in accordance with ASTM D 2167 or ASTM D 2922. When ASTM D 2922 is used, the calibration curves shall be checked and adjusted, if necessary, using the sand cone method as described in paragraph Calibration of the referenced publications. ASTM D 2922 results in a wet unit weight of soil and when using this method ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall be checked along with density calibration checks as described in ASTM D 3017 or ASTM D 2922. Test results shall be furnished the Contracting Officer. The calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed.

3.7 PIPELINE TESTING

Lines shall be tested for leakage by low pressure air or water testing or exfiltration tests, as appropriate. Low pressure air testing for vitrified clay pipes shall conform to ASTM C 828. Low pressure air testing for concrete pipes shall conform to ASTM C 924M. Low pressure air testing for plastic pipe shall conform to ASTM F 1417. Low pressure air testing procedures for other pipe materials shall use the pressures and testing times prescribed in ASTM C 828 or ASTM C 924M, after consultation with the pipe manufacturer. Testing of individual joints for leakage by low pressure air or water shall conform to ASTM C 1103M. Prior to exfiltration tests, the trench shall be backfilled up to at least the lower half of the pipe. If required, sufficient additional backfill shall be placed to prevent pipe
movement during testing, leaving the joints uncovered to permit inspection. Visible leaks encountered shall be corrected regardless of leakage test results. When the water table is 600 mm or more above the top of the pipe at the upper end of the pipeline section to be tested, infiltration shall be measured using a suitable weir or other device acceptable to the Contracting Officer. An exfiltration test shall be made by filling the line to be tested with water so that a head of at least 600 mm is provided above both the water table and the top of the pipe at the upper end of the pipeline to be tested. The filled line shall be allowed to stand until the pipe has reached its maximum absorption, but not less than 4 hours. After absorption, the head shall be reestablished. The amount of water required to maintain this water level during a 2-hour test period shall be measured. Leakage as measured by the exfiltration test shall not exceed 60 liters per mm in diameter per kilometer of pipeline per day. When leakage exceeds the maximum amount specified, satisfactory correction shall be made and retesting accomplished. Testing, correcting, and retesting shall be made at no additional cost to the Government.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO T 96 (1990) Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 136 (1984, Rev. a) Sieve Analysis of Fine and Coarse Aggregates

ASTM D 1556 (1990) Density of Soil in Place by the Sand Cone Method

ASTM D 1557 (1978; R 1990) Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10-lb (4.54 kg) Rammer and 18-in. (457 mm) Drop

ASTM D 2216 (1990) Laboratory Determination of Water (Moisture) Content of Soil and Rock

ASTM D 2922 (1981; R 1990) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

ASTM D 3017 (1988) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

1.2 MEASUREMENT AND PAYMENT

Subsections 303.04 and 303.05 of the AHTD Standard Specifications for highway construction are not applicable. No separate payment will be made for work covered by this section and all costs in connection therewith shall be included in the contract price for the item or structure to which the work pertains.
PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Base Course

Base course material shall conform to the requirements for Class 7 material in Paragraph 303.02 of the Arkansas State Highway and Transportation Department "Standard Specifications for Highway Construction", except as specified herein. Reference hereinafter to the Arkansas State Highway and Transportation Department "Standard Specifications for Highway Construction" will be by the basic designation "Standard Specifications". The words "Chief Engineer" or "Engineer" in the Standard Specifications shall be interpreted to mean "Contracting Officer". In case of conflict between the Standard Specifications and this specification, this specification shall govern. Copies of the Standard Specifications may be obtained from the Arkansas State Highway and Transportation Department, Little Rock, Arkansas, for $8 per copy.

PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Subgrade

Subgrade shall be prepared as specified in SECTION: 02300 Earthwork of this specification.

3.2 APPLICATION OF BASE COURSE

The base course material shall be placed and compacted as specified in Paragraph 303.03 of the Standard Specifications except as specified herein. The compacted thickness of base course shall be as shown on the drawings.

3.2.1 Finishing

Compacted base course shall be finished to the lines, grades, and cross sections indicated on the drawings and to the smoothness specified hereafter.

3.2.2 Tolerances

The surface shall show no deviations in excess of 10 mm when tested with a 3 meter straightedge applied parallel with and at right angles to centerline of the base course area. Deviations exceeding 10 mm shall be corrected by wetting, grading, and recompacting high areas, or in low areas by scarifying to a depth of 100 mm, adding base material, watering and reshaping and compacting to specified tolerance and density.

3.3 TESTS

Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. Testing shall be performed by a commercial testing laboratory approved by the Contracting Officer or may be performed by the Contractor when approved in writing by the Contracting Officer. Frequency and methods of testing shall be as specified hereafter. Test locations will be designated by the Contracting Officer. Retesting by the Contractor shall be required as directed by the Contracting Officer in reworked areas. Test results must be furnished the Contracting Officer as soon as test results are available.
3.3.1 Sieve Analysis

Sieve analysis will be made in accordance with ASTM C 117 and ASTM C 136. One sieve analysis shall be made for each 500 cubic meters or less of base course incorporated into the work.

3.3.2 Density Requirements

Density of base course shall be 100 percent of the maximum density obtained by the Modified Compaction Test in ASTM D 1557, Method D.

3.3.3 Field Density Determination

Field density determination shall be made by the sand displacement method in accordance with ASTM D 1556 or nuclear method in accordance with ASTM D 2922. One field density determination shall be made on the compacted material for each 1,000 square meters or less of compacted material.

3.3.3.1 If ASTM Method D 2922 is used, at least one out of every ten (10) densities or less shall be determined by the sand displacement method.

3.3.3.2 If the ASTM Method D 2922 is used, the calibration curves shall be checked and adjusted if necessary by the procedure described in paragraphs 4.2, 4.2.1, 4.2.2, and 4.2.3 of ASTM D 2922. ASTM D 2922 results in a wet unit weight of soil when using this method and ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gages shall also be checked along with the density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gages shall be made at the beginning of a job and at intervals as directed by the Contracting Officer.

3.3.4 Maximum Density

Maximum density at optimum moisture shall be determined in the laboratory in accordance with ASTM D 1557, Method D. For each sand cone density performed a moisture content shall be determined in accordance with ASTM D 2216.

3.3.5 Liquid Limit and Plasticity Index

One liquid limit and one plasticity index shall be determined in accordance with ASTM D 4318, Wet Preparation Method for approval of source. Certified tests run by plant personnel or by the Arkansas State Highway and Transportation Department during the present construction season are acceptable.

3.3.6 Los Angeles Abrasion

Percent of wear of stone shall be determined by the Los Angeles Test specified in AASHTO T 96. One test shall be performed for approval of source. Certified test run by plant personnel or by the Arkansas State Highway and Transportation Department during the present construction season is acceptable.

--- End of Section ---
Solicitation No. DACA03-02-B-0009

SECTION 02741

HOT-MIX ASPHALT (HMA) FOR ROADS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 17 (1994) Mineral Filler for Bituminous Paving Mixtures
AASHTO M 20 (1994) Penetration Graded Asphalt Cement
AASHTO M 226 (1994) Viscosity Graded Asphalt Cement
AASHTO T 27 (1994) Sieve Analysis of Fine and Coarse Aggregates
AASHTO T 30 (1994) Mechanical Analysis of Extracted Aggregate
AASHTO T 164 (1994) Quantitative Extraction of Bitumen From Bituminous Paving Mixtures
AASHTO T 166 (1994) Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT (AHTD)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 2950 (1991) Density of Bituminous Concrete in Place by Nuclear Method

1.2 MEASUREMENT AND PAYMENT

Subsections 407.05 and 407.06 of the AHTD Standard Specifications for Highway Construction are not applicable.

1.3 STANDARD SPECIFICATIONS

Asphaltic concrete hot mix surface course shall conform to the provisions of Section 407 - Asphalt Concrete Hot Mix Surface Course, Section 409 - Materials and Equipment for Asphalt Concrete Hot Mix Binder and Surface Courses, and Section 410 - Construction Requirements for Asphalt Concrete Hot Mix Binder and Surface Courses of the Arkansas State Highway and Transportation Department "Standard Specifications for Highway Construction", except as specified herein.

SECTION 02741 Page 1
Reference hereinafter to the Arkansas State Highway and Transportation Department "Standard Specifications for Highway Construction" will be by the basic designation "Standard Specifications". The words "Chief Engineer" or "Engineer" in the Standard Specifications shall be interpreted to mean "Contracting Officer". In case of conflict between the Standard Specifications and this specification, this specification shall govern. Copies of the Standard Specifications may be obtained from the Arkansas State Highway and Transportation Department, Little Rock, Arkansas, for $8 per copy.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

 SD-01, Data
 Physical Characteristics of Asphalt Cement.

The specific physical characteristics of the asphalt cement grade proposed shall be submitted to the Contracting Officer for approval.

 SD-13, Certificates
 Mix Designs (Contractor and Job).

The Contractor shall submit the job mix formula for asphaltic concrete to the Contracting Officer for approval.

 SD-13, Certificates.

The Contractor shall furnish certificates of compliance with the requirements of penetration grade 60-70 asphalt cement in Table 1 of AASHTO M 20 for each lot of asphalt cement used in the production of asphalt mixture used in this contract. If the Contractor furnishes the viscosity-graded asphalt cement as permitted in paragraph: Asphalt Cement, he shall submit certificates of compliance for that material.

1.5 EQUIPMENT

1.5.1 General Requirements

Batching plant, rollers and mechanical spreading and finishing equipment shall be as specified in Subsections 409.03 through 409.05 of the Standard Specifications. The pavement lay-down machine shall be equipped with an automatic screed control.

1.5.2 Scales

Scales shall be standard truck scales of the beam type and of sufficient size and capacity to accommodate all trucks to be used by the Contractor in handling bituminous mixtures. Scales shall be tested and approved by an inspector of the State Inspection Bureau, charged with scale inspection within the State in which the project is located. If such testing by an inspection bureau is not available, the scales will be tested by the Contractor in the presence of the Contracting Officer. The necessary number of standard weights for testing the scales shall be on hand at all times. Scales shall meet the minimum requirements of the State Inspection Bureau.
PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Mineral Aggregate

Mineral aggregate shall be as specified in Sections 407 and 409 of the Standard Specifications for Type 2 or Type 3 asphaltic concrete hot mix surface course, except as specified herein.

2.1.2 Asphalt Cement

The asphalt cement shall be as specified for penetration grade 60-70 in Table 1 of AASHTO M 20. The Contractor may furnish a viscosity graded asphalt cement. The viscosity graded asphalt cement furnished shall be in accordance with AASHTO M 226 as revised herein. Specific physical requirements to be met are those set forth in Table II of AASHTO M 226 with the following added grade.

<table>
<thead>
<tr>
<th>TEST</th>
<th>VISCOSITY GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, 60C (140F), poises</td>
<td>3000 ± 600</td>
</tr>
<tr>
<td>Viscosity, 135C (274F), cs-minimum</td>
<td>350</td>
</tr>
<tr>
<td>Penetration, 25c (77F), 100g, 5 sec.-minimum</td>
<td>55</td>
</tr>
<tr>
<td>Flash Point, COC, C(F)-minimum</td>
<td>450</td>
</tr>
<tr>
<td>Solubility in trichloroethylene, percent-minimum</td>
<td>99.0</td>
</tr>
</tbody>
</table>

Tests on Residue from Thin-Film Oven Test:
- Loss on heating, percent-maximum: 0.5
- Viscosity, 60C (140F), poises-maximum: 12,000
- Ductility, 25C (77F), 5 cm/min., cm-minimum: 100
- Spot Test: Negative

Change the requirement on Ductility for Grades AC-10, AC-20, and AC-40 to 100 cm minimum.

If required, the asphalt cement shall contain a heat-stable antistripping additive. The additive shall be one approved by the Contracting Officer. It shall be added at the rate specified by the Contracting Officer as determined by laboratory analysis, depending on the brand name, concentration of the additive and laboratory mix design. The antistripping additive shall be added either to the supply fill line as the tanker is filled at the refinery or at the hot mix plant in a method approved by the Contracting Officer. In either case, the additive shall be thoroughly mixed with the asphalt cement. The antistripping additive will not be paid for directly, but will be considered subsidiary to the item of asphalt cement.

2.2 JOB MIX MATERIALS

2.2.1 Approved Source

If the paving material is to be furnished from an existing plant that has been furnishing material meeting the requirements of Section 407 of the Standard Specifications for work for the Arkansas State Highway and Transportation Department, the state-approved job mix formula for Type 2 Asphaltic Concrete Hot Mix Surface Course may be used. This job mix formula shall be submitted to the Contracting Officer for approval.
2.2.2 New Source

If the paving material is to be furnished from a new plant, or an existing plant that has not been furnishing material meeting requirements of Section 407 of the Standard Specifications for work for the Arkansas State Highway and Transportation Department, the job-mix formula shall be designed by the Contractor and furnished to the Contracting Officer for approval prior to use. The job-mix formula will meet the requirements of the Standard Specifications.

PART 3 EXECUTION

3.1 APPLICATION OF ASPHALTIC CONCRETE SURFACE COURSE

Type 2 asphaltic concrete surface course shall be laid to the typical section or sections indicated on the drawings or specified for the particular road and in accordance with Section 410 of the Standard Specifications or as otherwise specified herein.

3.1.1 Automatic Screed Control

The automatic screed control system shall be used for laying sections of roadway but will not be required on parking areas, camping turnouts, intersections, short loops, or nontypical width sections of roadways.

3.1.2 Establishment of Rolling Pattern

The Contractor shall establish a rolling pattern that will produce the required density at the beginning of pavement operations. The Contractor shall lay a strip of the required pavement, not to exceed 100 feet in length, and use a nuclear density gauge to determine the number of roller coverages necessary to achieve the required density. No further paving shall be performed until an acceptable rolling pattern is established. If the density achieved is unacceptable, then the compaction method or equipment shall be changed and a new rolling pattern established. Also, a new rolling pattern shall be established after any change in the job mix. Final acceptance of the pavement will be based on density tests on samples taken from the finished pavement.

3.2 TESTING

Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. Testing shall be performed by a commercial testing laboratory approved by the Contracting Officer or may be performed by the Contractor when approved in writing by the Contracting Officer. Tests to be performed shall be as specified or as otherwise specified by the Contracting Officer.

3.2.1 Density of Pavement

One sample for density determination shall be sawed or cored from the finished pavement for each 200 tons or less of bituminous mix placed each day of this contract and tested in accordance with AASHTO T166. Sample locations shall be selected by the Contracting Officer. Additional samples and testing may be required if any sample fails to meet density requirements.

3.2.2 Fine and Coarse Aggregates

Fine and coarse aggregates shall be tested once for each day of operation in accordance with AASHTO T11, T27, and T30, as applicable.
3.2.3 Mineral Filler for Bituminous Paving Mixtures

Mineral filler shall be tested once for each day of operation in accordance with AASHTO M17.

3.2.4 Extraction Tests on Bituminous Mixtures

One extraction test on the paving mixture shall be made in accordance with AASHTO T 164 for each day of operation.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 977 (1991) Emulsified Asphalt

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

1.2 MEASUREMENT AND PAYMENT

Subsections 401.05 and 401.06 of the Standard Specifications are not applicable.

1.3 STANDARD SPECIFICATIONS

Bituminous prime and tack coat shall conform to the provisions of Section 401 - Prime and Tack Coats and Emulsified Asphalt in Base Course, of the Arkansas State Highway and Transportation Department "Standard Specifications for Highway Construction", except as specified herein. Reference hereinafter to the Arkansas State Highway and Transportation Department "Standard Specifications for Highway Construction" will be by the basic designation "Standard Specifications". The words "Chief Engineer" or "Engineer" in the Standard Specifications shall be interpreted to mean "Contracting Officer". In case of conflict between the Standard Specifications and this specification, this specification shall govern. Copies of the Standard Specifications may be obtained from the Arkansas State Highway and Transportation Department, Little Rock, Arkansas, for $8 per copy.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-13, Certificates.

Manufacturer's certificates with specified tests attesting that the bituminous material meets the specified requirements.
PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

2.1.1 Prime Coat

Materials and equipment shall conform to Section 403 of the Standard Specifications. Asphalt for prime coat shall conform to ASTM D 2027, Designation MC-30.

2.1.2 Tack Coat

Materials and equipment shall conform to Section 403 of the Standard Specifications. Bituminous tack coat shall consist of asphalt emulsion conforming to ASTM D 977, Grade SS-1, anionic or Grade CSS-1, cationic, diluted with water in a 1 to 1 ratio.

2.2 TESTS

All costs incurred in testing materials shall be borne by the Contractor.

PART 3 EXECUTION

3.1 APPLICATION

3.1.1 Tack Coat

Tack coat shall be applied as specified in the Standard Specifications.

3.1.2 Prime Coat

Bituminous material for the prime coat shall be applied in quantities of not less than 0.70 liter nor more than 1.80 liters per square meter of pavement surface. The exact quantities within the range specified, which may be varied to suit field conditions, will be determined by the Contracting Officer.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ACI INTERNATIONAL (ACI)

ACI 301 (1996) Standard Specification for Structural Concrete

ACI 305R (1991) Hot Weather Concreting

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 184/A 184M (1996) Fabricated Deformed Steel Bar Mats for Concrete Reinforcement

ASTM A 615/A 615M (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement

ASTM C 31/C 31M (1996) Making and Curing Concrete Test Specimens in the Field

ASTM C 33 (1997) Concrete Aggregates

ASTM C 39 (1996) Compressive Strength of Cylindrical Concrete Specimens

ASTM C 94 (1997) Ready-Mixed Concrete

ASTM C 143 (1990a) Slump of Hydraulic Cement Concrete

ASTM C 231 (1997) Air Content of Freshly Mixed Concrete by the Pressure Method

1.2 SYSTEM DESCRIPTION

This section is intended to stand alone for construction of concrete pavement. However, where the construction covered herein interfaces with other sections, the construction at each interface shall conform to the requirements of both this section and the other section, including tolerances for both.

1.3 ACCEPTABILITY OF WORK

The pavement will be accepted on the basis of tests made by the Government and by the Contractor or its suppliers, as specified herein. The Government may, at its discretion, make check tests to validate the results of the Contractor's testing. Concrete samples shall be taken by the Contractor at the placement to determine the slump, air content, and strength of the concrete. Test cylinders shall be made for determining conformance with the strength requirements of these specifications and, when required, for determining the time at which pavements may be placed into service. All air content measurements shall be determined in accordance with ASTM C 231. All slump tests shall be made in accordance with ASTM C 143. All test cylinders shall be 150 by 300 mm cylinders and shall be fabricated in accordance with
ASTM C 192/C 192M, using only steel molds, cured in accordance with ASTM C 31/C 31M, and tested in accordance with ASTM C 39. A strength test shall be the average of the strengths of two cylinders made from the same sample of concrete and tested at 28 days. The Contractor shall furnish all materials, labor, and facilities required for molding, curing, testing, and protecting test specimens at the site and in the laboratory.

1.3.1 Evaluation Sampling

Sampling, testing, and mixture proportioning shall be performed by a commercial Testing Laboratory, conforming with ASTM C 1077. The individuals who sample and test concrete and concrete constituents shall be certified as American Concrete Institute (ACI) Concrete Field Testing Technicians, Grade I. The individuals who perform the inspection of concrete shall be certified as ACI Concrete Construction Inspector, Level II. All mix design, weekly quality control reports, smoothness reports, and project certification reports shall be signed by a Registered Engineer.

1.3.2 Surface Testing

Surface testing for surface smoothness, and plan grade shall be performed as indicated below by the Testing Laboratory. The measurements shall be properly referenced in accordance with paving lane identification and stationing, and a report given to the Government within 24 hours after measurement is made. A final report of surface testing, signed by a Registered Engineer, containing all surface measurements and a description of all actions taken to correct deficiencies, shall be provided to the Government upon conclusion of surface testing.

1.3.2.1 Surface Smoothness Requirements

The finished surfaces of the pavements shall have no abrupt change of 3 mm or more, and all pavements shall be within the tolerances specified in Table 1 when checked with the straightedge.

<table>
<thead>
<tr>
<th>Pavement Category</th>
<th>Direction of Testing</th>
<th>Tolerances mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roads and Streets</td>
<td>Longitudinal</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>6.5</td>
</tr>
</tbody>
</table>

1.3.2.2 Surface Smoothness Testing Method

The surface of the pavement shall be tested with the straightedge to identify all surface irregularities exceeding the tolerances specified above. The entire area of the pavement shall be tested in both a longitudinal and a transverse direction on parallel lines approximately 4.5 m apart. The straightedge shall be held in contact with the surface and moved ahead one-half the length of the straightedge for each successive measurement. The amount of surface irregularity shall be determined by placing the straightedge on the pavement surface and allowing it to rest.
upon the two highest spots covered by its length and measuring the maximum gap between the straightedge and the pavement surface, in the area between these two high points.

1.3.3 Plan Grade Testing and Conformance

The finished surface of the pavements shall conform, within the tolerances shown in Table 1, to the lines, grades, and cross sections shown. The finished surface of new abutting pavements shall coincide at their juncture. The finished surface of airfield runway, taxiway, and apron pavements shall vary not more than 12 mm above or below the plan grade line or elevation indicated. The surfaces of other pavements shall vary not more than 18 mm above or below the plan grade line or elevation indicated. Each pavement category shall be checked by the Contractor for conformance with plan grade requirements by running lines of levels at intervals to determine the elevation at each joint intersection.

1.4 PRECONSTRUCTION TESTING OF MATERIALS

The Contractor shall not be entitled to any additional payment or extension of time because of delays caused by sampling and testing additional sources, or samples, necessitated by failure of any samples. Aggregates shall be sampled and tested by the Test Laboratory and shall be representative of the materials to be used for the project. Test results, signed by a Registered Engineer, shall be submitted 45 days before commencing paving. No aggregate shall be used unless test results show that it meets all requirements of these specifications, including compliance with ASTM C 33 and deleterious materials limitations.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Equipment; G, RE

Manufacturer's literature on the concrete plant; mixing equipment; hauling equipment; placing and finishing, and curing equipment; at least 7 days prior to start of paving.

Paving; G, RE

Paving Schedules at least 7 days prior to start of paving.

Mixture Proportions; G, RE

The report of the Contractor's mixture proportioning studies showing the proportions of all ingredients and supporting information on aggregate and other materials that will be used in the manufacture of concrete, at least 14 days prior to commencing concrete placing operations.
1.6 EQUIPMENT

1.6.1 Batching and Mixing

The batching plant shall conform to NRMCA CPMB 100, the equipment requirements in ASTM C 94, and as specified. Water shall not be weighed or measured cumulatively with another ingredient. All concrete materials batching shall meet ASTM C 94 requirements. Mixers shall be truck mixers. Batching, mixers, mixing time, permitted reduction of mixing time, and concrete uniformity shall meet the requirements of ASTM C 94, and shall be documented in the initial weekly QC Report.

1.6.2 Transporting Equipment

Transporting equipment shall be in conformance with ASTM C 94 and as specified herein. Concrete shall be transported to the paving site in rear-dump trucks, in truck mixers designed with extra large blading and rear opening specifically for low slump concrete, or in agitators. Bottom-dump trucks shall not be used for delivery of concrete.

1.6.3 Delivery Equipment

When concrete transport equipment cannot operate on the paving lane, side-delivery transport equipment consisting of self-propelled moving conveyors shall be used to deliver concrete from the transport equipment and discharge it in front of the paver. Front-end loaders, dozers, or similar equipment shall not be used to distribute the concrete.

1.6.4 Curing Equipment

Equipment for curing is specified in paragraph CURING.

1.6.5 Texturing Equipment

Texturing equipment shall be as specified below.

1.6.5.1 Deep Texturing Equipment

Texturing equipment shall consist of a stiff bristled broom forming a drag at least 1.2 m long. This drag shall be mounted in a wheeled frame spanning the paving lane and constructed to mechanically pull the drag in a straight line across the paving lane perpendicular to the centerline.

1.6.6 Sawing Equipment

Equipment for sawing joints and for other similar sawing of concrete shall be standard diamond-tip-bladed concrete saws mounted on a wheeled chassis.

1.6.7 Straightedge

The Contractor shall furnish and maintain at the job site one 4 m straightedge for testing concrete surface smoothness. The straightedge shall be constructed of aluminum or magnesium alloy and shall have blades of box or box-girder cross section with flat bottom, adequately reinforced to insure rigidity and accuracy. Straightedges shall have handles for operation on the pavement.
PART 2 PRODUCTS

2.1 CEMENTITIOUS MATERIALS

Cementitious materials shall be portland cement and pozzolan and shall conform to appropriate specifications listed below.

2.1.1 Portland Cement

Portland cement shall conform to ASTM C 150 Type II, low-alkali.

2.1.2 Pozzolan (Fly Ash)

Fly ash shall conform to ASTM C 618 Class F, including all the supplementary optional physical requirements.

2.2 AGGREGATES

Aggregates shall consist of clean, hard, uncoated particles meeting the requirements of ASTM C 33, including deleterious materials, abrasion loss and soundness requirements of ASTM C 33, and other requirements specified herein.

In addition to the grading requirements specified for coarse aggregate and for fine aggregate, the combined aggregate grading shall meet the following requirements.

a. If necessary, a blending aggregate shall be used to meet the required combined grading. This blending aggregate shall be batched separately. The combined grading of all aggregates used, in the proportions selected, shall be computed on the basis of cumulative percent retained on each sieve specified for fine and coarse aggregate.

b. The materials selected and the proportions used shall be such that when the Coarseness Factor (CF) and the Workability Factor (W) are plotted on a diagram as described in d. below, the point thus determined shall fall within the parallelogram described therein.

c. The Coarseness Factor (CF) shall be determined from the following equation:

\[CF = \frac{\text{cumulative percent retained on the 9.5 mm sieve}}{\text{cumulative percent retained on the 2.36 mm sieve}} \times 100 \]

The Workability Factor (W) is defined as the cumulative percent passing the 2.36 mm sieve. However, W shall be adjusted, upwards only, by 2.5 percentage points for each 42 kg of cementitious material per cubic meter greater than 335 kg per cubic meter.

d. A diagram shall be plotted using a rectangular scale with W on the Y-axis with units from 20 (bottom) to 45 (top), and with CF on the X-axis with units from 80 (left side) to 30 (right side). On this diagram a parallelogram shall be plotted with corners at the following coordinates (CF-75, W-28), (CF-75, W-40), (CF-45, W-32.5), and (CF-45, W-41). If the point determined by the intersection of the computed CF and W does not fall within the
above parallelogram, the grading of each size of aggregate used and the proportions selected shall be changed as necessary.

e. In addition, the individual percent retained on each sieve shall be plotted for the combined aggregate grading, on either rectangular or semi-log graph paper. The graph shall show a relative smooth transition between coarse and fine aggregate and shall have no major valleys or peaks in the area smaller than the 23.6 mm sieve. If this plot does not meet the above criteria, the grading of each size aggregate used and the proportions selected shall be changed as necessary.

2.2.1 Coarse Aggregate

Coarse aggregate shall consist of crushed gravel, crushed stone, or a combination thereof. The nominal maximum size of the coarse aggregate shall be 25.0 mm. When the nominal maximum size is greater than 25.0 mm, the aggregates shall be furnished in two ASTM C 33 size groups, No. 67 and No. 4. The amount of deleterious material in each size of coarse aggregate shall not exceed the limits shown in ASTM C 33 Class 1N, 4M or 4S, depending on the weathering region, and the following limits:

a. Lightweight particles 1.0 max. percent by mass (ASTM C 123).

b. Other soft particles 2.0 max. percent by mass (COE CRD-C 130).

c. Total of all deleterious 5.0 max. percent by mass (substances listed in ASTM C 33 and above, exclusive of material finer than 0.075 mm sieve).

d. The separation medium for lightweight particles shall have a density of 2.0 Mg/cubic meters.

2.2.2 Fine Aggregate

Fine aggregate shall consist of natural sand, manufactured sand, or a combination of the two, and shall be composed of clean, hard, durable particles. Aggregate used for paving compass calibration hardstands shall be free of materials having magnetic properties. All fine aggregate shall be composed of clean, hard, durable particles meeting the requirements of ASTM C 33 and the requirements herein. The amount of deleterious material in the fine aggregate shall not exceed the limits in ASTM C 33 and shall not exceed the following limits:

a. Lightweight particles (ASTM C 123) 1.0 percent max. by mass using a medium with a density of 2.0 Mg/cubic meter.

b. The total of all deleterious material types, listed in ASTM C 33 and above, shall not exceed 3.0 percent of the mass of the fine aggregate.

2.3 CHEMICAL ADМИXTURES

Air-entraining admixture shall conform to ASTM C 260. An accelerator shall be used only when specified in paragraph SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES and shall not be used to reduce the amount of cementitious material used. Accelerator shall conform to ASTM C 494 Type C. Calcium
chloride and admixtures containing calcium chloride shall not be used. A water-reducing or retarding admixture shall meet the requirements of ASTM C 494. Type G or H admixtures are not allowed.

2.4 CURING MATERIALS

Membrane forming curing compound shall be a white pigmented compound conforming to COE CRD-C 300. Burlap shall be new or shall be clean material never used for anything other than curing concrete.

2.5 WATER

Water for mixing and curing shall be clean, potable, and free of injurious amounts of oil, acid, salt, or alkali.

2.6 JOINT MATERIALS

2.6.1 Expansion Joint Material

Expansion joint filler shall be a preformed material conforming to ASTM D 1751. Expansion joint filler shall be 20 mm thick.

2.6.2 Contraction Joint Inserts

Sawable contraction joint inserts shall conform to COE CRD-C 540. No metal inserts of any kind shall be used.

2.7 REINFORCING

2.7.1 General

Reinforcing bars shall conform to ASTM A 615/A 615M Grade 60. Bar mats shall conform to ASTM A 184/A 184M. Reinforcement shall be free from loose, flaky rust, loose scale, oil, grease, mud, or other coatings that might reduce the bond with concrete.

2.8 DOWELS AND TIE BARS

2.8.1 Dowels

Dowels shall be single piece, plain (non-deformed) steel bars conforming to ASTM A 615/A 615M Grade 60 or higher. Dowels shall be free of loose, flaky rust and loose scale and shall be clean and straight.

2.8.2 Tie Bars

Tie bars shall be deformed steel bars conforming to ASTM A 615/A 615M Grade 60. Grade 60 or higher shall not be used for bars that are bent and straightened during construction.

2.9 EPOXY RESIN

All epoxy-resin materials shall be two-component materials conforming to ASTM C 881, Class as appropriate for each application temperature to be encountered; except, that in addition, the materials shall meet the following requirements:
2.10 SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES

Specified compressive strength, f'c, for concrete is 25 MPa at 28 days. Maximum allowable water-cementitious material ratio is 0.45. The water-cementitious material ratio is based on absolute volume equivalency, where the ratio is determined using the weight of cement for a cement only mix, or using the total volume of cement plus pozzolan converted to an equivalent weight of cement by the absolute volume equivalency method described in ACI 211.1. The concrete shall be air-entrained with a total air content of 6 plus or minus 1 percent. The maximum allowable slump of the concrete shall be 75 mm for pavement constructed with fixed forms. The strength of the concrete will be considered satisfactory so long as the average of all sets of three consecutive test results equals or exceeds the specified compressive strength f'c and no individual test result falls below the specified strength f'c by more than 3.5 MPa. Additional analysis or testing, including taking cores and/or load tests may be required at the Contractor's expense when the strength of the concrete in the structure is considered potentially deficient.

2.11 MIXTURE PROPORTIONS

2.11.1 Composition Concrete

Composition concrete shall be composed of cementitious material, water, fine and coarse aggregates, and admixtures. Fly ash, if used, shall be used only at a rate between 15 and 35 percent by mass of the total cementitious material. Admixtures shall consist of air entraining admixture and may also include water-reducing admixture. High range water-reducing admixtures and admixtures to produce flowable concrete shall not be used. No substitutions shall be made in the materials used in the mixture proportions without additional tests to show that the quality of the concrete is satisfactory.

2.11.2 Concrete Mixture Proportioning Studies

Trial design batches, mixture proportioning studies, and testing shall be the responsibility of the Contractor, and shall be performed by the Test Laboratory and signed by a Registered Engineer. No concrete pavement shall be placed until the Contracting Officer has approved the Contractor's mixture proportions. All materials used in mixture proportioning studies shall be representative of those proposed for use on the project. If there is a change in materials, additional mixture design studies shall be made using the new materials. Trial mixtures having proportions, slumps, and air content suitable for the work shall be based on methodology described in ACI 211.1. At least three different water-cementitious ratios, which will
produce a range of strength encompassing that required on the project, shall be used. Laboratory trial mixtures shall be proportioned for maximum permitted slump and air content. Maximum sand content shall be 40 percent of the total aggregate SSD weight. Aggregate quantities shall be based on the mass in a saturated surface dry condition.

2.11.3 Mixture Proportioning Procedure

The Contractor shall perform the following:

a. Fabricate, cure and test 6 test cylinders per age for each mixture at 7 and 28 days.

b. Using the average strength for each w/(c+p), plot the results from each of the three mixtures on separate graphs for w/(c+p) versus 28-day strength.

c. From the graphs select a w/(c+p) which will produce a mixture giving a 28-day strength equal to the required strength determined in accordance with the following paragraph.

2.11.4 Average Strength Required for Mixtures

In order to ensure meeting, during production, the strength requirements specified, the mixture proportions selected shall produce a required average strength, f’cr, exceeding the specified strength, f’c, in accordance with procedures in Chapter 3 of ACI 301, "Proportioning."

PART 3 EXECUTION

3.1 CONDITIONING OF UNDERLYING MATERIAL

Underlying material, subgrade, upon which concrete is to be placed shall be clean, damp, and free from debris, waste concrete or cement, frost, ice, and standing or running water. After the underlying material has been prepared for concrete placement, no equipment shall be permitted thereon.

3.2 WEATHER LIMITATIONS

3.2.1 Hot Weather Paving

The temperature of concrete shall not exceed 32 degrees C. Steel forms, dowels and reinforcing shall be cooled prior to concrete placement when steel temperatures are greater than 49 degrees C.

3.2.2 Cold Weather Paving

The ambient temperature of the air at the placing site and the temperature of surfaces to receive concrete shall be not less 5 degrees C. The temperature of the concrete when placed shall be not less than 10 degrees C. Materials entering the mixer shall be free from ice, snow, or frozen lumps. Salt, chemicals or other materials shall not be incorporated in the concrete to prevent freezing. Upon written approval, chemical admixture conforming to ASTM C 494 Type C or E may be used provided it contains no calcium chloride. Calcium chloride shall not be used at any time. Covering and other means shall be provided for maintaining the concrete at a temperature of at least 10 degrees C for not less than 72 hours after placing, and at a
temperature above freezing for the remainder of the curing period. Pavement damaged by freezing shall be completely removed and replaced at the Contractor's expense as specified in paragraph, REPAIR, REMOVAL, AND REPLACEMENT OF SLABS.

3.3 CONCRETE PRODUCTION

3.3.1 General Requirements

Concrete shall be deposited in front of the paver within 45 minutes from the time cement has been charged into the mixing drum, except that if the ambient temperature is above 32 degrees C, the time shall be reduced to 30 minutes. Every load of concrete delivered to the paving site shall be accompanied by a batch ticket from the operator of the batching plant. Tickets shall show at least the mass, or volume, of all ingredients in each batch delivered, and the time of day. Tickets shall be delivered to the placing foreman who shall keep them on file and deliver them to the Government daily.

3.3.2 Transporting and Transfer-Spreading Operations

Non-agitating equipment shall be used only on smooth roads and for haul time less than 15 minutes. No equipment shall be allowed to operate on the prepared and compacted underlying material in front of the paver-finisher. Additional water may be added to truck mixers to bring the slump within the specified range provided the mixture water-cement ratio is not exceeded.

3.4 PAVING

Pavement shall be constructed with paving and finishing equipment utilizing fixed forms.

3.4.1 Consolidation

The paver vibrators shall be inserted into the concrete not closer to the underlying material than 50 mm. The vibrators or any tamping units in front of the paver shall be automatically controlled so that they shall be stopped immediately as forward motion ceases. Excessive vibration shall not be permitted. Concrete in small, odd-shaped slabs or in locations inaccessible to the paver mounted vibration equipment shall be vibrated with a hand-operated immersion vibrator. Vibrators shall not be used to transport or spread the concrete.

3.4.2 Operation

When the paver is operated between or adjacent to previously constructed pavement (fill-in lanes), provisions shall be made to prevent damage to the previously constructed pavement, including keeping the existing pavement surface free of any debris, and placing rubber mats beneath the paver tracks. Transversely oscillating screeds and extrusion plates shall overlap the existing pavement the minimum possible, but in no case more than 200 mm.

3.4.3 Required Results

The paver-finisher shall be operated to produce a thoroughly consolidated slab throughout, true to line and grade within specified tolerances. The
paver-finishing operation shall produce a surface finish free of irregularities, tears, voids of any kind, and any other discontinuities. It shall produce only a very minimum of paste at the surface. Multiple passes of the paver-finisher shall not be permitted. The equipment and its operation shall produce a finished surface requiring no hand finishing, other than the use of cutting straightedges, except in very infrequent instances. No water, other than true fog sprays (mist), shall be applied to the concrete surface during paving and finishing.

3.4.4 Fixed Form Paving

Forms shall be steel, except that wood forms may be used for curves having a radius of 45 m or less, and for fillets. Forms may be built up with metal or wood, added only to the base, to provide an increase in depth of not more than 25 percent. The base width of the form shall be not less than eight-tenths of the vertical height of the form, except that forms 200 mm or less in vertical height shall have a base width not less than the vertical height of the form. Wood forms for curves and fillets shall be adequate in strength and rigidly braced. Forms shall be set on firm material cut true to grade so that each form section when placed will be firmly in contact with the underlying layer for its entire base. Forms shall not be set on blocks or on built-up spots of underlying material. Forms for overlay pavements and for other locations where forms must be set on existing pavements shall be held securely in place with stakes or by other approved methods. Holes in existing pavements for form stakes shall be carefully drilled without cracking or spalling the existing pavement. Prior to setting forms for paving operations, the Contractor shall demonstrate the proposed form setting procedures at an approved location and shall not proceed further until the proposed method is approved. Forms shall remain in place at least 12 hours after the concrete has been placed. Forms shall be removed without injuring the concrete.

3.4.5 Placing Reinforcing Steel

Reinforcement shall be positioned on suitable chairs securely fastened to the subgrade prior to concrete placement, or may be placed on an initial layer of consolidated concrete, with the subsequent layer placed within 30 minutes of the first layer placement.

3.4.6 Placing Dowels and Tie Bars

Dowels shall be installed with alignment not greater than 1 mm per 100 mm. Except as otherwise specified below, location of dowels shall be within a horizontal tolerance of plus or minus 15 mm and a vertical tolerance of plus or minus 5 mm. The portion of each dowel intended to move within the concrete or expansion cap shall be painted with one coat of rust inhibiting primer paint, and then oiled just prior to placement. Dowels and tie bars in joints shall be omitted when the center of the dowel and tie bar is located within a horizontal distance from an intersecting joint equal to or less than one-fourth of the slab thickness.

3.4.6.1 Contraction Joints

Tie bars in longitudinal and transverse contraction joints within the paving lane shall be held securely in place by means of rigid metal basket assemblies. The tie bars shall be welded to the assembly or held firmly by mechanical locking arrangements that will prevent them from becoming
distorted during paving operations. The basket assemblies shall be held securely in the proper location by means of suitable anchors.

3.4.6.2 Construction Joints—Fixed Form Paving

Installation of tie bars shall be by the bonded-in-place method, supported by means of devices fastened to the forms. Installation by removing and replacing in preformed holes will not be permitted.

3.4.6.3 Dowels Installed in Hardened Concrete

Installation shall be by bonding the dowels into holes drilled into the hardened concrete. Holes approximately 3 mm greater in diameter than the dowels shall be drilled into the hardened concrete. Dowels shall be bonded in the drilled holes using epoxy resin injected at the back of the hole before installing the dowel and extruded to the collar during insertion of the dowel so as to completely fill the void around the dowel. Application by buttering the dowel shall not be permitted. The dowels shall be held in alignment at the collar of the hole, after insertion and before the grout hardens, by means of a suitable metal or plastic collar fitted around the dowel. The vertical alignment of the dowels shall be checked by placing the straightedge on the surface of the pavement over the top of the dowel and measuring the vertical distance between the straightedge and the beginning and ending point of the exposed part of the dowel.

3.4.6.4 Expansion Joints

Dowels in expansion joints shall be installed by the bonded-in-place method or by bonding into holes drilled in hardened concrete, using procedures specified above.

3.5 FINISHING

Clary screeds, "bridge deck" finishers, or other rotating pipe or tube type equipment shall not be permitted. The sequence of machine operations shall be transverse finishing, longitudinal machine floating if used, straightedge finishing, texturing, and then edging of joints. Hand finishing shall be used only infrequently and only on isolated areas of odd slab shapes and in the event of a breakdown of the mechanical finishing equipment. Supplemental hand finishing for machine finished pavement shall be kept to an absolute minimum. Equipment to be used for supplemental hand finishing shall primarily be 3 to 4 m cutting straightedges; only very sparing use of bull floats shall be allowed. At no time shall water be added to the surface of the slab in any way, except for fog (mist) sprays to prevent plastic shrinkage cracking.

3.5.1 Machine Finishing With Fixed Forms

The machine shall be designed to ride the forms. Machines that cause displacement of the forms shall be replaced. The machine shall make only one pass over each area of pavement. If the equipment and procedures do not produce a surface of uniform texture, true to grade, in one pass, the operation shall be immediately stopped and the equipment, mixture, and procedures adjusted as necessary.

3.5.2 Surface Correction
While the concrete is still plastic, irregularities and marks in the pavement surface shall be eliminated by means of cutting straightedges, 3 to 4 m in length. Depressions shall be filled with freshly mixed concrete, struck off, consolidated, and refinished. Projections above the required elevation shall also be struck off and refinished. Long-handled, flat "bull floats" shall be used sparingly and only as necessary to correct minor, scattered surface defects. Finishing with hand floats and trowels shall be held to the absolute minimum necessary. Joints and edges shall not be overfinished.

3.5.3 Hand Finishing

Hand finishing operations shall be used only for those unusual slabs as specified previously. Grate tampers (jitterbugs) shall not be used. As soon as placed and vibrated, the concrete shall be struck off and screeded. The surface shall be tamped with a strike-off and tamping screed, or vibratory screed. Immediately following the final tamping of the surface, the pavement shall be floated longitudinally. Long-handled, flat bull floats shall be used sparingly and only as necessary to correct surface defects. Finishing with hand floats and trowels shall be held to the absolute minimum necessary. Joints and edges shall not be overfinished. No water shall be added to the pavement during finishing operations.

3.5.4 Texturing

Before the surface sheen has disappeared and before the concrete hardens, the surface of the pavement shall be given a texture as described herein. Following initial texturing on the first day of placement, the Placing Foreman, Contracting Officer representative, and a representative of the Using Agency shall inspect the texturing for compliance with design requirements. After curing is complete, all textured surfaces shall be thoroughly power broomed to remove all debris. The concrete in areas of recesses for tie-down anchors, lighting fixtures, and other outlets in the pavement shall be finished to provide a surface of the same texture as the surrounding area.

3.5.4.1 Broom Texturing

Surface texture shall be applied using a mechanical stiff bristle broom drag of a type that will uniformly score the surface transverse to the pavement center line. The broom shall be capable of traversing the full width of the pavement in a single pass at a uniform speed and with a uniform pressure. Successive passes of the broom shall be overlapped the minimum necessary to obtain a uniformly textured surface. The scores should be uniform in appearance and approximately 1.5 mm in depth but not more than 3 mm in depth. Hand brooming will be permitted only on isolated odd shaped slabs or slabs where hand finishing is permitted.

3.5.5 Edging

After texturing has been completed, the edge of the slabs along the forms shall be carefully finished with an edging tool to form a smooth rounded surface of 3 mm radius. No water shall be added to the surface during edging.

3.6 CURING
Concrete shall be continuously protected against loss of moisture and rapid temperature changes for at least 7 days from the completion of finishing operations. Unhardened concrete shall be protected from rain and flowing water. During hot weather with low humidity and/or wind, the Contractor shall institute measures to prevent plastic shrinkage cracks from developing. ACI 305R contains means of predicting plastic shrinkage cracking and preventative measures. Plastic shrinkage cracks that occur shall be filled by injection of epoxy resin after the concrete hardens. Plastic shrinkage cracks shall never be troweled over or filled with slurry. Curing shall be accomplished by one of the following methods.

3.6.1 Membrane Curing

A uniform coating of white-pigmented membrane-forming curing compound shall be applied to the entire exposed surface of the concrete including pavement edges as soon as the free water has disappeared from the surface after finishing. If evaporation is high and no moisture is present on the surface even though bleeding has not stopped, fog sprays shall be used to keep the surface moist until setting of the cement occurs. Curing compound shall then be immediately applied. Curing compound shall be applied to the finished surfaces by means of a self-propelled automatic spraying machine, equipped with multiple spraying nozzles with wind shields, spanning the newly paved lane. The curing compound shall be applied at a maximum application rate of 5 square meters per L. The application of curing compound by hand-operated, mechanical powered pressure sprayers will be permitted only on odd widths or shapes of slabs where indicated and on concrete surfaces exposed by the removal of forms. The compound shall form a uniform, continuous, cohesive film that will not check, crack, or peel and that will be free from pinholes and other discontinuities. Areas where the curing compound develops the above defects or is damaged by heavy rainfall, sawing or other construction operations within the curing period, shall be immediately resprayed.

3.6.2 Moist Curing

Concrete to be moist-cured shall be maintained continuously wet for the entire curing period, commencing immediately after finishing. Surfaces shall be cured by ponding, by continuous sprinkling, by continuously saturated burlap or cotton mats, or by continuously saturated plastic coated burlap. Impervious sheet curing shall not be used.

3.7 JOINTS

No deviation from the jointing pattern shown on the drawings shall be made without written approval of the Design District Pavement or Geotechnical Engineer. All joints shall be straight, perpendicular to the finished grade of the pavement, and continuous from edge to edge or end to end of the pavement with no abrupt offset and no gradual deviation greater than 13 mm.

3.7.1 Longitudinal Construction Joints

Dowels shall be installed in the longitudinal construction joints, or the edges shall be thickened as indicated.

3.7.2 Transverse Construction Joints
Transverse construction joints shall be installed at a planned transverse joint, at the end of each day's placing operations and when concrete placement is interrupted. Transverse construction joints shall be constructed either by utilizing headers and hand placement and finishing techniques, or by placing concrete beyond the transverse construction joint location and then saw cutting full depth and removing concrete back to the transverse construction joint location. For the latter case, dowels shall be installed using methods for dowels installed in hardened concrete described above. All transverse construction joints shall be dowelled.

3.7.3 Expansion Joints

Expansion joints shall be formed where indicated, and about any structures and features that project through or into the pavement, using preformed joint filler of the type, thickness, and width indicated, and shall extend the full slab depth. Edges of the concrete at the joint face shall be edged. The joint filler strips shall be installed to form a recess at the pavement surface to be filled with joint sealant. Expansion joints shall be constructed with thickened edges for load transfer.

3.7.4 Contraction Joints

Transverse and longitudinal contraction joints shall be of the weakened-plane or dummy type. Longitudinal contraction joints shall be constructed by sawing a groove in the hardened concrete with a power-driven saw. Transverse contraction joints shall be constructed in conformance with requirements for sawed joints.

3.7.4.1 Sawed Joints

Sawed contraction joints shall be constructed by sawing a groove in the concrete with a 3 mm blade to the indicated depth. The time of initial sawing shall vary depending on existing and anticipated weather conditions and shall be such as to prevent uncontrolled cracking of the pavement. Sawing of the joints shall commence as soon as the concrete has hardened sufficiently to permit cutting the concrete without chipping, spalling, or tearing. The joints shall be sawed at the required spacing consecutively in the sequence of the concrete placement. Sawing at a given joint location shall be discontinued when a crack develops ahead of the saw cut. Immediately after the joint is sawed, the saw cut and adjacent concrete surface shall be thoroughly flushed with water until all waste from sawing is removed from the joint. The surface shall be resprayed with curing compound as soon as free water disappears. The top of the joint opening and the joint groove at exposed edges shall be tightly sealed with cord or backer rod before the concrete in the region of the joint is resprayed with curing compound.

3.7.5 Thickened Edge Joints

Underlying material in the transition area shall meet the requirements for smoothness and compaction specified for all other areas of the underlying material.

3.8 REPAIR, REMOVAL, AND REPLACEMENT OF SLABS

New pavement slabs that contain full-depth cracks shall be removed and replaced, as specified herein at no cost to the Government. Removal and
replacement shall be full depth, shall be full width of the paving lane, and
the limit of removal shall be from each original transverse joint. The
Contracting Officer will determine whether cracks extend full depth of the
pavement and may require minimum 150 mm diameter cores to be drilled on the
crack to determine depth of cracking. Cores shall be drilled and the hole
later filled by the Contractor with a well consolidated concrete mixture
bonded to the walls of the hole with epoxy resin. Drilling of cores and
refilling holes shall be at no expense to the Government. Cracks that do
not extend full depth of slab shall be cleaned and then pressure injected
with epoxy resin, Type IV, Grade 1. The Contractor shall ensure that the
crack is not widened during epoxy resin injection. Where a full depth crack
intersects the original transverse joint, the slab(s) containing the crack
shall be removed and replaced, with dowels installed, as required below.
Spalls along joints shall be repaired as specified.

3.8.1 Removal and Replacement of Full Slabs

Unless there are keys or dowels present, all edges of the slab shall be
sawcut full depth. If keys, dowels, or tie bars are present along any
dges, these edges shall be sawed full depth 150 mm from the edge if only
keys are present, or just beyond the end of dowels or tie bars if they are
present. These joints shall then be carefully sawed on the joint line to
within 25 mm of the depth of the dowel or key. The main slab shall be
further divided by sawing full depth, at appropriate locations, and each
piece lifted out and removed. The narrow strips along keyed or doweled
dges shall be carefully broken up and removed. Care shall be taken to
prevent damage to the dowels, tie bars, or keys or to concrete to remain in
place. Protruding portions of dowels shall be painted and lightly oiled.
The joint face below keys or dowels shall be suitably trimmed so that there
is no abrupt offset. If underbreak occurs at any point along any edge, the
area shall be hand-filled with concrete, producing an even joint face from
top to bottom, before replacing the removed slab. If underbreak over 100
mm deep occurs, the entire slab containing the underbreak shall be removed
and replaced. Where there are no dowels, tie bars, or keys on an edge, or
where they have been damaged, dowels of the size and spacing as specified
for other joints in similar pavement shall be installed by epoxy grouting
them into holes drilled into the existing concrete. Original damaged dowels
or tie bars shall be cut off flush with the joint face. All four edges of
the new slab shall thus contain dowels or original keys or original tie
bars. Prior to placement of new concrete, the underlying material shall be
graded and recompacted, and the surfaces of all four joint faces shall be
cleaned of all loose material and contaminants, and coated with a double
application of membrane forming curing compound as bond breaker. Placement
of concrete shall be as specified for original construction. The resulting
joints around the new slab shall be prepared and sealed as specified.

3.8.2 Repairing Spalls Along Joints

Spalls along joints and cracks shall be repaired by first making a vertical
saw cut at least 25 mm outside the spalled area and to a depth of at least
50 mm. Saw cuts shall be straight lines forming rectangular areas. The
concrete between the saw cut and the joint, or crack, shall be chipped out
to remove all unsound concrete. The cavity shall be thoroughly cleaned with
high pressure water jets supplemented with compressed air to remove all
loose material. Immediately before filling the cavity, a prime coat shall
be applied to the dry cleaned surface of all sides and bottom of the cavity,
except any joint face. The prime coat shall be applied in a thin coating
and scrubbed into the surface with a stiff-bristle brush. Prime coat for
portland cement repairs shall be a neat cement grout and for epoxy resin
repairs shall be epoxy resin, Type III, Grade 1. The cavity shall be filled
with low slump portland cement concrete or mortar, or with epoxy resin
cement or mortar. Portland cement concrete shall be used for larger
spalls, those more than 0.009 cubic meter in size after removal operations;
portland cement mortar shall be used for spalls between 0.00085 and 0.009
cubic meter; and epoxy resin mortar or Type III, Grade 3 epoxy resin for
those spalls less than 0.00085 cubic meter in size after removal operations.
Portland cement concretes and mortars shall be very low slump mixtures,
proportioned, mixed, placed, tamped, and cured. If the materials and
procedures are approved in writing, latex modified concrete mixtures may be
used for repairing spalls less than 0.009 cubic meter in size. Epoxy resin
mortars shall be made with Type III, Grade 1, epoxy resin, using
proportions, mixing, placing, tamping and curing procedures as recommended
by the manufacturer. Any repair material on the surrounding surfaces of the
existing concrete shall be removed before it hardens. Where the spalled
area abuts a joint, an insert or other bond-breaking medium shall be used to
prevent bond at the joint face. A reservoir for the joint sealant shall be
sawed to the dimensions required for other joints.

3.8.3 Areas Defective in Plan Grade or Smoothness

In areas not meeting the specified limits for surface smoothness and plan
grade, high areas shall be reduced to attain the required smoothness and
grade, except as depth is limited below. High areas shall be reduced by
grinding the hardened concrete with a surface grinding machine after the
concrete is 14 days or more old. The depth of grinding shall not exceed 6
mm. All pavement areas requiring plan grade or surface smoothness
corrections in excess of the specified limits, shall be removed and
replaced. In pavement areas given a wire comb or tined texture, areas
exceeding 2 square meters that have been corrected by rubbing or grinding
shall be retextured by grooving machine sawn grooves meeting the
requirements for the wire comb or tined texture. All areas in which
grinding has been performed will be subject to the thickness tolerances
specified in paragraph Thickness. Any grinding performed on individual
slabs with excessive deficiencies shall be performed at the Contractor's own
decision without entitlement to additional compensation if eventual removal
of the slab is required.

3.9 EXISTING CONCRETE PAVEMENT REMOVAL AND REPAIR

Existing concrete pavement shall be removed as indicated and as specified in
Section 02220 DEMOLITION modified, and expanded as specified herein.
Removal, repair and replacement shall be made as indicated and as specified
in paragraph REPAIR, REMOVAL, AND REPLACEMENT OR SLABS.

3.10 PAVEMENT PROTECTION

The Contractor shall protect the pavement against all damage prior to final
acceptance of the work. Traffic shall be excluded from the new pavement.
As a construction expedient in paving intermediate lanes between newly paved
pilot lanes, operation of the hauling equipment will be permitted on the new
pavement after the pavement has been cured for 7 days and the joints have
been sealed or otherwise protected. All new and existing pavement carrying
construction traffic or equipment shall be continuously kept completely

SECTION 02754 Page 18
clean. Special cleaning and care shall be used where Contractor's traffic uses or crosses active airfield pavement.

3.11 TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL (CQC)

Paragraph ACCEPTABILITY OF WORK contains additional CQC requirements. The Contractor shall perform the inspection and tests described below and, based upon the results of these inspections and tests, shall take the action required and submit reports as specified. When, in the opinion of the Contracting Officer, the paving operation is out of control, concrete placement shall cease.

3.11.1 Batch Plant Control

A daily report shall be prepared indicating checks made for scale accuracy with test weights, checks of batching accuracy, and corrective action taken prior to and during placement for weighing or batching, type and source of cement used, type and source of pozzolan or slag used, amount and source of admixtures used, aggregate source, the required aggregate and water masses per cubic meter, amount of water as free moisture in each size of aggregate, and the batch aggregate and water masses per cubic meter for each class of concrete batched during each day's plant operation.

3.11.2 Concrete Mixture

a. Air Content Testing. Air content tests shall be made when test specimens are fabricated. In addition, at least two other tests for air content shall be made on randomly selected batches of each separate concrete mixture produced during each 8-hour period of paving. Whenever air content reaches specified limits, an immediate confirmatory test shall be made. If the second test also shows air content at or exceeding specified limits, an adjustment shall immediately be made in the amount of air-entraining admixture batched to bring air content within specified limits. If the next adjusted batch of concrete is not within specified limits, concrete placement shall be halted until concrete air content is within specified limits.

b. Slump Testing. Slump tests shall be made when test specimens are fabricated. Additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Whenever slump approaches the maximum limit, an adjustment shall immediately be made in the batch masses of water and fine aggregate, without exceeding the maximum w/(c+p). When a slump result exceeds the specification limit, no further concrete shall be delivered to the paving site until adjustments have been made and slump is again within the limit.

c. Temperature. The temperature of the concrete shall be measured when strength specimens are fabricated.

d. Concrete Strength Testing. Four (4) cylinders from the same batch shall be fabricated, cured and tested for compressive strength, testing two cylinders at 7-day and two cylinders at 28-day age. A minimum of one set of four (4) cylinders shall be fabricated, cured and tested for each shift of concrete placement. Control charts for strength, showing the 7-day and 28-day CQC compressive
strengths, and the 28-day required compressive strength, shall be maintained and submitted with weekly CQC Reports.

3.11.3 Inspection Before Placing

Underlying materials, joint locations and types, construction joint faces, forms, reinforcing, dowels, and embedded items shall be inspected by a Registered Engineer in sufficient time prior to each paving operation in order to certify to the Contracting Officer that they are ready to receive concrete. The results of each inspection shall be reported in writing, and the certification signed by the Registered Engineer, prior to each days' paving.

3.11.4 Paving Operations

The placing foreman shall supervise all placing and paving operations, shall determine that the correct quality of concrete is placed in each location as shown, shall insure that the concrete is consolidated full depth and that finishing is performed as specified. The placing foreman shall be responsible for measuring and recording concrete temperatures and ambient temperature hourly during placing operations, weather conditions, time of placement, volume of concrete placed, and method of paving and any problems encountered.

3.11.5 Curing Inspection

a. Moist Curing Inspections. Each day on both work and non-work days, an inspection shall be made of all areas subject to moist curing. The surface moisture condition shall be noted and recorded. When any inspection finds an area of inadequate curing, immediate corrective action shall be taken, and the required curing period for the area shall be extended by 1 day.

b. Membrane Curing Inspection. At the end of each day's placement, the CQC Representative shall determine the quantity of compound used by measurement of the container; shall determine the area of concrete surface covered; shall then compute the rate of coverage in square meters per L and shall also note whether or not coverage is uniform. When the coverage rate of the curing compound is less than that specified or when the coverage is not uniform, the entire surface shall be sprayed again.

3.11.6 Cold-Weather Protection

At least once per day, an inspection shall be made of all areas subject to cold-weather protection. Any deficiencies shall be noted, corrected, and reported.

3.11.7 Reports

All results of tests or inspections conducted shall be reported informally as they are completed and in writing daily. A weekly report, signed by a registered engineer, shall be prepared for the updating of control charts and test data, and all CQC inspections and actions covering the entire period from the start of the construction through the current week. Reports of failures and the action taken shall be confirmed in writing in the routine reports. The Contracting Officer has the right to examine all CQC
records. A copy of weekly reports shall be faxed to the Design District Pavement or Geotechnical Engineer. At the completion of concrete placement, a certification report shall be prepared containing mix designs, all updated control charts and concrete test data, quality control reports, smoothness reports, and other pertinent data on the concrete, with a certification by a registered engineer that the concrete placed meets all specification requirements. A copy of the certification report shall be mailed to the Design District pavement or Geotechnical Engineer.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in this text by the basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 509 (1994) Elastomeric Cellular Preformed Gasket and Sealing Material

ASTM D 3405 (1997) Joint Sealants, Hot-Applied, for Concrete and Asphalt Pavements

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Materials List; G, FIO

List of all materials required and the manufacture's data for each material listed 30 days prior to use on the project.

Manufacturer's Recommendations; G, RE.

Where installation procedures, or any part thereof, are required to be in accordance with the manufacturer's recommendations, printed copies of these recommendations, 30 days prior to use on the project. Installation of the material will not be allowed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.

Construction Equipment List; G, RE.

List of proposed equipment to be used in performance of construction work including descriptive data, 45 days prior to use on the project.
SD-04 Samples

Materials: G, RE.

Samples of the materials (sealant, primer if required, and backup material), in sufficient quantity for testing and approval 30 days prior to the beginning of work. No material will be allowed to be used until it has been approved.

1.3 TEST REQUIREMENTS

The joint sealant and backup or separating material shall be tested for conformance with the referenced applicable material specification. Testing of the materials shall be performed in an approved independent laboratory and certified copies of the test reports shall be submitted and approved 30 days prior to the use of the materials at the job site. Samples will be retained by the Government for possible future testing should the materials appear defective during or after application. Conformance with the requirements of the laboratory tests specified will not constitute final acceptance of the materials. Final acceptance will be based on the performance of the in-place materials.

1.4 EQUIPMENT

Machines, tools, and equipment used in the performance of the work required by this section shall be approved before the work is started and shall be maintained in satisfactory condition at all times.

1.4.1 Joint Cleaning Equipment

1.4.1.1 Tractor-Mounted Routing Tool

The routing tool used for removing old sealant from the joints shall be of such shape and dimensions and so mounted on the tractor that it will not damage the sides of the joints. The tool shall be designed so that it can be adjusted to remove the old material to varying depths as required. The use of V-shaped tools or rotary impact routing devices will not be permitted. Hand-operated spindle routing devices may be used to clean and enlarge random cracks.

1.4.1.2 Concrete Saw

A self-propelled power saw with water-cooled diamond or abrasive saw blades will be provided for cutting joints to the depths and widths specified or for refacing joints or cleaning sawed joints where sandblasting does not provide a clean joint.

1.4.1.3 Sandblasting Equipment

Sandblasting equipment shall include an air compressor, hose, and long-wearing venturi-type nozzle of proper size, shape and opening. The maximum nozzle opening should not exceed 6.4 mm. The air compressor shall be portable and shall be capable of furnishing not less than 71 liters per second and maintaining a line pressure of not less than 621 kPa at the nozzle while in use. Compressor capability under job conditions must be demonstrated before approval. The compressor shall be equipped with traps that will maintain the compressed air free of oil and water. The nozzle
shall have an adjustable guide that will hold the nozzle aligned with the joint approximately 1 inch above the pavement surface. The height, angle of inclination and the size of the nozzle shall be adjusted as necessary to secure satisfactory results.

1.4.1.4 Waterblasting Equipment

Waterblasting equipment shall include a trailer-mounted water tank, pumps, high-pressure hose, wand with safety release cutoff control, nozzle, and auxiliary water resupply equipment. The water tank and auxiliary resupply equipment shall be of sufficient capacity to permit continuous operations. The nozzle shall have an adjustable guide that will hold the nozzle aligned with the joint approximately 1 inch above the pavement surface. The height, angle of inclination and the size of the nozzle shall be adjustable as necessary to obtain satisfactory results. A pressure gauge mounted at the pump shall show at all times the pressure in pounds per square inch at which the equipment is operating.

1.4.1.5 Hand Tools

Hand tools may be used, when approved, for removing defective sealant from a crack and repairing or cleaning the crack faces.

1.4.2 Sealing Equipment

1.4.2.1 Hot-Poured Sealing Equipment

The unit applicators used for heating and installing ASTM D 3405 joint sealant materials shall be mobile and shall be equipped with a double-boiler, agitator-type kettle with an oil medium in the outer space for heat transfer; a direct-connected pressure-type extruding device with a nozzle shaped for inserting in the joint to be filled; positive temperature devices for controlling the temperature of the transfer oil and sealant; and a recording type thermometer for indicating the temperature of the sealant. The applicator unit shall be designed so that the sealant will circulate through the delivery hose and return to the inner kettle when not in use.

1.5 TRIAL JOINT SEALANT INSTALLATION

Prior to the cleaning and sealing of the joints for the entire project, a test section of at least 60 m long shall be prepared using the specified materials and approved equipment, so as to demonstrate the proposed joint preparation and sealing of all types of joints in the project. Following the completion of the test section and before any other joint is sealed, the test section shall be inspected to determine that the materials and installation meet the requirements specified. If it is determined that the materials or installation do not meet the requirements, the materials shall be removed, and the joints shall be recleaned and resealed at no cost to the Government. When the test section meets the requirements, it may be incorporated into the permanent work and paid for at the contract unit price per linear foot for sealing items scheduled. All other joints shall be prepared and sealed in the manner approved for sealing the test section.

1.6 DELIVERY AND STORAGE

Materials delivered to the job site shall be inspected for defects, unloaded, and stored with a minimum of handling to avoid damage.
facilities shall be provided by the Contractor at the job site for maintaining materials at the temperatures and conditions recommended by the manufacturer.

1.7 ENVIRONMENTAL CONDITIONS

The ambient air temperature and the pavement temperature within the joint wall shall be a minimum of 10 degrees C and rising at the time of application of the materials. Sealant shall not be applied if moisture is observed in the joint.

PART 2 PRODUCTS

2.1 SEALANTS

Materials for sealing cracks in the paved areas indicated on the drawings shall be as follows: ASTM D 3405 AND COE CRD-C 525

2.2 PRIMERS

Primers, when their use is recommended by the manufacturer of the sealant, shall be as recommended by the manufacturer of the sealant.

2.3 BACKUP MATERIALS

The backup material shall be a compressible, nonshrinking, nonstaining, nonabsorbing material and shall be nonreactive with the joint sealant. The material shall have a melting point at least 3 degrees C greater than the pouring temperature of the sealant being used when tested in accordance with ASTM D 789. The material shall have a water absorption of not more than 5 percent of the sample weight when tested in accordance with ASTM C 509. The backup material shall be 25 plus or minus 5 percent larger in diameter than the nominal width of the crack.

2.4 BOND BREAKING TAPES

The bond breaking tape or separating material shall be a flexible, nonshrinking, nonabsorbing, nonstaining, and nonreacting adhesive-backed tape. The material shall have a melting point at least 3 degrees C greater than the pouring temperature of the sealant being used when tested in accordance with ASTM D 789. The bond breaker tape shall be approximately 3 mm wider than the nominal width of the joint and shall not bond to the joint sealant.

PART 3 EXECUTION

3.1 PREPARATION OF JOINTS

Immediately before the installation of the sealant, the joints shall be thoroughly cleaned to remove all laitance, curing compound, filler, protrusions of hardened concrete, and old sealant from the sides and upper edges of the joint space to be sealed.

3.1.1 Existing Sealant Removal

The in-place sealant shall be cut loose from both joint faces and to the depth shown on the drawings, using the concrete saw as specified in
paragraph EQUIPMENT. Depth shall be sufficient to accommodate any separating or backup material that is required to maintain the depth of new sealant to be installed. Prior to further cleaning operations, all loose old sealant remaining in the joint opening shall be removed by blowing with compressed air. Hand tools may be required to remove sealant from random cracks. Chipping, spalling, or otherwise damaging the concrete will not be allowed.

3.1.2 Facing of Joints

Facing of joints shall be accomplished using a concrete saw as specified in paragraph EQUIPMENT. The blade shall be stiffened with a sufficient number of suitable dummy (used) blades or washers. Immediately following the sawing operation, the joint opening shall be thoroughly cleaned using a water jet to remove all saw cuttings and debris.

3.1.3 Refacing of Random Cracks

Sawing of the cracks shall be accomplished using a power-driven concrete saw as specified in paragraph EQUIPMENT. The saw blade shall be 152 mm or less in diameter to enable the saw to follow the trace of the crack. The blade shall be stiffened as necessary with suitable dummy (or used) blades or washers. Immediately following the sawing operation, the crack opening shall be thoroughly cleaned using a water jet to remove all saw cuttings and debris.

3.1.4 Sandblasting

The newly exposed concrete joint faces and the pavement surfaces extending a minimum of 13 mm from the joint edges shall be sandblasted clean. A multiple-pass technique shall be used until the surfaces are free of dust, dirt, curing compound, filler, old sealant residue, or any foreign debris that might prevent the bonding of the sealant to the concrete. After final cleaning and immediately prior to sealing, the joints shall be blown out with compressed air and left completely free of debris and water.

3.1.5 Back-Up Material

When the joint opening is of a greater depth than indicated for the sealant depth, the lower portion of the joint opening shall be plugged or sealed off using a back-up material to prevent the entrance of the sealant below the specified depth. Care shall be taken to ensure that the backup material is placed at the specified depth and is not stretched or twisted during installation.

3.1.6 Bond Breaking Tape

Where inserts or filler materials contain bitumen, or the depth of the joint opening does not allow for the use of a backup material, a bond breaker separating tape will be inserted to prevent incompatibility with the filler materials and three-sided adhesion of the sealant. The tape shall be securely bonded to the bottom of the joint opening so it will not float up into the new sealant.

3.1.7 Rate of Progress of Joint Preparation
The stages of joint preparation which include sandblasting, air pressure cleaning and placing of the back-up material shall be limited to only that lineal footage that can be sealed during the same day.

3.2 PREPARATION OF SEALANT

3.2.1 Hot-Poured Sealants

Sealants conforming to ASTM D 3405 shall not be heated in excess of the safe heating temperature recommended by the manufacturer as shown on the sealant containers. Sealant that has been overheated or subjected to application temperatures for over 4 hours or that has remained in the applicator at the end of the day's operation shall be withdrawn and wasted.

3.3 INSTALLATION OF SEALANT

3.3.1 Time of Application

Joints shall be sealed immediately following final cleaning of the joint walls and following the placement of the separating or backup material. Open joints that cannot be sealed under the conditions specified, or when rain interrupts sealing operations shall be recleaned and allowed to dry prior to installing the sealant.

3.3.2 Sealing Joints

Immediately preceding, but not more than 15 m ahead of the joint sealing operations, a final cleaning with compressed air shall be performed. The joints shall be filled from the bottom up to 3 mm plus or minus 1.5 mm below the pavement surface. Excess or spilled sealant shall be removed from the pavement by approved methods and shall be discarded. The sealant shall be installed in such a manner as to prevent the formation of voids and entrapped air. In no case shall gravity methods or pouring pots be used to install the sealant material. Traffic shall not be permitted over newly sealed pavement until authorized by the Contracting Officer. When a primer is recommended by the manufacturer, it shall be applied evenly to the joint faces in accordance with the manufacturer's instructions. Joints shall be checked frequently to ensure that the newly installed sealant is cured to a tack-free condition within the time specified.

3.4 INSPECTION

3.4.1 Joint Cleaning

Joints shall be inspected during the cleaning process to correct improper equipment and cleaning techniques that damage the concrete pavement in any manner. Cleaned joints shall be approved prior to installation of the separating or back-up material and joint sealant.

3.4.2 Joint Sealant Application Equipment

The application equipment shall be inspected to ensure conformance to temperature requirements, proper proportioning and mixing (if two-component sealant) and proper installation. Evidences of bubbling, improper installation, failure to cure or set shall be cause to suspend operations until causes of the deficiencies are determined and corrected.
3.4.3 Joint Sealant

The joint sealant shall be inspected for proper rate of cure and set, bonding to the joint walls, cohesive separation within the sealant, reversion to liquid, entrapped air and voids. Sealants exhibiting any of these deficiencies at any time prior to the final acceptance of the project shall be removed from the joint, wasted, and replaced as specified herein at no additional cost to the Government.

3.5 CLEAN-UP

Upon completion of the project, all unused materials shall be removed from the site and the pavement shall be left in a clean condition.

-- End Of Section --
SECTION 02763

PAVEMENT MARKINGS

09/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

FEDERAL SPECIFICATIONS (FS)

FS TT-P-1952 (Rev D) Paint, Traffic and Airfield Marking, Waterborne (Metric)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Equipment; G, RE

Lists of proposed equipment, including descriptive data, and notifications of proposed Contractor actions as specified in this section. List of removal equipment shall include descriptive data indicating area of coverage per pass, pressure adjustment range, tank and flow capacities, and safety precautions required for the equipment operation.

Composition Requirements; G, RE

Manufacturer's current printed product description and Material Safety Data Sheets (MSDS) for each type paint/color proposed for use.

Qualifications; G, RE

Document certifying that personnel are qualified for equipment operation and handling of chemicals.

SD-06 Test Reports

Sampling and Testing; G, RE

Certified copies of the test reports, prior to the use of the materials at the jobsite. Testing shall be performed in an approved independent laboratory.
SD-07 Certificates

Volatile Organic Compound (VOC); G, RE

Certificate stating that the proposed pavement marking paint meets the VOC regulations of the local Air Pollution Control District having jurisdiction over the geographical area in which the project is located.

1.3 DELIVERY AND STORAGE

All materials shall be delivered and stored in sealed containers that plainly show the designated name, formula or specification number, batch number, color, date of manufacture, manufacturer's name, and directions, all of which shall be plainly legible at time of use.

1.4 EQUIPMENT

All machines, tools and equipment used in the performance of the work shall be approved and maintained in satisfactory operating condition. Equipment operating on roads and runways shall display low speed traffic markings and traffic warning lights.

1.4.1 Paint Application Equipment

The equipment to apply paint to pavements shall be a self-propelled or mobile-drawn pneumatic spraying machine with suitable arrangements of atomizing nozzles and controls to obtain the specified results. The machine shall have a speed during application not less than 8 kilometers per hour, and shall be capable of applying the stripe widths indicated, at the paint coverage rate specified in paragraph APPLICATION, and of even uniform thickness with clear-cut edges. Equipment used for marking streets and highways shall be capable of placing the prescribed number of lines at a single pass as solid lines, intermittent lines or a combination of solid and intermittent lines using a maximum of two different colors of paint as specified. The paint applicator shall have paint reservoirs or tanks of sufficient capacity and suitable gauges to apply paint in accordance with requirements specified. Tanks shall be equipped with suitable air-driven mechanical agitators. The spray mechanism shall be equipped with quick-action valves conveniently located, and shall include necessary pressure regulators and gauges in full view and reach of the operator. Paint strainers shall be installed in paint supply lines to ensure freedom from residue and foreign matter that may cause malfunction of the spray guns. The paint applicator shall be readily adaptable for attachment of an air-actuated dispenser for the reflective media approved for use. Pneumatic spray guns shall be provided for hand application of paint in areas where the mobile paint applicator cannot be used.

1.4.2 Surface Preparation Equipment

1.4.2.1 Sandblasting Equipment

Sandblasting equipment shall include an air compressor, hoses, and nozzles of proper size and capacity as required for cleaning surfaces to be painted. The compressor shall be capable of furnishing not less than 70.8 liters per sec of air at a pressure of not less than 620 kPa at each nozzle used, and
shall be equipped with traps that will maintain the compressed air free of oil and water.

1.4.2.2 Waterblast Equipment

The water pressure shall be specified at 17.9 MPa at 60 degrees C in order to adequately clean the surfaces to be marked.

1.4.3 Marking Removal Equipment

Equipment shall be mounted on rubber tires and shall be capable of removing markings from the pavement without damaging the pavement surface or joint sealant. Waterblasting equipment shall be capable of producing an adjustable, pressurized stream of water. Sandblasting equipment shall include an air compressor, hoses, and nozzles. The compressor shall be equipped with traps to maintain the air free of oil and water.

1.4.3.1 Shotblasting Equipment

Shotblasting equipment shall be capable of producing an adjustable depth of removal of marking and pavement. Each unit shall be self-cleaning and self-contained, shall be able to confine dust and debris from the operation, and shall be capable of recycling the abrasive for reuse.

1.4.3.2 Chemical Equipment

Chemical equipment shall be capable of application and removal of chemicals from the pavement surface, and shall leave only non-toxic biodegradable residue.

1.4.4 Traffic Controls

Suitable warning signs shall be placed near the beginning of the worksite and well ahead of the worksite for alerting approaching traffic from both directions. Small markers shall be placed along newly painted lines or freshly placed raised markers to control traffic and prevent damage to newly painted surfaces or displacement of raised pavement markers. Painting equipment shall be marked with large warning signs indicating slow-moving painting equipment in operation.

1.5 HAND-OPERATED, PUSH-TYPE MACHINES

All machines, tools, and equipment used in performance of the work shall be approved and maintained in satisfactory operating condition. Hand-operated push-type machines of a type commonly used for application of paint to pavement surfaces will be acceptable for marking small streets and parking areas. Applicator machine shall be equipped with the necessary paint tanks and spraying nozzles, and shall be capable of applying paint uniformly at coverage specified. Sandblasting equipment shall be provided as required for cleaning surfaces to be painted. Hand-operated spray guns shall be provided for use in areas where push-type machines cannot be used.

1.6 MAINTENANCE OF TRAFFIC

1.6.1 Roads, Streets, and Parking Areas
When traffic must be rerouted or controlled to accomplish the work, the necessary warning signs, flagpersons, and related equipment for the safe passage of vehicles shall be provided.

1.7 WEATHER LIMITATIONS FOR REMOVAL

Pavement surface shall be free of snow, ice, or slush. Surface temperature shall be at least 5 degrees C and rising at the beginning of operations, except those involving shot or sand blasting. Operation shall cease during thunderstorms. Operation shall cease during rainfall, except for waterblasting and removal of previously applied chemicals. Waterblasting shall cease where surface water accumulation alters the effectiveness of material removal.

PART 2 PRODUCTS

2.1 PAINT

The paint shall be homogeneous, easily stirred to smooth consistency, and shall show no hard settlement or other objectionable characteristics during a storage period of 6 months. Paints for airfields, roads, and streets shall conform to FS TT-P-1952, color as indicated. Pavement marking paints shall comply with applicable state and local laws enacted to ensure compliance with Federal Clean Air Standards. Paint materials shall conform to the restrictions of the local Air Pollution Control District.

2.2 SAMPLING AND TESTING

Materials proposed for use shall be stored on the project site in sealed and labeled containers, or segregated at source of supply, sufficiently in advance of needs to allow 60 days for testing. Upon notification by the Contractor that the material is at the site or source of supply, a sample shall be taken by random selection from sealed containers by the Contractor in the presence of a representative of the Contracting Officer. Samples shall be clearly identified by designated name, specification number, batch number, manufacturer's formulation number, project contract number, intended use, and quantity involved.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Surfaces to be marked shall be thoroughly cleaned before application of the pavement marking material. Dust, dirt, and other granular surface deposits shall be removed by sweeping, blowing with compressed air, rinsing with water or a combination of these methods as required. Rubber deposits, surface laitance, existing paint markings, and other coatings adhering to the pavement shall be completely removed with scrapers, wire brushes, sandblasting, approved chemicals, or mechanical abrasion as directed. Areas of old pavement affected with oil or grease shall be scrubbed with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinsed thoroughly after each application. After cleaning, oil-soaked areas shall be sealed with cut shellac to prevent bleeding through the new paint. Pavement surfaces shall be allowed to dry, when water is used for cleaning, prior to striping or marking. Surfaces shall be recleaned, when work has been stopped due to rain.
3.1.1 Cleaning Existing Pavement Markings

In general, markings shall not be placed over existing pavement marking patterns. Existing pavement markings, which are in good condition but interfere or conflict with the newly applied marking patterns, shall be removed. Deteriorated or obscured markings that are not misleading or confusing or interfere with the adhesion of the new marking material do not require removal. Whenever grinding, scraping, sandblasting or other operations are performed the work must be conducted in such a manner that the finished pavement surface is not damaged or left in a pattern that is misleading or confusing. When these operations are completed the pavement surface shall be blown off with compressed air to remove residue and debris resulting from the cleaning work.

3.1.2 Cleaning Concrete Curing Compounds

On new Portland cement concrete pavements, cleaning operations shall not begin until a minimum of 30 days after the placement of concrete. All new concrete pavements shall be cleaned by either sandblasting or water blasting. The extent of the blasting work shall be to clean and prepare the concrete surface as follows:

- a. There is no visible evidence of curing compound on the peaks of the textured concrete surface.
- b. There are no heavy puddled deposits of curing compound in the valleys of the textured concrete surface.
- c. All remaining curing compound is intact; all loose and flaking material is removed.
- d. The peaks of the textured pavement surface are rounded in profile and free of sharp edges and irregularities.
- e. The surface to be marked is dry.

3.2 APPLICATION

All pavement markings and patterns shall be placed as shown on the plans.

3.2.1 Paint

Paint shall be applied to clean, dry surfaces, and only when air and pavement temperatures are above 5 degrees C and less than 35 degrees C. Paint temperature shall be maintained within these same limits. New asphalt pavement surfaces and new Portland concrete cement shall be allowed to cure for a period of not less than 30 days before applications of paint. Paint shall be applied pneumatically with approved equipment at rate of coverage specified. The Contractor shall provide guide lines and templates as necessary to control paint application. Special precautions shall be taken in marking numbers, letters, and symbols. Edges of markings shall be sharply outlined.

3.2.1.1 Rate of Application

Paint shall be applied evenly to the pavement surface to be coated at a rate of 2.9 plus or minus 0.5 square meter per liter.
3.2.1.2 Drying

The maximum drying time requirements of the paint specifications will be strictly enforced to prevent undue softening of bitumen, and pickup, displacement, or discoloration by tires of traffic. If there is a delay in drying of the markings, painting operations shall be discontinued until cause of the slow drying is determined and corrected.

3.3 MARKING REMOVAL

Pavement marking, including plastic tape, shall be removed in the areas shown on the drawings. Removal of marking shall be as complete as possible without damage to the surface. Aggregate shall not be exposed by the removal process. After the markings are removed, the cleaned pavement surfaces shall exhibit adequate texture for remarking as specified in paragraph SURFACE PREPARATION. Contractor shall demonstrate removal of pavement marking in an area designated by the Contracting Officer. The demonstration area will become the standard for the remainder of the work.

3.3.1 Equipment Operation

Equipment shall be controlled and operated to remove markings from the pavement surface, prevent dilution or removal of binder from underlying pavement, and prevent emission of blue smoke from asphalt or tar surfaces.

3.3.2 Cleanup and Waste Disposal

The worksite shall be kept clean of debris and waste from the removal operations. Cleanup shall immediately follow removal operations in areas subject to air traffic. Debris shall be disposed of at approved sites.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 182 (1991) Burlap Cloth Made from Jute or Kenaf

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 615/A 615M (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement

ASTM A 616/A 616M (1996a) Rail-Steel Deformed and Plain Bars for Concrete Reinforcement

ASTM A 617/A 617M (1996a) Axle-Steel Deformed and Plain Bars for Concrete Reinforcement

ASTM C 31/C 31M (1996) Making and Curing Concrete Test Specimens in the Field

ASTM C 143 (1990a) Slump of Hydraulic Cement Concrete

ASTM C 171 (1997) Sheet Materials for Curing Concrete

ASTM C 172 (1997) Sampling Freshly Mixed Concrete

ASTM C 173 (1996) Air Content of Freshly Mixed Concrete by the Volumetric Method

ASTM C 231 (1997) Air Content of Freshly Mixed Concrete by the Pressure Method

ASTM C 309 (1997) Liquid Membrane-Forming Compounds for Curing Concrete

ASTM D 1751 (1983; R 1991) Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)
ASTM D 1752 (1984; R 1996) Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction

ASTM D 3405 (1996) Joint Sealants, Hot-Applied, for Concrete and Asphalt Pavements

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data
Concrete; G, RE

Copies of certified delivery tickets for all concrete used in the construction.

SD-06 Test Reports
Field Quality Control; G, RE

Copies of all test reports within 24 hours of completion of the test.

1.3 WEATHER LIMITATIONS

1.3.1 Placing During Cold Weather

Concrete placement shall not take place when the air temperature reaches 5 degrees C and is falling, or is already below that point. Placement may begin when the air temperature reaches 2 degrees C and is rising, or is already above 5 degrees C. Provisions shall be made to protect the concrete from freezing during the specified curing period. If necessary to place concrete when the temperature of the air, aggregates, or water is below 2 degrees C, placement and protection shall be approved in writing. Approval will be contingent upon full conformance with the following provisions. The underlying material shall be prepared and protected so that it is entirely free of frost when the concrete is deposited. Mixing water shall be heated as necessary to result in the temperature of the in-place concrete being between 10 and 30 degrees C. Methods and equipment for heating shall be approved. The aggregates shall be free of ice, snow, and frozen lumps before entering the mixer. Covering and other means shall be provided for maintaining the concrete at a temperature of at least 10 degrees C for not less than 72 hours after placing, and at a temperature above freezing for the remainder of the curing period.

1.3.2 Placing During Warm Weather

The temperature of the concrete as placed shall not exceed 30 degrees C except where an approved retarder is used. The mixing water and/or aggregates shall be cooled, if necessary, to maintain a satisfactory placing
temperature. The placing temperature shall not exceed 35 degrees C at any time.

1.4 PLANT, EQUIPMENT, MACHINES, AND TOOLS

1.4.1 General Requirements

Plant, equipment, machines, and tools used in the work shall be subject to approval and shall be maintained in a satisfactory working condition at all times. The equipment shall have the capability of producing the required product, meeting grade controls, thickness control and smoothness requirements as specified. Use of the equipment shall be discontinued if it produces unsatisfactory results. The Contracting Officer shall have access at all times to the plant and equipment to ensure proper operation and compliance with specifications.

PART 2 PRODUCTS

2.1 CONCRETE

Concrete shall conform to the applicable requirements of Section 02754 CONCRETE PAVEMENTS FOR SMALL PROJECT except as otherwise specified. Concrete shall have a minimum compressive strength of 24 MPa at 28 days. Maximum size of aggregate shall be 37.5 mm.

2.1.1 Air Content

Mixtures shall have air content by volume of concrete of 5 to 7 percent, based on measurements made immediately after discharge from the mixer.

2.1.2 Slump

The concrete slump shall be 50 mm plus or minus 25 mm where determined in accordance with ASTM C 143.

2.1.3 Reinforcement Steel

Reinforcement bars shall conform to ASTM A 615/A 615M, ASTM A 616/A 616M, or ASTM A 617/A 617M.

2.2 CONCRETE CURING MATERIALS

2.2.1 Impervious Sheet Materials

Impervious sheet materials shall conform to ASTM C 171, type optional, except that polyethylene film, if used, shall be white opaque.

2.2.2 Burlap

Burlap shall conform to AASHTO M 182.

2.2.3 White Pigmented Membrane-Forming Curing Compound

White pigmented membrane-forming curing compound shall conform to ASTM C 309, Type 2.
2.3 CONCRETE PROTECTION MATERIALS

Concrete protection materials shall be a linseed oil mixture of equal parts, by volume, of linseed oil and either mineral spirits, naphtha, or turpentine. At the option of the contractor, commercially prepared linseed oil mixtures, formulated specifically for application to concrete to provide protection against the action of deicing chemicals may be used, except that emulsified mixtures are not acceptable.

2.4 JOINT FILLER STRIPS

2.4.1 Contraction Joint Filler for Curb and Gutter

Contraction joint filler for curb and gutter shall consist of hard-pressed fiberboard.

2.4.2 Expansion Joint Filler, Premolded

Expansion joint filler, premolded, shall conform to ASTM D 1751 or ASTM D 1752, 10 mm thick, unless otherwise indicated.

2.5 JOINT SEALANTS

2.5.1 Joint Sealant, Cold-Applied

Joint sealant, cold-applied shall conform to ASTM C 920.

2.5.2 Joint Sealant, Hot-Poured

Joint sealant, hot-poured shall conform to ASTM D 3405.

2.6 FORM WORK

Form work shall be designed and constructed to ensure that the finished concrete will conform accurately to the indicated dimensions, lines, and elevations, and within the tolerances specified. Forms shall be of wood or steel, straight, of sufficient strength to resist springing during depositing and consolidating concrete. Wood forms shall be surfaced plank, 50 mm nominal thickness, straight and free from warp, twist, loose knots, splits or other defects. Wood forms shall have a nominal length of 3 m. Radius bends may be formed with 19 mm boards, laminated to the required thickness. Steel forms shall be channel-formed sections with a flat top surface and with welded braces at each end and at not less than two intermediate points. Ends of steel forms shall be interlocking and self-aligning. Steel forms shall include flexible forms for radius forming, corner forms, form spreaders, and fillers. Steel forms shall have a nominal length of 3 m with a minimum of 3 welded stake pockets per form. Stake pins shall be solid steel rods with chamfered heads and pointed tips designed for use with steel forms.

2.6.1 Sidewalk Forms

Sidewalk forms shall be of a height equal to the full depth of the finished sidewalk.

2.6.2 Curb and Gutter Forms
Curb and gutter outside forms shall have a height equal to the full depth of the curb or gutter. The inside form of curb shall have batter as indicated and shall be securely fastened to and supported by the outside form. Rigid forms shall be provided for curb returns, except that benders or thin plank forms may be used for curb or curb returns with a radius of 3 m or more, where grade changes occur in the return, or where the central angle is such that a rigid form with a central angle of 90 degrees cannot be used. Back forms for curb returns may be made of 38 mm benders, for the full height of the curb, cleated together. In lieu of inside forms for curbs, a curb "mule" may be used for forming and finishing this surface, provided the results are approved.

PART 3 EXECUTION

3.1 SUBGRADE PREPARATION

The subgrade shall be constructed to the specified grade and cross section prior to concrete placement. Subgrade shall be placed and compacted in conformance with Section 02712 LIME-STABILIZED SUBGRADE.

3.1.1 Sidewalk Subgrade

The subgrade shall be tested for grade and cross section with a template extending the full width of the sidewalk and supported between side forms.

3.1.2 Curb and Gutter Subgrade

The subgrade shall be tested for grade and cross section by means of a template extending the full width of the curb and gutter. The subgrade shall be of materials equal in bearing quality to the subgrade under the adjacent pavement.

3.1.3 Maintenance of Subgrade

The subgrade shall be maintained in a smooth, compacted condition in conformity with the required section and established grade until the concrete is placed. The subgrade shall be in a moist condition when concrete is placed. The subgrade shall be prepared and protected to produce a subgrade free from frost when the concrete is deposited.

3.2 FORM SETTING

Forms shall be set to the indicated alignment, grade and dimensions. Forms shall be held rigidly in place by a minimum of 3 stakes per form placed at intervals not to exceed 1.2 meters. Corners, deep sections, and radius bends shall have additional stakes and braces, as required. Clamps, spreaders, and braces shall be used where required to ensure rigidity in the forms. Forms shall be removed without injuring the concrete. Bars or heavy tools shall not be used against the concrete in removing the forms. Any concrete found defective after form removal shall be promptly and satisfactorily repaired. Forms shall be cleaned and coated with form oil each time before concrete is placed. Wood forms may, instead, be thoroughly wetted with water before concrete is placed, except that with probable freezing temperatures, oiling is mandatory.

3.2.1 Sidewalks
Forms for sidewalks shall be set with the upper edge true to line and grade with an allowable tolerance of 3 mm in any 3 m long section. After forms are set, grade and alignment shall be checked with a 3 m straightedge. Forms shall have a transverse slope as indicated with the low side adjacent to the roadway. Side forms shall not be removed for 12 hours after finishing has been completed.

3.2.2 Curbs and Gutters

The forms of the front of the curb shall be removed not less than 2 hours nor more than 6 hours after the concrete has been placed. Forms back of curb shall remain in place until the face and top of the curb have been finished, as specified for concrete finishing. Gutter forms shall not be removed while the concrete is sufficiently plastic to slump in any direction.

3.3 SIDEWALK CONCRETE PLACEMENT AND FINISHING

3.3.1 Formed Sidewalks

Concrete shall be placed in the forms in one layer. When consolidated and finished, the sidewalks shall be of the thickness indicated. After concrete has been placed in the forms, a strike-off guided by side forms shall be used to bring the surface to proper section to be compacted. The concrete shall be consolidated with an approved vibrator, and the surface shall be finished to grade with a strike off.

3.3.2 Concrete Finishing

After straightedging, when most of the water sheen has disappeared, and just before the concrete hardens, the surface shall be finished with a wood float or darby to a smooth and uniformly fine granular or sandy texture free of waves, irregularities, or tool marks. A scored surface shall be produced by brooming with a fiber-bristle brush in a direction transverse to that of the traffic, followed by edging.

3.3.3 Edge and Joint Finishing

All slab edges, including those at formed joints, shall be finished with an edger having a radius of 3 mm. Transverse joint shall be edged before brooming, and the brooming shall eliminate the flat surface left by the surface face of the edger. Corners and edges which have crumbled and areas which lack sufficient mortar for proper finishing shall be cleaned and filled solidly with a properly proportioned mortar mixture and then finished.

3.3.4 Surface and Thickness Tolerances

Finished surfaces shall not vary more than 8 mm from the testing edge of a 3 m straightedge. Permissible deficiency in section thickness will be up to 6 mm.

3.4 CURB AND GUTTER CONCRETE PLACEMENT AND FINISHING

3.4.1 Formed Curb and Gutter
Concrete shall be placed to the section required in a single lift. Consolidation shall be achieved by using approved mechanical vibrators. Curve shaped gutters shall be finished with a standard curb "mule".

3.4.2 Curb and Gutter Finishing

Approved slipformed curb and gutter machines may be used in lieu of hand placement.

3.4.3 Concrete Finishing

Exposed surfaces shall be floated and finished with a smooth wood float until true to grade and section and uniform in texture. Floated surfaces shall then be brushed with a fine-hair brush with longitudinal strokes. The edges of the gutter and top of the curb shall be rounded with an edging tool to a radius of 13 mm. Immediately after removing the front curb form, the face of the curb shall be rubbed with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The front curb surface, while still wet, shall be brushed in the same manner as the gutter and curb top. The top surface of gutter and entrance shall be finished to grade with a wood float.

3.4.4 Joint Finishing

Curb edges at formed joints shall be finished as indicated.

3.4.5 Surface and Thickness Tolerances

Finished surfaces shall not vary more than 6 mm from the testing edge of a 3 m straightedge. Permissible deficiency in section thickness will be up to 6 mm.

3.5 SIDEWALK JOINTS

Sidewalk joints shall be constructed to divide the surface into rectangular areas. Transverse contraction joints shall be spaced at a distance equal to the sidewalk width or 1.5 m on centers, whichever is less, and shall be continuous across the slab. Longitudinal contraction joints shall be constructed along the centerline of all sidewalks 3 m or more in width. Transverse expansion joints shall be installed at sidewalk returns and opposite expansion joints in adjoining curbs. Where the sidewalk is not in contact with the curb, transverse expansion joints shall be installed as indicated. Expansion joints shall be formed about structures and features which project through or into the sidewalk pavement, using joint filler of the type, thickness, and width indicated.

3.5.1 Sidewalk Contraction Joints

The contraction joints shall be formed in the fresh concrete by cutting a groove in the top portion of the slab to a depth of at least one-fourth of the sidewalk slab thickness, using a jointer to cut the groove, or by sawing a groove in the hardened concrete with a power-driven saw, unless otherwise approved. Sawed joints shall be constructed by sawing a groove in the concrete with a 3 mm blade to the depth indicated. An ample supply of saw blades shall be available on the job before concrete placement is started, and at least one standby sawing unit in good working order shall be available at the jobsite at all times during the sawing operations.
3.5.2 Sidewalk Expansion Joints

Expansion joints shall be formed with 10 mm joint filler strips. Joint filler shall be placed with top edge 6 mm below the surface and shall be held in place with steel pins or other devices to prevent warping of the filler during floating and finishing. Immediately after finishing operations are completed, joint edges shall be rounded with an edging tool having a radius of 3 mm, and concrete over the joint filler shall be removed. At the end of the curing period, expansion joints shall be cleaned and filled with joint sealant. Joints shall be sealed as specified in Section 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS. The joint opening shall be thoroughly cleaned before the sealing material is placed. Sealing material shall not be spilled on exposed surfaces of the concrete. Concrete at the joint shall be surface dry and atmospheric and concrete temperatures shall be above 10 degrees C at the time of application of joint sealing material. Excess material on exposed surfaces of the concrete shall be removed immediately and concrete surfaces cleaned.

3.5.3 Reinforcement Steel Placement

Reinforcement steel shall be accurately and securely fastened in place with suitable supports and ties before the concrete is placed.

3.6 CURB AND GUTTER JOINTS

Curb and gutter joints shall be constructed at right angles to the line of curb and gutter.

3.6.1 Contraction Joints

Contraction joints shall be constructed directly opposite contraction joints in abutting portland cement concrete pavements and spaced so that monolithic sections between curb returns will not be less than 1.5 m nor greater than 4.5 m in length. Contraction joints shall be constructed by means of 3 mm thick separators and of a section conforming to the cross section of the curb and gutter. Separators shall be removed as soon as practicable after concrete has set sufficiently to preserve the width and shape of the joint and prior to finishing.

3.6.2 Expansion Joints

Expansion joints shall be formed by means of preformed expansion joint filler material cut and shaped to the cross section of curb and gutter. Expansion joints shall be provided in curb and gutter directly opposite expansion joints of abutting portland cement concrete pavement, and shall be of the same type and thickness as joints in the pavement. Where curb and gutter do not abut portland cement concrete pavement, expansion joints at least 13 mm in width shall be provided at intervals not exceeding 10 meters. Expansion joints shall be provided in nonreinforced concrete gutter at locations indicated. Expansion joints shall be sealed immediately following curing of the concrete or as soon thereafter as weather conditions permit. Joints shall be sealed as specified in Section 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS.

3.7 CURING AND PROTECTION
3.7.1 General Requirements

Concrete shall be protected against loss of moisture and rapid temperature changes for at least 7 days from the beginning of the curing operation. Unhardened concrete shall be protected from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready for use before actual concrete placement begins. Protection shall be provided as necessary to prevent cracking of the pavement due to temperature changes during the curing period.

3.7.1.1 Membrane Curing Method

A uniform coating of white-pigmented membrane-curing compound shall be applied to the entire exposed surface of the concrete as soon after finishing as the free water has disappeared from the finished surface. Formed surfaces shall be coated immediately after the forms are removed and in no case longer than 1 hour after the removal of forms. Concrete shall not be allowed to dry before the application of the membrane. If any drying has occurred, the surface of the concrete shall be moistened with a fine spray of water and the curing compound applied as soon as the free water disappears. Curing compound shall be applied in two coats by hand-operated pressure sprayers at a coverage of approximately 5 square meters per liter for the total of both coats. The second coat shall be applied in a direction approximately at right angles to the direction of application of the first coat. The compound shall form a uniform, continuous, coherent film that will not check, crack, or peel and shall be free from pinholes or other imperfections. If pinholes, abrasion, or other discontinuities exist, an additional coat shall be applied to the affected areas within 30 minutes. Concrete surfaces that are subjected to heavy rainfall within 3 hours after the curing compound has been applied shall be resprayed by the method and at the coverage specified above. Areas where the curing compound is damaged by subsequent construction operations within the curing period shall be resprayed. Necessary precautions shall be taken to insure that the concrete is properly cured at sawed joints, and that no curing compound enters the joints. The top of the joint opening and the joint groove at exposed edges shall be tightly sealed before the concrete in the region of the joint is resprayed with curing compound. The method used for sealing the joint groove shall prevent loss of moisture from the joint during the entire specified curing period. Approved standby facilities for curing concrete pavement shall be provided at a location accessible to the jobsite for use in the event of mechanical failure of the spraying equipment or other conditions that might prevent correct application of the membrane-curing compound at the proper time. Concrete surfaces to which membrane-curing compounds have been applied shall be adequately protected during the entire curing period from pedestrian and vehicular traffic, except as required for joint-sawing operations and surface tests, and from any other possible damage to the continuity of the membrane.

3.7.2 Backfilling

After curing, debris shall be removed and the area adjoining the concrete shall be backfilled, graded, and compacted to conform to the surrounding area in accordance with lines and grades indicated.

3.7.3 Protection
Completed concrete shall be protected from damage until accepted. The Contractor shall repair damaged concrete and clean concrete discolored during construction. Concrete that is damaged shall be removed and reconstructed for the entire length between regularly scheduled joints. Refinishing the damaged portion will not be acceptable. Removed damaged portions shall be disposed of as directed.

3.8 FIELD QUALITY CONTROL

3.8.1 General Requirements

The Contractor shall perform the inspection and tests described and meet the specified requirements for inspection details and frequency of testing. Based upon the results of these inspections and tests, the Contractor shall take the action and submit reports as required below, and any additional tests to insure that the requirements of these specifications are met.

3.8.2.1 Strength Testing

The Contractor shall provide molded concrete specimens for strength tests. Samples of concrete placed each day shall be taken not less than once a day nor less than once for every 190 cubic meters of concrete. The samples for strength tests shall be taken in accordance with ASTM C 172. Cylinders for acceptance shall be molded in conformance with ASTM C 31/C 31M by an approved testing laboratory. Each strength test result shall be the average of 2 test cylinders from the same concrete sample tested at 28 days, unless otherwise specified or approved. Concrete specified on the basis of compressive strength will be considered satisfactory if the averages of all sets of three consecutive strength test results equal or exceed the specified strength, and no individual strength test result falls below the specified strength by more than 4 MPa.

3.8.2 Air Content

Air content shall be determined in accordance with ASTM C 173 or ASTM C 231. ASTM C 231 shall be used with concretes and mortars made with relatively dense natural aggregates. Two tests for air content shall be made on randomly selected batches of each class of concrete placed during each shift. Additional tests shall be made when excessive variation in concrete workability is reported by the placing foreman or the Government inspector. If results are out of tolerance, the placing foreman shall be notified and he shall take appropriate action to have the air content corrected at the plant. Additional tests for air content will be performed on each truckload of material until such time as the air content is within the tolerance specified.

3.8.3 Slump Test

Two slump tests shall be made on randomly selected batches of each class of concrete for every 190 cubic meters, or fraction thereof, of concrete placed during each shift. Additional tests shall be performed when excessive variation in the workability of the concrete is noted or when excessive crumbling or slumping is noted along the edges of slip-formed concrete.

3.8.4 Thickness Evaluation
The anticipated thickness of the concrete shall be determined prior to placement by passing a template through the formed section or by measuring the depth of opening of the extrusion template of the curb forming machine. If a slip form paver is used for sidewalk placement, the subgrade shall be true to grade prior to concrete placement and the thickness will be determined by measuring each edge of the completed slab.

3.8.5 Surface Evaluation

The finished surface of each category of the completed work shall be uniform in color and free of blemishes and form or tool marks.

3.9 SURFACE DEFICIENCIES AND CORRECTIONS

3.9.1 Thickness Deficiency

When measurements indicate that the completed concrete section is deficient in thickness by more than 6 mm the deficient section will be removed, between regularly scheduled joints, and replaced.

3.9.2 High Areas

In areas not meeting surface smoothness and plan grade requirements, high areas shall be reduced either by rubbing the freshly finished concrete with carborundum brick and water when the concrete is less than 36 hours old or by grinding the hardened concrete with an approved surface grinding machine after the concrete is 36 hours old or more. The area corrected by grinding the surface of the hardened concrete shall not exceed 5 percent of the area of any integral slab, and the depth of grinding shall not exceed 6 mm. Pavement areas requiring grade or surface smoothness corrections in excess of the limits specified above shall be removed and replaced.

3.9.3 Appearance

Exposed surfaces of the finished work will be inspected by the Government and any deficiencies in appearance will be identified. Areas which exhibit excessive cracking, discoloration, form marks, or tool marks or which are otherwise inconsistent with the overall appearances of the work shall be removed and replaced.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

- **ASTM A 53** (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
- **ASTM B 32** (1996) Solder Metal
- **ASTM B 88M** (1996) Seamless Copper Water Tube (Metric)
- **ASTM D 1785** (1999) Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- **ASTM D 2241** (1996b) Poly(Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series)
- **ASTM D 2564** (1996a) Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems
- **ASTM D 2774** (1994) Underground Installation of Thermoplastic Pressure Piping
- **ASTM F 441/F 441M** (1999) Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

ASME INTERNATIONAL (ASME)

- **ASME B1.2** (1983; R 1991; Errata May 1992) Gages and Gaging for Unified Inch Screw Threads
- **ASME B16.3** (1992) Malleable Iron Threaded Fittings
1.2 PERFORMANCE REQUIREMENTS

System shall operate with a minimum water pressure of 345 kPa at connection to building and 275 kPa at the last head in each zone.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Sprinkler System; G, AE

Detail drawings for valves, sprinkler heads, backflow preventers, automatic controllers, emitter heads, and water hammer arresters. Drawings shall include a complete list of equipment and materials, and manufacturer's descriptive and technical literature, performance charts and curves, catalog cuts, and installation instructions. Drawings shall also contain complete wiring and schematic diagrams and any other details required to demonstrate that the system has been coordinated and will function as a unit. Drawings shall show proposed system layout, type and number of heads and emitters, zone valves, drain pockets, backflow devices, controllers, and mounting details of controllers. As-built Drawings which provide current factual information showing locations of mains, heads, valves, and controllers including deviations from and amendments to the drawings and changes in the work shall be included.

SD-03 Product Data

Framed Instructions

Labels, signs, and templates of operating instructions that are required to be mounted or installed on or near the product for normal, safe operation.

Field Training

Information describing training to be provided, training aids to be used, samples of training materials to be provided, and schedules and notification of training.

Sprinkler System

Detailed procedures defining the Contractor's provisions for accident prevention, health protection, and other safety precautions for the work to be done.

Spare Parts;

Spare parts data for each different item of material and equipment specified, after approval of the related submittals and not later than the start of the field tests. The data shall include a complete list of parts and supplies, with current unit prices and source of supply.
Design Analysis and Calculations; G, AE

Design analyses and pressure calculations verifying that system will provide the irrigation requirements.

SD-06 Test Reports

Field Tests

Performance test reports, in booklet form, showing all field tests performed to adjust each component; and all field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall indicate the final position of control valves.

SD-07 Certificates

Sprinkler System

The material supplier's or equipment manufacturer's statement that the supplied material or equipment meets specified requirements. Each certificate shall be signed by an official authorized to certify in behalf of material supplier or product manufacturer and shall identify quantity and date or dates of shipment or delivery to which the certificates apply.

SD-10 Operation and Maintenance Data

Sprinkler System

Six copies of operation and six copies of maintenance manuals for the equipment furnished. One complete set prior to field testing and the remainder upon acceptance. Manuals shall be approved prior to the field training course. Operating manuals shall detail the step-by-step procedures required for system startup, operation, and shutdown. Operating manuals shall include the manufacturer's name, model number, parts list, and brief description of all equipment and their basic operating features. Maintenance manuals shall list routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides. Maintenance manuals shall include piping and equipment layout, simplified wiring and control diagrams of the system as installed, and system programming schedule.

1.4 DELIVERY AND STORAGE

All equipment delivered and placed in storage shall be protected from the weather; excessive humidity and temperature variation; direct sunlight (in the case of plastic or rubber materials); and dirt, dust, or other contaminants.

1.5 FIELD MEASUREMENTS

The Contractor shall verify all dimensions in the field and shall advise the Contracting Officer of any discrepancy before performing the work.
PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT REQUIREMENTS

2.1.1 Standard Products

Materials and equipment shall be the standard products of a manufacturer who has produced similar systems which have performed well for a minimum period of 2 years prior to bid opening. Equipment shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site.

2.1.2 Nameplates

Each item of equipment shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment.

2.1.3 Extra Stock

The following extra stock shall be provided: Two sprinkler heads of each size and type, two valve keys for operating manual valves, two wrenches for removing and installing each type of head, two quick coupler keys and hose swivels, and four irrigation controller housing keys.

2.2 PIPING MATERIALS

2.2.1 Copper Tubing and Associated Fittings

Tubing shall conform to requirements of ASTM B 88M, Type K. Fittings shall conform to ASME B16.22 and ASME B16.18, solder joint. Solder shall conform to ASTM B 3295-5 tin-antimony. Flux shall conform to CID A-A-51145, Type I.

2.2.2 Red Brass Pipe and Associated Fittings

Pipe shall conform to requirements of ASTM B 43, regular. Fittings shall be Class 250, cast bronze threaded conforming to the requirements of ASME B16.15.

2.2.3 Galvanized Steel Pipe and Associated Fittings

Pipe shall conform to requirements of ASTM A 53, Schedule 40. Fittings shall be Class 150 conforming to requirements of ASME B16.3.

2.2.4 Polyvinyl Chloride (PVC) Pipe, Fittings and Solvent Cement

2.2.4.1 PVC Pipe

Pipe shall conform to the requirements of ASTM D 1785, PVC 1120 Schedule 40; or ASTM D 2241, PVC 1120 SDR 21, Class 200.

2.2.4.2 PVC Fittings

Solvent welded socket type fittings shall conform to requirements of ASTM D 2466, Schedule 40. Threaded type fittings shall conform to requirements of ASTM D 2464, Schedule 80.
2.2.4.3 Solvent Cement

Solvent cement shall conform to the requirements of ASTM D 2564.

2.2.5 Polyethylene (PE) Plastic Piping

Pipe shall conform to AWWA C901, outside diameter base with dimension ratio (DR) of 9.3 to provide 1034 kPa (150 psi) minimum pressure rating. Fittings shall conform to ASTM D 3261, DR of 9.3.

2.2.6 Dielectric Fittings

Dielectric fittings shall conform to ASTM F 441/F 441M, Schedule 80, CPVC threaded pipe nipples, 100 mm (4 inch) minimum length.

2.3 SPRINKLER HEADS

2.3.1 Pop-Up Spray Heads

2.3.1.1 General Requirements

Pop-up spray heads lay flush with housing, then pop up when water pressure 138 kPa is activated in system. The rising member supporting the nozzle shall be identical on full, half, third or quarter pattern sprinklers so that nozzles will be interchangeable. The sprinkler head shall be designed to be adjustable for coverage and flow. The nozzle shall be removable so head does not have to be removed for flushing or cleaning. Nozzle rises a minimum of 100 mm (4 inches) above the body. The body shall be constructed with a 13 mm female thread for installation in a fixed underground pipe system.

2.3.1.2 Shrubbery Sprinkler Heads

Sprinkler heads shall be conical spray with adjustable or non-adjustable coverage and designed for permanent aboveground mounting on riser or pop-ups at a height compatible with ground covers. Provide brass nozzles.

2.3.2 Rotary Pop-Up Sprinklers

Sprinklers shall be capable of covering 6-12m diameter at 310 kPa with a distribution rate of 0.075-0.33 L/second 100 mm pop-up, trajectory of 15 degrees. Construction shall be high impact molded plastic with filter screen, reducible watering radius, and choice of 6-12 nozzles and have adjustable radius capabilities.

2.3.3 Bubbler Sprinkler Heads

Heads shall be multiple-spray bubbler with adjustable flow and designed for permanent aboveground mounting on risers.

2.3.4 Surface Connected Lawn Sprinkler Heads

Heads shall be an impulse type with or without sled, ring, or wheel base; multiple T Type; a rotary type with sled, spike or wheel base; or oscillating type with wheel or sled base.
2.4 VALVES

2.4.1 Gate Valves, Less than 80 mm (3 Inches)

Gate valves shall conform to the requirements of MSS SP-80, Type 1, Class 150, threaded ends.

2.4.2 Gate Valves, 80 mm (3 Inches) and Larger

Gate valves shall conform to the requirements of AWWA C509 and have encapsulated resilient wedge, parallel seats, non-rising stems, and open by counterclockwise turning. End connections shall be flanged. Interior construction of valves shall be bronze including stem containing a maximum 2 percent aluminum and maximum 16 percent zinc.

2.4.3 Angle Valves, Less Than 65 mm (2-1/2 Inches)

Angle valves shall conform to the requirements of MSS SP-80, Type 3, Class 150 threaded ends.

2.4.4 Angle Valves, 65 mm (2-1/2 Inches) and Larger

Angle valves shall conform to the requirements of MSS SP-85, Type II, Class 250 threaded ends.

2.4.5 Quick Coupling Valves

Quick coupling valves shall have brass parts and shall be two-piece unit consisting of a coupler water seal valve assembly and a removable upper body to allow spring and key track to be serviced without shutdown of main. Lids shall be lockable vinyl with spring for positive closure on key removal.

2.4.6 Remote Control Valves, Electrical

Remote control valves shall be solenoid actuated globe valves of 20 to 80 mm (3/4 to 3 inch) size, suitable for 24 volts, 60 cycle, and designed to provide for shut-off in event of power failure. Valve shall be cast bronze or brass or plastic housing suitable for service at 1034 kPa (150 psi) operating pressure with external flow control adjustment for shut-off capability, external plug at diaphragm chamber to enable manual operation, filter in control chamber to prevent valve body clogging with debris, durable diaphragm, and accessibility to internal parts without removing valve from system.

2.4.7 Drain Valves

2.4.7.1 Manual Valves

Manual valves shall conform to requirements of MSS SP-80, Type 3, Class 150 threaded ends for sizes less than 65 mm (2-1/2 inches) and MSS SP-85, Type II, Class 250 threaded ends for sizes 65 mm (2-1/2 inches) and larger.

2.4.7.2 Automatic Valves

Automatic valves shall be brass or plastic, spring loaded ball drip type, Class 150 and threaded ends, designed to close at 18 kPa (6 foot) pressure.
head with positive seal at 21 kPa (3 psi) pressure or greater and be open to drain at less than 21 kPa (3 psi) pressure.

2.4.8 Pressure Regulating Master Valve

Pressure regulating master valve shall be automatic mechanical self-cleaning, self-purging control system having an adjustable pressure setting operated by a solenoid on alternating current with 0.70 amperes at 24 volts. Valve shall close slowly and be free of chatter in each diaphragm position, have manual flow stem to adjust closing speed and internal flushing, and one/two inlet tappings capable of being installed as a straight pattern valve. Body shall be cast bronze or brass with removable brass seat serviceable from top without removing valve body from system. Valve shall operate at 1034 kPa (150 psi) working pressure and pilot range from 70 to 875 kPa (10 to 125 psi).

2.5 ACCESSORIES AND APPURTENANCES

2.5.1 Valve Keys for Manually Operated Valves

Valve keys shall be 15 mm (1/2 inch) diameter by 1000 mm long, tee handles and keyed to fit valves.

2.5.2 Valve Boxes and Concrete Pads

2.5.2.1 Valve Boxes

Valve boxes shall be cast iron, plastic lockable, or precast concrete for each gate valve, manual control valve and remote control valve. Box sizes shall be adjustable for valve used. Word "IRRIGATION" shall be cast on cover. Shaft diameter of box shall be minimum 130 mm (5-1/4 inches). Cast iron box shall have bituminous coating.

2.5.2.2 Concrete Pads

Concrete pads shall be precast or cast-in-place reinforced concrete construction for reduced pressure type backflow preventers.

2.5.3 Pressure Gauges

Pressure gauges shall conform to requirements of ASME B40.1, single style pressure gauge for water with 115 mm (4-1/2 inch) dial brass or aluminum case, bronze tube, gauge cock, pressure snubber, and siphon. Scale range shall be suitable for irrigation sprinkler systems.

2.5.4 Service Clamps

Service clamps shall be bronze flat, double strap, with neoprene gasket or "O"-ring seal.

2.5.5 Water Hammer Arresters

Water hammer arrester shall conform to the requirements of PDI WH 201; stainless steel construction with an encased and sealed bellows compression chamber.
2.6 AUTOMATIC CONTROLLERS, ELECTRICAL

Controller shall conform to the requirements of NEMA ICS 2 with 120-volt single phase service, operating with indicated stations, and grounded chassis. Enclosure shall conform to NEMA ICS 6 Type 3R, with locking hinged cover, pedestal-mounted or wall-mounted. Controller shall be programmed for various schedules by setting switches and dials equipped with the following features: A switch for each day of week for three schedules, allowing each station to be scheduled individually as to days of watering; a minute switch for each station with a positive increment range of 0 to 3 hours, set time within one percent; a switch allowing selected schedules to be repeated after each completion of initial watering schedule and allowing each operation to be scheduled throughout a 24-hour day; a circuit breaker for surge protection; and circuit for a 9-volt rechargeable NiCad battery.

2.7 ELECTRICAL WORK

Wiring and rigid conduit for electrical power shall be in accordance with NFPA 70, and Section 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND.

2.8 CONCRETE MATERIALS

Concrete shall have a compressive strength of 17 MPa at 28 days as specified in Section 03300, CAST-IN-PLACE STRUCTURAL CONCRETE.

2.9 WATER SUPPLY MAIN MATERIALS

Tapping sleeves, service cut off valves, and connections to water supply mains shall be in accordance with Section 02510 WATER DISTRIBUTION SYSTEM.

2.10 INSULATING JOINTS

Insulating joints and dielectric fittings shall be in accordance with Section 02510 WATER DISTRIBUTION SYSTEM.

PART 3 EXECUTION

3.1 INSTALLATION

Sprinkler system shall be installed after site grading has been completed. Excavation, trenching, and backfilling for sprinkler system shall be in accordance with the applicable provisions of Section 02316, EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS, except as modified herein.

3.1.1 Trenching

Trench around roots shall be hand excavated to pipe grade when roots of 50 mm diameter or greater are encountered. Trench width shall be 100 mm minimum or 1-1/2 times diameter of pipe, whichever is wider. Backfill shall be hand tamped over excavation. When rock is encountered, trench shall be excavated 100 mm deeper and backfilled with silty sand (SM) or well-graded sand (SW) to pipe grade. Trenches shall be kept free of obstructions and debris that would damage pipe. Subsoil shall not be mixed with topsoil. Existing concrete walks, drives and other obstacles shall be bored at a depth conforming to bottom of adjacent trenches. Pipe sleeves for bored pipe shall be two pipe diameters larger than sprinkler pipe.
3.1.2 Piping System

3.1.2.1 Cover

Underground piping shall be installed to meet the minimum depth of backfill cover specified.

3.1.2.2 Clearances

Minimum horizontal clearances between lines shall be 100 mm for pipe 50 mm (2 inches) and less; 300 mm for 65 mm (2-1/2 inches) and larger. Minimum vertical clearances between lines shall be 25 mm.

3.1.2.3 Minimum Slope

Minimum slope shall be 50 mm per 10 m in direction of drain valves.

3.1.3 Piping Installation

3.1.3.1 Polyvinyl Chloride (PVC) Pipe

a. Solvent-cemented joints shall conform to the requirements of ASTM D 2855.

b. Threaded joints shall be full cut with a maximum of three threads remaining exposed on pipe and nipples. Threaded joints shall be made tight without recourse to wicks or fillers, other than polytetrafluoroethylene thread tape.

c. Piping shall be joined to conform with requirements of ASTM D 2774 or ASTM D 2855, and pipe manufacturer's instructions. Pipe shall be installed in a serpentine (snaked) manner to allow for expansion and contraction in trench before backfilling. Pipes shall be installed at temperatures over 5 degrees C.

3.1.3.2 Soldered Copper Tubing

Pipe shall be reamed and burrs removed. Contact surfaces of joint shall be cleaned and polished. Flux shall be applied to male and female ends. End of tube shall be inserted into fittings full depth of socket. After soldering, a solder bead shall show continuously around entire joint circumference. Excess acid flux shall be removed from tubings and fittings.

3.1.3.3 Threaded Brass or Galvanized Steel Pipe

Prior to installation, pipe shall be reamed. Threads shall be cut in conformance with ASME B1.2. Pipe joint compound shall be applied to male end only.

3.1.3.4 Insulating Joints

Insulating and dielectric fittings shall be provided where pipes of dissimilar metal are joined and at connections to water supply mains as shown. Installation shall be in accordance with Section 02510 WATER DISTRIBUTION SYSTEM.
3.1.4 Installation of Valves

3.1.4.1 Manual Valves

Valves shall be installed in a valve box extending from grade to below valve body, with a minimum of 100 mm cover measured from finish grade to top of valve stem.

3.1.4.2 Automatic Valves

Valve shall be set plumb in a valve box extending from grade to below valve body, with minimum of 100 mm cover measured from grade to top of valve. Automatic valves shall be installed beside sprinkler heads with a valve box.

3.1.4.3 Drain Valves

Entire system shall be manually or automatically drainable. Low points of system shall be equipped with drain valve draining into an excavation containing 0.03 cubic meter gravel. Gravel shall be covered with building paper then backfilled with excavated material and 150 mm of topsoil.

3.1.5 Sprinklers and Quick Coupling Valves

Sprinklers and valves shall be installed plumb and level with terrain.

3.1.6 Control Wire and Conduit

3.1.6.1 Wires

Low voltage wires may be buried beside pipe in same trench. Rigid conduit shall be provided where wires run under paving. Wires shall be number tagged at key locations along main to facilitate service. One control circuit shall be provided for each zone and a circuit to control sprinkler system.

3.1.6.2 Loops

A 300 mm loop of wire shall be provided at each valve where controls are connected.

3.1.6.3 Expansion and Contraction

Multiple tubes or wires shall be bundled and taped together at 6 m intervals with 300 mm loop for expansion and contraction.

3.1.6.4 Splices

Electrical splices shall be waterproof.

3.1.7 Automatic Controller

Exact field location of controllers shall be determined before installation. Coordinate the electrical service to these locations. Install in accordance with manufacturer's recommendations and NFPA 70.

3.1.8 Thrust Blocks
Concrete shall be placed so that sides subject to thrust or load are against undisturbed earth, and valves and fittings are serviceable after concrete has set. Thrust blocks shall be as specified in Section 02510 WATER DISTRIBUTION SYSTEM.

3.1.9 Backfill

3.1.9.1 Minimum Cover

Depth of cover shall be 300 mm for 32 mm (1-1/4 inch) pipe or smaller; 450 mm for 40 to 50 mm (1-1/2 to 2 inch) pipe; 600 mm for 65 mm (2-1/2 inch) pipe or larger; 1000 mm for pipes under traffic loads, farm operations, and freezing temperatures; and 450 mm for low-voltage wires. Remainder of trench or pipe cover shall be filled to within 80 mm of top with excavated soil, and compact soil with plate hand-held compactors to same density as undisturbed adjacent soil.

3.1.9.2 Restoration

Top 80 mm shall be filled with topsoil and compacted with same density as surrounding soil. Lawns and plants shall be restored in accordance with Sections 02921 SEEDING, 02922 SODDING, 02923 SPRIGGING, and Section 02930 EXTERIOR PLANTING.

3.1.10 Adjustment

After grading, seeding, and rolling of planted areas, sprinkler heads shall be adjusted flush with finished grade. Adjustments shall be made by providing new nipples of proper length or by use of heads having an approved device, integral with head, which will permit adjustment in height of head without changing piping.

3.1.11 Disinfection

Sprinkler system fed from a potable water system shall be disinfected upstream of backflow preventer in accordance with Section 02510 WATER DISTRIBUTION SYSTEM.

3.1.12 Cleaning of Piping

Prior to the hydrostatic and operation tests, the interior of the pipe shall be flushed with clean water until pipe is free of all foreign materials. Flushing and cleaning out of system pipe, valves, and components shall not be considered completed until witnessed and accepted by Contracting Officer.

3.2 FIELD TESTS

All instruments, equipment, facilities, and labor required to conduct the tests shall be provided by Contractor.

3.2.1 Hydrostatic Pressure Test

Piping shall be tested hydrostatically before backfilling and proved tight at a hydrostatic pressure of 1034 kPa (150 psi) without pumping for a period of one hour with an allowable pressure drop of 35 kPa (5 psi). If hydrostatic pressure cannot be held for a minimum of 4 hours, Contractor
shall make adjustments or replacements and the tests repeated until satisfactory results are achieved and accepted by the Contracting Officer.

3.2.2 Leakage Tests

Leakage tests for service main shall be in accordance with Section 02510 WATER DISTRIBUTION SYSTEM.

3.2.3 Operation Test

At conclusion of pressure test, sprinkler heads or emitter heads, quick coupling assemblies, and hose valves shall be installed and entire system tested for operation under normal operating pressure. Operation test consists of the system operating through at least one complete programmed cycle for all areas to be sprinkled.

3.3 FRAMED INSTRUCTIONS

Framed instructions containing wiring and control diagrams under glass or in laminated plastic shall be posted where directed. Condensed operating instructions, prepared in typed form, shall be framed as specified above and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the system. After as-built drawings are approved by Contracting Officer, controller charts and programming schedule shall be prepared. One chart for each controller shall be supplied. Chart shall be a reduced drawing of actual as-built system that will fit the maximum dimensions inside controller housing. Black line print for chart and a different pastel or transparent color shall indicate each station area of coverage. After chart is completed and approved for final acceptance, chart shall be sealed between two 0.505 mm (20 mil) pieces of clear plastic.

3.4 FIELD TRAINING

A field training course shall be provided for designated operating and maintenance staff members. Training shall be provided for a total period of 8 hours of normal working time and shall start after the system is functionally complete but prior to final acceptance tests. Field training shall cover all of the items contained in the operating and maintenance manuals.

3.5 CLEANUP

Upon completion of installation of system, all debris and surplus materials resulting from the work shall be removed.

-- End Of Section --
SECTION 02821

FENCING

04/99

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 121 (1999) Zinc-Coated (Galvanized) Steel Barbed Wire

ASTM A 153/A 153M (1998) Zinc-Coated (Hot Dip) on Iron and Steel Hardware

ASTM A 392 (1996) Zinc-Coated Steel Chain-Link Fence Fabric

ASTM A 491 (1996) Aluminum-Coated Steel Chain-Link Fence Fabric

ASTM A 585 (1997) Aluminum-Coated Steel Barbed Wire

ASTM A 780 (1993a) Repair of Damaged and Uncoated Areas of Hot-Dipped Galvanized Coatings

ASTM A 824 (1995) Metallic-Coated Steel Marcelled Tension Wire for Use With Chain Link Fence

ASTM F 626 (1996a) Fence Fittings

ASTM F 900 (1994) Industrial and Commercial Swing Gates

ASTM F 1083 (1997) Specification for Pipe, Steel, Hot-Dipped Zinc-Coated (Galvanized) Welded, for Fence Structures

ASTM F 1184 (1994) Industrial and Commercial Horizontal Slide Gates

1.2 SUBMITTALS
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-07 Certificates

Chain Link Fence; G, RE

Statement, signed by an official authorized to certify on behalf of the manufacturer, attesting that the chain link fence and component materials meet the specified requirements.

PART 2 PRODUCTS

2.1 FENCE FABRIC

Fence fabric shall conform to the following:

2.1.1 Chain Link Fence Fabric

ASTM A 392, Class 1, zinc-coated steel wire with minimum coating weight of 370 grams per square meter of coated surface, or ASTM A 491, Type I, aluminum-coated steel wire. Fabric height shall be as shown. Fabric shall be twisted and barbed on the top selvage and knuckled on the bottom selvage.

2.2 GATES

ASTM F 900 and/or ASTM F 1184. Gate shall be the type and swing shown. Gate frames shall conform to strength and coating requirements of ASTM F 1083 for Group IA, steel pipe, with external coating Type A, nominal pipe size (NPS) 1-1/2. Gate frames shall conform to strength and coating requirements of ASTM F 1043, for Group IC, steel pipe with external coating Type A or Type B, nominal pipe size (NPS) 1-1/2. Gate fabric shall be as specified for chain link fabric. Gate leaves more than 2.44 m wide shall have either intermediate members and diagonal truss rods or shall have tubular members as necessary to provide rigid construction, free from sag or twist. Gate leaves less than 2.44 m wide shall have truss rods or intermediate braces. Intermediate braces shall be provided on all gate frames with an electro-mechanical lock. Gate fabric shall be attached to the gate frame by method standard with the manufacturer except that welding will not be permitted. Latches, hinges, stops, keepers, rollers, and other hardware items shall be furnished as required for the operation of the gate. Latches shall be arranged for padlocking so that the padlock will be accessible from both sides of the gate. Stops shall be provided for holding the gates in the open position. For high security applications, each end member of gate frames shall be extended sufficiently above the top member to carry three strands of barbed wire in horizontal alignment with barbed wire strands on the fence.

2.3 POSTS
2.3.1 Metal Posts for Chain Link Fence

ASTM F 1083, zinc-coated. Group IA, with external coating Type A steel pipe. Group IC steel pipe, zinc-coated with external coating Type A or Type B and Group II, formed steel sections, shall meet the strength and coating requirements of ASTM F 1043. Group III, ASTM F 1043 steel H-section may be used for line posts in lieu of line post shapes specified for the other classes. Sizes shall be as shown on the drawings. Line posts and terminal (corner, gate, and pull) posts selected shall be of the same designation throughout the fence. Gate post shall be for the gate type specified subject to the limitation specified in ASTM F 900 and/or ASTM F 1184.

2.4 BRACES AND RAILS

ASTM F 1083, zinc-coated, Group IA, steel pipe, size NPS 1-1/4. Group IC steel pipe, zinc-coated, shall meet the strength and coating requirements of ASTM F 1043. Group II, formed steel sections, size 42 mm conforming to ASTM F 1043, may be used as braces and rails if Group II line posts are furnished.

2.5 WIRE

2.5.1 Tension Wire

Tension wire shall be Type I or Type II, Class 2 coating, in accordance with ASTM A 824.

2.6 ACCESSORIES

ASTM F 626. Ferrous accessories shall be zinc or aluminum coated. Truss rods shall be furnished for each terminal post. Truss rods shall be provided with turnbuckles or other equivalent provisions for adjustment. Barbed wire shall be 2 strand, 12-1/2 gauge wire, zinc-coated, Class 3 in accordance with ASTM A 121 or aluminum coated Type I in accordance with ASTM A 585. Barbed wire shall be four-point barbed type steel wire. Barbed wire support arms shall be the single arm type and of the design required for the post furnished. Tie wire for attaching fabric to rails, braces, and posts shall be 9 gauge steel wire and match the coating of the fence fabric. Tie wires for attaching fabric to tension wire on high security fences shall be 1.6 mm stainless steel. The tie wires shall be a double loop and 165 mm in length. Miscellaneous hardware coatings shall conform to ASTM A 153/A 153M unless modified.

2.7 CONCRETE

ASTM C 94/C 94M, using 19 mm maximum size aggregate, and having minimum compressive strength of 21 MPa at 28 days. Grout shall consist of one part portland cement to three parts clean, well-graded sand and the minimum amount of water to produce a workable mix.

2.8 PADLOCKS

Padlocks shall be Government furnished.

PART 3 EXECUTION
3.1 INSTALLATION

Fence shall be installed to the lines and grades indicated. The area on either side of the fence line shall be cleared to the extent indicated. Line posts shall be spaced equidistant at intervals not exceeding 3 m. Terminal (corner, gate, and pull) posts shall be set at abrupt changes in vertical and horizontal alignment. Fabric shall be continuous between terminal posts; however, runs between terminal posts shall not exceed 152.4 m. Any damage to galvanized surfaces, including welding, shall be repaired with paint containing zinc dust in accordance with ASTM A 780.

3.2 EXCAVATION

Post holes shall be cleared of loose material. Waste material shall be spread where directed. The ground surface irregularities along the fence line shall be eliminated to the extent necessary to maintain a 50 mm clearance between the bottom of the fabric and finish grade.

3.3 POST INSTALLATION

Posts shall be set plumb and in alignment. Except where solid rock is encountered, posts shall be set in concrete to the depth indicated on the drawings. Where solid rock is encountered with no overburden, posts shall be set to a minimum depth of 457 mm in rock. Where solid rock is covered with an overburden of soil or loose rock, posts shall be set to the minimum depth indicated on the drawing unless a penetration of 457 mm in solid rock is achieved before reaching the indicated depth, in which case depth of penetration shall terminate. All portions of posts set in rock shall be grouted. Portions of posts not set in rock shall be set in concrete from the rock to ground level. Posts set in concrete shall be set in holes not less than the diameter shown on the drawings. Diameters of holes in solid rock shall be at least 25 mm greater than the largest cross section of the post. Concrete and grout shall be thoroughly consolidated around each post, shall be free of voids and finished to form a dome. Concrete and grout shall be allowed to cure for 72 hours prior to attachment of any item to the posts. Group II line posts may be mechanically driven, for temporary fence construction only, if rock is not encountered. Driven posts shall be set to a minimum depth of 914 mm and shall be protected with drive caps when being set. For high security fences, fence post rigidity shall be tested by applying a 222.4 newtons force on the post, perpendicular to the fabric, at 1.52 m above ground; post movement measured at the point where the force is applied shall be less than or equal to 19 mm from the relaxed position; every tenth post shall be tested for rigidity; when a post fails this test, further tests on the next four posts on either side of the failed post shall be made; all failed posts shall be removed, replaced, and retested at the Contractor's expense.

3.4 RAILS

3.4.1 Top Rail

Top rail shall be supported at each post to form a continuous brace between terminal posts. Where required, sections of top rail shall be joined using sleeves or couplings that will allow expansion or contraction of the rail. Top rail, if required for high security fence, shall be installed as indicated on the drawings.
3.5 BRACES AND TRUSS RODS

Braces and truss rods shall be installed as indicated and in conformance with the standard practice for the fence furnished. Horizontal (compression) braces and diagonal truss (tension) rods shall be installed on fences over 1.83 m in height. A center brace or 2 diagonal truss rods shall be installed on 3.66 m fences. Braces and truss rods shall extend from terminal posts to line posts. Diagonal braces shall form an angle of approximately 40 to 50 degrees with the horizontal. No bracing is required on fences 1.83 m high or less if a top rail is installed.

3.6 TENSION WIRES

Tension wires shall be installed along the bottom of the fence line and attached to the terminal posts of each stretch of the fence. Bottom tension wire shall be installed within the bottom 152 mm of the installed fabric. Tension wire shall be pulled taut and shall be free of sag.

3.7 CHAIN LINK FABRIC

Chain link fabric shall be installed on the side of the post indicated. Fabric shall be attached to terminal posts with stretcher bars and tension bands. Bands shall be spaced at approximately 381 mm intervals. The fabric shall be installed and pulled taut to provide a smooth and uniform appearance free from sag, without permanently distorting the fabric diamond or reducing the fabric height. Fabric shall be fastened to line posts at approximately 381 mm intervals and fastened to all rails and tension wires at approximately 610 mm intervals. Fabric shall be cut by untwisting and removing pickets. Splicing shall be accomplished by weaving a single picket into the ends of the rolls to be joined. The bottom of the installed fabric shall be 50 mm plus or minus 13 mm above the ground. For high security fence, after the fabric installation is complete, the fabric shall be exercised by applying a 222 newtons push-pull force at the center of the fabric between posts; the use of a 133 newtons pull at the center of the panel shall cause fabric deflection of not more than 63.5 mm when pulling fabric from the post side of the fence; every second fence panel shall meet this requirement; all failed panels shall be resecured and retested at the Contractor's expense.

3.8 BARBED WIRE SUPPORTING ARMS AND BARBED WIRE

3.8.1 General Requirements

Barbed wire supporting arms and barbed wire shall be installed as indicated and as recommended by the manufacturer. Supporting arms shall be anchored to the posts in a manner to prevent easy removal with hand tools. Barbed wire shall be pulled taut and attached to the arms with clips or other means that will prevent easy removal.

3.9 GATE INSTALLATION

Gates shall be installed at the locations shown. Hinged gates shall be mounted to swing as indicated. Latches, stops, and keepers shall be installed as required. Gates shall be installed as recommended by the manufacturer. Padlocks shall be attached to gates or gate posts with chains. Hinge pins, and hardware shall be welded or otherwise secured to prevent removal.
3.10 GROUNDING

Fences crossed by overhead powerlines in excess of 600 volts shall be grounded as specified in Section 13100 LIGHTNING PROTECTION SYSTEM. Electrical equipment attached to the fence shall be grounded as specified in Division 16.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 602 (1995a) Agricultural Liming Materials
ASTM D 4972 (1995a) pH of Soils
ASTM D 5268 (1992; R 1996) Topsoil Used for Landscaping Purposes

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Equipment
Chemical Treatment Material

Manufacturer's literature including physical characteristics, application and installation instructions for equipment and chemical treatment material.

Equipment

A listing of equipment to be used for the sodding operation.

Delivery

Delivery schedule.

Finished Grade and Topsoil; G, AE

Finished grade status.

Topsoil; G, AE
Availability of topsoil from the stripping and stock piling operation.

Quantity Check

Bag count or bulk weight measurements of material used compared with area covered to determine the application rate and quantity installed. The quantity of sod used shall be compared against the total area installed.

Sod Establishment Period

Calendar time period for the sod establishment period. When there is more than one sod establishment period, the boundaries of the sodded area covered for each period shall be described.

Maintenance Record

Maintenance work performed, area repaired or reinstalled, diagnosis for unsatisfactory stand of grass plants.

Application of Pesticide

Pesticide treatment plan with sequence of treatment work with dates and times. The pesticide trade name, EPA registration number, chemical composition, formulation, concentration of original and diluted material, application rate of active ingredients, method of application, area treated, amount applied; and the name and state license number of the state certified applicator shall be included.

SD-04 Samples

Delivered Topsoil; G, AE

Samples taken from several locations at the source.

Soil Amendments

A 4.5 kg sample.

Temporary Seeding; G, AE

Sample of annual seed species and application rate.

SD-06 Test Reports

Equipment Calibration

Certification of calibration tests conducted on the equipment used in the sodding operation.

Soil Test; G, AE

Certified reports of inspections and laboratory tests, prepared by an independent testing agency, including analysis and interpretation of test results. Each report shall be properly
identified. Test methods used and compliance with recognized test standards shall be described.

SD-07 Certificates

Sod; G, AE
Topsoil; G, AE
pH Adjuster
Fertilizer
Organic Material
Soil Conditioner
Pesticide

Prior to the delivery of materials, certificates of compliance attesting that materials meet the specified requirements. Certified copies of the material certificates shall include the following:

a. Sod. Classification, botanical name, common name, mixture percentage of species, percent purity, quality grade, field location and state certification.

b. Topsoil. Particle size, pH, organic matter content, textural class, soluble salts, chemical and mechanical analyses.

c. pH Adjuster. Calcium carbonate equivalent and sieve analysis.

d. Fertilizer. Chemical analysis and composition percent.

e. Organic Material: Composition and source.

f. Soil Conditioner: Composition and source.

g. Pesticide. EPA registration number and registered uses.

1.3 SOURCE INSPECTION

The sources of sod material and delivered topsoil shall be subject to inspection.

1.4 DELIVERY, INSPECTION, STORAGE, AND HANDLING

1.4.1 Delivery

A delivery schedule shall be provided at least 10 calendar days prior to the first day of delivery.

1.4.1.1 Sod

Sod shall be protected during delivery to prevent desiccation, internal heat buildup, or contamination.

1.4.1.2 Delivered Topsoil
Prior to the delivery of any topsoil, its availability shall be verified in paragraph TOPSOIL. A soil test shall be provided for topsoil delivered to the site.

1.4.1.3 Soil Amendments

Soil amendments shall be delivered to the site in the original, unopened containers bearing the manufacturer's chemical analysis. In lieu of containers, soil amendments may be furnished in bulk. A chemical analysis shall be provided for bulk deliveries.

1.4.1.4 Pesticides

Pesticide material shall be delivered to the site in the original, unopened containers bearing legible labels indicating the EPA registration number and the manufacturer's registered uses.

1.4.2 Inspection

Sod shall be inspected upon arrival at the job site for conformity to species. Sod shall be checked for visible broadleaf weeds, and a visible consistency with no obvious patches of foreign grasses that exceed 2 percent of the canopy. Sod that is heating up, dry, moldy, yellow, irregularly shaped, torn, or of uneven thickness shall be rejected. Other materials shall be inspected for compliance with specified requirements. Open soil amendment containers or wet soil amendments; topsoil that contains slag, cinders, stones, lumps of soil, sticks, roots, trash or other material over a minimum 40 mm diameter; and topsoil that contains viable plants and plant parts, shall be rejected. Unacceptable materials shall be removed from the job site.

1.4.3 Storage

1.4.3.1 Sod

Sod shall be stored in designated areas and kept in a moist condition by watering with a fine mist, and covered with moist burlap, straw, or other covering. Covering shall allow air to circulate, preventing internal heat from building up. Sod shall be protected from exposure to wind and direct sunlight until installed.

1.4.3.2 Other Material Storage

Materials shall be stored in designated areas. Lime and fertilizer shall be stored in cool, dry locations, away from contaminants. Chemical treatment material shall be stored according to manufacturer's instructions and not with sod operation materials.

1.4.4 Handling

Sod shall not be damaged during handling. Except for bulk deliveries, materials shall not be dropped or dumped from vehicles.

1.4.5 Time Limitation

Time limitation between harvesting and installing sod shall be a maximum 36 hours.
PART 2 PRODUCTS

2.1 SOD

2.1.1 Sod Classification

State-certified Nursery-grown sod shall be provided as classified by applicable state laws. Sod section shall be sized to permit rolling and lifting without breaking.

2.1.2 Grass Species

Grass species shall be proportioned as follows:

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Mixture Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynodon Dactylon "U-3"</td>
<td>"U-3" Bermuda</td>
<td>99%</td>
</tr>
</tbody>
</table>

2.1.3 Quality

Sod shall be relatively free of thatch, diseases, nematodes, soil-borne insects, weeds or undesirable plants, stones larger than 25 mm in diameter, woody plant roots, and other materials detrimental to a healthy stand of grass plants. Broadleaf weeds and patches of foreign grasses shall be a maximum 2 percent of the sod section.

2.1.4 Thickness

Sod shall be machine cut to a minimum 35 mm thickness. Measurement for thickness shall exclude top growth and thatch.

2.1.5 Anchors

Sod anchors shall be as recommended by the sod supplier.

2.1.6 Substitutions

Substitutions will not be allowed without written request and approval from the Contracting Officer.

2.2 TOPSOIL

Topsoil shall be as defined in ASTM D 5268. When available, the topsoil shall be the existing surface soil stripped and stockpiled onsite in accordance with Section 02300 EARTHWORK. When additional topsoil is required beyond the available topsoil from stripping operation, topsoil shall be delivered and amended as recommended by the soil test for the sod species specified. Topsoil shall be free from slag, cinders, stones, lumps of soil, sticks, roots, trash, or other material over a maximum 40 mm diameter. Topsoil shall be free from viable plants and plant parts.

2.3 SOIL AMENDMENTS
Soil amendments shall consist of pH adjuster, fertilizer, organic material, and soil conditioners meeting the following requirements. Vermiculite shall not be used.

2.3.1 pH Adjuster

The pH adjuster shall be an agricultural liming material in accordance with ASTM C 602. These materials may be burnt lime, hydrated lime, ground limestone, or shells. The pH adjuster shall be used to create a favorable soil pH for the plant material specified.

2.3.1.1 Limestone

Limestone material shall contain a minimum calcium carbonate equivalent of 80 percent. Gradation: A minimum 95 percent shall pass through a 2.36 mm sieve and a minimum 55 percent shall pass through a 0.250 mm sieve. To raise soil pH, ground limestone shall be used.

2.3.1.2 Hydrated Lime

Hydrated lime shall contain a minimum calcium carbonate equivalent of 110 percent. Gradation: A minimum 100 percent shall pass through a 2.36 mm sieve and a minimum 97 percent shall pass through a 0.250 mm sieve.

2.3.1.3 Burnt Lime

Burnt lime shall contain a minimum calcium carbonate equivalent of 140 percent. Gradation: A minimum 95 percent shall pass through a 2.36 mm sieve and a minimum 35 percent shall pass through a 0.250 mm sieve.

2.3.2 Fertilizer

It shall be as recommended by the soil test. Fertilizer shall be controlled release commercial grade, free flowing, uniform in composition, and consist of a nitrogen-phosphorus-potassium ratio. The fertilizer shall be derived from sulphur coated urea, urea formaldehyde, plastic or polymer coated pills, or isobutyleneurea (IBDU). Fertilizer shall be balanced with the inclusion of trace minerals and micro-nutrients.

2.3.3 Nitrogen Carrier Fertilizer

It shall be as recommended by the soil test. Nitrogen carrier fertilizer shall be commercial grade, free flowing, and uniform in composition. The fertilizer may be a liquid nitrogen solution.

2.3.4 Organic Material

Organic material shall consist of either bonemeal, rotted manure, decomposed wood derivatives, recycled compost, or worm castings.

2.3.4.1 Bonemeal

Bonemeal shall be finely ground, steamed bone product containing from 2 to 4 percent nitrogen and 16 to 40 percent phosphoric acid.
Rotted manure shall be unleached horse, chicken or cattle manure containing a maximum 25 percent by volume straw, sawdust, or other bedding materials. Manure shall contain no chemicals or ingredients harmful to plants. The manure shall be heat treated to kill weed seeds and be free of stones, sticks, and soil.

2.3.4.3 Decomposed Wood Derivatives

Decomposed wood derivatives shall be ground bark, sawdust, yard trimmings, or other wood waste material free of stones, sticks, soil, and toxic substances harmful to plants, fully composted or stabilized with nitrogen.

2.3.4.4 Recycled Compost

Compost shall be a well decomposed, stable, weed free organic matter source. Compost shall be derived from food; agricultural or industrial residuals; biosolids (treated sewage sludge); yard trimmings; or source-separated or mixed solid waste. The compost shall possess no objectionable odors and shall not resemble the raw material from which it was derived. The material shall not contain substances toxic to plants. Gradation: The compost material shall pass through a 10 mm screen, possess a pH of 5.5 to 8.0, and have a moisture content between 35-55 percent by weight. The material shall not contain more than 1 percent or less by weight of man-made foreign matter. Compost shall be cleaned of plastic materials larger than 50 mm in length.

2.3.4.5 Worm Castings

Worm castings shall be screened from worms and food source, and shall be commercially packaged.

2.3.5 Soil Conditioner

Soil conditioner shall be sand, super absorbent polymers, calcined clay, or gypsum for use singly or in combination to meet the requirements for topsoil.

2.3.5.1 Sand

Sand shall be clean and free of toxic materials. Gradation: A minimum 95 percent by weight shall pass a 2 mm sieve and a minimum 10 percent by weight shall pass a 1.18 mm sieve. Greensand shall be balanced with the inclusion of trace minerals and nutrients.

2.3.5.2 Super Absorbent Polymers

To improve water retention in soils, super absorbent polymers shall be sized and applied according to the manufacturer's recommendations. Polymers shall be added as a soil amendment and be cross-linked polyacrylamide with an absorption capacity of 250-400 times its weight.

2.3.5.3 Calcined Clay

Calcined clay shall be granular particles produced from montmorillonite clay calcined to minimum temperature of 650 degrees C. Gradation: A minimum 90 percent passing 2.36 mm sieve; a minimum 99 percent shall be retained on a
0.250 mm sieve; and a maximum 2 percent shall pass a 0.150 mm sieve. Bulk density: A maximum 640 kilogram per cubic meter.

2.3.5.4 Gypsum

Gypsum shall be commercially packaged, free flowing, and a minimum 95 percent calcium sulfate by volume.

2.3.5.5 Expanded Shale, Clay, or Slate (ESCS)

Rotary kiln produced ESCS material shall be in conformance with ASTM D 5883.

2.4 WATER

Water shall be the responsibility of the Contractor unless otherwise noted. Water shall not contain elements toxic to plant life.

2.5 PESTICIDE

Pesticide shall be insecticide, herbicide, fungicide, nematocide, rodenticide or miticide. For the purpose of this specification, a soil fumigant shall have the same requirements as a pesticide. The pesticide material shall be EPA registered and approved.

PART 3 EXECUTION

3.1 INSTALLING SOD TIME AND CONDITIONS

3.1.1 Sodding Time

Sod shall be installed from March 1 to June 1 for spring establishment; from June 1 to August 1 for summer establishment; and from September 1 to October 30 for fall establishment.

3.1.2 Sodding Conditions

Sodding operations shall be performed only during periods when beneficial results can be obtained. When drought, excessive moisture or other unsatisfactory conditions prevail, the work shall be stopped when directed. When special conditions warrant a variance to the sodding operations, proposed alternate times shall be submitted for approval.

3.1.3 Equipment Calibration

Immediately prior to the commencement of sodding operations, calibration tests shall be conducted on the equipment to be used. These tests shall confirm that the equipment is operating within the manufacturer's specifications and will meet the specified criteria. The equipment shall be calibrated a minimum of once every day during the operation. Provide calibration test results within one week of testing.

3.1.4 Soil Test

Delivered topsoil, existing soil in smooth graded areas, and stockpiled topsoil shall be tested in accordance with ASTM D 5268 and ASTM D 4972 for determining the particle size, pH, organic matter content, textural class, chemical analysis, soluble salts analysis, and mechanical analysis. Sample
collection on site shall be random over the entire site. Sample collection for stockpiled topsoil shall be at different levels in the stockpile. The soil shall be free from debris, noxious weeds, toxic substances, or other materials harmful to plant growth. The test shall determine the quantities and type of soil amendments required to meet local growing conditions for the sod species specified.

3.2 SITE PREPARATION

3.2.1 Finished Grade and Topsoil

Prior to the commencement of the sodding operation, the Contractor shall verify that finished grades are as indicated on drawings; the placing of topsoil, smooth grading, and compaction requirements have been completed in accordance with Section 02300 EARTHWORK.

3.2.2 Application of Soil Amendments

3.2.2.1 Applying pH Adjuster

The pH adjuster shall be applied at the rate recommended by the soil test. The pH adjuster shall be incorporated into the soil to a maximum 100 mm depth or may be incorporated as part of the tillage operation.

3.2.2.2 Applying Fertilizer

The fertilizer shall be applied at the rate recommended by the soil test. Fertilizer shall be incorporated into the soil to a maximum 100 mm depth or may be incorporated as part of the tillage or hydroseeding operation.

3.2.2.3 Applying Soil Conditioner

The soil conditioner shall be as recommended by the soil test. The soil conditioner shall be spread uniformly over the soil a minimum 25 mm depth and thoroughly incorporated by tillage into the soil to a maximum 100 mm depth.

3.2.2.4 Applying Super Absorbent Polymers

Polymers shall be spread uniformly over the soil as recommended by the manufacturer and thoroughly incorporated by tillage into the soil to a maximum 50 mm deep prior to placement of sod.

3.2.3 Tillage

Soil on slopes up to a maximum 3-horizontal-to-1-vertical shall be tilled to a minimum 100 mm deep. On slopes between 3-horizontal-to-1-vertical and 1-horizontal-to-1 vertical, the soil shall be tilled to a minimum 50 mm deep by scarifying with heavy rakes, or other method. Rototillers shall be used where soil conditions and length of slope permit. On slopes 1-horizontal-to-1 vertical and steeper, no tillage is required. Drainage patterns shall be maintained as indicated on drawings. Areas compacted by construction operations shall be completely pulverized by tillage. Soil used for repair of surface erosion or grade deficiencies shall conform to topsoil requirements. The pH adjuster, fertilizer, and soil conditioner may be applied during this procedure.
3.2.4 Prepared Surface

3.2.4.1 Preparation

The prepared surface shall be a maximum 25 mm below the adjoining grade of any surfaced area. New surfaces shall be blended to existing areas. The prepared surface shall be rolled and completed with a light raking to remove from the surface debris and stones over a minimum 16 mm in any dimension.

3.2.4.2 Protection

Areas within the prepared surface shall be protected from compaction or damage by vehicular or pedestrian traffic and surface erosion.

3.3 INSTALLATION

Prior to installing sod, any previously prepared surface compacted or damaged shall be reworked to meet the requirements of paragraph SITE PREPARATION. Areas shall be sodded as indicated. Adequate soil moisture shall be ensured prior to sodding by spraying water on the area to be sodded and wetting the soil to a maximum 25 mm depth.

3.3.1 Installing Sod

Rows of sod sections shall be placed parallel to and tightly against each other. Joints shall be staggered laterally. The sod sections shall not be stretched or overlapped. All joints shall be butted tight. Voids and air drying of roots shall be prevented. Sod sections shall be laid across the slope on long slopes. Sod sections shall be laid at right angles to the flow of water in ditches. Sod sections shall be anchored on slopes steeper than 3-horizontal-to-1-vertical. Anchoring may be required when surface weight or pressure upon placed sod sections is anticipated to cause lateral movement. Sod anchors shall be placed a minimum 600 mm on center with a minimum 2 anchors per sod section.

3.3.2 Finishing

Displacement of the sod shall be prevented by tamping or rolling the sod in place and knitting the sod to the soil. Air pockets shall be eliminated and a true and even surface shall be provided. Frayed edges shall be trimmed, and holes or missing corners shall be patched with sod.

3.3.3 Rolling

The entire area shall be firmed with a roller not exceeding 130 kilograms per meter roller width. Slopes over a maximum 3-horizontal-to-1 vertical shall not be rolled.

3.3.4 Watering Sod

Watering shall be started immediately after completing each day of installing sod. Water shall be applied at least 3 times per week to supplement rainfall, at a rate sufficient to ensure moist soil conditions to a minimum depth of 25 mm. Run-off, puddling, and wilting shall be prevented. Unless otherwise directed, watering trucks shall not be driven over turf areas. Watering of other adjacent areas or plant material shall be prevented.
3.4 TEMPORARY SEEDING

Annual Rye grass shall be sown as a temporary turf cover for periods when permanent cover cannot be applied. The application rate shall be .25 kilograms per square meter. When directed during contract delays affecting the sodding operation or when a quick cover is required to prevent surface erosion, the areas designated shall be seeded with annual seed in accordance with Section 02921 SEEDING. When there is no Section 02921 SEEDING provided in the project, an annual seed species and application rate shall be submitted for approval.

3.4.1 Soil Amendments, Tillage and Watering

When soil amendments have not been applied to the area, the quantity of 1/2 of the required soil amendments shall be applied and the area tilled in accordance with paragraph SITE PREPARATION. The area shall be watered in accordance with paragraph Watering Sod as required.

3.4.2 Remaining Soil Amendments

The remaining soil amendments shall be applied in accordance with the paragraph Tillage when the surface is prepared for installing sod.

3.5 QUANTITY CHECK

For materials provided in bags, the empty bags shall be retained for recording the amount used. For materials provided in bulk, the weight certificates shall be retained as a record of the amount used. The amount of the material used shall be compared with the total area covered to determine the rate of application. The quantity of sod used shall be compared against the total area established with sod. Differences between the quantity applied and the quantity specified shall be adjusted as directed.

3.6 APPLICATION OF PESTICIDE

When application of a pesticide becomes necessary to remove a pest or disease, a pesticide treatment plan shall be submitted and coordinated with the installation pest management program.

3.6.1 Technical Representative

The certified installation pest management coordinator shall be the technical representative, and shall be present at all meetings concerning treatment measures for pest or disease control. They may be present during treatment application.

3.6.2 Application

A state certified applicator shall apply required pesticides in accordance with EPA label restrictions and recommendations. Clothing and personal protective equipment shall be used as specified on the pesticide label. A closed system is recommended as it prevents the pesticide from coming into contact with the applicator or other persons. Water for formulating shall only come from designated locations. Filling hoses shall be fitted with a backflow preventer meeting local plumbing codes or standards. Overflow
shall be prevented during the filling operation. Prior to each day of use, the equipment used for applying pesticide shall be inspected for leaks, clogging, wear, or damage. Any repairs are to be performed immediately.

3.7 RESTORATION AND CLEAN UP

3.7.1 Restoration

Existing turf areas, pavements, and facilities that have been damaged from the sodding operation shall be restored to original condition at Contractor's expense.

3.7.2 Clean Up

Excess and waste material shall be removed from the sodded areas and shall be disposed offsite. Adjacent paved areas shall be cleaned.

3.8 PROTECTION OF INSTALLED AREAS

Immediately upon completion of the sodding operation in an area, the area shall be protected against traffic or other use by erecting barricades and providing signage as required, or as directed. Signage shall be in accordance with Section 10430 EXTERIOR SIGNAGE.

3.9 SOD ESTABLISHMENT PERIOD

3.9.1 Commencement

The sod establishment period to obtain a healthy stand of grass plants shall begin on the first day of work under this contract and shall end 3 months after the last day of sodding operation. Written calendar time period shall be furnished for the sod establishment period. When there is more than 1 sod establishment period, the boundaries of the sodded area covered for each period shall be described. The sod establishment period should be coordinated with Sections 02921 SEEDING, 02923 SPRIGGING, and 02930 EXTERIOR PLANTING. The sod establishment period shall be modified for inclement weather, shut down periods, or for separate completion dates of areas.

3.9.2 Satisfactory Stand of Grass Plants

Grass plants shall be evaluated for species and health. A satisfactory stand of grass plants from the sodding operation shall be living sod uniform in color and leaf texture. Bare spots shall be a maximum 50 mm square. Joints between sod pieces shall be tight and free from weeds and other undesirable growth.

3.9.3 Maintenance During Establishment Period

Maintenance of the sodded areas shall include eradicating weeds, insects and diseases; protecting embankments and ditches from surface erosion; maintaining erosion control materials and mulch; protecting installed areas from traffic; mowing; watering; and post-fertilization.

3.9.3.1 Mowing
Sodded areas shall be mowed to a minimum 75 mm height when the turf is a maximum 100 mm height. Clippings shall be removed when the amount cut prevents sunlight from reaching the ground surface.

3.9.3.2 Post-Fertilization

The fertilizer shall be applied as recommended by the soil test. A maximum 4 kilograms per hectare of actual available nitrogen shall be provided to the grass plants. The application shall be timed prior to the advent of winter dormancy and shall be made without burning the installed grass plants.

3.9.3.3 Pesticide Treatment

Treatment for disease or pest shall be in accordance with paragraph APPLICATION OF PESTICIDE.

3.9.3.4 Repair

Unsatisfactory stand of grass plants shall be repaired or reinstalled, and eroded areas shall be repaired in accordance with paragraph SITE PREPARATION.

3.9.3.5 Maintenance Record

A record of each site visit shall be furnished which describes the maintenance work performed; areas repaired or reinstalled; and diagnosis for unsatisfactory stand of grass plants.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NURSERY AND LANDSCAPE ASSOCIATION (ANLA)

ANLA Z60.1 (1996) Nursery Stock

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI A300 (1995) Tree Care Operations - Trees, Shrubs and other Woody Plant Maintenance

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 602 (1995a) Agricultural Liming Materials
ASTM D 4972 (1995a) pH of Soils
ASTM D 5268 (1992; R 1996) Topsoil Used for Landscaping Purposes
ASTM D 5883 (1996e) Use of Rotary Kiln Produced Expanded Shale, Clay or Slate (ESCS) as a Mineral Amendment in Topsoil Used for Landscaping and Related Purposes

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Shop Drawings

Scale drawings defining areas to receive plant materials.

Finished Grade, Topsoil and Underground Utilities

Finished grade status; location of underground utilities and facilities; and availability of topsoil from the stripping and stock piling operation.
SD-03 Product Data

Chemical Treatment Material

Manufacturer's literature including physical characteristics, application and installation instructions for geotextile and chemical treatment material.

Equipment

A listing of equipment to be used for the planting operation.

Delivery

Delivery schedule.

Plant Establishment Period; G, AE

Calendar time period for the plant establishment period. When there is more than one establishment period, the boundaries of the planted areas covered for each period shall be described.

Maintenance Record; G, AE

Maintenance work performed, quantity of plant losses, and replacements; and diagnosis of unhealthy plant material.

Application of Pesticide

Pesticide treatment plan with sequence of treatment work with dates and times. The pesticide trade name, EPA registration number, chemical composition, formulation, concentration of original and diluted material, application rate of active ingredients, method of application, area treated, amount applied; and the name and state license number of the state certified applicator shall be included.

SD-04 Samples

Delivered Topsoil; G, AE

Samples taken from several locations at the source.

Soil Amendments

A 4.5 kg sample.

Mulch

A 4.5 kg sample.

SD-06 Test Reports

Soil Test; G, AE
Percolation Test; G, AE
Certified reports of inspections and laboratory tests, prepared by an independent testing agency, including analysis and interpretation of test results. Each report shall be properly identified. Test methods used and compliance with recognized test standards shall be described.

SD-07 Certificates

Plant Material
Topsoil; G, AE
pH Adjuster
Fertilizer
Organic Material
Soil Conditioner
Organic Mulch
Mycorrhizal Fungi Inoculum
Pesticide

Prior to delivery of materials, certificates of compliance attesting that materials meet the specified requirements. Certified copies of the material certificates shall include the following.

a. Plant Material: Classification, botanical name, common name, size, quantity by species, and location where grown.

b. Topsoil: Particle size, pH, organic matter content, textural class, soluble salts, chemical and mechanical analyses.

c. pH Adjuster: Sieve analysis and calcium carbonate equivalent.

d. Fertilizer: Chemical analysis and composition percent.

e. Organic Material: Composition and source.

f. Soil Conditioner: Composition and source.

g. Organic Mulch: Composition, source, and treatment against fungi growth.

h. Mycorrhizal Fungi Inoculum: Plant material treated.

i. Pesticide. EPA registration number and registered uses.

SD-10 Operation and Maintenance Data

Maintenance Instructions; G, AE

Instruction for year-round care of installed plant material.

1.3 SOURCE INSPECTIONS

The nursery or source of plant material and the source of delivered topsoil shall be subject to inspection.
1.4 DELIVERY, INSPECTION, STORAGE, AND HANDLING

1.4.1 Delivery

A delivery schedule shall be provided at least 10 calendar days prior to the first day of delivery.

1.4.1.1 Plant Material Identification

Plant material shall be identified with attached, durable, waterproof labels and weather-resistant ink, stating the correct botanical plant name and size.

1.4.1.2 Protection During Delivery

Plant material shall be protected during delivery to prevent desiccation and damage to the branches, trunk, root system, or earth ball. Branches shall be protected by tying-in. Exposed branches shall be covered during transport.

1.4.1.3 Delivered Topsoil

Prior to the delivery of any topsoil, the availability of topsoil shall be verified in paragraph TOPSOIL. A soil test shall be provided for delivered topsoil.

1.4.1.4 Soil Amendments

Soil amendments shall be delivered to the site in the original, unopened containers bearing the manufacturer's chemical analysis. In lieu of containers, soil amendments may be furnished in bulk. A chemical analysis shall be provided for bulk deliveries.

1.4.1.5 Pesticide Material

Pesticide material shall be delivered to the site in the original, unopened containers bearing legible labels indicating the Environmental Protection Agency (EPA) registration number and the manufacturer's registered uses.

1.4.2 Inspection

Plant material shall be well shaped, vigorous and healthy with a healthy, well branched root system, free from disease, harmful insects and insect eggs, sun-scald injury, disfigurement or abrasion. Plant material shall be checked for unauthorized substitution and to establish nursery grown status. Plant material showing desiccation, abrasion, sun-scald injury, disfigurement, or unauthorized substitution shall be rejected. The plant material shall exhibit typical form of branch to height ratio; and meet the caliper and height measurements specified. Plant material that measures less than specified, or has been poled, topped off or headed back, shall be rejected. Container-grown plant material shall show new fibrous roots and the root mass shall contain its shape when removed from the container. Plant material with broken or cracked balls; or broken containers shall be rejected. Bare-root plant material that is not dormant or is showing roots were pulled from the ground shall be rejected. Other materials shall be inspected for compliance with paragraph PRODUCTS. Open soil amendment containers or wet soil amendments shall be rejected. Topsoil that contains
slag, cinders, stones, lumps of soil, sticks, roots, trash or other material larger than 40 mm diameter shall be rejected. Topsoil that contains viable plant material and plant parts shall be rejected. Unacceptable material shall be removed from the job site.

1.4.3 Storage

1.4.3.1 Plant Material Storage

Plant material not installed on the day of arrival at the site shall be stored and protected in designated areas. Plant material shall not be stored longer than 30 days. Plant material shall be protected from direct exposure to wind and sun. Bare-root plant material shall be heeled-in. All plant material shall be kept in a moist condition by watering with a fine mist spray until installed.

1.4.3.2 Other Material Storage

Storage of other material shall be in designated areas. Soil amendments shall be stored in dry locations and away from contaminants. Chemical treatment material shall be stored according to manufacturer's instructions and not with planting operation material.

1.4.4 Handling

Plant material shall not be injured in handling. Cracking or breaking the earth ball of balled and burlapped plant material shall be avoided. Plant material shall not be handled by the trunk or stems. Materials shall not be dropped from vehicles.

1.4.5 Time Limitation

Except for container-grown plant material, the time limitation from digging to installing plant material shall be a maximum 90 days. The time limitation between installing the plant material and placing the mulch shall be a maximum 24 hours.

1.5 WARRANTY

Furnished plant material shall have a warranty for plant growth to be in a vigorous growing condition for a minimum 12 month period. A minimum 12 month calendar time period for the warranty of plant growth shall be provided regardless of the contract time period. When plant material is determined to be unhealthy in accordance with paragraph PLANT ESTABLISHMENT PERIOD, it shall be replaced once under this warranty.

PART 2 PRODUCTS

2.1 PLANT MATERIAL

2.1.1 Plant Material Classification

The plant material shall be nursery grown stock conforming to ANLA Z60.1 and shall be the species specified.

2.1.2 Plant Schedule
The plant schedule shall provide botanical names as included in one or more of the publications listed under "Nomenclature" in ANLA Z60.1.

2.1.3 Substitutions

Substitutions will not be permitted without written request and approval from the Contracting Officer.

2.1.4 Quality

Well shaped, well grown, vigorous plant material having healthy and well branched root systems in accordance with ANLA Z60.1 shall be provided. Plant material shall be provided free from disease, harmful insects and insect eggs, sun-scald injury, disfigurement and abrasion. Plant material shall be free of shock or damage to branches, trunk, or root systems, which may occur from the digging and preparation for shipment, method of shipment, or shipment. Plant quality is determined by the growing conditions; method of shipment to maintain health of the root system; and growth of the trunk and crown as follows.

2.1.5 Growing Conditions

Plant material shall be native to or well-suited to the growing conditions of the project site. Plant material shall be grown under climatic conditions similar to those at the project site.

2.1.6 Method of Shipment to Maintain Health of Root System

2.1.6.1 Balled and Burlapped (BB) Plant Material

Ball size and ratio shall be in accordance with ANLA Z60.1. The ball shall be of a diameter and depth to encompass enough fibrous and feeding root system necessary for the full recovery of the plant. The plant stem or trunk shall be centered in the ball. All roots shall be clean cut at the ball surface. Roots shall not be pulled from the ground. Before shipment the root ball shall be dipped in gels containing mycorrhizal fungi inoculum. The root ball shall be completely wrapped with burlap or other suitable material and securely laced with biodegradable twine.

2.1.6.2 Balled and Potted (Pot) Plant Material

Ball size and ratio shall be in accordance with ANLA Z60.1. The ball shall be of a diameter and depth to encompass enough fibrous and feeding root system necessary for the full recovery of the plant. Removal shall be done by hand digging or mechanical devices. The plant stem or trunk shall be centered in the ball. All roots shall be clean cut at the ball surface. Roots shall not be pulled from the ground. Before shipment the root ball shall be dipped in gels containing mycorrhizal fungi inoculum. Container shall be used to retain the ball unbroken. Container shall be rigid to hold ball shape and protect root mass during shipping.

2.1.6.3 Container-Grown (C) Plant Material

Container size shall be in accordance with ANLA Z60.1. Plant material shall be grown in a container over a duration of time for new fibrous roots to have developed and for the root mass to retain its shape and hold together when removed from the container. Container-grown plant material shall be
inoculated with mycorrhizal fungi during germination in the nursery. Before shipment the root system shall be dipped in gels containing mycorrhizal fungi inoculum. The container shall be sufficiently rigid to hold ball shape and protect root mass during shipping.

2.1.7 Growth of Trunk and Crown

2.1.7.1 Deciduous Trees

A height to caliper relationship shall be provided in accordance with ANLA Z60.1. Height of branching shall bear a relationship to the size and species of tree specified and with the crown in good balance with the trunk. The trees shall not be "poled" or the leader removed.

a. Single stem: The trunk shall be reasonably straight and symmetrical with crown and have a persistent main leader.

b. Multi-stem: All countable stems, in aggregate, shall average the size specified. To be considered a stem, there shall be no division of the trunk which branches more than 150 mm from ground level.

c. Specimen: The tree provided shall be well branched and pruned naturally according to the species. The form of growth desired, which may not be in accordance with natural growth habit, shall be as indicated.

2.1.7.2 Deciduous Shrubs

Deciduous shrubs shall have the height and number of primary stems recommended by ANSI Z60.1. Acceptable plant material shall be well shaped, with sufficient well-spaced side branches, and recognized by the trade as typical for the species grown in the region of the project.

2.1.7.3 Coniferous Evergreen Plant Material

Coniferous Evergreen plant material shall have the height-to-spread ratio recommended by ANSI Z60.1. The coniferous evergreen trees shall not be "poled" or the leader removed. Acceptable plant material shall be exceptionally heavy, well shaped and trimmed to form a symmetrical and tightly knit plant. The form of growth desired shall be as indicated.

2.1.7.4 Broadleaf Evergreen Plant Material

Broadleaf evergreen plant material shall have the height-to-spread ratio recommended by ANSI Z60.1. Acceptable plant material shall be well shaped and recognized by the trade as typical for the variety grown in the region of the project.

2.1.7.5 Ground Cover and Vine Plant Material

Ground cover and vine plant material shall have the minimum number of runners and length of runner recommended by ANSI Z60.1. Plant material shall have heavy, well developed and balanced crown with vigorous, well developed root system and shall be furnished in containers.
2.1.8 Plant Material Size

Plant material shall be furnished in sizes indicated. Plant material larger in size than specified may be provided at no additional cost to the Government.

2.1.9 Plant Material Measurement

Plant material measurements shall be in accordance with ANLA Z60.1.

2.2 TOPSOIL

Topsoil shall be as defined in ASTM D 5268. When available, the topsoil shall be the existing surface soil stripped and stockpiled onsite in accordance with Section 02300 EARTHWORK. When additional topsoil is required beyond the available topsoil from the stripping operation, topsoil shall be delivered and amended as recommended by the soil test for the plant material specified. Topsoil shall be free from slag, cinders, stones, lumps of soil, sticks, roots, trash or other material over a minimum 40 mm diameter. Topsoil shall be free from viable plants and plant parts.

2.3 SOIL AMENDMENTS

Soil amendments shall consist of pH adjuster, fertilizer, organic material and soil conditioners meeting the following requirements. Vermiculite is not recommended.

2.3.1 pH Adjuster

The pH adjuster shall be an agricultural liming material in accordance with ASTM C 602. These materials may be burnt lime, hydrated lime, ground limestone, or shells. The pH adjuster shall be used to create a favorable soil pH for the plant material specified.

2.3.1.1 Limestone

Limestone material shall contain a minimum calcium carbonate equivalent of 80 percent. Gradation: A minimum 95 percent shall pass through a 2.36 mm sieve and a minimum 55 percent shall pass through a 0.25 mm sieve. To raise soil pH, ground limestone shall be used.

2.3.1.2 Hydrated Lime

Hydrated lime shall contain a minimum calcium carbonate equivalent of 110 percent. Gradation: A minimum 100 percent shall pass through a 2.36 mm sieve and a minimum 97 percent shall pass through a 0.25 mm sieve.

2.3.1.3 Burnt Lime

Burnt lime shall contain a minimum calcium carbonate equivalent of 140 percent. Gradation: A minimum 95 percent shall pass through a 2.36 mm sieve and a minimum 35 percent shall pass through a 0.25 mm sieve.

2.3.2 Fertilizer

It shall be as recommended by the soil test. Fertilizer shall be controlled release commercial grade; free flowing, pellet or tablet form;
uniform in composition; and consist of a nitrogen-phosphorus-potassium ratio. The fertilizer shall be derived from sulphur coated urea, urea formaldehyde, plastic or polymer coated pills, or isobutylene diurea (IBDU). Fertilizer shall be balanced with the inclusion of trace minerals and micro-nutrients.

2.3.3 Organic Material

Organic material shall consist of either bonemeal, peat, rotted manure, decomposed wood derivatives, recycled compost, or worm castings.

2.3.3.1 Bonemeal

Bonemeal shall be a finely ground, steamed bone product containing from 2 to 4 percent nitrogen and 16 to 40 percent phosphoric acid.

2.3.3.2 Rotted Manure

Rotted manure shall be unleached horse, chicken, or cattle manure containing a maximum 25 percent by volume of straw, sawdust, or other bedding materials. Manure shall contain no chemicals or ingredients harmful to plants. The manure shall be heat treated to kill weed seeds and shall be free of stones, sticks, and soil.

2.3.3.3 Decomposed Wood Derivatives

Decomposed wood derivatives shall be ground bark, sawdust, or other wood waste material free of stones, sticks, and toxic substances harmful to plants, and stabilized with nitrogen.

2.3.3.4 Recycled Compost

Compost shall be a well decomposed, stable, weed free organic matter source. It shall be derived from food, agricultural, or industrial residuals; biosolids (treated sewage sludge); yard trimmings; or source-separated or mixed solid waste. The compost shall possess no objectionable odors and shall not resemble the raw material from which it was derived. The material shall not contain substances toxic to plants. Gradation: The compost material shall pass through a 10 mm screen, possess a pH of 5.5 to 8.0, and have a moisture content between 35-55 percent by weight. The material shall not contain more than 1 percent or less by weight of man-made foreign matter. Compost shall be cleaned of plastic materials larger than 50 mm in length.

2.3.3.5 Worm Castings

Worm castings shall be screened from worms and food source and shall be commercially packaged.

2.3.4 Soil Conditioner

Soil conditioner shall be sand, super absorbent polymers, calcined clay, or gypsum for single use or in combination to meet topsoil requirements for the plant material specified.

2.3.4.1 Sand
Sand shall be clean and free of toxic materials. Gradation: A minimum 95 percent by weight shall pass a 2 mm sieve and a minimum 10 percent by weight shall pass a 1.18 mm sieve. Greensand shall be balanced with the inclusion of trace minerals and nutrients.

2.3.4.2 Super Absorbent Polymers

To improve water retention in soils, super absorbent polymers shall be sized according to manufacturer's recommendations. Polymers shall be added as a soil amendment and be cross-linked polyacrylamide with an absorption capacity of 250-400 times its weight.

2.3.4.3 Calcined Clay

Granular particles shall be produced from montmorillonite clay calcined to minimum temperature of 650 degrees C. Gradation: A minimum 90 percent passing 2.36 mm sieve; a minimum 99 percent shall be retained on 0.25 mm sieve; and a maximum 2 percent shall pass a 0.15 mm sieve. Bulk density: A maximum 640 kilogram per cubic meter.

2.3.4.4 Gypsum

Gypsum shall be commercially packaged, free flowing, and a minimum 95 percent calcium sulfate by volume.

2.3.4.5 Expanded Shale, Clay, or Slate (ESCS)

Rotary kiln produced ESCS material shall be in conformance with ASTM D 5883.

2.4 MULCH

Mulch shall be free from weeds, mold, and other deleterious materials. Mulch materials shall be native to the region. Rotted manure is not recommended to be used as a mulch because it would encourage surface rooting of the plant material and weeds.

2.4.1 Organic Mulch

Organic mulch materials shall be native to the project site and consist of shredded cypress bark.

2.5 METAL STAKING AND GUYING MATERIAL

Metal shall be steel "T" posts made for holding plant material in place.

2.5.1 Bracing Stakes

Metal bracing stakes shall be a minimum 25 mm diameter and a minimum 2400 mm long. Stake shall be set without damaging rootball.

2.5.2 Guying Material

Metal guying material shall be a minimum 12 gauge wire. Multi-strand cable shall be woven wire. Guying material tensile strength shall conform to the size of tree to be held firmly in place.
2.5.3 Turnbuckle

Metal turnbuckles shall be galvanized or cadmium-plated steel, and shall be a minimum 75 mm long with closed screw eyes on each end. Screw thread tensile strength shall conform to the size of tree to be held firmly in place.

2.5.4 Chafing Guard

Plastic chafing guards shall be used to protect tree trunks and branches when metal is used as guying material. The material shall be the same color throughout the project site. Length shall be a minimum 1.5 times the circumference of the plant trunk at its base.

2.6 RUBBER GUYING MATERIAL

Rubber chafing guards, consisting of recycled material, shall be used to protect tree trunks and branches when metal guying material is applied. The material shall be the same color throughout the project. Length shall be a minimum 1.5 times the circumference of the plant trunk at its base.

2.7 FLAG

Plastic flag material shall be used on guying material. It shall be a minimum 150 mm long. Tape color shall be consistent and visually complimentary to the entire project area. The tape color shall meet pedestrian visual safety requirements for day and night.

2.8 MYCORRHIZAL FUNGI INOCULUM

Mycorrhizal fungi inoculum shall be composed of multiple-fungus inoculum as recommended by the manufacturer for the plant material specified.

2.9 WATER

Unless otherwise directed, water shall be the responsibility of the Contractor. Water shall not contain elements toxic to plant life.

2.10 PESTICIDE

Pesticide shall be insecticide, herbicide, fungicide, nematocide, rodenticide or miticide. For the purpose of this specification a soil fumigant shall have the same requirements as a pesticide. The pesticide material shall be EPA registered and approved.

PART 3 EXECUTION

3.1 INSTALLING PLANT MATERIAL TIME AND CONDITIONS

3.1.1 Deciduous Plant Material Time

Deciduous plant material shall be installed from October 1 to July 1.

3.1.2 Evergreen Plant Material Time

Evergreen plant material shall be installed from October 1 to July 1.
3.1.3 Plant Material Conditions

Planting operations shall be performed only during periods when beneficial results can be obtained. When drought, excessive moisture, frozen ground or other unsatisfactory conditions prevail, the work shall be stopped when directed. When special conditions warrant a variance to the planting operations, proposed planting times shall be submitted for approval.

3.1.4 Tests

3.1.4.1 Percolation Test

Test for percolation shall be done to determine positive drainage of plant pits and beds. A positive percolation shall consist of a minimum 25 mm per 3 hours; when a negative percolation test occurs, a shop drawing shall be submitted indicating the corrective measures.

3.1.4.2 Soil Test

Delivered topsoil, excavated plant pit soil, and stockpiled topsoil shall be tested in accordance with ASTM D 5268 and ASTM D 4972 for determining the particle size, pH, organic matter content, textural class, chemical analysis, soluble salts analysis, and mechanical analysis. Sample collection onsite shall be random over the entire site. Sample collection for stockpiled topsoil shall be at different levels in the stockpile. The soil shall be free from debris, noxious weeds, toxic substances, or other materials harmful to plant growth. The test shall determine the quantities and type of soil amendments required to meet local growing conditions for the plant material specified.

3.2 SITE PREPARATION

3.2.1 Finished Grade, Topsoil and Underground Utilities

The Contractor shall verify that finished grades are as indicated on drawings, and that the placing of topsoil, the smooth grading, and the compaction requirements have been completed in accordance with Section 02300 EARTHWORK, prior to the commencement of the planting operation. The location of underground utilities and facilities in the area of the planting operation shall be verified. Damage to underground utilities and facilities shall be repaired at the Contractor's expense.

3.2.2 Layout

Plant material locations and bed outlines shall be staked on the project site before any excavation is made. Plant material locations may be adjusted to meet field conditions.

3.2.3 Protecting Existing Vegetation

When there are established lawns in the planting area, the turf shall be covered and/or protected during planting operations. Existing trees, shrubs, and plant beds that are to be preserved shall be barricaded along the dripline to protect them during planting operations.
3.3 EXCAVATION

3.3.1 Obstructions Below Ground

When obstructions below ground affect the work, shop drawings showing proposed adjustments to plant material location, type of plant and planting method shall be submitted for approval.

3.3.2 Turf Removal

Where the planting operation occurs in an existing lawn area, the turf shall be removed from the excavation area to a depth that will ensure the removal of the entire root system.

3.3.3 Plant Pits

Plant pits for ball and burlapped or container plant material shall be dug to a depth equal to the height of the root ball as measured from the base of the ball to the base of the plant trunk. Plant pits for bare-root plant material shall be dug to a depth equal to the height of the root system. Plant pits shall be dug a minimum of 2(x) wider than the ball or root system to allow for root expansion. The pit shall be constructed with sides sloping towards the base as a cone, to encourage well aerated soil to be available to the root system for favorable root growth. Cylindrical pits with vertical sides shall not be used.

3.4 INSTALLATION

3.4.1 Setting Plant Material

Plant material shall be set plumb and held in position until sufficient soil has been firmly placed around root system or ball. In relation to the surrounding grade, the plant material shall be set even with the grade at which it was grown.

3.4.2 Backfill Soil Mixture

The backfill soil mixture may be a mix of topsoil and soil amendments suitable for the plant material specified. When practical, the excavated soil from the plant pit that is not amended shall be used with 2/3 amended soil.

3.4.3 Adding Mycorrhizal Fungi Inoculum

Mycorrhizal fungi inoculum shall be added as recommended by the manufacturer for the plant material specified.

3.4.4 Backfill Procedure

Prior to backfilling, all metal, wood, synthetic products, or treated burlap devices shall be removed from the ball or root system avoiding damage to the root system. The backfill procedure shall remove air pockets from around the root system. Additional requirements are as follows.

3.4.4.1 Balled and Burlapped, and Balled and Platformed Plant Material
Biodegradable burlap and tying material shall be carefully opened and folded back from the top a minimum 1/3 depth from the top of the root ball. Backfill mixture shall be added to the plant pit in 150 mm layers with each layer tamped.

3.4.4.2 Container-Grown and Balled and Potted Plant Material

The plant material shall be carefully removed from containers that are not biodegradable. Prior to setting the plant in the pit, a maximum 1/4 depth of the root mass, measured from the bottom, shall be spread apart to promote new root growth. For plant material in biodegradable containers the container shall be split prior to setting the plant with container. Backfill mixture shall be added to the plant pit in 150 mm layers with each layer tamped.

3.4.4.3 Earth Berm

An earth berm, consisting of backfill soil mixture, shall be formed with a minimum 100 mm height around the edge of the plant pit to aid in water retention and to provide soil for settling adjustments.

3.4.5 Plant Bed

Plant material shall be set in plant beds according to the drawings. Backfill soil mixture shall be placed on previously scarified subsoil to completely surround the root balls, and shall be brought to a smooth and even surface, blending to existing areas. Earth berms shall be provided. Polymers shall be spread uniformly over the plant bed and in the planting pit as recommended by the manufacturer and thoroughly incorporated into the soil to a maximum 100 mm depth.

3.4.6 Watering

Plant pits and plant beds shall be watered immediately after backfilling, until completely saturated.

3.4.7 Staking and Guying

Staking will be required when trees are unstable or will not remain set due to their size, shape, or exposure to high wind velocity.

3.4.7.1 Two Bracing Stakes

Trees from 1800 to 2400 m height shall be firmly anchored in place with 2 bracing stakes placed on opposite sides. Bracing stakes shall be driven vertically into firm ground and shall not injure the ball or root system. The tree shall be held firmly between the stakes with a double strand of guying material. The guying material shall be firmly anchored at a minimum 1/2 tree height and shall prevent girdling. Chafing guards shall be used when metal is the guying material.

3.4.8 Flags

A flag shall be securely fastened to each guy line equidistant between the tree and the stake, deadmen, or earth anchor. The flag shall be visible to pedestrians.
3.5 FINISHING

3.5.1 Plant Material

Prior to placing mulch, the installed area shall be uniformly edged to provide a clear division line between the planted area and the adjacent turf area, shaped as indicated. The installed area shall be raked and smoothed while maintaining the earth berms.

3.5.2 Placing Mulch

The placement of mulch shall occur a maximum 48 hours after planting. Mulch, used to reduce soil water loss, regulate soil temperature and prevent weed growth, shall be spread to cover the installed area with a minimum 100 mm uniform thickness. Mulch shall be kept out of the crowns of shrubs, ground cover, and vines and shall be kept off buildings, sidewalks and other facilities.

3.5.3 Pruning

Pruning shall be accomplished by trained and experienced personnel. The pruning of trees and palms shall be in accordance with ANSI A300. Only dead or broken material shall be pruned from installed plants. The typical growth habit of individual plant material shall be retained. Clean cuts shall be made flush with the parent trunk. Improper cuts, stubs, dead and broken branches shall be removed. "Headback" cuts at right angles to the line of growth will not be permitted. Trees shall not be poled or the leader removed, nor shall the leader be pruned or "topped off".

3.6 MAINTENANCE DURING PLANTING OPERATION

Installed plant material shall be maintained in a healthy growing condition. Maintenance operations shall begin immediately after each plant is installed to prevent desiccation and shall continue until the plant establishment period commences. Installed areas shall be kept free of weeds, grass, and other undesired vegetation. The maintenance includes maintaining the mulch, watering, and adjusting settling.

3.7 APPLICATION OF PESTICIDE

When application of a pesticide becomes necessary to remove a pest or disease, a pesticide treatment plan shall be submitted and coordinated with the installation pest management program.

3.7.1 Technical Representative

The certified installation pest management coordinator shall be the technical representative, and shall be present at all meetings concerning treatment measures for pest or disease control. They may be present during treatment application.

3.7.2 Application

A state certified applicator shall apply required pesticides in accordance with EPA label restrictions and recommendations. Clothing and personal protective equipment shall be used as specified on the pesticide label. A
closed system is recommended as it prevents the pesticide from coming into contact with the applicator or other persons. Water for formulating shall only come from designated locations. Filling hoses shall be fitted with a backflow preventer meeting local plumbing codes or standards. Overflow shall be prevented during the filling operation. Prior to each day of use, the equipment used for applying pesticide shall be inspected for leaks, clogging, wear, or damage. Any repairs are to be performed immediately.

3.8 RESTORATION AND CLEAN UP

3.8.1 Restoration

Turf areas, pavements and facilities that have been damaged from the planting operation shall be restored to original condition at the Contractor's expense.

3.8.2 Clean Up

Excess and waste material shall be removed from the installed area and shall be disposed offsite. Adjacent paved areas shall be cleared.

3.9 PLANT ESTABLISHMENT PERIOD

3.9.1 Commencement

Upon completion of the last day of the planting operation, the plant establishment period for maintaining installed plant material in a healthy growing condition shall commence and shall be in effect for a minimum of 90 days or the remaining contract time period, whichever is longer, not to exceed 12 months. Written calendar time period shall be furnished for the plant establishment period. When there is more than one plant establishment period, the boundaries of the planted area covered for each period shall be described. The plant establishment period shall be coordinated with Section 02922 SODDING. The plant establishment period shall be modified for inclement weather shut down periods, or for separate completion dates for areas.

3.9.2 Maintenance During Establishment Period

Maintenance of plant material shall include straightening plant material, straightening stakes; tightening guying material; correcting girdling; supplementing mulch; pruning dead or broken branch tips; maintaining plant material labels; watering; eradicating weeds, insects and disease; post-fertilization; and removing and replacing unhealthy plants.

3.9.2.1 Watering Plant Material

The plant material shall be watered as necessary to prevent desiccation and to maintain an adequate supply of moisture within the root zone. An adequate supply of moisture is estimated to be the equivalent of 25 mm absorbed water per week, delivered in the form of rain or augmented by watering. Run-off, puddling and wilting shall be prevented. Unless otherwise directed, watering trucks shall not be driven over turf areas. Watering of other adjacent areas or existing plant material shall be prevented.
3.9.2.2 Weeding

Grass and weeds in the installed areas shall not be allowed to reach a maximum 75 mm height before being completely removed, including the root system.

3.9.2.3 Pesticide Treatment

Treatment for disease or pest shall be in accordance with paragraph APPLICATION OF PESTICIDE.

3.9.2.4 Post-Fertilization

The plant material shall be topdressed at least once during the period of establishment with controlled release fertilizer, reference paragraph SOIL AMENDMENTS. Apply at the rate of 1 kilogram per 10 square meters of plant pit or bed area. Dry fertilizer adhering to plants shall be flushed off. The application shall be timed prior to the advent of winter dormancy.

3.9.2.5 Plant Pit Settling

When settling occurs to the backfill soil mixture, additional backfill soil shall be added to the plant pit or plant bed until the backfill level is equal to the surrounding grade. Serious settling that affects the setting of the plant in relation to the maximum depth at which it was grown requires replanting in accordance with paragraph INSTALLATION. The earth berm shall be maintained.

3.9.2.6 Maintenance Record

A record shall be furnished describing the maintenance work performed, the quantity of plant losses, diagnosis of the plant loss, and the quantity of replacements made on each site visit.

3.9.3 Unhealthy Plant Material

A tree shall be considered unhealthy or dead when the main leader has died back, or up to a maximum 25 percent of the crown has died. A shrub shall be considered unhealthy or dead when up to a maximum 25 percent of the plant has died. This condition shall be determined by scraping on a branch an area 2 mm square, maximum, to determine if there is a green cambium layer below the bark. The Contractor shall determine the cause for unhealthy plant material and shall provide recommendations for replacement. Unhealthy or dead plant material shall be removed immediately and shall be replaced as soon as seasonal conditions permit.

3.9.4 Replacement Plant Material

Unless otherwise directed, plant material shall be provided for replacement in accordance with paragraph PLANT MATERIAL. Replacement plant material shall be installed in accordance with paragraph INSTALLATION, and recommendations in paragraph PLANT ESTABLISHMENT PERIOD. Plant material shall be replaced in accordance with paragraph WARRANTY. An extended plant establishment period shall not be required for replacement plant material.

3.9.5 Maintenance Instructions
Written instructions shall be furnished containing drawings and other necessary information for year-round care of the installed plant material; including, when and where maintenance should occur, and the procedures for plant material replacement.

-- End Of Section --
U.S. Army Corps of Engineers
Little Rock District

Volume No. 2 Specifications

C-130 J FLIGHT SIMULATOR FACILITY

LITTLE ROCK AIR FORCE BASE
PULASKI COUNTY, ARKANSAS

November 2001
INDEX OF TECHNICAL PROVISIONS

DIVISION 01 - GENERAL REQUIREMENTS
 SECTION 01015 CONDITIONS
 SECTION 01090 SOURCES FOR REFERENCE PUBLICATIONS
 SECTION 01100 SPECIAL PROJECT PROCEDURES
 SECTION 01270 MEASUREMENT AND PAYMENT
 SECTION 01312 RESIDENT MANAGEMENT SYSTEM (RMS)
 SECTION 01320 PROJECT SCHEDULE
 SECTION 01330 SUBMITTAL PROCEDURES
 SECTION 01410 ENVIRONMENT PROTECTION
 SECTION 01415 METRIC MEASUREMENTS
 SECTION 01451 CONTRACTOR QUALITY CONTROL
 SECTION 01500 TEMPORARY CONSTRUCTION FACILITIES
 SECTION 01510 GENERAL REQUIREMENTS
 SECTION 01720 AS-BUILT DRAWINGS

DIVISION 02 - SITE WORK
 SECTION 02220 DEMOLITION
 SECTION 02230 CLEARING AND GRUBBING
 SECTION 02300 EARTHWORK
 SECTION 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS
 SECTION 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS
 SECTION 02364 TERMITICIDE TREATMENT MEASURES FOR SUBTERRANEAN TERMITE CONTROL
 SECTION 02466 DRILLED FOUNDATION PIERS
 SECTION 02510 WATER DISTRIBUTION SYSTEM
 SECTION 02531 SANITARY SEWERS
 SECTION 02555 PREFABRICATED UNDERGROUND COOLING DISTRIBUTION SYSTEM
 SECTION 02556 GAS DISTRIBUTION SYSTEM
 SECTION 02621 FOUNDATION DRAINAGE SYSTEM
 SECTION 02630 STORM-DRAINAGE SYSTEM
 SECTION 02722 AGGREGATE BASE COURSE (ARKANSAS)
 SECTION 02741 HOT-MIX ASPHALT (HMA) FOR ROADS
 SECTION 02748 BITUMINOUS TACK AND PRIME COATS
 SECTION 02754 CONCRETE PAVEMENTS FOR SMALL PROJECTS
 SECTION 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS
 SECTION 02763 PAVEMENT MARKINGS
 SECTION 02770 CONCRETE SIDEWALKS AND CURBS AND GUTTERS
 SECTION 02811 UNDERGROUND SPRINKLER SYSTEMS
 SECTION 02821 FENCING
 SECTION 02922 SODDING
 SECTION 02930 EXTERIOR PLANTING

DIVISION 03 - CONCRETE
 SECTION 03100 STRUCTURAL CONCRETE FORMWORK
 SECTION 03150 EXPANSION JOINTS, CONTRACTION JOINTS, AND WATERSTOPs
 SECTION 03200 CONCRETE REINFORCEMENT
 SECTION 03300 CAST-IN-PLACE STRUCTURAL CONCRETE

DIVISION 04 - MASONRY
 SECTION 04200 MASONRY
DIVISION 05 - METALS
 SECTION 05120 STRUCTURAL STEEL
 SECTION 05210 STEEL JOISTS
 SECTION 05300 STEEL DECKING
 SECTION 05400 COLD-FORMED STEEL FRAMING
 SECTION 05500 MISCELLANEOUS METAL

DIVISION 06 - WOODS & PLASTICS
 SECTION 06100 ROUGH CARPENTRY
 SECTION 06200 FINISH CARPENTRY

DIVISION 07 - THERMAL & MOISTURE PROTECTION
 SECTION 07110 BITUMINOUS DAMPPROOFING
 SECTION 07132 BITUMINOUS WATERPROOFING
 SECTION 07212 MINERAL FIBER BLANKET THERMAL INSULATION
 SECTION 07214 BOARD AND BLOCK INSULATION
 SECTION 07416 STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM
 SECTION 07600 SHEET METALWORK, GENERAL
 SECTION 07840 FIRESTOPPING
 SECTION 07900 JOINT SEALING

DIVISION 08 - DOORS & WINDOWS
 SECTION 08110 STEEL DOORS AND FRAMES
 SECTION 08120 ALUMINUM DOORS AND FRAMES
 SECTION 08162 HORIZONTAL SLIDING, ACCORDIAN TYPE FIRE DOORS
 SECTION 08210 WOOD DOORS
 SECTION 08360 SECTIONAL OVERHEAD DOORS
 SECTION 08700 BUILDERS' HARDWARE
 SECTION 08810 GLASS AND GLAZING

DIVISION 09 - FINISHES
 SECTION 09250 GYPSUM WALLBOARD
 SECTION 09310 CERAMIC TILE
 SECTION 09510 ACOUSTICAL CEILINGS
 SECTION 09650 RESILIENT FLOORING
 SECTION 09680 CARPET
 SECTION 09720 WALLCOVERINGS
 SECTION 09900 PAINTING, GENERAL

DIVISION 10 - SPECIALTIES
 SECTION 10101 MISCELLANEOUS ITEMS
 SECTION 10160 TOILET PARTITIONS
 SECTION 10260 WALL AND CORNER PROTECTION
 SECTION 10270 RAISED FLOOR SYSTEM
 SECTION 10430 EXTERIOR SIGNAGE
 SECTION 10440 INTERIOR SIGNAGE
 SECTION 10800 TOILET ACCESSORIES

DIVISION 12 - FURNISHINGS
 SECTION 12490 WINDOW TREATMENT

DIVISION 13 - SPECIAL CONSTRUCTION
 SECTION 13080 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT
 SECTION 13100 LIGHTNING PROTECTION SYSTEM
 SECTION 13120 STANDARD METAL BUILDING SYSTEMS
 SECTION 13720 ELECTRONIC SECURITY SYSTEM
SECTION 13851 FIRE DETECTION AND ALARM SYSTEM
SECTION 13920 FIRE PUMPS
SECTION 13930 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

DIVISION 14 - CONVEYING SYSTEMS
SECTION 14240 ELEVATORS, HYDRAULIC
SECTION 14602 CRANES, SINGLE-GIRDER BRIDGE, MONORAIL AND JIB

DIVISION 15 - MECHANICAL
SECTION 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT
SECTION 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS
SECTION 15190 GAS PIPING SYSTEMS
SECTION 15400 PLUMBING, GENERAL PURPOSE
SECTION 15569 WATER AND STEAM HEATING; OIL, GAS OR BOTH; UP TO 20 MBTUH
SECTION 15650 CENTRAL REFRIGERATED AIR-CONDITIONING SYSTEM
SECTION 15653 AIR-CONDITIONING SYSTEM (UNITARY TYPE)
SECTION 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM
SECTION 15951 DIRECT DIGITAL CONTROL FOR HVAC
SECTION 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS
SECTION 15995 COMMISSIONING OF HVAC SYSTEMS

DIVISION 16 - ELECTRICAL
SECTION 16070 SEISMIC PROTECTION FOR ELECTRICAL EQUIPMENT
SECTION 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL
SECTION 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND
SECTION 16403 MOTOR CONTROL CENTERS, SWITCHBOARDS AND PANELBOARDS
SECTION 16415 ELECTRICAL WORK, INTERIOR
SECTION 16445 TRANSIENT VOLTAGE SURGE SUPPRESSOR (TVSS)
SECTION 16710 PREMISES DISTRIBUTION SYSTEM
SECTION 16775 CABLE TV SYSTEMS

-- End of Table of Contents --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ACI INTERNATIONAL (ACI)

ACI 347R (1994) Guide to Formwork for Concrete

AMERICAN HARDBOARD ASSOCIATION (AHA)

DEPARTMENT OF COMMERCE (DOC)

DOC PS 1 (1996) Voluntary Product Standard - Construction and Industrial Plywood

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Formwork

Drawings showing details of formwork, including dimensions of fiber voids, joints, supports, studding and shoring, and sequence of form and shoring removal.

SD-03 Product Data

Design

Design analysis and calculations for form design and methodology used in the design.

Form Materials
Manufacturer's data including literature describing form materials, accessories, and form releasing agents.

Form Releasing Agents

Manufacturer's recommendation on method and rate of application of form releasing agents.

SD-04 Samples

Fiber Voids

One sample unit of fiber voids prior to installation of the voids.

SD-07 Certificates

Fiber Voids

Certificates attesting that fiber voids conform to the specified requirements.

1.3 DESIGN

Formwork shall be designed in accordance with methodology of ACI 347R for anticipated loads, lateral pressures, and stresses. Forms shall be capable of producing a surface which meets the requirements of the class of finish specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Forms shall be capable of withstanding the pressures resulting from placement and vibration of concrete.

1.4 STORAGE AND HANDLING

Fiber voids shall be stored above ground level in a dry location. Fiber voids shall be kept dry until installed and overlaid with concrete.

PART 2 PRODUCTS

2.1 FORM MATERIALS

2.1.1 Forms For Class A and Class B Finish

Forms for Class A and Class B finished surfaces shall be plywood panels conforming to DOC PS 1, Grade B-B concrete form panels, Class I or II. Other form materials or liners may be used provided the smoothness and appearance of concrete produced will be equivalent to that produced by the plywood concrete form panels. Forms for round columns shall be the prefabricated seamless type.

2.1.2 Forms For Class C Finish

Forms for Class C finished surfaces shall be shiplap lumber; plywood conforming to DOC PS 1, Grade B-B concrete form panels, Class I or II; tempered concrete form hardboard conforming to AHA ANSI/AHA A135.4; other approved concrete form material; or steel, except that steel lining on wood sheathing shall not be used. Forms for round columns may have one vertical seam.
2.1.3 Forms For Class D Finish

Forms for Class D finished surfaces, except where concrete is placed against earth, shall be wood or steel or other approved concrete form material.

2.1.4 Retain-In-Place Metal Forms

Retain-in-place metal forms for concrete slabs and roofs shall be as specified in Section 05300 STEEL DECKING.

2.1.5 Form Ties

Form ties shall be factory-fabricated metal ties, shall be of the removable or internal disconnecting or snap-off type, and shall be of a design that will not permit form deflection and will not spall concrete upon removal. Solid backing shall be provided for each tie. Except where removable tie rods are used, ties shall not leave holes in the concrete surface less than 6 mm nor more than 25 mm deep and not more than 25 mm in diameter. Removable tie rods shall be not more than 38 mm in diameter.

2.1.6 Form Releasing Agents

Form releasing agents shall be commercial formulations that will not bond with, stain or adversely affect concrete surfaces. Agents shall not impair subsequent treatment of concrete surfaces depending upon bond or adhesion nor impede the wetting of surfaces to be cured with water or curing compounds.

2.1.7 Fiber Voids

Fiber voids shall be the product of a reputable manufacturer regularly engaged in the commercial production of fiber voids. The voids shall be constructed of double faced, corrugated fiberboard. The corrugated fiberboard shall be fabricated of wet strength paper liners, impregnated with paraffin, and laminated with moisture resistant adhesive, and shall have a board strength of 20 kg per square centimeter. Voids which are impregnated with paraffin after construction, in lieu of being constructed with paraffin impregnated fiberboard, are acceptable. Voids shall be designed to support not less than 4900 kg per square meter. To prevent separation during concrete placement fiber voids shall be assembled with steel or plastic banding at 1.22 meters on center maximum, or by adequate stapling or gluing as recommended by the manufacturer. Fiber voids placed under concrete slabs and that are 200 mm in depth may be heavy duty "waffle box" type, constructed of paraffin impregnated corrugated fiberboard.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Formwork

Forms shall be mortar tight, properly aligned and adequately supported to produce concrete surfaces meeting the surface requirements specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE and conforming to construction tolerance given in TABLE 1. Where concrete surfaces are to have a Class A or Class B finish, joints in form panels shall be arranged as
approved. Where forms for continuous surfaces are placed in successive units, the forms shall fit over the completed surface to obtain accurate alignment of the surface and to prevent leakage of mortar. Forms shall not be reused if there is any evidence of surface wear and tear or defects which would impair the quality of the surface. Surfaces of forms to be reused shall be cleaned of mortar from previous concreting and of all other foreign material before reuse. Form ties that are to be completely withdrawn shall be coated with a nonstaining bond breaker.

3.1.2 Fiber Voids

Voids shall be placed on a smooth firm dry bed of suitable material, to avoid being displaced vertically, and shall be set tight, with no buckled cartons, in order that horizontal displacement cannot take place. Each section of void shall have its ends sealed by dipping in paraffin, with any additional cutting of voids at the jobsite to be field dipped in the same type of sealer, unless liners and flutes are completely impregnated with paraffin. Prior to placing reinforcement, the entire formed area for slabs shall be covered with a 1.22 x 2.44 m minimum flat sheets of fiber void corrugated fiberboard. Joints shall be sealed with a moisture resistant tape having a minimum width of 75 mm (3 inch). If voids are destroyed or damaged and are not capable of supporting the design load, they shall be replaced prior to placing of concrete.

3.2 Chamfering

Except as otherwise shown, external corners that will be exposed shall be chamfered, beveled, or rounded by moldings placed in the forms.

3.3 Coating

Forms for Class A and Class B finished surfaces shall be coated with a form releasing agent before the form or reinforcement is placed in final position. The coating shall be used as recommended in the manufacturer's printed or written instructions. Forms for Class C and D finished surfaces may be wet with water in lieu of coating immediately before placing concrete, except that in cold weather with probable freezing temperatures, coating shall be mandatory. Surplus coating on form surfaces and coating on reinforcing steel and construction joints shall be removed before placing concrete.

3.4 Removal of Forms

Forms shall be removed preventing injury to the concrete and ensuring the complete safety of the structure. Formwork for columns, walls, side of beams and other parts not supporting the weight of concrete may be removed when the concrete has attained sufficient strength to resist damage from the removal operation but not before at least 24 hours has elapsed since concrete placement. Supporting forms and shores shall not be removed from beams, floors and walls until the structural units are strong enough to carry their own weight and any other construction or natural loads. Supporting forms or shores shall not be removed before the concrete strength has reached 70 percent of design strength, as determined by field cured cylinders or other approved methods. This strength shall be demonstrated by job-cured test specimens, and by a structural analysis considering the proposed loads in relation to these test strengths and the strength of forming and shoring system. The job-cured test specimens for form removal
purposes shall be provided in numbers as directed and shall be in addition to those required for concrete quality control. The specimens shall be removed from molds at the age of 24 hours and shall receive, insofar as possible, the same curing and protection as the structures they represent.

TABLE 1

TOLERANCES FOR FORMED SURFACES

1. Variations from the plumb: In any 3 m of length -------- 6 mm
 a. In the lines and surfaces of columns, piers, walls and in arises
 b. For exposed corner columns, control-joint grooves, and other conspicuous lines
 In any 6 m of length -------- 6 mm
 Maximum for entire length -- 25 mm

2. Variation from the level or from the grades indicated on the drawings:
 In any 3 m of length ------- 6 mm
 In any bay or in any 6 m of length ------------------- 10 mm
 a. In slab soffits, ceilings beam soffits, and in arises, measured before removal of supporting shores
 b. In exposed lintels, sills, parapets, horizontal grooves, and other conspicuous lines
 In any bay or in any 6 m of length ------------------- 6 mm
 Maximum for entire length -- 13 mm

3. Variation of the linear building lines from established position in plan
 In any 6 m ---------------- 13 mm
 Maximum ------------------ 25 mm

4. Variation of distance between walls, columns, partitions
 6 mm per 3 m of distance, but not more than 13 mm in any one bay, and not more than 25 mm total variation

5. Variation in the sizes and locations of sleeves, floor openings, and wall opening
 Minus ------------------ 6 mm
 Plus ------------------ 13 mm

6. Variation in cross-sectional dimensions of columns
 Minus ------------------ 6 mm
 Plus ------------------ 13 mm
and beams and in the thickness of slabs and walls

7. Footings:

a. Variation of dimensions in plan
 Minus -------------- 13 mm
 Plus -------------- 50 mm
 when formed or plus 75 mm when placed against unformed excavation

b. Misplacement of eccentricity
 2 percent of the footing width in the direction of misplacement
 but not more than --------- 50 mm

c. Reduction in thickness
 Minus -------------- 5 percent
 of specified thickness

8. Variation in steps:

a. In a flight of stairs
 Riser -------------- 3 mm
 Tread -------------- 6 mm

b. In consecutive steps
 Riser -------------- 2 mm
 Tread -------------- 3 mm

-- End Of Section --
SECTION 03150
EXPANSION JOINTS, CONTRACTION JOINTS, AND WATERSTOPS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
AASHTO T 111 (1983; R 1996) Inorganic Matter or Ash in Bituminous Materials

AMERICAN HARDBOARD ASSOCIATION (AHA)
AHA A135.4 (1995) Basic Hardboard

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)
ASTM A 109/A 109M (1998a) Steel, Strip, Carbon, Cold-Rolled
ASTM A 480/A 480M (1999b) General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip
ASTM A 570/A 570M (1998) Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural Quality
ASTM B 152M (1997a) Copper Sheet, Strip, Plate, and Rolled Bar (Metric)
ASTM C 919 (1984; R 1998) Use of Sealants in Acoustical Applications
ASTM D 4 (1986; R 1998) Bitumen Content
ASTM D 6 (1995) Loss on Heating of Oil and Asphaltic Compounds
ASTM D 412 (1998a) Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers - Tension
ASTM D 471 (1998el) Rubber Property - Effect of Liquids
ASTM D 1191 (1984; R 1994el)
Concrete Joint Sealers

ASTM D 1752 (1984; R 1996el) Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction

ASTM D 2835 (1989; R 1998) Lubricant for Installation of Preformed Compression Seals in Concrete Pavements

CORPS OF ENGINEERS (COE)

COE CRD-C 572 (1974) Corps of Engineers Specifications for Polyvinylchloride Waterstop

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Waterstops

Shop drawings and fabrication drawings provided by the manufacturer or prepared by the Contractor.

SD-03 Product Data

Preformed Expansion Joint Filler
Sealant
Waterstops

Manufacturer's literature, including safety data sheets, for preformed fillers and the lubricants used in their installation; field-molded sealants and primers (when required by sealant manufacturer); preformed compression seals; and waterstops.
Preformed Expansion Joint Filler
Sealant
Waterstops

Manufacturer's recommended instructions for installing preformed fillers, field-molded sealants; preformed compression seals; and waterstops; and for splicing non-metallic waterstops.

SD-04 Samples

Lubricant for Preformed Compression Seals

Specimens identified to indicate the manufacturer, type of material, size and quantity of material, and shipment or lot represented. Each sample shall be a piece not less than 3 m of 25 mm nominal width or wider seal or a piece not less than 4 m of compression seal less than 25 mm nominal width. One L of lubricant shall be provided.

Field-Molded Type

Four liters of field-molded sealant and one L of primer (when primer is recommended by the sealant manufacturer) identified to indicate manufacturer, type of material, quantity, and shipment or lot represented.

Non-metallic Materials

Specimens identified to indicate manufacturer, type of material, size, quantity of material, and shipment or lot represented. Each sample shall be a piece not less than 300 mm long cut from each 61 m of finished waterstop furnished, but not less than a total of 1 m of each type, size, and lot furnished. One splice sample of each size and type for every 50 splices made in the factory and every 10 splices made at the job site. The splice samples shall be made using straight run pieces with the splice located at the mid-length of the sample and finished as required for the installed waterstop. The total length of each splice shall be not less than 300 mm long.

SD-07 Certificates

Preformed Expansion Joint Filler
Sealant
Waterstops

Certificates of compliance stating that the joint filler and sealant materials and waterstops conform to the requirements specified.

1.3 DELIVERY AND STORAGE

Material delivered and placed in storage shall be stored off the ground and protected from moisture, dirt, and other contaminants. Sealants shall be delivered in the manufacturer's original unopened containers. Sealants whose shelf life has expired shall be removed from the site.
PART 2 PRODUCTS

2.1 CONTRACTION JOINT STRIPS

Contraction joint strips shall be 3 mm (1/8 inch) thick tempered hardboard conforming to AHA A135.4, Class 1. In lieu of hardboard strips, rigid polyvinylchloride (PVC) or high impact polystyrene (HIPS) insert strips specifically designed to induce controlled cracking in slabs on grade may be used. Such insert strips shall have removable top section.

2.2 PREFORMED EXPANSION JOINT FILLER

Expansion joint filler shall be preformed material conforming to ASTM D 1751 or ASTM D 1752. Unless otherwise indicated, filler material shall be 10 mm (3/8 inch) thick and of a width applicable for the joint formed. Backer material, when required, shall conform to ASTM D 5249.

2.3 SEALANT

Joint sealant shall conform to the following:

2.3.1 Preformed Polychloroprene Elastomeric Type

ASTM D 2628.

2.3.2 Lubricant for Preformed Compression Seals

ASTM D 2835.

2.3.3 Hot-Poured Type

ASTM D 1190 tested in accordance with ASTM D 1191.

2.3.4 Field-Molded Type

ASTM C 920, Type M for horizontal joints or Type NS for vertical joints, Class 25, and Use NT. Bond breaker material shall be polyethylene tape, coated paper, metal foil or similar type materials. The back-up material shall be compressible, non-shrink, nonreactive with sealant, and non-absorptive material type such as extruded butyl or polychloroprene rubber.

2.4 WATERSTOPS

Intersection and change of direction waterstops shall be shop fabricated.

2.4.1 Flexible Metal

Copper waterstops shall conform to ASTM B 152M and ASTM B 370, O60 soft anneal temper and 0.686 mm (20 oz mass per sq ft) sheet thickness. Stainless steel waterstops shall conform to ASTM A 167 and ASTM A 480/A 480M, UNS S30453 (Type 304L), and 0.9525 mm (20 gauge) thick strip.

2.4.2 Rigid Metal
Flat steel waterstops shall conform to ASTM A 109/A 109M, No. 2 (half hard) temper, No. 2 edge, No. 1 (matte or dull) finish or ASTM A 570/A 570M, Grade 40.

2.4.3 Non-Metallic Materials

Non-metallic waterstops shall be manufactured from a prime virgin resin; reclaimed material is not acceptable. The compound shall contain plasticizers, stabilizers, and other additives to meet specified requirements. Rubber waterstops shall conform to COE CRD-C 513. Polyvinylchloride waterstops shall conform to COE CRD-C 572. Thermoplastic elastomeric rubber waterstops shall conform to ASTM D 471.

2.4.4 Non-Metallic Hydrophilic

Swellable strip type compound of polymer modified chloroprene rubber that swells upon contact with water shall conform to ASTM D 412 as follows: Tensile strength 2.9 MPa minimum; ultimate elongation 600 percent minimum. Hardness shall be 50 minimum on the type A durometer and the volumetric expansion ratio in distilled water at 20 degrees C shall be 3 to 1 minimum.

2.4.5 Preformed Elastic Adhesive

Preformed plastic adhesive waterstops shall be produced from blends of refined hydrocarbon resins and plasticizing compounds reinforced with inert mineral filler, and shall contain no solvents, asbestos, irritating fumes or obnoxious odors. The compound shall not depend on oxidizing, evaporating, or chemical action for its adhesive or cohesive strength.

2.4.5.1 Chemical Composition

The chemical composition of the sealing compound shall meet the requirements shown below:

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MIN.</th>
<th>MAX.</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen (Hydrocarbon plastic)</td>
<td>50</td>
<td>70</td>
<td>ASTM D 4</td>
</tr>
<tr>
<td>Inert Mineral Filler</td>
<td>30</td>
<td>50</td>
<td>AASHTO T 111</td>
</tr>
<tr>
<td>Volatile Matter</td>
<td>2</td>
<td></td>
<td>ASTM D 6</td>
</tr>
</tbody>
</table>

2.4.5.2 Adhesion Under Hydrostatic Pressure

The sealing compound shall not leak at the joints for a period of 24 hours under a vertical 2 m head pressure. In a separate test, the sealing compound shall not leak under a horizontal pressure of 65 kPa which is reached by slowly applying increments of 13 kPa every minute.

2.4.5.3 Sag of Flow Resistance

Sagging shall not be detected when tested as follows: Fill a wooden form 25 mm wide and 150 mm long flush with sealing compound and place in an oven at 58 degrees C in a vertical position for 5 days.

2.4.5.4 Chemical Resistance
The sealing compound when immersed separately in a 5% solution of caustic potash, a 5% solution of hydrochloric acid, 5% solution of sulfuric acid and a saturated hydrogen sulfide solution for 30 days at ambient room temperature shall show no visible deterioration.

PART 3 EXECUTION

3.1 JOINTS

Joints shall be installed at locations indicated and as authorized.

3.1.1 Contraction Joints

Contraction joints may be constructed by inserting tempered hardboard strips or rigid PVC or HIPS insert strips into the plastic concrete using a steel parting bar, when necessary, or by cutting the concrete with a saw after concrete has set. Joints shall be approximately 3 mm wide and shall extend into the slab one-fourth the slab thickness, minimum, but not less than 25 mm.

3.1.1.1 Joint Strips

Strips shall be of the required dimensions and as long as practicable. After the first floating, the concrete shall be grooved with a tool at the joint locations. The strips shall be inserted in the groove and depressed until the top edge of the vertical surface is flush with the surface of the slab. The slab shall be floated and finished as specified. Working of the concrete adjacent to the joint shall be the minimum necessary to fill voids and consolidate the concrete. Where indicated, the top portion of the strip shall be sawed out after the curing period to form a recess for sealer. The removable section of PVC or HIPS strips shall be discarded and the insert left in place. True alignment of the strips shall be maintained during insertion.

3.1.2 Sawed Joints

Sawed joints are not allowed.

3.1.2 Expansion Joints

Preformed expansion joint filler shall be used in expansion and isolation joints in slabs around columns and between slabs on grade and vertical surfaces where indicated. The filler shall extend the full slab depth, unless otherwise indicated. The edges of the joint shall be neatly finished with an edging tool of 3 mm (1/8 inch) radius, except where a resilient floor surface will be applied. Where the joint is to receive a sealant, the filler strips shall be installed at the proper level below the finished floor with a slightly tapered, dressed and oiled wood strip temporarily secured to the top to form a recess to the size shown on the drawings. The wood strip shall be removed after the concrete has set. Contractor may opt to use a removable expansion filler cap designed and fabricated for this purpose in lieu of the wood strip. The groove shall be thoroughly cleaned of laitance, curing compound, foreign materials, protrusions of hardened concrete, and any dust which shall be blown out of the groove with oil-free compressed air.
3.1.3 Joint Sealant

Expansion joints in slabs shall be filled with joint sealant, unless otherwise shown. Joint surfaces shall be clean, dry, and free of oil or other foreign material which would adversely affect the bond between sealant and concrete. Joint sealant shall be applied as recommended by the manufacturer of the sealant.

3.1.3.1 Joints With Preformed Compression Seals

Compression seals shall be installed with equipment capable of installing joint seals to the prescribed depth without cutting, nicking, twisting, or otherwise distorting or damaging the seal or concrete and with no more than 5 percent stretching of the seal. The sides of the joint and, if necessary, the sides of the compression seal shall be covered with a coating of lubricant. Butt joints shall be coated with liberal applications of lubricant.

3.1.3.2 Joints With Field-Molded Sealant

Joints shall not be sealed when the sealant material, ambient air, or concrete temperature is less than 4 degrees C. When the sealants are meant to reduce the sound transmission characteristics of interior walls, ceilings, and floors the guidance provided in ASTM C 919 shall be followed. Joints requiring a bond breaker shall be coated with curing compound or with bituminous paint. Bond breaker and back-up material shall be installed where required. Joints shall be primed and filled flush with joint sealant in accordance with the manufacturer’s recommendations.

3.2 WATERSTOPS, INSTALLATION AND SPLICES

Waterstops shall be installed at the locations shown to form a continuous water-tight diaphragm. Adequate provision shall be made to support and completely protect the waterstops during the progress of the work. Any waterstop punctured or damaged shall be repaired or replaced. Exposed waterstops shall be protected during application of form release agents to avoid being coated. Suitable guards shall be provided to protect exposed projecting edges and ends of partially embedded waterstops from damage when concrete placement has been discontinued. Splices shall be made by certified trained personnel using approved equipment and procedures.

3.2.1 Copper And Stainless Steel

Splices in copper waterstops shall be lap joints made by brazing. Splices in stainless steel waterstops shall be welded using a TIG or MIG process utilizing a weld rod to match the stainless. All welds shall not be annealed to maintain physical properties. Carbon flame shall not be used in the annealing process. Damaged waterstops shall be repaired by removing damaged portions and patching. Patches shall overlap a minimum of 25 mm onto undamaged portion of the waterstop.

3.2.2 Flat Steel

Splices in flat steel waterstops shall be properly aligned, butt welded, and cleaned of excessive material.
3.2.3 Non-Metallic

Fittings shall be shop made using a machine specifically designed to mechanically weld the waterstop. A miter guide, proper fixturing (profile dependant), and portable power saw shall be used to miter cut the ends to be joined to ensure good alignment and contact between joined surfaces. The splicing of straight lengths shall be done by squaring the ends to be joined. Continuity of the characteristic features of the cross section of the waterstop (ribs, tabular center axis, protrusions, etc.) shall be maintained across the splice.

3.2.3.1 Rubber Waterstop

Splices shall be vulcanized or shall be made using cold bond adhesive as recommended by the manufacturer. Splices for TPE-R shall be as specified for PVC.

3.2.3.2 Polyvinyl Chloride Waterstop

Splices shall be made by heat sealing the adjacent waterstop edges together using a thermoplastic splicing iron utilizing a non-stick surface specifically designed for waterstop welding. The correct temperature shall be used to sufficiently melt without charring the plastic. The spliced area, when cooled, shall show no signs of separation, holes, or other imperfections when bent by hand in as sharp an angle as possible.

3.2.3.3 Quality Assurance

Edge welding will not be permitted. Centerbulbs shall be compressed or closed when welding to non-centerbulb type. Waterstop splicing defects which are unacceptable include, but are not limited to the following: 1) Tensile strength less than 80 percent of parent section. 2) Free lap joints. 3) Misalignment of centerbulb, ribs, and end bulbs greater than 2 mm. 4) Misalignment which reduces waterstop cross section more than 15 percent. 5) Bond failure at joint deeper than 2 mm or 15 percent of material thickness. 6) Misalignment of waterstop splice resulting in misalignment of waterstop in excess of 13 mm in 3 m. 7) Visible porosity in the weld area, including pin holes. 8) Charred or burnt material. 9) Bubbles or inadequate bonding. 10) Visible signs of splice separation when cooled splice is bent by hand at a sharp angle.

3.2.4 Non-Metallic Hydrophilic Waterstop Installation

Ends to be joined shall be miter cut with sharp knife or shears. The ends shall be adhered with cyanoacrylate (super glue) adhesive. When joining hydrophilic type waterstop to PVC waterstop, the hydrophilic waterstop shall be positioned as shown on the drawings. A liberal amount of a single component hydrophilic sealant shall be applied to the junction to complete the transition.

3.2.5 Preformed Plastic Adhesive Installation

The installation of preformed plastic adhesive waterstops shall be a prime, peel, place and pour procedure. Joint surfaces shall be clean and dry before priming and just prior to placing the sealing strips. The end of each strip shall be spliced to the next strip with a 25 mm overlap; the overlap shall be pressed firmly to release trapped air. During damp or cold
conditions the joint surface shall be flashed with a safe, direct flame to warm and dry the surface adequately; the sealing strips shall be dipped in warm water to soften the material to achieve maximum bond to the concrete surface.

3.3 CONSTRUCTION JOINTS

Construction joints are specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE except that construction joints coinciding with expansion and contraction joints shall be treated as expansion or contraction joints as applicable.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ACI INTERNATIONAL (ACI)

ACI 318M (1995) Building Code Requirements for Structural Concrete and Commentary (Metric)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53 (1999) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 82 (1997a) Steel Wire, Plain, for Concrete Reinforcement

ASTM A 184/A 184M (1996) Fabricated Deformed Steel Bar Mats for Concrete Reinforcement

ASTM A 185 (1997) Steel Welded Wire Fabric, Plain, for Concrete Reinforcement

ASTM A 615/A 615M (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement

ASTM A 675/A 675M (1990a; R 1995e1) Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical Properties

ASTM A 706/A 706M (1998) Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

ASTM A 767/A 767M (1997) Zinc-Coated (Galvanized) Steel Bars in Concrete Reinforcement

ASTM A 775/A 775M (1997e1) Epoxy-Coated Reinforcement Steel Bars

ASTM A 884/A 884M (1996ae1) Epoxy-Coated Steel Wire and Welded Wire Fabric for Reinforcement

ASTM C 1116 (1995) Fiber-Reinforced Concrete and Shotcrete

AMERICAN WELDING SOCIETY (AWS)
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Reinforcement

Detail drawings showing reinforcing steel placement, schedules, sizes, grades, and splicing and bending details. Drawings shall show support details including types, sizes and spacing.

SD-03 Product Data

Welding

A list of qualified welders names.

SD-07 Certificates

Reinforcing Steel

Certified copies of mill reports attesting that the reinforcing steel furnished contains no less than 25 percent recycled scrap steel and meets the requirements specified herein, prior to the installation of reinforcing steel.

1.3 WELDING

Welders shall be qualified in accordance with AWS D1.4. Qualification test shall be performed at the worksite and the Contractor shall notify the Contracting Officer 24 hours prior to conducting tests. Special welding procedures and welders qualified by others may be accepted as permitted by AWS D1.4.

1.4 DELIVERY AND STORAGE

Reinforcement and accessories shall be stored off the ground on platforms, skids, or other supports.

PART 2 PRODUCTS

2.1 DOWELS
Dowels shall conform to ASTM A 675/A 675M, Grade 80. Steel pipe conforming to ASTM A 53, Schedule 80, may be used as dowels provided the ends are closed with metal or plastic inserts.

2.2 FABRICATED BAR MATS

Fabricated bar mats shall conform to ASTM A 184/A 184M.

2.3 REINFORCING STEEL

Reinforcing steel shall be deformed bars conforming to ASTM A 615/A 615M or ASTM A 706/A 706M, grades and sizes as indicated. Cold drawn wire used for spiral reinforcement shall conform to ASTM A 82. In highly corrosive environments or when directed by the Contracting Officer, reinforcing steel shall conform to ASTM A 767/A 767M or ASTM A 775/A 775M as appropriate.

2.4 WELDED WIRE FABRIC

Welded wire fabric shall conform to ASTM A 185. When directed by the Contracting Officer for special applications, welded wire fabric shall conform to ASTM A 884/A 884M.

2.5 WIRE TIES

Wire ties shall be 16 gauge or heavier black annealed steel wire.

2.6 SUPPORTS

Bar supports for formed surfaces shall be designed and fabricated in accordance with CRSI MSP-1 and shall be steel or precast concrete blocks. Precast concrete blocks shall have wire ties and shall be not less than 100 by 100 mm when supporting reinforcement on ground. Precast concrete block shall have compressive strength equal to that of the surrounding concrete. Where concrete formed surfaces will be exposed to weather or where surfaces are to be painted, steel supports within 13 mm of concrete surface shall be galvanized, plastic protected or of stainless steel. Concrete supports used in concrete exposed to view shall have the same color and texture as the finish surface. For slabs on grade, supports shall be precast concrete blocks, plastic coated steel fabricated with bearing plates, or specifically designed wire-fabric supports fabricated of plastic. Where cardboard voids are used provide supports that are compatible with the cardboard and will not crush or puncture the cardboard.

2.7 SYNTHETIC FIBER REINFORCEMENT

Synthetic fiber shall be polypropylene with a denier less than 100 and a nominal fiber length of 50 mm.

PART 3 EXECUTION

3.1 REINFORCEMENT

Reinforcement shall be fabricated to shapes and dimensions shown and shall conform to the requirements of ACI 318M. Reinforcement shall be cold bent unless otherwise authorized. Bending may be accomplished in the field or at the mill. Bars shall not be bent after embedment in concrete. Safety caps shall be placed on all exposed ends of vertical concrete reinforcement bars.
that pose a danger to life safety. Wire tie ends shall face away from the forms.

3.1.1 Placement

Reinforcement shall be free from loose rust and scale, dirt, oil, or other deleterious coating that could reduce bond with the concrete. Reinforcement shall be placed in accordance with ACI 318M at locations shown plus or minus one bar diameter. Reinforcement shall not be continuous through expansion joints and shall be as indicated through construction or contraction joints. Concrete coverage shall be as indicated or as required by ACI 318M. If bars are moved more than one bar diameter to avoid interference with other reinforcement, conduits or embedded items, the resulting arrangement of bars, including additional bars required to meet structural requirements, shall be approved before concrete is placed.

3.1.2 Splicing

Splices of reinforcement shall conform to ACI 318M and shall be made only as required or indicated. Splicing shall be by lapping or by mechanical or welded butt connection; except that lap splices shall not be used for bars larger than No. 11 unless otherwise indicated. Welding shall conform to AWS D1.4. Welded butt splices shall be full penetration butt welds. Lapped bars shall be placed in contact and securely tied or spaced transversely apart to permit the embedment of the entire surface of each bar in concrete. Lapped bars shall not be spaced farther apart than one-fifth the required length of lap or 150 mm. Mechanical butt splices shall be in accordance with the recommendation of the manufacturer of the mechanical splicing device. Butt splices shall develop 125 percent of the specified minimum yield tensile strength of the spliced bars or of the smaller bar in transition splices. Bars shall be flame dried before butt splicing. Adequate jigs and clamps or other devices shall be provided to support, align, and hold the longitudinal centerline of the bars to be butt spliced in a straight line.

3.2 WELDED-WIRE FABRIC PLACEMENT

Welded-wire fabric shall be placed in slabs as indicated. Fabric placed in slabs on grade shall be continuous between expansion, construction, and contraction joints. Fabric placement at joints shall be as indicated. Lap splices shall be made in such a way that the overlapped area equals the distance between the outermost crosswires plus 50 mm. Laps shall be staggered to avoid continuous laps in either direction. Fabric shall be wired or clipped together at laps at intervals not to exceed 1.2 m. Fabric shall be positioned by the use of supports.

3.3 DOWEL INSTALLATION

Dowels shall be installed in slabs on grade at locations indicated and at right angles to joint being doweled. Dowels shall be accurately positioned and aligned parallel to the finished concrete surface before concrete placement. Dowels shall be rigidly supported during concrete placement. One end of dowels shall be coated with a bond breaker.

3.4 SYNTHETIC FIBER REINFORCED CONCRETE
At stair treads and landings fiber reinforcement shall be added to the concrete mix in accordance with the applicable sections of ASTM C 1116 and the recommendations of the manufacturer, and in an amount of 0.1 percent by volume.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ACI INTERNATIONAL (ACI)

ACI 117/117R (1990; Errata) Standard Tolerances for Concrete Construction and Materials

ACI 211.2 (1998) Standard Practice for Selecting Proportions for Structural Lightweight Concrete

ACI 214.3R (1988) Simplified Version of the Recommended Practice for Evaluation of Strength Test Results of Concrete

ACI 301 (1996) Standard Specifications for Structural Concrete

ACI 305R (1991) Hot Weather Concreting

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 182 (1991; R 1996) Burlap Cloth Made From Jute or Kenaf

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 31/C 31M (1998) Making and Curing Concrete Test Specimens in the Field

ASTM C 33 (1999a) Concrete Aggregates

ASTM C 39 (1996) Compressive Strength of Cylindrical Concrete Specimens
ASTM C 42 (1999) Obtaining and Testing Drilled Cores and Sawed Beams of Concrete

ASTM C 78 (1994) Flexural Strength of Concrete (Using Simple Beam With Third-Point Loading)

ASTM C 94 (1999) Ready-Mixed Concrete

ASTM C 136 (1996a) Sieve Analysis of Fine and Coarse Aggregates

ASTM C 143 (1998) Slump of Hydraulic Cement Concrete

ASTM C 150 (1998a) Portland Cement

ASTM C 171 (1997a) Sheet Materials for Curing Concrete

ASTM C 172 (1999) Sampling Freshly Mixed Concrete

ASTM C 173 (1994ael) Air Content of Freshly Mixed Concrete by the Volumetric Method

ASTM C 231 (1997el) Air Content of Freshly Mixed Concrete by the Pressure Method

ASTM C 309 (1998a) Liquid Membrane-Forming Compounds for Curing Concrete

ASTM C 494 (1999) Chemical Admixtures for Concrete

ASTM C 496 (1996) Splitting Tensile Strength of Cylindrical Concrete Specimens

ASTM C 567 (1999a) Unit Weight of Structural Lightweight Concrete

ASTM C 591 (1994) Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation

ASTM C 618 (1999) Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete
ASTM C 685 (1998a) Concrete Made by Volumetric Batching and Continuous Mixing

ASTM C 937 (1997) Grout Fluidifier for Preplaced-Aggregate Concrete

ASTM C 940 (1998a) Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory

ASTM C 1017 (1998) Chemical Admixtures for Use in Producing Flowing Concrete

ASTM C 1059 (1999) Latex Agents for Bonding Fresh to Hardened Concrete

ASTM C 1116 (1995) Fiber-Reinforced Concrete and Shotcrete

ASTM C 1240 (1999) Silica Fume for Use as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar and Grout

ASTM D 75 (1987; R 1997) Sampling Aggregates

CORPS OF ENGINEERS (COE)

COE CRD-C 94 (1995) Surface Retarders

COE CRD-C 104 (1980) Method of Calculation of the Fineness Modulus of Aggregate

COE CRD-C 400 (1963) Requirements for Water for Use in Mixing or Curing Concrete

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Mixture Proportions ; G, RE

The results of trial mixture design studies along with a statement giving the maximum nominal coarse aggregate size and the proportions of ingredients that will be used in the manufacture of each strength or class of concrete, at least 14 days prior to commencing concrete placing operations. Aggregate weights shall be based on the saturated surface dry condition. The statement shall be accompanied by test results from an approved independent commercial testing laboratory, showing that mixture design studies have been made with materials proposed for the project and that the proportions selected will produce concrete of the qualities indicated. No substitutions shall be made in the materials used in the mixture design studies without additional tests to show that the quality of the concrete is satisfactory.

Lightweight Aggregate Concrete ; G, RE

Written recommendations from lightweight aggregate supplier on batching and mixing cycles.

SD-06 Test Reports

Testing and Inspection for Contractor Quality Control ; G, RE

Certified copies of laboratory test reports, including mill tests and all other test data, for portland cement, blended cement, pozzolan, ground granulated blast furnace slag, silica fume, aggregate, admixtures, and curing compound proposed for use on this project.
SD-07 Certificates

Qualifications ; G, RE

Written documentation for Contractor Quality Control personnel.

1.3 QUALIFICATIONS

Contractor Quality Control personnel assigned to concrete construction shall be American Concrete Institute (ACI) Certified Workmen in one of the following grades or shall have written evidence of having completed similar qualification programs:

- Concrete Field Testing Technician, Grade I
- Concrete Laboratory Testing Technician, Grade I or II
- Concrete Construction Inspector, Level II
- Concrete Transportation Construction Inspector or Reinforced Concrete Special Inspector, Jointly certified by American Concrete Institute (ACI), Building Official and Code Administrators International (BOCA), International Conference of Building Officials (ICBO), and Southern Building Code Congress International (SBCCI).

The foreman or lead journeyman of the flatwork finishing crew shall have similar qualification for ACI Concrete Flatwork Technician/Finisher or equal, with written documentation.

1.4 GENERAL REQUIREMENTS

1.4.1 Tolerances

Except as otherwise specified herein, tolerances for concrete batching, mixture properties, and construction as well as definition of terms and application practices shall be in accordance with ACI 117/117R. Level and grade tolerance measurements of slabs shall be made as soon as possible after finishing; when forms or shoring are used, the measurements shall be made prior to removal.

1.4.1.1 Floors

For the purpose of this Section the following terminology correlation between ACI 117/117R and this Section shall apply:

<table>
<thead>
<tr>
<th>Floor Profile Quality Classification From ACI 117/117R</th>
<th>This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>Float Finish or Trowel Finish</td>
</tr>
</tbody>
</table>

Levelness tolerance shall not apply where design requires floors to be sloped to drains or sloped for other reasons.

1.4.1.2 Floors by the Straightedge System

The flatness of the floors shall be carefully controlled and the tolerances shall be measured by the straightedge system as specified in paragraph 4.5.7
of ACI 117/117R, using a 3 m straightedge, within 72 hours after floor slab installation and before shores and/or forms are removed. The listed tolerances shall be met at any and every location at which the straightedge can be placed.

Trowel Finish 3.2 mm / 304.8 mm

1.4.2 Strength Requirements and w/c Ratio

1.4.2.1 Strength Requirements

Specified compressive strength (f'c) shall be as follows:

20 MPa (3000 psi) at 28 days 2.66 MPa (400 psi) at 28 days
At Utility access pits

Concrete slabs on-grade shall have a 28-day flexural strength of 4.5 MPa. Concrete made with high-early strength cement shall have a 7-day strength equal to the specified 28-day strength for concrete made with Type I or II portland cement. Compressive strength shall be determined in accordance with ASTM C 39. Flexural strength shall be determined in accordance with ASTM C 78.

a. Evaluation of Concrete Compressive Strength. Compressive strength specimens (152 by 305 mm cylinders) shall be fabricated by the Contractor and laboratory cured in accordance with ASTM C 31/C 31M and tested in accordance with ASTM C 39. The strength of the concrete will be considered satisfactory so long as the average of all sets of three consecutive test results equals or exceeds the specified compressive strength f'c and no individual test result falls below the specified strength f'c by more than 3.5 MPa. A "test" is defined as the average of two companion cylinders, or if only one cylinder is tested, the results of the single cylinder test. Additional analysis or testing, including taking cores and/or load tests may be required at the Contractor's expense when the strength of the concrete in the structure is considered potentially deficient.

b. Investigation of Low-Strength Compressive Test Results. When any strength test of standard-cured test cylinders falls below the specified strength requirement by more than 3.5 MPa or if tests of field-cured cylinders indicate deficiencies in protection and curing, steps shall be taken to assure that the load-carrying capacity of the structure is not jeopardized. When the strength of concrete in place is considered potentially deficient, cores shall be obtained and tested in accordance with ASTM C 42. At least three representative cores shall be taken from each member or area of concrete in place that is considered potentially deficient. The location of cores will be determined by the Contracting Officer to least impair the strength of the structure. Concrete in the area represented by the core testing will be considered adequate if the average strength of the cores is equal to at least 85 percent of the specified strength requirement and if no single core is less than 75 percent of the specified strength requirement. Non-destructive tests (tests other than test cylinders or cores) shall not be used as a basis for acceptance or rejection. The Contractor
shall perform the coring and repair the holes. Cores will be tested by the Government.

c. Load Tests. If the core tests are inconclusive or impractical to obtain or if structural analysis does not confirm the safety of the structure, load tests may be directed by the Contracting Officer in accordance with the requirements of ACI 318/318R. Concrete work evaluated by structural analysis or by results of a load test as being understrength shall be corrected in a manner satisfactory to the Contracting Officer. All investigations, testing, load tests, and correction of deficiencies shall be performed by and at the expense of the Contractor and must be approved by the Contracting Officer, except that if all concrete is found to be in compliance with the drawings and specifications, the cost of investigations, testing, and load tests will be at the expense of the Government.

d. Evaluation of Concrete Flexural Strength. Flexural strength specimens (beams) shall be fabricated by the Contractor and laboratory cured in accordance with ASTM C 31/C 31M and tested in accordance with ASTM C 78. The strength of the concrete will be considered satisfactory so long as the average of all sets of three consecutive test results equals or exceeds the specified flexural strength and no individual test result falls below the specified flexural strength by more than 350 kPa. A "test" is defined as the average of two companion beams. Additional analysis or testing, including taking cores and/or load tests may be required at the Contractor's expense when the strength of the concrete in the slab is considered potentially deficient.

1.4.2.2 Water-Cement Ratio

Maximum water-cement ratio (w/c) for normal weight concrete shall be as follows, unless otherwise indicated on the Drawings:

<table>
<thead>
<tr>
<th>WATER-CEMENT RATIO, BY WEIGHT</th>
<th>STRUCTURE OR PORTION OF STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>all Concrete</td>
</tr>
</tbody>
</table>

These w/c's may cause higher strengths than that required above for compressive or flexural strength. The maximum w/c required will be the equivalent w/c as determined by conversion from the weight ratio of water to cement plus pozzolan, silica fume, and ground granulated blast furnace slag (GGBF slag) by the weight equivalency method as described in ACI 211.1. In the case where silica fume or GGBF slag is used, the weight of the silica fume and GGBF slag shall be included in the equations of ACI 211.1 for the term P which is used to denote the weight of pozzolan.

1.4.3 Slump

Slump of the concrete, as delivered to the point of placement into the forms, shall be within the following limits. Slump shall be determined in accordance with ASTM C 143.

<table>
<thead>
<tr>
<th>Structural Element</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Walls, columns and beams 50 mm 100 mm
Foundation walls, substructure walls, footings, slabs 25 mm 75 mm
Piers 75 mm 100 mm
Any structural concrete approved for placement by pumping:
At pump 50 mm 150 mm
At discharge of line 25 mm 100 mm

When use of a plasticizing admixture conforming to ASTM C 1017 or when a Type F or G high range water reducing admixture conforming to ASTM C 494 is permitted to increase the slump of concrete, concrete shall have a slump of 50 to 100 mm before the admixture is added and a maximum slump of 200 mm at the point of delivery after the admixture is added. For troweled floors, slump of structural lightweight concrete with normal weight sand placed by pump shall not exceed 125 mm at the point of placement. For other slabs, slump of lightweight concrete shall not exceed 100 mm at point of placement.

1.4.4 Concrete Temperature

The temperature of the concrete as delivered shall not exceed 32 degrees C. When the ambient temperature during placing is 5 degrees C or less, or is expected to be at any time within 6 hours after placing, the temperature of the concrete as delivered shall be between 12 and 25 degrees C.

1.4.5 Size of Coarse Aggregate

The largest feasible nominal maximum size aggregate (NMSA) specified in paragraph AGGREGATES shall be used in each placement. However, nominal maximum size of aggregate shall not exceed any of the following: three-fourths of the minimum cover for reinforcing bars, three-fourths of the minimum clear spacing between reinforcing bars, one-fifth of the narrowest dimension between sides of forms, or one-third of the thickness of slabs or toppings.

1.4.6 Special Properties and Products

Concrete may contain admixtures other than air entraining agents, such as water reducers, superplasticizers, or set retarding agents to provide special properties to the concrete, if specified or approved. Any of these materials to be used on the project shall be used in the mix design studies.

1.4.7 Lightweight Aggregate Structural Concrete

Lightweight aggregate structural concrete shall conform to the requirements specified for normal weight concrete except as specified herein. Specified compressive strength shall be as indicated on the Drawings at 28 days, in accordance with ASTM C 496 as determined by test specimens that have been air dried at 50 percent relative humidity for the last 21 days. Lightweight aggregate structural concrete floor fill shall have a 28-day compressive strength of at least 17.3 MPa and an air-dry unit weight not exceeding 1850 kg/cubic meter.

1.4.8 Technical Service for Specialized Concrete
The services of a factory trained technical representative shall be obtained to oversee proportioning, batching, mixing, placing, consolidating, and finishing of specialized structural concrete. The technical representative shall be on the job full time until the Contracting Officer is satisfied that field controls indicate concrete of specified quality is furnished and that the Contractor's crews are capable of continued satisfactory work. The technical representative shall be available for consultation with, and advice to, Government forces.

1.5 MIXTURE PROPORTIONS

Concrete shall be composed of portland cement, other cementitious and pozzolanic materials as specified, aggregates, water and admixtures as specified. If concrete mix that is approved is different than mix at the project site the concrete shall be removed and corrected.

1.5.1 Proportioning Studies for Normal Weight Concrete

Trial design batches, mixture proportioning studies, and testing requirements for various classes and types of concrete specified shall be the responsibility of the Contractor. Except as specified for flexural strength concrete, mixture proportions shall be based on compressive strength as determined by test specimens fabricated in accordance with ASTM C 192/C 192M and tested in accordance with ASTM C 39. Samples of all materials used in mixture proportioning studies shall be representative of those proposed for use in the project and shall be accompanied by the manufacturer's or producer's test reports indicating compliance with these specifications. Trial mixtures having proportions, consistencies, and air content suitable for the work shall be made based on methodology described in ACI 211.1, using at least three different water-cement ratios for each type of mixture, which will produce a range of strength encompassing those required for each class and type of concrete required on the project. The maximum water-cement ratios required in subparagraph Water-Cement Ratio will be the equivalent water-cement ratio as determined by conversion from the weight ratio of water to cement plus pozzolan, silica fume, and ground granulated blast furnace slag (GGBF slag) by the weight equivalency method as described in ACI 211.1. In the case where silica fume or GGBF slag is used, the weight of the silica fume and GGBF slag shall be included in the equations in ACI 211.1 for the term P, which is used to denote the weight of pozzolan. If pozzolan is used in the concrete mixture, the minimum pozzolan content shall be 15 percent by weight of the total cementitious material, and the maximum shall be 35 percent. Laboratory trial mixtures shall be designed for maximum permitted slump and air content. Separate sets of trial mixture studies shall be made for each combination of cementitious materials and each combination of admixtures proposed for use. No combination of either shall be used until proven by such studies, except that, if approved in writing and otherwise permitted by these specifications, an accelerator or a retarder may be used without separate trial mixture study. Separate trial mixture studies shall also be made for concrete for any conveying or placing method proposed which requires special properties and for concrete to be placed in unusually difficult placing locations. The temperature of concrete in each trial batch shall be reported. For each water-cement ratio, at least three test cylinders for each test age shall be made and cured in accordance with ASTM C 192/C 192M. They shall be tested at 7 and 28 days in accordance with ASTM C 39. From these test results, a curve shall be plotted showing the relationship between water-cement ratio and strength for each set of trial mix studies.
In addition, a curve shall be plotted showing the relationship between 7 day and 28 day strengths. Each mixture shall be designed to promote easy and suitable concrete placement, consolidation and finishing, and to prevent segregation and excessive bleeding.

1.5.2 Proportioning Studies for Flexural Strength Concrete

Trial design batches, mixture proportioning studies, and testing requirements shall conform to the requirements specified in paragraph Proportioning Studies for Normal Weight Concrete, except that proportions shall be based on flexural strength as determined by test specimens (beams) fabricated in accordance with ASTM C 192/C 192M and tested in accordance with ASTM C 78. Procedures given in ACI 211.1 shall be modified as necessary to accommodate flexural strength.

1.5.3 Proportioning Studies for Lightweight Aggregate Structural Concrete

Trial design batches, mixture proportioning studies, and testing requirements shall conform to the requirements specified in paragraph Proportioning Studies for Normal Weight Concrete, except as follows. Trial mixtures having proportions, consistencies and air content suitable for the work shall be made based on methodology described in ACI 211.2, using at least three different cement contents. Trial mixes shall be proportioned to produce air dry unit weight and concrete strengths specified in paragraph GENERAL REQUIREMENTS. Trial mixtures shall be proportioned for maximum permitted slump and air content. Test specimens and testing shall be as specified for normal weight concrete except that 28-day compressive strength shall be determined from test cylinders that have been air dried at 50 percent relative humidity for the last 21 days. Air dry unit weight shall be determined in accordance with ASTM C 567 and shall be designed to be at least 32 kg per cubic meter less than the maximum specified air dry unit weight in paragraph GENERAL REQUIREMENTS. Curves shall be plotted using these results showing the relationship between cement factor and strength and air dry unit weight. Normal weight fine aggregate may be substituted for part or all of the lightweight fine aggregate, provided the concrete meets the strength and unit weight. A correlation shall also be developed showing the ratio between air dry unit weight and fresh concrete unit weight for each mix.

1.5.4 Average Compressive Strength Required for Mixtures

The mixture proportions selected during mixture design studies shall produce a required average compressive strength (f'cr) exceeding the specified compressive strength (f'c) by the amount indicated below. This required average compressive strength, f'cr, will not be a required acceptance criteria during concrete production. However, whenever the daily average compressive strength at 28 days drops below f'cr during concrete production, or daily average 7-day strengths drops below a strength correlated with the 28-day f'cr, the mixture shall be adjusted, as approved, to bring the daily average back up to f'cr. During production, the required f'cr shall be adjusted, as appropriate, based on the standard deviation being attained on the job.

1.5.4.1 Computations from Test Records

Where a concrete production facility has test records, a standard deviation shall be established in accordance with the applicable provisions of ACI
214.3R. Test records from which a standard deviation is calculated shall represent materials, quality control procedures, and conditions similar to those expected; shall represent concrete produced to meet a specified strength or strengths \(f'(c) \) within 7 MPa of that specified for proposed work; and shall consist of at least 30 consecutive tests. A strength test shall be the average of the strengths of two cylinders made from the same sample of concrete and tested at 28 days. Required average compressive strength \(f'cr \) used as the basis for selection of concrete proportions shall be the larger of the equations that follow using the standard deviation as determined above:

\[
f'cr = f'c + 1.34S \quad \text{where units are in MPa}
\]

\[
f'cr = f'c + 2.33S - 3.45 \quad \text{where units are in MPa}
\]

Where \(S \) = standard deviation

Where a concrete production facility does not have test records meeting the requirements above but does have a record based on 15 to 29 consecutive tests, a standard deviation shall be established as the product of the calculated standard deviation and a modification factor from the following table:

<table>
<thead>
<tr>
<th>NUMBER OF TESTS</th>
<th>MODIFICATION FACTOR FOR STANDARD DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.16</td>
</tr>
<tr>
<td>20</td>
<td>1.08</td>
</tr>
<tr>
<td>25</td>
<td>1.03</td>
</tr>
<tr>
<td>30 or more</td>
<td>1.00</td>
</tr>
</tbody>
</table>

1.5.4.2 Computations without Previous Test Records

When a concrete production facility does not have sufficient field strength test records for calculation of the standard deviation, the required average strength \(f'cr \) shall be determined as follows:

a. If the specified compressive strength \(f'c \) is less than 20 MPa, \(f'cr = f'c + 6.9 \text{ MPa} \)

b. If the specified compressive strength \(f'c \) is 20 to 35 MPa, \(f'cr = f'c + 8.3 \text{ MPa} \) \((f'cr = f'c + 1,200 \text{ psi}) \)

c. If the specified compressive strength \(f'c \) is over 35 MPa, \(f'cr = f'c + 9.7 \text{ MPa} \) \((f'cr = f'c + 1,400 \text{ psi}) \)

1.5.5 Average Flexural Strength Required for Mixtures

The mixture proportions selected during mixture design studies for flexural strength mixtures and the mixture used during concrete production shall be designed and adjusted during concrete production as approved, except that the overdesign for average flexural strength shall simply be 15 percent greater than the specified flexural strength at all times.

1.6 STORAGE OF MATERIALS
Cement and other cementitious materials shall be stored in weathertight buildings, bins, or silos which will exclude moisture and contaminants and keep each material completely separated. Aggregate stockpiles shall be arranged and used in a manner to avoid excessive segregation and to prevent contamination with other materials or with other sizes of aggregates. Aggregate shall not be stored directly on ground unless a sacrificial layer is left undisturbed. Reinforcing bars and accessories shall be stored above the ground on platforms, skids or other supports. Other materials shall be stored in such a manner as to avoid contamination and deterioration. Admixtures which have been in storage at the project site for longer than 6 months or which have been subjected to freezing shall not be used unless retested and proven to meet the specified requirements. Materials shall be capable of being accurately identified after bundles or containers are opened.

1.7 GOVERNMENT ASSURANCE INSPECTION AND TESTING

Day-to-day inspection and testing shall be the responsibility of the Contractor Quality Control (CQC) staff. However, representatives of the Contracting Officer can and will inspect construction as considered appropriate and will monitor operations of the Contractor's CQC staff. Government inspection or testing will not relieve the Contractor of any of his CQC responsibilities.

1.7.1 Materials

The Government will sample and test aggregates, cementitious materials, other materials, and concrete to determine compliance with the specifications as considered appropriate. The Contractor shall provide facilities and labor as may be necessary for procurement of representative test samples. Samples of aggregates will be obtained at the point of batching in accordance with ASTM D 75. Other materials will be sampled from storage at the jobsite or from other locations as considered appropriate. Samples may be placed in storage for later testing when appropriate.

1.7.2 Fresh Concrete

Fresh concrete will be sampled as delivered in accordance with ASTM C 172 and tested in accordance with these specifications, as considered necessary.

1.7.3 Hardened Concrete

Tests on hardened concrete will be performed by the Government when such tests are considered necessary.

1.7.4 Inspection

Concrete operations may be tested and inspected by the Government as the project progresses. Failure to detect defective work or material will not prevent rejection later when a defect is discovered nor will it obligate the Government for final acceptance.

PART 2 PRODUCTS

2.1 CEMENTITIOUS MATERIALS
Cementitious Materials shall be portland cement, portland-pozzolan cement, or portland cement in combination with pozzolan or silica fume and shall conform to appropriate specifications listed below. Use of cementitious materials in concrete which will have surfaces exposed in the completed structure shall be restricted so there is no change in color, source, or type of cementitious material.

2.1.1 Portland Cement

ASTM C 150, Type I with a maximum 15 percent amount of tricalcium aluminate, or Type II or Type V. White portland cement shall meet the above requirements except that it may be Type I, Type II or Type III. White Type III shall be used only in specific areas of the structure, when approved in writing.

2.1.2 High-Early-Strength Portland Cement

ASTM C 150, Type III with tricalcium aluminate limited to 5 percent. Type III cement shall be used only in isolated instances and only when approved in writing.

2.1.3 Pozzolan (Fly Ash)

ASTM C 618, Class C with the optional requirements for multiple factor, drying shrinkage, and uniformity from Table 2A of ASTM C 618. Requirement for maximum alkalies from Table 1A of ASTM C 618 shall apply. If pozzolan is used, it shall never be less than 15 percent nor more than 35 percent by weight of the total cementitious material.

2.1.4 Silica Fume

Silica fume shall conform to ASTM C 1240. Available alkalies shall conform to the optimal limit given in Table 2 of ASTM C 1240. Silica fume may be furnished as a dry, densified material or as a slurry. In accordance with paragraph Technical Service for Specialized Concrete, the Contractor shall provide at no cost to the Government the services of a manufacturer's technical representative experienced in mixing, proportioning, placement procedures, and curing of concrete containing silica fume.

2.2 AGGREGATES

Aggregates shall conform to the following.

2.2.1 Fine Aggregate

Fine aggregate shall conform to the quality and gradation requirements of ASTM C 33.

2.2.2 Coarse Aggregate

Coarse aggregate shall conform to ASTM C 33, Class 5S, size designation 5S.

2.2.3 Lightweight Aggregate

Lightweight fine and coarse aggregate shall conform to the quality and gradation requirements of ASTM C 330. Lightweight aggregate shall be prewetted in accordance with the Manufacturer's instructions unless
otherwise specified. For pumped concrete, prewetting shall be sufficient to ensure that slump loss through the pump line does not exceed 100 mm.

2.3 CHEMICAL ADMIXTURES

Chemical admixtures, when required or permitted, shall conform to the appropriate specification listed. Admixtures shall be furnished in liquid form and of suitable concentration for easy, accurate control of dispensing. Chemical admixtures shall only be allowed when approved in the Submittals and indicated in the Mix Design.

2.3.1 Air-Entraining Admixture

ASTM C 260 and shall consistently entrain the air content in the specified ranges under field conditions.

2.3.2 Accelerating Admixture

ASTM C 494, Type C or E, except that calcium chloride or admixtures containing calcium chloride shall not be used.

2.3.3 Water-Reducing or Retarding Admixture

ASTM C 494, Type A, B, or D, except that the 6-month and 1-year compressive and flexural strength tests are waived.

2.3.4 High-Range Water Reducer

ASTM C 494, Type F or G, except that the 6-month and 1-year strength requirements are waived. The admixture shall be used only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor’s Quality Control Plan and upon performance of separate mixture design studies.

2.3.5 Surface Retarder

COE CRD-C 94.

2.3.6 Expanding Admixture

Aluminum powder type expanding admixture conforming to ASTM C 937.

2.3.7 Other Chemical Admixtures

Chemical admixtures for use in producing flowing concrete shall comply with ASTM C 1017, Type I or II. These admixtures shall be used only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor’s Quality Control Plan and upon performance of separate mixture design studies.

2.4 CURING MATERIALS

2.4.1 Impervious-Sheet

Impervious-sheet materials shall conform to ASTM C 171, type optional, except, that polyethylene sheet shall not be used.
2.4.2 Membrane-Forming Compound

Membrane-Forming curing compound shall conform to ASTM C 309, Type 1-D or 2, except that only a styrene acrylate or chlorinated rubber compound meeting Class B requirements shall be used for surfaces that are to be painted or are to receive bituminous roofing, or waterproofing, or floors that are to receive adhesive applications of resilient flooring. The curing compound selected shall be compatible with any subsequent paint, roofing, waterproofing, or flooring specified. Nonpigmented compound shall contain a fugitive dye, and shall have the reflective requirements in ASTM C 309 waived.

2.4.3 Burlap and Cotton Mat

Burlap and cotton mat used for curing shall conform to AASHTO M 182.

2.5 WATER

Water for mixing and curing shall be fresh, clean, potable, and free of injurious amounts of oil, acid, salt, or alkali, except that non-potable water may be used if it meets the requirements of COE CRD-C 400.

2.6 NONSHRINK GROUT

Nonshrink grout shall conform to ASTM C 1107, Grade A, and shall be a commercial formulation suitable for the proposed application.

2.7 NONSLIP SURFACING MATERIAL

Nonslip surfacing material shall consist of 55 percent, minimum, aluminum oxide or silicon-dioxide abrasive ceramically bonded together to form a homogeneous material sufficiently porous to provide a good bond with portland cement paste; or factory-graded emery aggregate consisting of not less than 45 percent aluminum oxide and 25 percent ferric oxide. The aggregate shall be well graded from particles retained on the 0.6 mm (No. 30) sieve to particles passing the 2.36 mm (No. 8) sieve.

2.8 LATEX BONDING AGENT

Latex agents for bonding fresh to hardened concrete shall conform to ASTM C 1059.

2.9 EPOXY RESIN

Epoxy resins for use in repairs shall conform to ASTM C 881, Type V, Grade 2. Class as appropriate to the existing ambient and surface temperatures.

2.10 EMBEDDED ITEMS

Embedded items shall be of the size and type indicated or as needed for the application. Concrete inserts shall be galvanized steel and allow manufacturer’s components to be attached to the inserts for hanging or attaching of HVAC or plumbing components. Inserts for shelf angles and bolt hangers shall be of malleable iron or cast or wrought steel.

2.11 FLOOR HARDENER
Floor hardener shall be a colorless aqueous solution containing zinc silicofluoride, magnesium silicofluoride, or sodium silicofluoride. These silicofluorides can be used individually or in combination. Proprietary hardeners may be used if approved in writing by the Contracting Officer.

2.12 PERIMETER INSULATION

Perimeter insulation shall be polystyrene conforming to ASTM C 578, Type II; polyurethane conforming to ASTM C 591, Type II; or cellular glass conforming to ASTM C 552, Type I or IV.

2.13 VAPOR BARRIER

Vapor barrier shall be polyethylene sheeting with a minimum thickness of 0.15 mm or other equivalent material having a vapor permeance rating not exceeding 30 nanograms per Pascal per second per square meter as determined in accordance with ASTM E 96.

2.14 JOINT MATERIALS

2.14.1 Joint Fillers, Sealers, and Waterstops

Materials for waterstops shall be in accordance with Section 03150 EXPANSION JOINTS, CONTRACTION JOINTS, AND WATERSTOPS. Materials for and sealing of joints shall conform to the requirements of Section 07900 JOINT SEALING.

2.14.2 Contraction Joints in Slabs

Sawable type contraction joint inserts shall conform to COE CRD-C 540. Nonsawable joint inserts shall have sufficient stiffness to permit placement in plastic concrete without undue deviation from a straight line and shall conform to the physical requirements of COE CRD-C 540, with the exception of Section 3.4 "Resistance to Sawing". Plastic inserts shall be polyvinyl chloride conforming to the materials requirements of COE CRD-C 572.

2.15 SYNTHETIC FIBERS FOR REINFORCING

Synthetic fibers shall conform to ASTM C 1116, Type III, Synthetic Fiber, and as follows. Fibers shall be 100 percent virgin polypropylene fibrillated fibers containing no reprocessed olefin materials. Fibers shall have a specific gravity of 0.9, a minimum tensile strength of 480 MPa graded per manufacturer, and specifically manufactured to an optimum gradation for use as concrete secondary reinforcement.

PART 3 EXECUTION

3.1 PREPARATION FOR PLACING

Before commencing concrete placement, the following shall be performed. Surfaces to receive concrete shall be clean and free from frost, ice, mud, and water. Forms shall be in place, cleaned, coated, and adequately supported, in accordance with Section 03100 STRUCTURAL CONCRETE FORMWORK. Reinforcing steel shall be in place, cleaned, tied, and adequately supported, in accordance with Section 03200 CONCRETE REINFORCEMENT. Transporting and conveying equipment shall be in-place, ready for use, clean, and free of hardened concrete and foreign material. Equipment for consolidating concrete shall be at the placing site and in proper working
order. Equipment and material for curing and for protecting concrete from weather or mechanical damage shall be at the placing site, in proper working condition and in sufficient amount for the entire placement. When hot, windy conditions during concreting appear probable, equipment and material shall be at the placing site to provide windbreaks, shading, fogging, or other action to prevent plastic shrinkage cracking or other damaging drying of the concrete.

3.1.1 Foundations

3.1.1.1 Concrete on Earth Foundations

Earth (subgrade, base, or subbase courses) surfaces upon which concrete is to be placed shall be clean, damp, and free from debris, frost, ice, and standing or running water. Prior to placement of concrete, the foundation shall be well drained and shall be satisfactorily graded and uniformly compacted.

3.1.1.2 Preparation of Rock

Rock surfaces upon which concrete is to be placed shall be free from oil, standing or running water, ice, mud, drummy rock, coating, debris, and loose, semidetached or unsound fragments. Joints in rock shall be cleaned to a satisfactory depth, as determined by the Contracting Officer, and to firm rock on the sides. Immediately before the concrete is placed, rock surfaces shall be cleaned thoroughly by the use of air-water jets or sandblasting as specified below for Previously Placed Concrete. Rock surfaces shall be kept continuously moist for at least 24 hours immediately prior to placing concrete thereon. All horizontal and approximately horizontal surfaces shall be covered, immediately before the concrete is placed, with a layer of mortar proportioned similar to that in the concrete mixture. Concrete shall be placed before the mortar stiffens.

3.1.2 Previously Placed Concrete

Concrete surfaces to which additional concrete is to be bonded shall be prepared for receiving the next horizontal lift by cleaning the construction joint surface with either air-water cutting, sandblasting, high-pressure water jet, or other approved method. Concrete at the side of vertical construction joints shall be prepared as approved by the Contracting Officer. Air-water cutting shall not be used on formed surfaces or surfaces congested with reinforcing steel. Regardless of the method used, the resulting surfaces shall be free from all laitance and inferior concrete so that clean surfaces of well bonded coarse aggregate are exposed and make up at least 10-percent of the surface area, distributed uniformly throughout the surface. The edges of the coarse aggregate shall not be undercut. The surface of horizontal construction joints shall be kept continuously wet for the first 12 hours during the 24-hour period prior to placing fresh concrete. The surface shall be washed completely clean as the last operation prior to placing the next lift. For heavy duty floors and two-course floors a thin coat of neat cement grout of about the consistency of thick cream shall be thoroughly scrubbed into the existing surface immediately ahead of the topping placing. The grout shall be a 1:1 mixture of portland cement and sand passing the 2.36 mm sieve. The topping concrete shall be deposited before the grout coat has had time to stiffen.
3.1.2.1 Air-Water Cutting

Air-water cutting of a fresh concrete surface shall be performed at the proper time and only on horizontal construction joints. The air pressure used in the jet shall be 700 kPa plus or minus, 70 kPa, and the water pressure shall be just sufficient to bring the water into effective influence of the air pressure. When approved by the Contracting Officer, a surface retarder complying with the requirements of COE CRD-C 94 may be applied to the surface of the lift in order to prolong the period of time during which air-water cutting is effective. After cutting, the surface shall be washed and rinsed as long as there is any trace of cloudiness of the wash water. Where necessary to remove accumulated laitance, coatings, stains, debris, and other foreign material, high-pressure waterjet or sandblasting shall be used as the last operation before placing the next lift.

3.1.2.2 High-Pressure Water Jet

A stream of water under a pressure of not less than 20 MPa shall be used for cutting and cleaning. Its use shall be delayed until the concrete is sufficiently hard so that only the surface skin or mortar is removed and there is no undercutting of coarse-aggregate particles. If the waterjet is incapable of a satisfactory cleaning, the surface shall be cleaned by sandblasting.

3.1.2.3 Wet Sandblasting

Wet sandblasting shall be used after the concrete has reached sufficient strength to prevent undercutting of the coarse aggregate particles. After wet sandblasting, the surface of the concrete shall then be washed thoroughly to remove all loose materials.

3.1.2.4 Waste Disposal

The method used in disposing of waste water employed in cutting, washing, and rinsing of concrete surfaces shall be such that the waste water does not stain, discolor, or affect exposed surfaces of the structures, or damage the environment of the project area. The method of disposal shall be subject to approval.

3.1.2.5 Preparation of Previously Placed Concrete

Concrete surfaces to which other concrete is to be bonded shall be abraded in an approved manner that will expose sound aggregate uniformly without damaging the concrete. Laitance and loose particles shall be removed. Surfaces shall be thoroughly washed and shall be moist but without free water when concrete is placed.

3.1.3 Vapor Barrier

Vapor barrier shall be provided beneath the interior on-grade concrete floor slabs. The greatest widths and lengths practicable shall be used to eliminate joints wherever possible. Joints shall be lapped a minimum of 300 mm. Torn, punctured, or damaged vapor barrier material shall be removed and new vapor barrier shall be provided prior to placing concrete. For minor repairs, patches may be made using laps of at least 300 mm. Lapped joints shall be sealed and edges patched with pressure-sensitive adhesive or tape.
not less than 50 mm wide and compatible with the membrane. Vapor barrier shall be placed directly on underlying subgrade, base course, or capillary water barrier, unless it consists of crushed material or large granular material which could puncture the vapor barrier. In this case, the surface shall be choked with a light layer of sand, as approved, before placing the vapor barrier. A 50 mm layer of compacted, clean concrete sand (fine aggregate) shall be placed on top of the vapor barrier before placing concrete. Concrete placement shall be controlled so as to prevent damage to the vapor barrier, or any covering sand.

3.1.4 Perimeter Insulation

Perimeter insulation shall be installed at locations indicated. Adhesive shall be used where insulation is applied to the interior surface of foundation walls and may be used for exterior application.

3.1.5 Embedded Items

Before placement of concrete, care shall be taken to determine that all embedded items are firmly and securely fastened in place as indicated on the drawings, or required. Conduit and other embedded items shall be clean and free of oil and other foreign matter such as loose coatings or rust, paint, and scale. The embedding of wood in concrete will be permitted only when specifically authorized or directed. Voids in sleeves, inserts, and anchor slots shall be filled temporarily with readily removable materials to prevent the entry of concrete into voids. Welding shall not be performed on embedded metals within 300 mm of the surface of the concrete. Tack welding shall not be performed on or to embedded items.

3.2 CONCRETE PRODUCTION, SMALL PROJECTS

Batch-type equipment shall be used for producing concrete. Ready-mixed concrete shall be batched, mixed, and transported in accordance with ASTM C 94, except as otherwise specified. Truck mixers, agitators, and nonagitating transporting units shall comply with NRMCA TMMB 100. Ready-mix plant equipment and facilities shall be certified in accordance with NRMCA QC 3. Approved batch tickets shall be furnished for each load of ready-mixed concrete. Site-mixed concrete shall be produced in accordance with ACI 301, and plant shall conform to NRMCA CPMB 100. In lieu of batch-type equipment, concrete may be produced by volumetric batching and continuous mixing, which shall conform to ASTM C 685.

3.3 LIGHTWEIGHT AGGREGATE CONCRETE

In addition to the requirements specified for normal weight concrete, lightweight aggregate concrete shall conform to the following. The batching and mixing cycle shall be as directed based on written recommendations from the aggregate supplier which the Contractor shall furnish. Unless otherwise directed, the mixer shall be charged with approximately 2/3 of the total mixing water and all of the aggregate. This shall be mixed for at least 1-1/2 minutes in a stationary mixer or 15 revolutions at mixing speed in a truck mixer. The remaining ingredients shall then be added and mixing continued as specified for normal weight concrete. Lightweight aggregate concrete shall not be vibrated to the extent that large particles of aggregate float to the surface. During finishing, lightweight aggregate concrete shall not be worked to the extent that mortar is driven down and lightweight coarse aggregate appears at the surface. Lightweight aggregate
concrete to be pumped shall have a cement content of at least 335 kg per cubic meter.

3.4 FIBER REINFORCED CONCRETE

Fiber reinforced concrete shall conform to ASTM C 1116 and as follows, using the fibers specified in PART 2. A minimum of 0.9 kg of fibers per cubic meter of concrete shall be used. Fibers shall be added at the batch plant. The services of a qualified technical representative shall be provided to instruct the concrete supplier in proper batching and mixing of materials to be provided. Fiber reinforcing shall be at stair treads and landings.

3.5 TRANSPORTING CONCRETE TO PROJECT SITE

Concrete shall be transported to the placing site in truck mixers, agitators, nonagitating transporting equipment conforming to NRMCA TMMB 100 or by approved pumping equipment. Nonagitating equipment, other than pumps, shall not be used for transporting lightweight aggregate concrete.

3.6 CONVEYING CONCRETE ON SITE

Concrete shall be conveyed from mixer or transporting unit to forms as rapidly as possible and within the time interval specified by methods which will prevent segregation or loss of ingredients using following equipment. Conveying equipment shall be cleaned before each placement.

3.6.1 Buckets

The interior hopper slope shall be not less than 58 degrees from the horizontal, the minimum dimension of the clear gate opening shall be at least 5 times the nominal maximum-size aggregate, and the area of the gate opening shall not be less than 0.2 square meters. The maximum dimension of the gate opening shall not be greater than twice the minimum dimension. The bucket gates shall be essentially grout tight when closed and may be manually, pneumatically, or hydraulically operated except that buckets larger than 1.5 cubic meters shall not be manually operated. The design of the bucket shall provide means for positive regulation of the amount and rate of deposit of concrete in each dumping position.

3.6.2 Transfer Hoppers

Concrete may be charged into nonagitating hoppers for transfer to other conveying devices. Transfer hoppers shall be capable of receiving concrete directly from delivery vehicles and shall have conical-shaped discharge features. The transfer hopper shall be equipped with a hydraulically operated gate and with a means of external vibration to effect complete discharge. Concrete shall not be held in nonagitating transfer hoppers more than 30 minutes.

3.6.3 Trucks

Truck mixers operating at agitating speed or truck agitators used for transporting plant-mixed concrete shall conform to the requirements of ASTM C 94. Nonagitating equipment shall be used only for transporting plant-mixed concrete over a smooth road and when the hauling time is less than 15 minutes. Bodies of nonagitating equipment shall be smooth, watertight, metal containers specifically designed to transport concrete, shaped with
rounded corners to minimize segregation, and equipped with gates that will permit positive control of the discharge of the concrete.

3.6.4 Chutes

When concrete can be placed directly from a truck mixer, agitator, or nonagitating equipment, the chutes normally attached to this equipment by the manufacturer may be used. A discharge deflector shall be used when required by the Contracting Officer. Separate chutes and other similar equipment will not be permitted for conveying concrete.

3.6.5 Belt Conveyors

Belt conveyors shall be designed and operated to assure a uniform flow of concrete from mixer to final place of deposit without segregation of ingredients or loss of mortar and shall be provided with positive means, such as discharge baffle or hopper, for preventing segregation of the concrete at the transfer points and the point of placing. Belt conveyors shall be constructed such that the idler spacing shall not exceed 900 mm. The belt speed shall be a minimum of 90 meters per minute and a maximum of 225 meters per minute. If concrete is to be placed through installed horizontal or sloping reinforcing bars, the conveyor shall discharge concrete into a pipe or elephant truck that is long enough to extend through the reinforcing bars.

3.6.6 Concrete Pumps

Concrete may be conveyed by positive displacement pump when approved. The pumping equipment shall be piston or squeeze pressure type; pneumatic placing equipment shall not be used. The pipeline shall be rigid steel pipe or heavy-duty flexible hose. The inside diameter of the pipe shall be at least 3 times the nominal maximum-size coarse aggregate in the concrete mixture to be pumped but not less than 100 mm. Aluminum pipe shall not be used.

3.7 PLACING CONCRETE

Mixed concrete shall be discharged within 1-1/2 hours or before the mixer drum has revolved 300 revolutions, whichever comes first after the introduction of the mixing water to the cement and aggregates. When the concrete temperature exceeds 30 degrees C, the time shall be reduced to 45 minutes. Concrete shall be placed within 15 minutes after it has been discharged from the transporting unit. Concrete shall be handled from mixer or transporting unit to forms in a continuous manner until the approved unit of operation is completed. Adequate scaffolding, ramps and walkways shall be provided so that personnel and equipment are not supported by in-place reinforcement. Placing will not be permitted when the sun, heat, wind, or limitations of facilities furnished by the Contractor prevent proper consolidation, finishing and curing. Sufficient placing capacity shall be provided so that concrete can be kept free of cold joints.

3.7.1 Depositing Concrete

Concrete shall be deposited as close as possible to its final position in the forms, and there shall be no vertical drop greater than 1.5 meters except where suitable equipment is provided to prevent segregation and where specifically authorized. Depositing of the concrete shall be so regulated
that it will be effectively consolidated in horizontal layers not more than 300 mm thick, except that all slabs shall be placed in a single layer. Concrete to receive other construction shall be screeded to the proper level. Concrete shall be deposited continuously in one layer or in layers so that fresh concrete is deposited on in-place concrete that is still plastic. Fresh concrete shall not be deposited on concrete that has hardened sufficiently to cause formation of seams or planes of weakness within the section. Concrete that has surface dried, partially hardened, or contains foreign material shall not be used. When temporary spreaders are used in the forms, the spreaders shall be removed as their service becomes unnecessary. Concrete shall not be placed in slabs over columns and walls until concrete in columns and walls has been in-place at least two hours or until the concrete begins to lose its plasticity. Concrete for beams, girders, brackets, column capitals, haunches, and drop panels shall be placed at the same time as concrete for adjoining slabs.

3.7.2 Consolidation

Immediately after placing, each layer of concrete shall be consolidated by internal vibrators, except for slabs 100 mm thick or less. The vibrators shall at all times be adequate in effectiveness and number to properly consolidate the concrete; a spare vibrator shall be kept at the jobsite during all concrete placing operations. The vibrators shall have a frequency of not less than 10,000 vibrations per minute, an amplitude of at least 0.6 mm, and the head diameter shall be appropriate for the structural member and the concrete mixture being placed. Vibrators shall be inserted vertically at uniform spacing over the area of placement. The distance between insertions shall be approximately 1-1/2 times the radius of action of the vibrator so that the area being vibrated will overlap the adjacent just-vibrated area by a reasonable amount. The vibrator shall penetrate rapidly to the bottom of the layer and at least 150 mm into the preceding layer if there is such. Vibrator shall be held stationary until the concrete is consolidated and then vertically withdrawn slowly while operating. Form vibrators shall not be used unless specifically approved and unless forms are constructed to withstand their use. Vibrators shall not be used to move concrete within the forms. Slabs 100 mm and less in thickness shall be consolidated by properly designed vibrating screeds or other approved technique. Excessive vibration of lightweight concrete resulting in segregation or flotation of coarse aggregate shall be prevented. Frequency and amplitude of vibrators shall be determined in accordance with COE CRD-C 521. Grate tampers ("jitterbugs") shall not be used.

3.7.3 Cold Weather Requirements

Special protection measures, approved by the Contracting Officer, shall be used if freezing temperatures are anticipated before the expiration of the specified curing period. The ambient temperature of the air where concrete is to be placed and the temperature of surfaces to receive concrete shall be not less than 5 degrees C. The temperature of the concrete when placed shall be not less than 10 degrees C nor more than 25 degrees C. Heating of the mixing water or aggregates will be required to regulate the concrete placing temperature. Materials entering the mixer shall be free from ice, snow, or frozen lumps. Salt, chemicals or other materials shall not be incorporated in the concrete to prevent freezing. Upon written approval, an accelerating admixture conforming to ASTM C 494, Type C or E may be used, provided it contains no calcium chloride. Calcium chloride shall not be used.
3.7.4 Hot Weather Requirements

When the ambient temperature during concrete placing is expected to exceed 30 degrees C, the concrete shall be placed and finished with procedures previously submitted and as specified herein. The concrete temperature at time of delivery to the forms shall not exceed the temperature shown in the table below when measured in accordance with ASTM C 1064/C 1064M. Cooling of the mixing water or aggregates or placing concrete in the cooler part of the day may be required to obtain an adequate placing temperature. A retarder may be used, as approved, to facilitate placing and finishing. Steel forms and reinforcements shall be cooled as approved prior to concrete placement when steel temperatures are greater than 49 degrees C. Conveying and placing equipment shall be cooled if necessary to maintain proper concrete-placing temperature.

Less than 40	27 C
40-60	30 C
Greater than 60	33 C

3.7.5 Prevention of Plastic Shrinkage Cracking

During hot weather with low humidity, and particularly with appreciable wind, as well as interior placements when space heaters produce low humidity, the Contractor shall be alert to the tendency for plastic shrinkage cracks to develop and shall institute measures to prevent this. Particular care shall be taken if plastic shrinkage cracking is potentially imminent and especially if it has developed during a previous placement. Periods of high potential for plastic shrinkage cracking can be anticipated by use of Fig. 2.1.5 of ACI 305R. In addition the concrete placement shall be further protected by erecting shades and windbreaks and by applying fog sprays of water, sprinkling, ponding or wet covering. Plastic shrinkage cracks that occur shall be filled by injection of epoxy resin as directed, after the concrete hardens. Plastic shrinkage cracks shall never be troweled over or filled with slurry.

3.7.6 Placing Concrete in Congested Areas

Special care shall be used to ensure complete filling of the forms, elimination of all voids, and complete consolidation of the concrete when placing concrete in areas congested with reinforcing bars, embedded items, waterstops and other tight spacing. An appropriate concrete mixture shall be used, and the nominal maximum size of aggregate (NMSA) shall meet the specified criteria when evaluated for the congested area. Vibrators with heads of a size appropriate for the clearances available shall be used, and the consolidation operation shall be closely supervised to ensure complete and thorough consolidation at all points. Where necessary, splices of reinforcing bars shall be alternated to reduce congestion. Where two mats of closely spaced reinforcing are required, the bars in each mat shall be placed in matching alignment to reduce congestion. Reinforcing bars may be temporarily crowded to one side during concrete placement provided they are returned to exact required location before concrete placement and consolidation are completed.

3.7.7 Placing Flowable Concrete

If a plasticizing admixture conforming to ASTM C 1017 is used or if a Type F or G high range water reducing admixture is permitted to increase the slump,
the concrete shall meet all requirements of paragraph GENERAL REQUIREMENTS in PART 1. Extreme care shall be used in conveying and placing the concrete to avoid segregation. Consolidation and finishing shall meet all requirements of paragraphs Placing Concrete, Finishing Formed Surfaces, and Finishing Unformed Surfaces. No relaxation of requirements to accommodate flowable concrete will be permitted.

3.8 JOINTS

Joints shall be located and constructed as indicated or approved. Joints not indicated on the drawings shall be located and constructed to minimize the impact on the strength of the structure. In general, such joints shall be located near the middle of the spans of supported slabs, beams, and girders unless a beam intersects a girder at this point, in which case the joint in the girder shall be offset a distance equal to twice the width of the beam. Joints in walls and columns shall be at the underside of floors, slabs, beams, or girders and at the tops of footings or floor slabs, unless otherwise approved. Joints shall be perpendicular to the main reinforcement. All reinforcement shall be continued across joints; except that reinforcement or other fixed metal items shall not be continuous through expansion joints, or through construction or contraction joints in slabs on grade. Reinforcement shall be 50 mm clear from each joint. Except where otherwise indicated, construction joints between interior slabs on grade and vertical surfaces shall consist of 1.5 kg per square meter asphalt-saturated felt, extending for the full depth of the slab. The perimeters of the slabs shall be free of fins, rough edges, spalling, or other unsightly appearance. Reservoir for sealant for construction and contraction joints in slabs shall be formed to the dimensions shown on the drawings by removing snap-out joint-forming inserts, by sawing sawable inserts, or by sawing to widen the top portion of sawed joints. Joints to be sealed shall be cleaned and sealed as indicated and in accordance with Section 07900 JOINT SEALING.

3.8.1 Construction Joints

Concrete shall be placed continuously so that each unit is monolithic in construction. Fresh concrete shall not be placed against adjacent hardened concrete until it is at least 24 hours old. Construction joints shall be located as indicated or approved. Where concrete work is interrupted by weather, end of work shift or other similar type of delay, location and type of construction joint shall be subject to approval of the Contracting Officer. Unless otherwise indicated and except for slabs on grade, reinforcing steel shall extend through construction joints. Construction joints in slabs on grade shall be keyed or doweled as shown. Concrete columns, walls, or piers shall be in place at least 2 hours, or until the concrete begins to lose its plasticity, before placing concrete for beams, girders, or slabs thereon. In walls having door or window openings, lifts shall terminate at the top and bottom of the opening. Other lifts shall terminate at such levels as to conform to structural requirements or architectural details. Where horizontal construction joints in walls or columns are required, a strip of 25 mm (1 inch) square-edge lumber, bevelled and oiled to facilitate removal, shall be tacked to the inside of the forms at the construction joint. Concrete shall be placed to a point 25 mm above the underside of the strip. The strip shall be removed 1 hour after the concrete has been placed, and any irregularities in the joint line shall be leveled off with a wood float, and all laitance shall be removed. Prior to
placing additional concrete, horizontal construction joints shall be
prepared as specified in paragraph Previously Placed Concrete.

3.8.2 Contraction Joints in Slabs on Grade

Contraction joints shall be located and detailed as shown on the drawings.
Contraction Joints shall be produced by forming a weakened plane in the
concrete slab by sawing a continuous slot with a concrete saw. Regardless
of method used to produce the weakened plane, it shall be 1/4 the depth of
the slab thickness and between 3 and 5 mm wide. For saw-cut joints, cutting
shall be timed properly with the set of the concrete. Cutting shall be
started as soon as the concrete has hardened sufficiently to prevent
ravelling of the edges of the saw cut. Cutting shall be completed before
shrinkage stresses become sufficient to produce cracking. Reservoir for
joint sealant shall be formed as previously specified.

3.8.3 Expansion Joints

Installation of expansion joints and sealing of these joints shall conform
to the requirements of Section 03150 EXPANSION JOINTS, CONTRACTION JOINTS,
AND WATERSTOPS and Section 07900 JOINT SEALING.

3.8.4 Waterstops

Waterstops shall be installed in conformance with the locations and details
shown on the drawings using materials and procedures specified in Section
03150 EXPANSION JOINTS, CONTRACTION JOINTS, AND WATERSTOPS.

3.8.5 Dowels and Tie Bars

Dowels and tie bars shall be installed at the locations shown on the
drawings and to the details shown, using materials and procedures specified
in Section 03200 CONCRETE REINFORCEMENT and herein. Conventional smooth
"paving" dowels shall be installed in slabs using approved methods to hold
the dowel in place during concreting within a maximum alignment tolerance of
1 mm in 100 mm. "Structural" type deformed bar dowels, or tie bars, shall
be installed to meet the specified tolerances. Care shall be taken during
placing adjacent to and around dowels and tie bars to ensure there is no
displacement of the dowel or tie bar and that the concrete completely embeds
the dowel or tie bar and is thoroughly consolidated.

3.9 FINISHING FORMED SURFACES

Forms, form materials, and form construction are specified in Section 03100
STRUCTURAL CONCRETE FORMWORK. Finishing of formed surfaces shall be as
specified herein. Unless another type of architectural or special finish is
specified, surfaces shall be left with the texture imparted by the forms
except that defective surfaces shall be repaired. Unless painting of
surfaces is required, uniform color of the concrete shall be maintained by
use of only one mixture without changes in materials or proportions for any
structure or portion of structure that requires a Class A or B finish.
Except for major defects, as defined herein after, surface defects shall be
repaired as specified herein within 24 hours after forms are removed.
Repairs of the so-called "plaster-type" will not be permitted in any
location. Tolerances of formed surfaces shall conform to the requirements
of ACI 117/117R. These tolerances apply to the finished concrete surface,
not to the forms themselves; forms shall be set true to line and grade.
Form tie holes requiring repair and other defects whose depth is at least as great as their surface diameter shall be repaired as specified in paragraph Damp-Pack Mortar Repair. Defects whose surface diameter is greater than their depth shall be repaired as specified in paragraph Repair of Major Defects. Repairs shall be finished flush with adjacent surfaces and with the same surface texture. The cement used for all repairs shall be a blend of job cement with white cement proportioned so that the final color after curing and aging will be the same as the adjacent concrete. Concrete with excessive honeycomb, or other defects which affect the strength of the member, will be rejected. Repairs shall be demonstrated to be acceptable and free from cracks or loose or drummy areas at the completion of the contract and, for Class A and B Finishes, shall be inconspicuous. Repairs not meeting these requirements will be rejected and shall be replaced.

3.9.1 Class A Finish and Class B Finish

Class A finish is required in the following areas, WST rooms and the CPT Pit, and all other exposed concrete in finished spaces. Fins, ravelings, and loose material shall be removed, all surface defects over 12 mm in diameter or more than 12 mm deep, shall be repaired and, except as otherwise indicated or as specified in Section 03100 STRUCTURAL CONCRETE FORMWORK, holes left by removal of form ties shall be reamed and filled. Defects more than 12 mm in diameter shall be cut back to sound concrete, but in all cases at least 25 mm deep. The Contractor shall prepare a sample panel for approval (as specified in PART 1) before commencing repair, showing that the surface texture and color match will be attained. Metal tools shall not be used to finish repairs in Class A surfaces.

3.9.2 Class C and Class D Finish

Class C finish is required where indicated on the drawings. Class D finish is required where indicated on the drawings. Fins, ravelings, and loose material shall be removed, and, except as otherwise indicated or as specified in Section 03100 STRUCTURAL CONCRETE FORMWORK, holes left by removal of form ties shall be reamed and filled. Honeycomb and other defects more than 12 mm deep or more than 50 mm in diameter shall be repaired. Defects more than 50 mm in diameter shall be cut back to sound concrete, but in all cases at least 25 mm deep.

3.9.3 Architectural and Special Finishes

Architectural concrete finishes are specified in Section 03330 CAST-IN-PLACE ARCHITECTURAL CONCRETE. Special finishes shall conform to the requirements specified herein.

3.9.3.1 Smooth Finish

After other concrete construction is complete in each overall separate contiguous area of the structure, smooth finish shall be applied to all areas. A mortar mix consisting of one part portland cement and two parts well-graded sand passing a 0.6 mm sieve, with water added to give the consistency of thick paint, shall be used. Where the finished surface will not receive other applied surface, white cement shall be used to replace part of the job cement to produce an approved color, which shall be uniform throughout the surfaces of the structure. After the surface has been thoroughly wetted and allowed to approach surface dryness, the mortar shall be vigorously applied to the area by clean burlap pads or by cork or wood-
floating, to completely fill all surface voids. Excess grout shall be scrambled off with a trowel. As soon as it can be accomplished without pulling the mortar from the voids, the area shall be rubbed with burlap pads having on their surface the same sand-cement mix specified above but without any mixing water, until all of the visible grout film is removed. The burlap pads used for this operation shall be stretched tightly around a board to prevent dishing the mortar in the voids. The finish of any area shall be completed in the same day, and the limits of a finished area shall be made at natural breaks in the surface. The surface shall be continuously moist cured for 48 hours commencing immediately after finishing operations in each area. The temperature of the air adjacent to the surface shall be not less than 10 degrees C for 24 hours prior to, and 48 hours after, the application. In hot, dry weather the smooth finish shall be applied in shaded areas or at night, and shall never be applied when there is significant hot, dry wind.

3.10 REPAIRS

3.10.1 Damp-Pack Mortar Repair

Form tie holes requiring repair and other defects whose depth is at least as great as their surface diameter but not over 100 mm shall be repaired by the damp-pack mortar method. Form tie holes shall be reamed and other similar defects shall be cut out to sound concrete. The void shall then be thoroughly cleaned, thoroughly wetted, brush-coated with a thin coat of neat cement grout and filled with mortar. Mortar shall be a stiff mix of 1 part portland cement to 2 parts fine aggregate passing the 1.18 mm sieve, and minimum amount of water. Only sufficient water shall be used to produce a mortar which, when used, will stick together on being molded into a ball by a slight pressure of the hands and will not exude water but will leave the hands damp. Mortar shall be mixed and allowed to stand for 30 to 45 minutes before use with remixing performed immediately prior to use. Mortar shall be thoroughly tamped in place in thin layers using a hammer and hardwood block. Holes passing entirely through walls shall be completely filled from the inside face by forcing mortar through to the outside face. All holes shall be packed full. Damp-pack repairs shall be moist cured for at least 48 hours.

3.10.2 Repair of Major Defects

Major defects will be considered to be those more than 12 mm deep or, for Class A and B finishes, more than 12 mm in diameter and, for Class C and D finishes, more than 50 mm in diameter. Also included are any defects of any kind whose depth is over 100 mm or whose surface diameter is greater than their depth. Major defects shall be repaired as specified below.

3.10.2.1 Surface Application of Mortar Repair

Defective concrete shall be removed, and removal shall extend into completely sound concrete. Approved equipment and procedures which will not cause cracking or microcracking of the sound concrete shall be used. If reinforcement is encountered, concrete shall be removed so as to expose the reinforcement for at least 50 mm on all sides. All such defective areas greater than 7800 square mm shall be outlined by saw cuts at least 25 mm deep. Defective areas less than 7800 square mm shall be outlined by a 25 mm deep cut with a core drill in lieu of sawing. All saw cuts shall be straight lines in a rectangular pattern in line with the formwork panels.
After concrete removal, the surface shall be thoroughly cleaned by high pressure washing to remove all loose material. Surfaces shall be kept continually saturated for the first 12 of the 24 hours immediately before placing mortar and shall be damp but not wet at the time of commencing mortar placement. The Contractor, at his option, may use either hand-placed mortar or mortar placed with a mortar gun. If hand-placed mortar is used, the edges of the cut shall be perpendicular to the surface of the concrete. The prepared area shall be brush-coated with a thin coat of neat cement grout. The repair shall then be made using a stiff mortar, preshrunk by allowing the mixed mortar to stand for 30 to 45 minutes and then remixed, thoroughly tamped into place in thin layers. If hand-placed mortar is used, the Contractor shall test each repair area for drumminess by firm tapping with a hammer and shall inspect for cracks, both in the presence of the Contracting Officer's representative, immediately before completion of the contract, and shall replace any showing drumminess or cracking. If mortar placed with a mortar gun is used, the gun shall be a small compressed air-operated gun to which the mortar is slowly hand-fed and which applies the mortar to the surface as a high-pressure stream, as approved. Repairs made using shotcrete equipment will not be accepted. The mortar used shall be the same mortar as specified for damp-pack mortar repair. If gun-placed mortar is used, the edges of the cut shall be beveled toward the center at a slope of 1:1. All surface applied mortar repairs shall be continuously moist cured for at least 7 days. Moist curing shall consist of several layers of saturated burlap applied to the surface immediately after placement is complete and covered with polyethylene sheeting, all held closely in place by a sheet of plywood or similar material rigidly braced against it. Burlap shall be kept continually wet.

3.10.2.2 Repair of Deep and Large Defects

Deep and large defects will be those that are more than 150 mm (6 inches) deep and also have an average diameter at the surface more than 450 mm (18 inches) or that are otherwise so identified by the Project Office. Such defects shall be repaired as specified herein or directed, except that defects which affect the strength of the structure shall not be repaired and that portion of the structure shall be completely removed and replaced. Deep and large defects shall be repaired by procedures approved in advance including forming and placing special concrete using applied pressure during hardening. Preparation of the repair area shall be as specified for surface application of mortar. In addition, the top edge (surface) of the repair area shall be sloped at approximately 20 degrees from the horizontal, upward toward the side from which concrete will be placed. The special concrete shall be a concrete mixture with low water content and low slump, and shall be allowed to age 30 to 60 minutes before use. Concrete containing a specified expanding admixture may be used in lieu of the above mixture; the paste portion of such concrete mixture shall be designed to have an expansion between 2.0 and 4.0 percent when tested in accordance with ASTM C 940. A full width "chimney" shall be provided at the top of the form on the placing side to ensure filling to the top of the opening. A pressure cap shall be used on the concrete in the chimney with simultaneous tightening and revibrating the form during hardening to ensure a tight fit for the repair. The form shall be removed after 24 hours and immediately the chimney shall be carefully chipped away to avoid breaking concrete out of the repair; the surface of the repair concrete shall be dressed as required.

3.10.3 Resinous and Latex Material Repair
In lieu of the portland cement bonding coats specified above, an epoxy resin or a latex bonding agent may be used.

3.11 FINISHING UNFORMED SURFACES

The finish of all unformed surfaces shall meet the requirements of paragraph 3.9 Tolerances in PART 1, when tested as specified herein.

3.11.1 General

The ambient temperature of spaces adjacent to unformed surfaces being finished and of the base on which concrete will be placed shall be not less than 10 degrees C. In hot weather all requirements of paragraphs Hot Weather Requirements and Prevention of Plastic Shrinkage Cracking shall be met. Unformed surfaces that are not to be covered by additional concrete or backfill shall have a float finish, with additional finishing as specified below, and shall be true to the elevation shown on the drawings. Surfaces to receive additional concrete or backfill shall be brought to the elevation shown on the drawings, properly consolidated, and left true and regular. Unless otherwise shown on the drawings, exterior surfaces shall be sloped for drainage, as directed. Where drains are provided, interior floors shall be evenly sloped to the drains. Joints shall be carefully made with a jointing or edging tool. The finished surfaces shall be protected from stains or abrasions. Grate tampers or "jitterbugs" shall not be used for any surfaces. The dusting of surfaces with dry cement or other materials or the addition of any water during finishing shall not be permitted. If bleedwater is present prior to finishing, the excess water shall be carefully dragged off or removed by absorption with porous materials such as burlap. During finishing operations, extreme care shall be taken to prevent over finishing or working water into the surface; this can cause "crazing" (surface shrinkage cracks which appear after hardening) of the surface. Any slabs with surfaces which exhibit significant crazing shall be removed and replaced. During finishing operations, surfaces shall be checked with a 10 foot straightedge, applied in both directions at regular intervals while the concrete is still plastic, to detect high or low areas.

3.11.2 Troweled Finish

Areas as indicated on the drawings shall be given a trowel finish. After floating is complete and after the surface moisture has disappeared, unformed surfaces shall be steel-troweled to a smooth, even, dense finish, free from blemishes including trowel marks. In lieu of hand finishing, an approved power finishing machine may be used in accordance with the directions of the machine manufacturer. Additional trowelings shall be performed, either by hand or machine until the surface has been troweled 3 times, with waiting period between each. Care shall be taken to prevent blistering and if such occurs, troweling shall immediately be stopped and operations and surfaces corrected. A final hard steel troweling shall be done by hand, with the trowel tipped, and using hard pressure, when the surface is at a point that the trowel will produce a ringing sound. The finished surface shall be thoroughly consolidated and shall be essentially free of trowel marks and be uniform in texture and appearance. The concrete mixture used for troweled finished areas shall be adjusted, if necessary, in order to provide sufficient fines (cementitious material and fine sand) to finish properly.
3.12 FLOOR HARDENER

Areas as indicated on the drawings shall be treated with floor hardener. Floor hardener shall be applied after the concrete has been cured and then air dried for 28 days. Three coats shall be applied, each the day after the preceding coat was applied. For the first application, 0.5 kg of the silicofluoride shall be dissolved in 4 liters of water. For subsequent applications, the solution shall be 1.0 kg of silicofluoride to each 4 liters of water. Floor should be mopped with clear water shortly after the preceding application has dried to remove encrusted salts. Proprietary hardeners shall be applied in accordance with the manufacturer's instructions. During application, area should be well ventilated. Precautions shall be taken when applying silicofluorides due to the toxicity of the salts. Any compound that contacts glass or aluminum should be immediately removed with clear water.

3.13 EXTERIOR SLAB AND RELATED ITEMS

3.13.1 Pavements

Pavements shall be constructed where shown on the drawings. After forms are set and underlying material prepared as specified, the concrete shall be placed uniformly throughout the area and thoroughly vibrated. As soon as placed and vibrated, the concrete shall be struck off and screeded to the crown and cross section and to such elevation above grade that when consolidated and finished, the surface of the pavement will be at the required elevation. The entire surface shall be tamped with the strike off, or consolidated with a vibrating screed, and this operation continued until the required compaction and reduction of internal and surface voids are accomplished. Care shall be taken to prevent bringing excess paste to the surface. Immediately following the final consolidation of the surface, the pavement shall be floated longitudinally from bridges resting on the side forms and spanning but not touching the concrete. If necessary, additional concrete shall be placed and screeded, and the float operated until a satisfactory surface has been produced. The floating operation shall be advanced not more than half the length of the float and then continued over the new and previously floated surfaces. After finishing is completed but while the concrete is still plastic, minor irregularities and score marks in the pavement surface shall be eliminated by means of long-handled cutting straightedges. Straightedges shall be 3.75 m in length and shall be operated from the sides of the pavement and from bridges. A straightedge operated from the side of the pavement shall be equipped with a handle 1 m longer than one-half the width of the pavement. The surface shall then be tested for trueness with a 3.75 straightedge held in successive positions parallel and at right angles to the center line of the pavement, and the whole area covered as necessary to detect variations. The straightedge shall be advanced along the pavement in successive stages of not more than one-half the length of the straightedge. Depressions shall be immediately filled with freshly mixed concrete, struck off, consolidated, and refinished. Projections above the required elevation shall also be struck off and refinished. The straightedge testing and finishing shall continue until the entire surface of the concrete is true. Before the surface sheen has disappeared and well before the concrete becomes nonplastic, the surface of the pavement shall be given a nonslip sandy surface texture by use of a burlap drag. A strip of clean, wet burlap from 1.0 to 1.5 m wide and 0.7 m longer than the pavement width shall be carefully pulled across the surface.
Edges and joints shall be rounded with an edger having a radius of 3 mm. Curing shall be as specified.

3.13.2 Pits and Trenches

Pits and trenches shall be constructed as indicated on the drawings. Bottoms and walls shall be placed monolithically or waterstops and keys, shall be provided as approved.

3.14 CURING AND PROTECTION

3.14.1 General

Concrete shall be cured by an approved method for the period of time given below:

<table>
<thead>
<tr>
<th>Concrete Type</th>
<th>Curing Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete with Type III cement</td>
<td>3 days</td>
</tr>
<tr>
<td>All other concrete</td>
<td>7 days</td>
</tr>
</tbody>
</table>

Immediately after placement, concrete shall be protected from premature drying, extremes in temperatures, rapid temperature change, mechanical injury and damage from rain and flowing water for the duration of the curing period. Air and forms in contact with concrete shall be maintained at a temperature above 10 degrees C for the first 3 days and at a temperature above 0 degrees C for the remainder of the specified curing period. Exhaust fumes from combustion heating units shall be vented to the outside of the enclosure, and heaters and ducts shall be placed and directed so as not to cause areas of overheating and drying of concrete surfaces or to create fire hazards. Materials and equipment needed for adequate curing and protection shall be available and at the site prior to placing concrete. No fire or excessive heat, including welding, shall be permitted near or in direct contact with the concrete at any time. Except as otherwise permitted by paragraph Membrane Forming Curing Compounds, moist curing shall be provided for any areas to receive floor hardener, any paint or other applied coating, or to which other concrete is to be bonded. Concrete containing silica fume shall be initially cured by fog misting during finishing, followed immediately by continuous moist curing. Except for plastic coated burlap, impervious sheeting alone shall not be used for curing.

3.14.2 Moist Curing

Concrete to be moist-cured shall be maintained continuously wet for the entire curing period, commencing immediately after finishing. If water or curing materials used stain or discolor concrete surfaces which are to be permanently exposed, the concrete surfaces shall be cleaned as approved. When wooden forms are left in place during curing, they shall be kept wet at all times. If steel forms are used in hot weather, nonsupporting vertical forms shall be broken loose from the concrete soon after the concrete hardens and curing water continually applied in this void. If the forms are removed before the end of the curing period, curing shall be carried out as on unformed surfaces, using suitable materials. Surfaces shall be cured by ponding, by continuous sprinkling, by continuously saturated burlap or cotton mats, or by continuously saturated plastic coated burlap. Burlap and mats shall be clean and free from any contamination and shall be completely saturated before being placed on the concrete. The Contractor shall have an approved work system to ensure that moist curing is continuous 24 hours per day.

SECTION 03300 Page 31
3.14.3 Membrane Forming Curing Compounds

Concrete in the following areas may be cured with a nonpigmented curing compound containing a fugitive dye in lieu of moist curing. Membrane curing shall not be used on surfaces that are to receive any subsequent treatment depending on adhesion or bonding to the concrete, including surfaces to which a smooth finish is to be applied or other concrete to be bonded. However, a styrene acrylate or chlorinated rubber compound meeting ASTM C 309, Class B requirements, may be used for surfaces which are to be painted or are to receive bituminous roofing or waterproofing, or floors that are to receive adhesive applications of resilient flooring. The curing compound selected shall be compatible with any subsequent paint, roofing, waterproofing or flooring specified. Membrane curing compound shall not be used on surfaces that are maintained at curing temperatures with free steam. Curing compound shall be applied to formed surfaces immediately after the forms are removed and prior to any patching or other surface treatment except the cleaning of loose sand, mortar, and debris from the surface. All surfaces shall be thoroughly moistened with water. Curing compound shall be applied to slab surfaces as soon as the bleeding water has disappeared, with the tops of joints being temporarily sealed to prevent entry of the compound and to prevent moisture loss during the curing period. The curing compound shall be applied in a two-coat continuous operation by approved motorized power-spraying equipment operating at a minimum pressure of 500 kPa, at a uniform coverage of not more than 10 cubic meters per L for each coat, and the second coat shall be applied perpendicular to the first coat. Concrete surfaces which have been subjected to rainfall within 3 hours after curing compound has been applied shall be resprayed by the method and at the coverage specified. Surfaces on which clear compound is used shall be shaded from direct rays of the sun for the first 3 days. Surfaces coated with curing compound shall be kept free of foot and vehicular traffic, and from other sources of abrasion and contamination during the curing period.

3.14.4 Impervious Sheeting

Impervious-sheet curing shall only be used on horizontal or nearly horizontal surfaces. Surfaces shall be thoroughly wetted and be completely covered with the sheeting. Sheeting shall be at least 450 mm wider than the concrete surface to be covered. Covering shall be laid with light-colored side up. Covering shall be lapped not less than 300 mm and securely weighted down or shall be lapped not less than 100 mm and taped to form a continuous cover with completely closed joints. The sheet shall be weighted to prevent displacement so that it remains in contact with the concrete during the specified length of curing. Coverings shall be folded down over exposed edges of slabs and secured by approved means. Sheets shall be immediately repaired or replaced if tears or holes appear during the curing period.

3.14.5 Ponding or Immersion

Concrete shall be continually immersed throughout the curing period. Water shall not be more than 10 degrees C less than the temperature of the concrete.

3.14.6 Cold Weather Curing and Protection
When the daily ambient low temperature is less than 0 degrees C the temperature of the concrete shall be maintained above 5 degrees C for the first seven days after placing. During the period of protection removal, the air temperature adjacent to the concrete surfaces shall be controlled so that concrete near the surface will not be subjected to a temperature differential of more than 13 degrees C as determined by suitable temperature measuring devices furnished by the Contractor, as required, and installed adjacent to the concrete surface and 50 mm inside the surface of the concrete. The installation of the thermometers shall be made by the Contractor as directed.

3.15 SETTING BASE PLATES AND BEARING PLATES

After being properly positioned, column base plates, bearing plates for beams and similar structural members, and machinery and equipment base plates shall be set to the proper line and elevation with damp-pack bedding mortar, except where nonshrink grout is indicated. The thickness of the mortar or grout shall be approximately 1/24 the width of the plate, but not less than 20 mm. Concrete and metal surfaces in contact with grout shall be clean and free of oil and grease, and concrete surfaces in contact with grout shall be damp and free of laitance when grout is placed. Nonshrink grout shall be used where indicated.

3.15.1 Damp-Pack Bedding Mortar

Damp-pack bedding mortar shall consist of 1 part cement and 2-1/2 parts fine aggregate having water content such that a mass of mortar tightly squeezed in the hand will retain its shape but will crumble when disturbed. The space between the top of the concrete and bottom of the bearing plate or base shall be packed with the bedding mortar by tamping or ramming with a bar or rod until it is completely filled.

3.15.2 Nonshrink Grout

Nonshrink grout shall be a ready-mixed material requiring only the addition of water. Water content shall be the minimum that will provide a flowable mixture and completely fill the space to be grouted without segregation, bleeding, or reduction of strength.

3.15.2.1 Mixing and Placing of Nonshrink Grout

Mixing and placing shall be in conformance with the material manufacturer's instructions and as specified therein. Ingredients shall be thoroughly dry-mixed before adding water. After adding water, the batch shall be mixed for 3 minutes. Batches shall be of size to allow continuous placement of freshly mixed grout. Grout not used within 30 minutes after mixing shall be discarded. The space between the top of the concrete or machinery-bearing surface and the plate shall be filled solid with the grout. Forms shall be of wood or other equally suitable material for completely retaining the grout on all sides and on top and shall be removed after the grout has set. The placed grout shall be carefully worked by rodding or other means to eliminate voids; however, overworking and breakdown of the initial set shall be avoided. Grout shall not be retempered or subjected to vibration from any source. Where clearances are unusually small, placement shall be under pressure with a grout pump. Temperature of the grout, and of surfaces receiving the grout, shall be maintained at 18 to 30 degrees C until after setting.
3.15.2.2 Treatment of Exposed Surfaces

For metal-oxidizing nonshrink grout, exposed surfaces shall be cut back 25 mm and immediately covered with a parge coat of mortar consisting of 1 part portland cement and 2-1/2 parts fine aggregate by weight, with sufficient water to make a plastic mixture. The parge coat shall have a smooth finish. For other mortars or grouts, exposed surfaces shall have a smooth-dense finish and be left untreated. Curing shall comply with paragraph CURING AND PROTECTION.

3.16 TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL

The Contractor shall perform the inspection and tests described below and, based upon the results of these inspections and tests, shall take the action required and shall submit specified reports. When, in the opinion of the Contracting Officer, the concreting operation is out of control, concrete placement shall cease and the operation shall be corrected. The laboratory performing the tests shall be onsite and shall conform with ASTM C 1077. Materials may be subjected to check testing by the Government from samples obtained at the manufacturer, at transfer points, or at the project site.

3.16.1 Grading and Corrective Action

3.16.1.1 Fine Aggregate

At least once during each shift when the concrete plant is operating, there shall be one sieve analysis and fineness modulus determination in accordance with ASTM C 136 and COE CRD-C 104 for the fine aggregate or for each fine aggregate if it is batched in more than one size or classification. The location at which samples are taken may be selected by the Contractor as the most advantageous for control. However, the Contractor is responsible for delivering fine aggregate to the mixer within specification limits. When the amount passing on any sieve is outside the specification limits, the fine aggregate shall be immediately resampled and retested. If there is another failure on any sieve, the fact shall immediately reported to the Contracting Officer, concreting shall be stopped, and immediate steps taken to correct the grading.

3.16.1.2 Coarse Aggregate

At least once during each shift in which the concrete plant is operating, there shall be a sieve analysis in accordance with ASTM C 136 for each size of coarse aggregate. The location at which samples are taken may be selected by the Contractor as the most advantageous for production control. However, the Contractor shall be responsible for delivering the aggregate to the mixer within specification limits. A test record of samples of aggregate taken at the same locations shall show the results of the current test as well as the average results of the five most recent tests including the current test. The Contractor may adopt limits for control coarser than the specification limits for samples taken other than as delivered to the mixer to allow for degradation during handling. When the amount passing any sieve is outside the specification limits, the coarse aggregate shall be immediately resampled and retested. If the second sample fails on any sieve, that fact shall be reported to the Contracting Officer. Where two consecutive averages of 5 tests are outside specification limits, the operation shall be considered out of control and shall be reported to the
Contracting Officer. Concreting shall be stopped and immediate steps shall be taken to correct the grading.

3.16.2 Quality of Aggregates

Thirty days prior to the start of concrete placement, the Contractor shall perform all tests for aggregate quality required by ASTM C 33. In addition, after the start of concrete placement, the Contractor shall perform tests for aggregate quality at least every three months, and when the source of aggregate or aggregate quality changes. Samples tested after the start of concrete placement shall be taken immediately prior to entering the concrete mixer.

3.16.3 Scales, Batching and Recording

The accuracy of the scales shall be checked by test weights prior to start of concrete operations and at least once every three months. Such tests shall also be made as directed whenever there are variations in properties of the fresh concrete that could result from batching errors. Once a week the accuracy of each batching and recording device shall be checked during a weighing operation by noting and recording the required weight, recorded weight, and the actual weight batched. At the same time, the Contractor shall test and ensure that the devices for dispensing admixtures are operating properly and accurately. When either the weighing accuracy or batching accuracy does not comply with specification requirements, the plant shall not be operated until necessary adjustments or repairs have been made. Discrepancies in recording accuracies shall be corrected immediately.

3.16.4 Batch-Plant Control

The measurement of concrete materials including cementitious materials, each size of aggregate, water, and admixtures shall be continuously controlled. The aggregate weights and amount of added water shall be adjusted as necessary to compensate for free moisture in the aggregates. The amount of air-entraining agent shall be adjusted to control air content within specified limits. A report shall be prepared indicating type and source of cement used, type and source of pozzolan or slag used, amount and source of admixtures used, aggregate source, the required aggregate and water weights per cubic meter, amount of water as free moisture in each size of aggregate, and the batch aggregate and water weights per cubic meter for each class of concrete batched during each day's plant operation.

3.16.5 Concrete Mixture

a. Air Content Testing. Air content tests shall be made when test specimens are fabricated. In addition, at least two tests for air content shall be made on randomly selected batches of each separate concrete mixture produced during each 8-hour period of concrete production. Additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Tests shall be made in accordance with ASTM C 231 for normal weight concrete and ASTM C 173 for lightweight concrete. Test results shall be plotted on control charts which shall at all times be readily available to the Government and shall be submitted weekly. Copies of the current control charts shall be kept in the field by testing crews and results plotted as tests are made. When a single test result reaches either the upper or lower
action limit, a second test shall immediately be made. The results of the two tests shall be averaged and this average used as the air content of the batch to plot on both the air content and the control chart for range, and for determining need for any remedial action. The result of each test, or average as noted in the previous sentence, shall be plotted on a separate control chart for each mixture on which an "average line" is set at the midpoint of the specified air content range from paragraph Air Entrainment. An upper warning limit and a lower warning limit line shall be set 1.0 percentage point above and below the average line, respectively. An upper action limit and a lower action limit line shall be set 1.5 percentage points above and below the average line, respectively. The range between each two consecutive tests shall be plotted on a secondary control chart for range where an upper warning limit is set at 2.0 percentage points and an upper action limit is set at 3.0 percentage points. Samples for air content may be taken at the mixer, however, the Contractor is responsible for delivering the concrete to the placement site at the stipulated air content. If the Contractor's materials or transportation methods cause air content loss between the mixer and the placement, correlation samples shall be taken at the placement site as required by the Contracting Officer, and the air content at the mixer controlled as directed.

b. Air Content Corrective Action. Whenever points on the control chart for percent air reach either warning limit, an adjustment shall immediately be made in the amount of air-entraining admixture batched. As soon as practical after each adjustment, another test shall be made to verify the result of the adjustment. Whenever a point on the secondary control chart for range reaches the warning limit, the admixture dispenser shall be recalibrated to ensure that it is operating accurately and with good reproducibility. Whenever a point on either control chart reaches an action limit line, the air content shall be considered out of control and the concreting operation shall immediately be halted until the air content is under control. Additional air content tests shall be made when concreting is restarted.

c. Slump Testing. In addition to slump tests which shall be made when test specimens are fabricated, at least four slump tests shall be made on randomly selected batches in accordance with ASTM C 143 for each separate concrete mixture produced during each 8-hour or less period of concrete production each day. Also, additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Test results shall be plotted on control charts which shall at all times be readily available to the Government and shall be submitted weekly. Copies of the current control charts shall be kept in the field by testing crews and results plotted as tests are made. When a single slump test reaches or goes beyond either the upper or lower action limit, a second test shall immediately be made. The results of the two tests shall be averaged and this average used as the slump of the batch to plot on both the control charts for slump and the chart for range, and for determining need for any remedial action. Limits shall be set on separate control charts for slump for each type of mixture. The upper warning limit shall be set at 12.5 mm (1/2 inch) below the maximum allowable slump specified in
paragraph Slump in PART 1 for each type of concrete and an upper action limit line and lower action limit line shall be set at the maximum and minimum allowable slumps, respectively, as specified in the same paragraph. The range between each consecutive slump test for each type of mixture shall be plotted on a single control chart for range on which an upper action limit is set at 50 mm. Samples for slump shall be taken at the mixer. However, the Contractor is responsible for delivering the concrete to the placement site at the stipulated slump. If the Contractor's materials or transportation methods cause slump loss between the mixer and the placement, correlation samples shall be taken at the placement site as required by the Contracting Officer, and the slump at the mixer controlled as directed.

d. Slump Corrective Action. Whenever points on the control charts for slump reach the upper warning limit, an adjustment shall immediately be made in the batch weights of water and fine aggregate. The adjustments are to be made so that the total water content does not exceed that amount allowed by the maximum w/c ratio specified, based on aggregates which are in a saturated surface dry condition. When a single slump reaches the upper or lower action limit, no further concrete shall be delivered to the placing site until proper adjustments have been made. Immediately after each adjustment, another test shall be made to verify the correctness of the adjustment. Whenever two consecutive individual slump tests, made during a period when there was no adjustment of batch weights, produce a point on the control chart for range at or above the upper action limit, the concreting operation shall immediately be halted, and the Contractor shall take appropriate steps to bring the slump under control. Additional slump tests shall be made as directed.

e. Temperature. The temperature of the concrete shall be measured when compressive strength specimens are fabricated. Measurement shall be in accordance with ASTM C 1064/C 1064M. The temperature shall be reported along with the compressive strength data.

f. Strength Specimens. At least one set of test specimens shall be made, for compressive or flexural strength as appropriate, on each different concrete mixture placed during the day for each 380 cubic meters or portion thereof of that concrete mixture placed each day. Additional sets of test specimens shall be made, as directed by the Contracting Officer, when the mixture proportions are changed or when low strengths have been detected. A truly random (not haphazard) sampling plan shall be developed by the Contractor and approved by the Contracting Officer prior to the start of construction. The plan shall assure that sampling is done in a completely random and unbiased manner. A set of test specimens for concrete with a 28-day specified strength per paragraph Strength Requirements in PART 1 shall consist of four specimens, two to be tested at 7 days and two at 28 days. A set of test specimens for concrete with a 90-day strength per the same paragraph shall consist of six specimens, two tested at 7 days, two at 28 days, and two at 90 days. Test specimens shall be molded and cured in accordance with ASTM C 31/C 31M and tested in accordance with ASTM C 39 for test cylinders and ASTM C 78 for test beams. Results of all strength tests shall be reported immediately to the
Contracting Officer. Quality control charts shall be kept for individual strength "tests", ("test" as defined in paragraph Strength Requirements in PART 1) moving average of last 3 "tests" for strength, and moving average for range for the last 3 "tests" for each mixture. The charts shall be similar to those found in ACI 214.3R.

3.16.6 Inspection Before Placing

Foundations, construction joints, forms, and embedded items shall be inspected by the Contractor in sufficient time prior to each concrete placement in order to certify to the Contracting Officer that they are ready to receive concrete. The results of each inspection shall be reported in writing.

3.16.7 Placing

The placing foreman shall supervise placing operations, shall determine that the correct quality of concrete or grout is placed in each location as specified and as directed by the Contracting Officer, and shall be responsible for measuring and recording concrete temperatures and ambient temperature hourly during placing operations, weather conditions, time of placement, volume placed, and method of placement. The placing foreman shall not permit batching and placing to begin until it has been verified that an adequate number of vibrators in working order and with competent operators are available. Placing shall not be continued if any pile of concrete is inadequately consolidated. If any batch of concrete fails to meet the temperature requirements, immediate steps shall be taken to improve temperature controls.

3.16.8 Vibrators

The frequency and amplitude of each vibrator shall be determined in accordance with COE CRD-C 521 prior to initial use and at least once a month when concrete is being placed. Additional tests shall be made as directed when a vibrator does not appear to be adequately consolidating the concrete. The frequency shall be determined while the vibrator is operating in concrete with the tachometer being held against the upper end of the vibrator head while almost submerged and just before the vibrator is withdrawn from the concrete. The amplitude shall be determined with the head vibrating in air. Two measurements shall be taken, one near the tip and another near the upper end of the vibrator head, and these results averaged. The make, model, type, and size of the vibrator and frequency and amplitude results shall be reported in writing. Any vibrator not meeting the requirements of paragraph Consolidation, shall be immediately removed from service and repaired or replaced.

3.16.9 Curing Inspection

a. Moist Curing Inspections. At least once each shift, and not less than twice per day on both work and non-work days, an inspection shall be made of all areas subject to moist curing. The surface moisture condition shall be noted and recorded.

b. Moist Curing Corrective Action. When a daily inspection report lists an area of inadequate curing, immediate corrective action
shall be taken, and the required curing period for those areas shall be extended by 1 day.

c. Membrane Curing Inspection. No curing compound shall be applied until the Contractor has verified that the compound is properly mixed and ready for spraying. At the end of each operation, the Contractor shall estimate the quantity of compound used by measurement of the container and the area of concrete surface covered, shall compute the rate of coverage in square meters per Liter, (square feet per gallon,) and shall note whether or not coverage is uniform.

d. Membrane Curing Corrective Action. When the coverage rate of the curing compound is less than that specified or when the coverage is not uniform, the entire surface shall be sprayed again.

e. Sheet Curing Inspection. At least once each shift and once per day on non-work days, an inspection shall be made of all areas being cured using impervious sheets. The condition of the covering and the tightness of the laps and tapes shall be noted and recorded.

f. Sheet Curing Corrective Action. When a daily inspection report lists any tears, holes, or laps or joints that are not completely closed, the tears and holes shall promptly be repaired or the sheets replaced, the joints closed, and the required curing period for those areas shall be extended by 1 day.

3.16.10 Cold-Weather Protection

At least once each shift and once per day on non-work days, an inspection shall be made of all areas subject to cold-weather protection. Any deficiencies shall be noted, corrected, and reported.

3.16.11 Mixer Uniformity

a. Stationary Mixers. Prior to the start of concrete placing and once every 6 months when concrete is being placed, or once for every 60,000 cubic meters of concrete placed, whichever results in the shortest time interval, uniformity of concrete mixing shall be determined in accordance with ASTM C 94.

b. Truck Mixers. Prior to the start of concrete placing and at least once every 6 months when concrete is being placed, uniformity of concrete mixing shall be determined in accordance with ASTM C 94. The truck mixers shall be selected randomly for testing. When satisfactory performance is found in one truck mixer, the performance of mixers of substantially the same design and condition of the blades may be regarded as satisfactory.

c. Mixer Uniformity Corrective Action. When a mixer fails to meet mixer uniformity requirements, either the mixing time shall be increased, batching sequence changed, batch size reduced, or adjustments shall be made to the mixer until compliance is achieved.
3.16.12 Reports

All results of tests or inspections conducted shall be reported informally as they are completed and in writing daily. A weekly report shall be prepared for the updating of control charts covering the entire period from the start of the construction season through the current week. During periods of cold-weather protection, reports of pertinent temperatures shall be made daily. These requirements do not relieve the Contractor of the obligation to report certain failures immediately as required in preceding paragraphs. Such reports of failures and the action taken shall be confirmed in writing in the routine reports. The Contracting Officer has the right to examine all contractor quality control records.

-- End Of Section --
SECTION 04200

MASSONRY

07/92

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ACI INTERNATIONAL (ACI)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 82 (1997a) Steel Wire, Plain, for Concrete Reinforcement

ASTM A 153/A 153M (1998) Zinc Coating (Hot-Dip) on Iron and Steel Hardware

ASTM A 615/A 615M (1996a) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement

ASTM C 67 (1998a) Sampling and Testing Brick and Structural Clay Tile

ASTM C 90 (1998) Loadbearing Concrete Masonry Units

ASTM C 91 (1998) Masonry Cement

ASTM C 140 (1998b) Sampling and Testing Concrete Masonry Units

ASTM C 216 (1998) Facing Brick (Solid Masonry Units Made from Clay or Shale)

ASTM C 270 (1997ae1) Mortar for Unit Masonry

ASTM C 476 (1998) Grout for Masonry

ASTM C 494 (1998) Chemical Admixtures for Concrete

ASTM C 641 (1982; R 1991) Staining Materials in Lightweight Concrete Aggregates
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Masonry Work; G, RE

Drawings including plans, elevations, and details of wall reinforcement; details of reinforcing bars at corners and wall intersections; offsets; tops, bottoms, and ends of walls; control and expansion joints; and wall openings. Bar splice locations shall be shown. If the Contractor opts to furnish inch-pound CMU products, drawings showing elevation of walls exposed to view and indicating the location of all cut CMU products shall be submitted for approval. Bent bars shall be identified on a bending diagram and shall be referenced and located on the drawings. Wall dimensions, bar clearances, and wall openings greater than one masonry unit in area shall be shown. No approval will be given to the shop drawings until the Contractor certifies that all openings, including those for mechanical and electrical service, are shown. If, during construction, additional masonry openings are required, the approved shop drawings shall be resubmitted with the additional openings shown along with the proposed changes. Location of these additional openings shall be clearly highlighted. The minimum scale for wall elevations shall be 1 to 50. Reinforcement bending details shall conform to the requirements of ACI SP-66.

SD-03 Product Data

Clay Brick; G, RE
Insulation; G, RE

Manufacturer's descriptive data.

Cold Weather Installation; G, RE

Cold weather construction procedures.

SD-04 Samples

Concrete Masonry Units (CMU); G, RE

Clay Brick; G, RE

Color samples of three stretcher units and one unit for each type of special shape. Units shall show the full range of color and texture.

Anchors, Ties, and Bar Positioners; G, RE

Two of each type used.

Expansion-Joint Materials; G, RE

One piece of each type used.

Joint Reinforcement; G, RE

One piece of each type used, including corner and wall intersection pieces, showing at least two cross wires.

Insulation; G, RE

One piece of board type insulation, not less than 400 mm by 600 mm in size, containing the label indicating the rated permeance and R-values.

SD-06 Test Reports

Efflorescence Test; G, RE

Field Testing of Mortar; G, RE

Field Testing of Grout; G, RE

Test reports from an approved independent laboratory. Test reports on a previously tested material shall be certified as the same as that proposed for use in this project.

SD-07 Certificates

Clay Brick
Concrete Masonry Units (CMU)
Control Joint Keys
Anchors, Ties, and Bar Positioners
Expansion-Joint Materials
Joint Reinforcement
Reinforcing Steel Bars and Rods
Insulation
Mortar Admixtures
Grout Admixtures

Certificates of compliance stating that the materials meet the specified requirements.

Insulation

Certificate attesting that the polyurethane or polyisocyanurate insulation furnished for the project contains recovered material, and showing an estimated percent of such recovered material.

1.3 SAMPLE MASONRY PANELS

After material samples are approved and prior to starting masonry work, sample masonry panels shall be constructed for each type and color of masonry required. At least 48 hours prior to constructing the sample panel or panels, the Contractor shall submit written notification to the Contracting Officer's Representative. Sample panels shall not be built in, or as part of the structure, but shall be located where directed.

1.3.1 Configuration

Panels shall be L-shaped or otherwise configured to represent all of the wall elements. Panels shall be of the size necessary to demonstrate the acceptable level of workmanship for each type of masonry represented on the project. The minimum size of a straight panel or a leg of an L-shaped panel shall be 2.5 m by 1.2 m.

1.3.2 Composition

Panels shall show full color range, texture, and bond pattern of the masonry work. The Contractor's method for mortar joint tooling; grouting of reinforced vertical cores, collar joints, bond beams, and lintels; positioning, securing, and lapping of reinforcing steel; positioning and lapping of joint reinforcement (including prefabricated corners); and cleaning of masonry work shall be demonstrated during the construction of the panels. Installation or application procedures for anchors, wall ties, CMU control joints, brick expansion joints, insulation, flashing, brick soldier, row lock courses and weep holes shall be shown in the sample panels. The panels shall contain a masonry bonded corner that includes a bond beam corner. Panels shall show installation of electrical boxes and conduit. Panels that represent reinforced masonry shall contain a 600 mm by 600 mm opening placed at least 600 mm above the panel base and 600 mm away from all free edges, corners, and control joints. Required reinforcing shall be provided around this opening as well as at wall corners and control joints.

1.3.3 Construction Method

Where anchored veneer walls are required, the Contractor shall demonstrate and receive approval for the method of construction; i.e., either bring up the two wythes together or separately, with the insulation and appropriate ties placed within the specified tolerances across the cavity. Temporary provisions shall be demonstrated to preclude mortar or grout droppings in the cavity and to provide a clear open air space of the dimensions shown on
the drawings. Where masonry is to be grouted, the Contractor shall demonstrate and receive approval on the method that will be used to bring up the masonry wythes; support the reinforcing bars; and grout cells, bond beams, lintels, and collar joints using the requirements specified herein. If sealer is specified to be applied to the masonry units, sealer shall be applied to the sample panels. Panels shall be built on a properly designed concrete foundation.

1.3.4 Usage

The completed panels shall be used as the standard of workmanship for the type of masonry represented. Masonry work shall not commence until the sample panel for that type of masonry construction has been completed and approved. Panels shall be protected from the weather and construction operations until the masonry work has been completed and approved. After completion of the work, the sample panels, including all foundation concrete, shall become the property of the Contractor and shall be removed from the construction site.

1.4 DELIVERY, HANDLING, AND STORAGE

Materials shall be delivered, handled, stored, and protected to avoid chipping, breakage, and contact with soil or contaminating material.

1.4.1 Masonry Units

Concrete masonry units shall be covered or protected from inclement weather and shall conform to the moisture content as specified in ASTM C 90 when delivered to the jobsite. Prefabricated lintels shall be marked on top sides to show either the lintel schedule number or the number and size of top and bottom bars.

1.4.2 Reinforcement, Anchors, and Ties

Steel reinforcing bars, coated anchors, ties, and joint reinforcement shall be stored above the ground. Steel reinforcing bars and uncoated ties shall be free of loose mill scale and rust.

1.4.3 Cementitious Materials, Sand and Aggregates

Cementitious and other packaged materials shall be delivered in unopened containers, plainly marked and labeled with manufacturers' names and brands. Cementitious material shall be stored in dry, weathertight enclosures or be completely covered. Cement shall be handled in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Sand and aggregates shall be stored in a manner to prevent contamination or segregation.

1.5 SPECIAL INSPECTION

A qualified masonry inspector approved by the Contracting Officer shall perform inspection of the masonry work. Minimum qualifications for the masonry inspector shall be 5 years of reinforced masonry inspection experience or acceptance by a State, municipality, or other governmental body having a program of examining and certifying inspectors for reinforced masonry construction. The masonry inspector shall be present during preparation of masonry prisms, sampling and placing of masonry units,
placement of reinforcement (including placement of dowels in footings and foundation walls), inspection of grout space, immediately prior to closing of cleanouts, and during grouting operations. The masonry inspector shall assure Contractor compliance with the drawings and specifications. The masonry inspector shall keep a complete record of all inspections and shall submit daily written reports to the Quality Control Supervisory Representative reporting the quality of masonry construction.

PART 2 PRODUCTS

2.1 GENERAL REQUIREMENTS

The source of materials which will affect the appearance of the finished work shall not be changed after the work has started except with Contracting Officer's approval. The Contractor has the option to use either hard metric or substitute inch-pound (soft-metric) CMU products. If the Contractor decides to substitute inch-pound CMU products, the following additional requirements shall be met:

a. The metric dimensions indicated on the drawings shall not be altered to accommodate inch-pound CMU products either horizontally or vertically. The 100 mm building module shall be maintained, except for the CMU products themselves.

b. Mortar joint widths shall be maintained as specified.

c. Rebars shall not be cut, bent or eliminated to fit into the inch-pound CMU products module.

d. Brick and inch-pound CMU products shall not be reduced in size by more than one-third (1/3) in height and one-half (1/2) in length. Cut CMU products shall not be located at ends of walls, corners, and other openings.

e. Cut, exposed brick and CMU products shall be held to a minimum and located where they would have the least impact on the architectural aesthetic goals of the facility.

f. Other building components, built into the CMU products, such as window frames, door frames, louvers, grilles, fire dampers, etc., that are required to be metric, shall remain metric.

g. Additional metric guidance shall conform to Section 01415 METRIC MEASUREMENTS.

2.2 CLAY BRICK

Color range and texture of clay brick shall be as indicated and shall conform to the approved sample. Grade SW shall be used for brick in contact with earth or grade and for all exterior work. Grade SW or MW shall be used in other brickwork. Brick shall be tested for efflorescence. Clay brick units shall be delivered factory-blended to provide a uniform appearance and color range in the completed wall.

2.2.1 Solid Clay Brick
Solid clay brick shall conform to ASTM C 216, Type FBS. Brick size shall be modular and the nominal size of the brick used shall be 66.68 mm thick, 92.08 mm wide, and 193.68 mm long.

2.3 CONCRETE MASONRY UNITS (CMU)

Hollow and solid concrete masonry units shall conform to ASTM C 90, Type I. Cement shall have a low alkali content and be of one brand.

2.3.1 Aggregates

Lightweight aggregates and blends of lightweight and heavier aggregates in proportions used in producing the units, shall comply with the following requirements when tested for stain-producing iron compounds in accordance with ASTM C 641: by visual classification method, the iron stain deposited on the filter paper shall not exceed the "light stain" classification.

2.3.2 Kinds and Shapes

Units shall be modular in size and shall include closer, jamb, header, lintel, and bond beam units and special shapes and sizes to complete the work as indicated. In exposed interior masonry surfaces, units having a bullnose shall be used for vertical external corners except at door, window, and louver jambs. Radius of the bullnose shall be 25 mm (1 inch). Units used in exposed masonry surfaces in any one building shall have a uniform fine to medium texture and a uniform color.

2.3.3 Fire-Rated CMU

Concrete masonry units used in fire-rated construction shown on the drawings shall be of minimum equivalent thickness for the fire rating indicated and the corresponding type of aggregates indicated in TABLE I. Units containing more than one of the aggregates listed in TABLE I will be rated on the aggregate requiring the greater minimum equivalent thickness to produce the required fire rating.

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>4 hours</th>
<th>3 hours</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumice</td>
<td>120 (4.7)</td>
<td>100 (4.0)</td>
<td>75 (3.0)</td>
</tr>
<tr>
<td>Expanded slag</td>
<td>130 (5.0)</td>
<td>110 (4.2)</td>
<td>85 (3.3)</td>
</tr>
<tr>
<td>Expanded clay, shale, or slate</td>
<td>145 (5.7)</td>
<td>120 (4.8)</td>
<td>95 (3.7)</td>
</tr>
<tr>
<td>Limestone, scoria, cinders or unexpanded slag</td>
<td>150 (5.9)</td>
<td>130 (5.0)</td>
<td>100 (4.0)</td>
</tr>
</tbody>
</table>
2.4 MORTAR

Mortar shall be Type S below grade and Type N in accordance with the proportion specification of ASTM C 270 except Type S cement-lime mortar proportions shall be 1 part cement, 1/2 part lime and 4-1/2 parts aggregate; Type N cement-lime mortar proportions shall be 1 part cement, 1 part lime and 6 parts aggregate; when masonry cement ASTM C 91 is used the maximum air content shall be limited to 12 percent and performance equal to cement-lime mortar shall be verified. Verification of masonry cement performance shall be based on ASTM C 780 and ASTM C 1072. Mortar for prefaced concrete masonry unit wainscots shall contain aggregates with 100 percent passing the 2.36 mm sieve and 95 percent passing the 1.18 mm sieve. Cement shall have a low alkali content and be of one brand. Aggregates shall be from one source.

2.4.1 Mortar Admixtures

In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C 494, Type C.

2.4.2 Coloring

Mortar coloring shall be added to the mortar used for exposed masonry surfaces to produce a uniform color. Mortar for split face masonry unit shall match the split face color. Contractor shall have use mortar coloring as indicated on the Drawings. Mortar coloring shall not exceed 3 percent of the weight of cement for carbon black and ten percent of the weight of cement for all other pigments. Mortar coloring shall be chemically inert, of finely ground limeproof pigment, and furnished in accurately pre-measured and packaged units that can be added to a measured amount of cement.

2.5 GROUT

Grout shall conform to ASTM C 476. Cement used in grout shall have a low alkali content. Grout slump shall be between 200 and 250 mm. Grout shall be used subject to the limitations of Table III. Proportions shall not be changed and materials with different physical or chemical characteristics shall not be used in grout for the work unless additional evidence is furnished that the grout meets the specified requirements.

2.5.1 Grout Admixtures

(a) Minimum equivalent thickness shall equal net volume as determined in conformance with ASTM C 140 divided by the product of the actual length and height of the face shell of the unit in millimeters. Where walls are to receive plaster or be faced with brick, or otherwise form an assembly; the thickness of plaster or brick or other material in the assembly will be included in determining the equivalent thickness.
In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C 494, Type C.

2.5.2 Grout Barriers

Grout barriers for vertical cores shall consist of fine mesh wire, fiberglass, or expanded metal.

2.6 ANCHORS, TIES, AND BAR POSITIONERS

Anchors and ties shall be fabricated without drips or crimps and shall be zinc-coated in accordance with ASTM A 153/A 153M, Class B-2. Steel wire used for anchors and ties shall be fabricated from steel wire conforming to ASTM A 82. Anchors and ties shall be sized to provide a minimum of 16 mm mortar cover from either face.

2.6.1 Wire Mesh Ties

Wire mesh for tying 100 mm (4 inch) thick concrete masonry unit partitions to other intersecting masonry partitions shall be 13 mm (1/2 inch) mesh of minimum 16 gauge steel wire. Minimum lengths shall be not less than 300 mm.

2.6.2 Wall Ties

Wall ties shall be rectangular-shaped or Z-shaped fabricated of 5 mm (3/16 inch) diameter zinc-coated steel wire. Rectangular wall ties shall be no less than 100 mm (4 inches) wide. Wall ties may also be of a continuous type conforming to paragraph JOINT REINFORCEMENT. Adjustable type wall ties, if approved for use, shall consist of two essentially U-shaped elements fabricated of 5 mm (3/16 inch) diameter zinc-coated steel wire. Adjustable ties shall be of the double pintle to eye type and shall allow a maximum of 13 mm (1/2 inch) eccentricity between each element of the tie. Play between pintle and eye opening shall be not more than 2 mm (1/16 inch). The pintle and eye elements shall be formed so that both can be in the same plane.

2.6.3 Adjustable Anchors

Adjustable anchors shall be 5 mm (3/16 inch) diameter steel wire, triangular-shaped. Anchors attached to steel shall be 8 mm (5/16 inch) diameter steel bars placed to provide 2 mm (1/16 inch) play between flexible anchors and structural steel members. Spacers shall be welded to rods and columns. Equivalent welded-on steel anchor rods or shapes standard with the flexible-anchor manufacturer may be furnished when approved. Welds shall be cleaned and given one coat of zinc-rich touch up paint.

2.6.4 Bar Positioners

Bar positioners, used to prevent displacement of reinforcing bars during the course of construction, shall be factory fabricated from 9 gauge steel wire or equivalent, and coated with a hot-dip galvanized finish. Not more than one wire shall cross the cell.
2.7 JOINT REINFORCEMENT

Joint reinforcement shall be factory fabricated from steel wire conforming to ASTM A 82, welded construction. Tack welding will not be acceptable in reinforcement used for wall ties. Wire shall have zinc coating conforming to ASTM A 153/A 153M, Class B-2. All wires shall be a minimum of 9 gauge. Reinforcement shall be ladder type design, having one longitudinal wire in the mortar bed of each face shell for hollow units and one wire for solid units. Joint reinforcement shall be placed a minimum of 16 mm cover from either face. The distance between crosswires shall not exceed 400 mm (16 inches). Joint reinforcement for straight runs shall be furnished in flat sections not less than 3 m (10 feet) long. Joint reinforcement shall be provided with factory formed corners and intersections. If approved for use, joint reinforcement may be furnished with adjustable wall tie features.

2.8 REINFORCING STEEL BARS AND RODS

Reinforcing steel bars and rods shall conform to ASTM A 615/A 615M, Grade 60.

2.9 CONTROL JOINT KEYS

Control joint keys shall be a factory fabricated solid section of natural or synthetic rubber (or combination thereof) conforming to ASTM D 2000 or polyvinyl chloride conforming to ASTM D 2287. The material shall be resistant to oils and solvents. The control joint key shall be provided with a solid shear section not less than 16 mm (5/8 inch) thick and 10 mm (3/8 inch) thick flanges, with a tolerance of plus or minus 2 mm (1/16 inch). The control joint key shall fit neatly, but without forcing, in masonry unit jamb sash grooves. The control joint key shall be flexible at a temperature of minus 34 degrees C (minus 30 degrees F) after five hours exposure, and shall have a durometer hardness of not less than 70 when tested in accordance with ASTM D 2240.

2.10 EXPANSION-JOINT MATERIALS

Backer rod and sealant shall be adequate to accommodate joint compression equal to 50 percent of the width of the joint. The backer rod shall be compressible rod stock of polyethylene foam, polyurethane foam, butyl rubber foam, or other flexible, nonabsorptive material as recommended by the sealant manufacturer. Sealant shall conform to Section 07900 JOINT SEALING.

2.11 INSULATION

2.11.1 Rigid Board-Type Insulation

Rigid board-type insulation shall be extruded polystyrene, polyurethane, or polyisocyanurate. Polystyrene shall conform to ASTM C 578. Polyurethane or polyisocyanurate shall conform to ASTM C 1289, Type I, Class 2, faced with aluminum foil on both sides of the foam. The insulation shall be a standard product and shall be marked with not less than the manufacturer's trademark or name, the specification number, the permeance and R-values.

2.11.1.1 Insulation Thickness and Air Space

The cavity space shall allow for a maximum insulation thickness of 50 mm, and a minimum air space of 20 mm (3/4 inch).
2.11.1.2 Aged R-Value

The insulation shall provide a minimum aged R-value of 2 (11) for the overall thickness. The aged R-value shall be determined at 24 degrees C (75 degrees F) in accordance with the appropriate referenced specification. The stated R-value of the insulation shall be certified by an independent testing laboratory or certified by an independent Registered Professional Engineer if tests are conducted in the manufacturer's laboratory.

2.11.1.3 Recovered Material

Insulation shall contain the highest practicable percentage of recovered material derived from solid waste (but material reused in the manufacturing process cannot be counted toward the percentage of recovered material). Where two materials have the same price and performance, the one containing the higher recovered material content shall be provided. The polyurethane or polyisocyanurate foam shall have a minimum recovered material content of 9 percent by weight of the core material.

2.11.2 Insulation Adhesive

Insulation adhesive shall be specifically prepared to adhere the insulation to the masonry and, where applicable, to the thru-wall flashing. The adhesive shall not deleteriously affect the insulation, and shall have a record of satisfactory and proven performance for the conditions under which to be used.

2.12 FLASHING

Flashing shall be as specified in Section 07600 SHEET METALWORK, GENERAL.

2.13 WEEP HOLE VENTILATORS

Weephole ventilators shall be prefabricated aluminum grill type vents designed to prevent insect entry with maximum air entry. Ventilators shall be sized to match modular construction with a standard 10 mm (3/8 inch mortar joint.

PART 3 EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

3.1.1 Hot Weather Installation

The following precautions shall be taken if masonry is erected when the ambient air temperature is more than 37 degrees C in the shade and the relative humidity is less than 50 percent. All masonry materials shall be shaded from direct sunlight; mortar beds shall be spread no more than 1.2 m ahead of masonry; masonry units shall be set within one minute of spreading mortar; and after erection, masonry shall be protected from direct exposure to wind and sun for 48 hours.

3.1.2 Cold Weather Installation

Before erecting masonry when ambient temperature or mean daily air temperature falls below 4 degrees C, a written statement of proposed cold
weather construction procedures shall be submitted for approval. The following precautions shall be taken during all cold weather erection.

3.1.2.1 Preparation

Ice or snow formed on the masonry bed shall be thawed by the application of heat. Heat shall be applied carefully until the top surface of the masonry is dry to the touch. Sections of masonry deemed frozen and damaged shall be removed before continuing construction of those sections.

a. Air Temperature 4 to 0 degrees C. Sand or mixing water shall be heated to produce mortar temperatures between 4 degrees C and 49 degrees C.

b. Air Temperature 0 to minus 4 degrees C. Sand and mixing water shall be heated to produce mortar temperatures between 4 degrees C and 49 degrees C. Temperature of mortar on boards shall be maintained above freezing.

c. Air Temperature minus 4 to minus 7 degrees C. Sand and mixing water shall be heated to provide mortar temperatures between 4 degrees C and 49 degrees C. Temperature of mortar on boards shall be maintained above freezing. Sources of heat shall be used on both sides of walls under construction. Windbreaks shall be employed when wind is in excess of 24 km/hour.

d. Air Temperature minus 7 degrees C and below. Sand and mixing water shall be heated to provide mortar temperatures between 4 degrees C and 49 degrees C. Enclosure and auxiliary heat shall be provided to maintain air temperature above 0 degrees C. Temperature of units when laid shall not be less than minus 7 degrees C.

3.1.2.2 Completed Masonry and Masonry Not Being Worked On

a. Mean daily air temperature 4 degrees C to 0 degrees C. Masonry shall be protected from rain or snow for 24 hours by covering with weather-resistant membrane.

b. Mean daily air temperature 0 degrees C to minus 4 degrees C. Masonry shall be completely covered with weather-resistant membrane for 24 hours.

c. Mean Daily Air Temperature minus 4 degrees C to minus 7 degrees C. Masonry shall be completely covered with insulating blankets or equally protected for 24 hours.

d. Mean Daily Temperature minus 7 degrees C and Below. Masonry temperature shall be maintained above 0 degrees C for 24 hours by enclosure and supplementary heat, by electric heating blankets, infrared heat lamps, or other approved methods.

3.2 LAYING MASONRY UNITS

Masonry units shall be laid in running bond pattern. Facing courses shall be level with back-up courses, unless the use of adjustable ties has been approved in which case the tolerances shall be plus or minus 13 mm. Each
unit shall be adjusted to its final position while mortar is still soft and plastic. Units that have been disturbed after the mortar has stiffened shall be removed, cleaned, and relaid with fresh mortar. Air spaces, cavities, chases, expansion joints, and spaces to be grouted shall be kept free from mortar and other debris. Units used in exposed masonry surfaces shall be selected from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work. Vertical joints shall be kept plumb. Units being laid and surfaces to receive units shall be free of water film and frost. Solid units shall be laid in a nonfurrowed full bed of mortar. Mortar for veneer wythes shall be beveled and sloped toward the center of the wythe from the cavity side. Units shall be shoved into place so that the vertical joints are tight. Vertical joints of brick and the vertical face shells of concrete masonry units, except where indicated at control, expansion, and isolation joints, shall be completely filled with mortar. Mortar will be permitted to protrude up to 13 mm into the space or cells to be grouted. Means shall be provided to prevent mortar from dropping into the space below. In double wythe construction, the inner wythe may be brought up not more than 400 mm ahead of the outer wythe. Collar joints shall be filled with mortar or grout during the laying of the facing wythe, and filling shall not lag the laying of the facing wythe by more than 200 mm.

3.2.1 Surface Preparation

Surfaces upon which masonry is placed shall be cleaned of laitance, dust, dirt, oil, organic matter, or other foreign materials and shall be slightly roughened to provide a surface texture with a depth of at least 3 mm. Sandblasting shall be used, if necessary, to remove laitance from pores and to expose the aggregate.

3.2.2 Forms and Shores

Forms and shores shall be sufficiently rigid to prevent deflections which may result in cracking or other damage to supported masonry and sufficiently tight to prevent leakage of mortar and grout. Supporting forms and shores shall not be removed in less than 10 days.

3.2.3 Concrete Masonry Units

Units in piers, pilasters, columns, starting courses on footings, solid foundation walls, lintels, and beams, and where cells are to be filled with grout shall be full bedded in mortar under both face shells and webs. Other units shall be full bedded under both face shells. Head joints shall be filled solidly with mortar for a distance in from the face of the unit not less than the thickness of the face shell. Foundation walls below grade shall be grouted solid. Jamb units shall be of the shapes and sizes to conform with wall units. Solid units may be incorporated in the masonry work where necessary to fill out at corners, gable slopes, and elsewhere as approved. Double walls shall be stiffened at wall-mounted plumbing fixtures by use of strap anchors, two above each fixture and two below each fixture, located to avoid pipe runs, and extending from center to center of the double wall. Walls and partitions shall be adequately reinforced for support of wall-hung plumbing fixtures when chair carriers are not specified.

3.2.4 Clay Brick Units
Brick facing shall be laid with the better face exposed. Brick shall be laid in running bond with each course bonded at corners, unless otherwise indicated. Molded brick shall be laid with the frog side down. Brick that is cored, recessed, or has other deformations may be used in sills, treads, soldier courses, except where deformations will be exposed to view.

3.2.4.1 Wetting of Units

Wetting of clay brick brick units having an initial rate of absorption of more than 0.155 gm per minute per square cm (1 gm per minute per square inch) of bed surface shall be in conformance with ASTM C 67. The method of wetting shall ensure that each unit is nearly saturated but surface dry when laid.

3.2.4.2 Solid Units

Bed, head, and collar joints shall be completely filled with mortar.

3.2.5 Tolerances

Masonry shall be laid plumb, true to line, with courses level. Bond pattern shall be kept plumb throughout. Corners shall be square unless noted otherwise. Except for walls constructed of prefaced concrete masonry units, masonry shall be laid within the following tolerances (plus or minus unless otherwise noted):

<table>
<thead>
<tr>
<th>TOLERANCES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation from the plumb in the lines and surfaces of columns, walls and arises</td>
<td></td>
</tr>
<tr>
<td>In adjacent masonry units</td>
<td>3 mm</td>
</tr>
<tr>
<td>In 3 m</td>
<td>6 mm</td>
</tr>
<tr>
<td>In 6 m</td>
<td>10 mm</td>
</tr>
<tr>
<td>In 12 m or more</td>
<td>13 mm</td>
</tr>
<tr>
<td>Variations from the plumb for external corners, expansion joints, and other conspicuous lines</td>
<td></td>
</tr>
<tr>
<td>In 6 m</td>
<td>6 mm</td>
</tr>
<tr>
<td>In 12 m or more</td>
<td>13 mm</td>
</tr>
<tr>
<td>Variations from the level for exposed lintels, sills, parapets, horizontal grooves, and other conspicuous lines</td>
<td></td>
</tr>
<tr>
<td>In 6 m</td>
<td>6 mm</td>
</tr>
<tr>
<td>In 12 m or more</td>
<td>13 mm</td>
</tr>
<tr>
<td>Variation from level for bed joints and top surfaces of bearing walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.6 Cutting and Fitting

Full units of the proper size shall be used wherever possible, in lieu of cut units. Cutting and fitting, including that required to accommodate the work of others, shall be done by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Wet cut units, before being placed in the work, shall be dried to the same surface-dry appearance as uncut units being laid in the wall. Cut edges shall be clean, true and sharp. Openings in the masonry shall be made carefully so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Reinforced masonry lintels shall be provided above openings over 300 mm wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used.

3.2.7 Jointing

Joints shall be tooled when the mortar is thumbprint hard. Horizontal joints shall be tooled last. Joints shall be brushed to remove all loose and excess mortar. Mortar joints shall be finished as follows:

3.2.7.1 Flush Joints

Joints in concealed masonry surfaces and joints at electrical outlet boxes in wet areas shall be flush cut. Flush cut joints shall be made by cutting off the mortar flush with the face of the wall. Joints in unparged masonry walls below grade shall be pointed tight. Flush joints for architectural units, such as fluted units, shall completely fill both the head and bed joints.

3.2.7.2 Tooled Joints

Joints in exposed exterior and interior masonry surfaces shall be tooled slightly concave. Joints shall be tooled with a jointer slightly larger than the joint width so that complete contact is made along the edges of the unit. Tooling shall be performed so that the mortar is compressed and the joint surface is sealed. Jointer of sufficient length shall be used to obtain a straight and true mortar joint.
3.2.7.3 Door and Window Frame Joints

On the exposed interior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 10 mm. On the exterior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 10 mm.

3.2.8 Joint Widths

Joint widths shall be as follows:

3.2.8.1 Concrete Masonry Units

Concrete masonry units shall have 10 mm (3/8 inch) joints, except for prefaced concrete masonry units.

3.2.8.2 Brick

Brick joint widths shall be the difference between the actual and nominal dimensions of the brick in either height or length. Brick expansion joint widths shall be as shown.

3.2.9 Embedded Items

Spaces around built-in items shall be filled with mortar. Openings around flush-mount electrical outlet boxes in wet locations shall be pointed with mortar. Anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in shall be embedded as the masonry work progresses. Anchors, ties and joint reinforcement shall be fully embedded in the mortar. Cells receiving anchor bolts and cells of the first course below bearing plates shall be filled with grout.

3.2.10 Unfinished Work

Unfinished work shall be stepped back for joining with new work. Tooothing may be resorted to only when specifically approved. Loose mortar shall be removed and the exposed joints shall be thoroughly cleaned before laying new work.

3.2.11 Masonry Wall Intersections

Each course shall be masonry bonded at corners and elsewhere as shown. Masonry walls shall be anchored or tied together at corners and intersections with bond beam reinforcement and prefabricated corner or tee pieces of joint reinforcement as shown.

3.2.12 Partitions

Partitions shall be continuous from floor to underside of floor or roof deck where shown. Openings in firewalls around joists or other structural members shall be filled as indicated or approved. Where suspended ceilings on both sides of partitions are indicated, the partitions other than those shown to be continuous may be stopped approximately 100 mm (4 inches) above the ceiling level. An isolation joint shall be placed in the intersection between partitions and structural or exterior walls as shown. Interior partitions having 100 mm (4 inch) nominal thick units shall be tied to intersecting partitions of 100 mm (4 inch) units, 125 mm into partitions.
of 150 mm (6 inch) units, and 175 into partitions of 200 mm (8 inch) or thicker units. Cells within vertical plane of ties shall be filled solid with grout for full height of partition or solid masonry units may be used. Interior partitions having masonry walls over 100 mm (4 inches) thick shall be tied together with joint reinforcement. Partitions containing joint reinforcement shall be provided with prefabricated pieces at corners and intersections or partitions.

3.3 ANCHORED VENEER CONSTRUCTION

The inner and outer wythes shall be completely separated by a continuous airspace as shown on the drawings. Both the inner and the outer wythes shall be laid up together except when adjustable joint reinforcement assemblies are approved for use. When both wythes are not brought up together, through-wall flashings shall be protected from damage until they are fully enclosed in the wall. The airspace between the wythes shall be kept clear and free of mortar droppings by temporary wood strips laid on the wall ties and carefully lifted out before placing the next row of ties. A coarse gravel or drainage material shall be placed behind the weep holes in the cavity to a minimum depth of 100 mm of coarse aggregate or 250 mm of drainage material to keep mortar droppings from plugging the weep holes.

3.4 WEEP HOLES

Weep holes shall be provided not more than 600 mm on centers in mortar joints of the exterior wythe above wall flashing, over foundations, bond beams, and any other horizontal interruptions of the cavity. Weep holes shall be constructed using weep hole ventilators. Other approved methods may be used for providing weep holes. Weep holes shall be kept free of mortar and other obstructions.

3.5 COMPOSITE WALLS

Masonry wythes shall be tied together with joint reinforcement or with unit wall ties. Facing shall be anchored to concrete backing with wire dovetail anchors set in slots built in the face of the concrete as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. The facing wythe shall be anchored or tied to the backup at a maximum spacing of 400 mm (16 inches) on center vertically and 600 mm (24 inches) on center horizontally. Unit ties shall be spaced not over 600 mm (24 inches) on centers horizontally, in courses not over 400 mm (16 inches) apart vertically, staggered in alternate courses. Ties shall be laid not closer than 16 mm to either masonry face. Ties shall not extend through control joints. Collar joints between masonry facing and masonry backup shall be filled solidly with grout.

3.6 MORTAR

Mortar shall be mixed in a mechanically operated mortar mixer for at least 3 minutes, but not more than 5 minutes. Measurement of ingredients for mortar shall be by volume. Ingredients not in containers, such as sand, shall be accurately measured by the use of measuring boxes. Water shall be mixed with the dry ingredients in sufficient amount to provide a workable mixture which will adhere to the vertical surfaces of masonry units. Mortar that has stiffened because of loss of water through evaporation shall be retempered by adding water to restore the proper consistency and
workability. Mortar that has reached its initial set or that has not been used within 2-1/2 hours after mixing shall be discarded.

3.7 REINFORCING STEEL

Reinforcement shall be cleaned of loose, flaky rust, scale, grease, mortar, grout, or other coating which might destroy or reduce its bond prior to placing grout. Bars with kinks or bends not shown on the drawings shall not be used. Reinforcement shall be placed prior to grouting. Unless otherwise indicated, vertical wall reinforcement shall extend to within 50 mm of tops of walls.

3.7.1 Positioning Bars

Vertical bars shall be accurately placed within the cells at the positions indicated on the drawings. A minimum clearance of 13 mm shall be maintained between the bars and masonry units. Minimum clearance between parallel bars shall be one diameter of the reinforcement. Vertical reinforcing may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the reinforcement. Column and pilaster ties shall be wired in position around the vertical steel. Ties shall be in contact with the vertical reinforcement and shall not be placed in horizontal bed joints.

3.7.2 Splices

Bars shall be lapped a minimum of 48 diameters of the reinforcement. Welded or mechanical connections shall develop at least 125 percent of the specified yield strength of the reinforcement.

3.8 JOINT REINFORCEMENT

Joint reinforcement shall be installed at 400 mm (16 inches) on center or as indicated. Reinforcement shall be lapped not less than 150 mm. Prefabricated sections shall be installed at corners and wall intersections. The longitudinal wires of joint reinforcement shall be placed to provide not less than 16 mm cover to either face of the unit.

3.9 PLACING GROUT

Cells containing reinforcing bars shall be filled with grout. Hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces shall be filled solid with grout. Cells under lintel bearings on each side of openings shall be filled solid with grout for full height of openings. Walls below grade, lintels, and bond beams shall be filled solid with grout. Units other than open end units may require grouting each course to preclude voids in the units. Grout not in place within 1-1/2 hours after water is first added to the batch shall be discarded. Sufficient time shall be allowed between grout lifts to preclude displacement or cracking of face shells of masonry units. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, the wall shall be torn down and rebuilt.

3.9.1 Vertical Grout Barriers for Fully Grouted Walls
Grout barriers shall be provided not more than 10 m apart, or as required, to limit the horizontal flow of grout for each pour.

3.9.2 Horizontal Grout Barriers

Grout barriers shall be embedded in mortar below cells of hollow units receiving grout.

3.9.3 Grout Holes and Cleanouts

3.9.3.1 Grout Holes

Grouting holes shall be provided in slabs, spandrel beams, and other in-place overhead construction. Holes shall be located over vertical reinforcing bars or as required to facilitate grout fill in bond beams. Additional openings spaced not more than 400 mm (16 inches) on centers shall be provided where grouting of all hollow unit masonry is indicated. Openings shall not be less than 100 mm in diameter or 75 by 100 mm in horizontal dimensions. Upon completion of grouting operations, grouting holes shall be plugged and finished to match surrounding surfaces.

3.9.3.2 Cleanouts for Hollow Unit Masonry Construction

Cleanout holes shall be provided at the bottom of every pour in cores containing vertical reinforcement when the height of the grout pour exceeds 1.5 m. Where all cells are to be grouted, cleanout courses shall be constructed using bond beam units in an inverted position to permit cleaning of all cells. Cleanout holes shall be provided at a maximum spacing of 800 mm (32 inches) where all cells are to be filled with grout. A new series of cleanouts shall be established if grouting operations are stopped for more than 4 hours. Cleanouts shall not be less than 75 by 100 mm openings cut from one face shell. Manufacturer's standard cutout units may be used at the Contractor's option. Cleanout holes shall not be closed until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, cleanout holes shall be closed in an approved manner to match surrounding masonry.

3.9.3.3 Cleanouts for Solid Unit Masonry Construction

Cleanouts for construction of walls consisting of a grout filled cavity between solid masonry wythes shall be provided at the bottom of every pour by omitting every other masonry unit from one wythe. A new series of cleanouts shall be established if grouting operations are stopped for more than 4 hours. Cleanout holes shall not be plugged until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, cleanout holes shall be closed in an approved manner to match surrounding masonry.

3.9.4 Grouting Equipment

3.9.4.1 Grout Pumps

Pumping through aluminum tubes will not be permitted. Pumps shall be operated to produce a continuous stream of grout without air pockets, segregation, or contamination. Upon completion of each day's pumping, waste
materials and debris shall be removed from the equipment, and disposed of outside the masonry.

3.9.4.2 Vibrators

Internal vibrators shall maintain a speed of not less than 5,000 impulses per minute when submerged in the grout. At least one spare vibrator shall be maintained at the site at all times. Vibrators shall be applied at uniformly spaced points not further apart than the visible effectiveness of the machine. Duration of vibration shall be limited to time necessary to produce satisfactory consolidation without causing segregation.

3.9.5 Grout Placement

Masonry shall be laid to the top of a pour before placing grout. Grout shall not be placed in two-wythe solid unit masonry cavity until mortar joints have set for at least 3 days during hot weather and 5 days during cold damp weather. Grout shall not be placed in hollow unit masonry until mortar joints have set for at least 24 hours. Grout shall be placed using a hand bucket, concrete hopper, or grout pump to completely fill the grout spaces without segregation of the aggregates. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. The height of grout pours and type of grout used shall be limited by the dimensions of grout spaces as indicated in Table III. Low-lift grout methods may be used on pours up to and including 1.5 m in height. High-lift grout methods shall be used on pours exceeding 1.5 m in height.

3.9.5.1 Low-Lift Method

Grout shall be placed at a rate that will not cause displacement of the masonry due to hydrostatic pressure of the grout. Mortar protruding more than 13 mm into the grout space shall be removed before beginning the grouting operation. Grout pours 300 mm or less in height shall be consolidated by mechanical vibration or by puddling. Grout pours over 300 mm in height shall be consolidated by mechanical vibration and reconsolidated by mechanical vibration after initial water loss and settlement has occurred. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. Low-lift grout shall be used subject to the limitations of Table III.

3.9.5.2 High-Lift Method

Mortar droppings shall be cleaned from the bottom of the grout space and from reinforcing steel. Mortar protruding more than 6 mm into the grout space shall be removed by dislodging the projections with a rod or stick as the work progresses. Reinforcing, bolts, and embedded connections shall be rigidly held in position before grouting is started. CMU units shall not be pre-wetted. Grout, from the mixer to the point of deposit in the grout space shall be placed as rapidly as practical by pumping and placing methods which will prevent segregation of the mix and cause a minimum of grout splatter on reinforcing and masonry surfaces not being immediately encased in the grout lift. The individual lifts of grout shall be limited to 1.2 m in height. The first lift of grout shall be placed to a uniform height within the pour section and vibrated thoroughly to fill all voids. This first vibration shall follow immediately behind the pouring of the grout using an approved mechanical vibrator. After a waiting period sufficient to permit the grout to become plastic, but before it has taken any set, the
succeeding lift shall be poured and vibrated 300 to 450 mm into the preceding lift. If the placing of the succeeding lift is going to be delayed beyond the period of workability of the preceding, each lift shall be reconsolidated by reworking with a second vibrator as soon as the grout has taken its settlement shrinkage. The waiting, pouring, and reconsolidation steps shall be repeated until the top of the pour is reached. The top lift shall be reconsolidated after the required waiting period. The high-lift grouting of any section of wall between vertical grout barriers shall be completed to the top of a pour in one working day unless a new series of cleanout holes is established and the resulting horizontal construction joint cleaned. High-lift grout shall be used subject to the limitations in Table III.

TABLE III

POUR HEIGHT AND TYPE OF GROUT FOR VARIOUS GROUT SPACE DIMENSIONS

<table>
<thead>
<tr>
<th>Maximum Grout Pour Height (m) (4)</th>
<th>Grout Type</th>
<th>Grouting Procedure</th>
<th>Multiwythe Masonry (3)</th>
<th>Hollow-unit Masonry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>Fine</td>
<td>Low Lift</td>
<td>20</td>
<td>40 x 50</td>
</tr>
<tr>
<td>1.5</td>
<td>Fine</td>
<td>Low Lift</td>
<td>50</td>
<td>50 x 75</td>
</tr>
<tr>
<td>2.4</td>
<td>Fine</td>
<td>High Lift</td>
<td>50</td>
<td>65 x 75</td>
</tr>
<tr>
<td>3.6</td>
<td>Fine</td>
<td>High Lift</td>
<td>65</td>
<td>75 x 75</td>
</tr>
<tr>
<td>7.3</td>
<td>Fine</td>
<td>High Lift</td>
<td>75</td>
<td>75 x 75</td>
</tr>
<tr>
<td>0.3</td>
<td>Coarse</td>
<td>Low Lift</td>
<td>40</td>
<td>40 x 75</td>
</tr>
<tr>
<td>1.5</td>
<td>Coarse</td>
<td>Low Lift</td>
<td>50</td>
<td>65 x 75</td>
</tr>
<tr>
<td>2.4</td>
<td>Coarse</td>
<td>High Lift</td>
<td>50</td>
<td>75 x 75</td>
</tr>
<tr>
<td>3.6</td>
<td>Coarse</td>
<td>High Lift</td>
<td>65</td>
<td>75 x 75</td>
</tr>
<tr>
<td>7.3</td>
<td>Coarse</td>
<td>High Lift</td>
<td>75</td>
<td>75 x 100</td>
</tr>
</tbody>
</table>

Notes:

(1) The actual grout space or cell dimension must be larger than the sum of the following items:
 a) The required minimum dimensions of total clear areas given in the table above;
 b) The width of any mortar projections within the space;
 c) The horizontal projections of the diameters of the horizontal reinforcing bars within a cross section of the grout space or cell.

(2) The minimum dimensions of the total clear areas shall be made up of one or more open areas, with at least one area being 20 mm or greater in width.

(3) For grouting spaces between masonry wythes.

(4) Where only cells of hollow masonry units containing reinforcement are grouted, the maximum height of the pour shall not exceed the distance between horizontal bond beams.

3.10 BOND BEAMS
Bond beams shall be filled with grout and reinforced as indicated on the drawings. Grout barriers shall be installed under bond beam units to retain the grout as required. Reinforcement shall be continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated on the drawings. Where splices are required for continuity, reinforcement shall be lapped 48 bar diameters. A minimum clearance of 13 mm shall be maintained between reinforcement and interior faces of units.

3.11 CONTROL JOINTS

Control joints shall be provided as indicated and shall be constructed by using mortar to fill the head joint in accordance with the details shown on the drawings. Sash jamb units shall have a 19 by 19 mm (3/4 by 3/4 inch) groove near the center at end of each unit. The vertical mortar joint at control joint locations shall be continuous, including through all bond beams. This shall be accomplished by utilizing half blocks in alternating courses on each side of the joint. The control joint key shall be interrupted in courses containing continuous bond beam steel. In single wythe exterior masonry walls, the exterior control joints shall be raked to a depth of 20 mm; backer rod and sealant shall be installed in accordance with Section 07900 JOINT SEALING. Exposed interior control joints shall be raked to a depth of 6 mm. Concealed control joints shall be flush cut.

3.12 BRICK EXPANSION JOINTS AND CONCRETE MASONRY VENEER JOINTS

Brick expansion joints and concrete masonry veneer joints shall be provided and constructed as shown on the drawings. Joints shall be kept free of mortar and other debris.

3.13 SHELF ANGLES

Shelf angles shall be adjusted as required to keep the masonry level and at the proper elevation. Shelf angles shall be galvanized. Shelf angles shall be provided in sections not longer than 3 m and installed with a 6 mm gap between sections. Shelf angles shall be mitered and welded at building corners with each angle not shorter than 1.2 m, unless limited by wall configuration.

3.14 LINTELS

3.14.1 Masonry Lintels

Masonry lintels shall be constructed with lintel units filled solid with grout in all courses and reinforced with a minimum of two No. 4 bars in the bottom course unless otherwise indicated on the drawings. Lintel reinforcement shall extend beyond each side of masonry opening 40 bar diameters or 600 mm, whichever is greater. Reinforcing bars shall be supported in place prior to grouting and shall be located 15 mm above the bottom inside surface of the lintel unit.

3.14.2 Steel Lintels

Steel lintels shall be as shown on the drawings. Lintels shall be set in a full bed of mortar with faces plumb and true. Steel lintels shall have a minimum bearing length of 200 mm (8 inches) unless otherwise indicated on the drawings.

SECTION 04200 Page 22
3.15 SILLS AND COPINGS

Sills and copings shall be set in a full bed of mortar with faces plumb and true.

3.16 ANCHORAGE TO CONCRETE AND STRUCTURAL STEEL

3.16.1 Anchorage to Concrete

Anchorage of masonry to the face of concrete columns, beams, or walls shall be with dovetail anchors spaced not over 400 mm (16 inches) on centers vertically and 600 mm (24 inches) on center horizontally.

3.16.2 Anchorage to Structural Steel

Masonry shall be anchored to vertical structural steel framing with adjustable steel wire anchors spaced not over 400 mm (16 inches) on centers vertically, and if applicable, not over 600 mm (24 inches) on centers horizontally.

3.17 INSULATION

Anchored veneer walls shall be insulated, where shown, by installing board-type insulation on the cavity side of the inner wythe. Board type insulation shall be applied directly to the masonry or thru-wall flashing with adhesive. Insulation shall be neatly fitted between obstructions without impaling of insulation on ties or anchors. The insulation shall be applied in parallel courses with vertical joints breaking midway over the course below and shall be applied in moderate contact with adjoining units without forcing, and shall be cut to fit neatly against adjoining surfaces.

3.18 POINTING AND CLEANING

After mortar joints have attained their initial set, but prior to hardening, mortar and grout daubs or splashings shall be completely removed from masonry-unit surfaces that will be exposed or painted. Before completion of the work, defects in joints of masonry to be exposed or painted shall be raked out as necessary, filled with mortar, and tooled to match existing joints. Immediately after grout work is completed, scum and stains which have percolated through the masonry work shall be removed using a high pressure stream of water and a stiff bristled brush. Masonry surfaces shall not be cleaned, other than removing excess surface mortar, until mortar in joints has hardened. Masonry surfaces shall be left clean, free of mortar daubs, dirt, stain, and discoloration, including scum from cleaning operations, and with tight mortar joints throughout. Metal tools and metal brushes shall not be used for cleaning.

3.18.1 Concrete Masonry Unit and Concrete Brick Surfaces

Exposed concrete masonry unit and concrete brick surfaces shall be dry-brushed at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes.

3.18.2 Clay Brick Surfaces

Exposed clay brick masonry surfaces shall be cleaned as necessary to obtain surfaces free of stain, dirt, mortar and grout daubs, efflorescence, and
discoloration or scum from cleaning operations. After cleaning, the sample panel of similar material shall be examined for discoloration or stain as a result of cleaning. If the sample panel is discolored or stained, the method of cleaning shall be changed to assure that the masonry surfaces in the structure will not be adversely affected. The exposed masonry surfaces shall be water-soaked and then cleaned with a solution proportioned 30 milliliters trisodium phosphate and 30 milliliters laundry detergent to 1 liter of water or cleaned with a proprietary masonry cleaning agent specifically recommended for the color and texture by the clay products manufacturer. The solution shall be applied with stiff fiber brushes, followed immediately by thorough rinsing with clean water. Proprietary cleaning agents shall be used in conformance with the cleaning product manufacturer's printed recommendations. Efflorescence shall be removed in conformance with the brick manufacturer's recommendations.

3.19 BEARING PLATES

Bearing plates for beams, joists, joist girders and similar structural members shall be set to the proper line and elevation with damp-pack bedding mortar, except where non-shrink grout is indicated. Bedding mortar and non-shrink grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE.

3.20 PROTECTION

Facing materials shall be protected against staining. Top of walls shall be covered with non-staining waterproof covering or membrane when work is not in progress. Covering of the top of the unfinished walls shall continue until the wall is waterproofed with a complete roof or parapet system. Covering shall extend a minimum of 600 mm down on each side of the wall and shall be held securely in place. Before starting or resuming, top surface of masonry in place shall be cleaned of loose mortar and foreign material.

3.21 TEST REPORTS

3.21.1 Field Testing of Mortar

At least three specimens of mortar shall be taken each day. A layer of mortar 13 to 16 mm thick shall be spread on the masonry units and allowed to stand for one minute. The specimens shall then be prepared and tested for compressive strength in accordance with ASTM C 780.

3.21.2 Field Testing of Grout

Field sampling and testing of grout shall be in accordance with the applicable provisions of ASTM C 1019. A minimum of three specimens of grout per day shall be sampled and tested. Each specimen shall have a minimum ultimate compressive strength of 13.8 MPa at 28 days.
3.21.3 Efflorescence Test

Brick which will be exposed to weathering shall be tested for efflorescence. Tests shall be scheduled far enough in advance of starting masonry work to permit retesting if necessary. Sampling and testing shall conform to the applicable provisions of ASTM C 67. Units meeting the definition of "effloresced" will be subject to rejection.

-- End Of Section --
SECTION 05120

STRUCTURAL STEEL

09/97

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AISC FCD (1995a) Quality Certification Program Description

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 6/A 6M (1998a) General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

ASTM A 53 (1999) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 307 (1997) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength

ASTM A 325M (1997) High-Strength Bolts for Structural Steel Joints (Metric)

ASTM A 490M (1993) High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric)

ASTM A 500 (1999) Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
ASTM A 514/A 514M (1994a) High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding

ASTM A 563M (1997) Carbon and Alloy Steel Nuts (Metric)

ASTM A 709/A 709M (1997a) Carbon and High-Strength Low-Alloy Structural Steel Shapes, Plates, and Bars and Quenched-and-Tempered Alloy Structural Steel Plates for Bridges

ASTM F 844 (1998) Washers, Steel, Plain (Flat), Unhardened for General Use

ASTM F 959 (1999) Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B46.1 (1995) Surface Texture (Surface Roughness, Waviness, and Lay)

AMERICAN WELDING SOCIETY (AWS)

STEEL STRUCTURES PAINTING COUNCIL (SSPC)

SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (without Lead and Chromate Pigments)

1.2 GENERAL REQUIREMENTS

Structural steel fabrication and erection shall be performed by an organization experienced in structural steel work of equivalent magnitude. The Contractor shall be responsible for correctness of detailing, fabrication, and for the correct fitting of structural members. Connections, for any part of the structure not shown on the contract drawings, shall be considered simple shear connections and shall be designed and detailed in accordance with pertinent provisions of AISC ASD Manual and AISC LRFD Vol II. Substitution of sections or modification of connection details will not be accepted unless approved by the Contracting Officer. AISC ASD Manual and AISC ASD/LRFD Vol II shall govern the work. Welding shall be in accordance with AWS D1.1. High-strength bolting shall be in accordance with AISC ASD Manual.

1.3 SUBMITTALS
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Structural Steel System G, RE

Structural Connections G, RE

Shop and erection details including members (with their connections) not shown on the contract drawings. Welds shall be indicated by standard welding symbols in accordance with AWS A2.4.

SD-03 Product Data

Erection

Prior to erection, erection plan of the structural steel framing describing all necessary temporary supports, including the sequence of installation and removal.

Welding; G, RE

WPS not prequalified.

Welding

WPS prequalified.

SD-04 Samples

High Strength Bolts and Nuts

Carbon Steel Bolts and Nuts

Nuts Dimensional Style

Washers

Random samples of bolts, nuts, and washers as delivered to the job site if requested, taken in the presence of the Contracting Officer and provided to the Contracting Officer for testing to establish compliance with specified requirements.

SD-07 Certificates

Mill Test Reports

Certified copies of mill test reports for structural steel, structural bolts, nuts, washers and other related structural steel items, including attesting that the structural steel furnished contains no less than 25 percent recycled scrap steel and meets the requirements specified, prior to the installation.

Welder Qualifications
Certified copies of welder qualifications test records showing qualification in accordance with AWS D1.1.

Welding Inspector

Welding Inspector qualifications.

Fabrication

A copy of the AISC certificate indicating that the fabrication plant meets the specified structural steelwork category.

1.4 STORAGE

Material shall be stored out of contact with the ground in such manner and location as will minimize deterioration.

1.5 WELDING INSPECTOR

Welding Inspector qualifications shall be in accordance with AWS D1.1

PART 2 PRODUCTS

2.1 STRUCTURAL STEEL

2.1.1 Carbon Grade Steel

Carbon grade steel shall conform to ASTM A 36/A 36M or ASTM A 529/A 529M or ASTM A572 as required.

2.1.2 Quenched and Tempered Alloy Steel

Tempered alloy steel shall conform to ASTM A 514/A 514M.

2.1.3 Carbon and High-Strength Low-Alloy Steel

Carbon and high-strength low-alloy steel shall conform to ASTM A 709/A 709M.

2.1.4 Structural Shapes for Use in Building Framing

Wide flange shapes in accordance with ASTM A572 and ASTM A36 shall be used where indicated on the drawings.

2.2 STRUCTURAL TUBING

Structural tubing shall conform to ASTM A 500, Grade B.

2.3 STEEL PIPE

Steel pipe shall conform to ASTM A 53, Type E, Grade B.

2.4 HIGH STRENGTH BOLTS AND NUTS

High strength bolts shall conform to ASTM A 325M, Type 1 with carbon steel nuts conforming to ASTM A 563M, Grade C.
2.5 CARBON STEEL BOLTS AND NUTS

Carbon steel bolts shall conform to ASTM A 307, Grade A with carbon steel nuts conforming to ASTM A 563M, Grade A.

2.6 NUTS DIMENSIONAL STYLE

Carbon steel nuts shall be Hex style when used with ASTM A 307 bolts or Heavy Hex style when used with ASTM A 325M or ASTM A 490M bolts.

2.7 WASHERS

Plain washers shall conform to ASTM F 844. Other types, when required, shall conform to ASTM F 959.

2.8 PAINT

Paint shall conform to SSPC Paint 25.

PART 3 EXECUTION

3.1 FABRICATION

Fabrication shall be in accordance with the applicable provisions of AISC ASD Manual. Fabrication and assembly shall be done in the shop to the greatest extent possible. The fabricating plant shall be certified under the AISC FCD for Category "Complex Steel Building Structures" for structural steelwork. Compression joints depending on contact bearing shall have a surface roughness not in excess of 13 micrometer as determined by ASME B46.1, and ends shall be square within the tolerances for milled ends specified in ASTM A 6/A 6M. Structural steelwork, except surfaces of steel to be encased in concrete, surfaces to be field welded, surfaces to be fireproofed, and contact surfaces of friction-type high-strength bolted connections shall be prepared for painting in accordance with endorsement "P" of AISC FCD and primed with the specified paint.

3.2 ERECTION

a: Erection of structural steel, except as indicated in item b. below, shall be in accordance with the applicable provisions of AISC ASD Manual. Erection plan shall be reviewed, stamped and sealed by a structural engineer licensed by the state in which the project is located.

b. For low-rise structural steel buildings (18 m tall or less and a maximum of 2 stories), the erection plan shall conform to AISC Pub No. S303 and the structure shall be erected in accordance with AISC Design Guide No. 10.

3.2.1 Structural Connections

Anchor bolts and other connections between the structural steel and foundations shall be provided and shall be properly located and built into connecting work. Field welded structural connections shall be completed before load is applied.
3.2.2 Base Plates and Bearing Plates

Column base plates for columns and bearing plates for beams, girders, and similar members shall be provided. Base plates and bearing plates shall be provided with full bearing after the supported members have been plumbed and properly positioned, but prior to placing superimposed loads. Separate setting plates under column base plates will not be permitted. The area under the plate shall be damp-packed solidly with bedding mortar, except where nonshrink grout is indicated on the drawings. Bedding mortar and grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE.

3.2.3 Field Priming

After erection, the field bolt heads and nuts, field welds, and any abrasions in the shop coat shall be cleaned and primed with paint of the same quality as that used for the shop coat.

3.3 WELDING

The contractor shall develop and submit the Welding Procedure Specifications (WPS) for all welding, including welding done using prequalified procedures. Prequalified procedures may be submitted for information only; however, procedures that are not prequalified shall be submitted for approval.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

STEEL JOIST INSTITUTE (SJI)

SJI Specs & Tables (1994) Standard Specifications Load Tables and Weight Tables for Steel Joists and Joist Girders

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Steel Joists; G, RE

Detail drawings shall include fabrication and erection details, specifications for shop painting, and identification markings of joists.

SD-07 Certificates

Steel Joists

Certificates stating that the steel joists have been designed and manufactured in accordance with SJI Specs & Tables. Complete engineering design computations may be submitted in lieu of the certification.

1.3 DESCRIPTION

Steel joists are designated on the drawings in accordance with the standard designations of the Steel Joist Institute. Joists of other standard designations or joists with properties other than those shown may be substituted for the joists designated provided the structural properties are equal to or greater than those of the joists shown and provided all other specified requirements are met.
1.4 DELIVERY AND STORAGE

Materials shall be delivered to the site in undamaged condition and stored off the ground in a well drained location, protected from damage, and easily accessible for inspection and handling.

PART 2 PRODUCTS

2.1 OPEN WEB STEEL JOISTS

Open web steel joists shall conform to SJI Specs & Tables, K-Series. Joists shall be designed to support the loads given in the standard load tables of SJI Specs & Tables.

2.2 ACCESSORIES AND FITTINGS

Accessories and fittings, including end supports and bridging, shall be in accordance with the standard specifications under which the members were designed.

2.3 SHOP PAINTING

Joists and accessories shall be shop painted with a rust-inhibiting primer paint. For joists which will be finish painted under Section 09900 PAINTING, GENERAL, the primer paint shall be limited to a primer which is compatible with the specified finish paint.

PART 3 EXECUTION

3.1 ERECTION

Installation of joists shall be in accordance with the standard specification under which the member was produced. Joists shall be handled in a manner to avoid damage. Damaged joists shall be removed from the site, except when field repair is approved and such repairs are satisfactorily made in accordance with the manufacturer's recommendations. Joists shall be accurately set, and end anchorage shall be in accordance with the standard specification under which the joists were produced. For spans over 12 m through 18 m one row of bridging nearest midspan shall be bolted diagonal bridging; for spans over 18 m bolted diagonal bridging shall be used instead of welded horizontal bridging. Joist bridging and anchoring shall be secured in place prior to the application of any construction loads. Any temporary loads shall be distributed so that the carrying capacity of any joist is not exceeded. Loads shall not be applied to bridging during construction or in the completed work. Abraded, corroded, and field welded areas shall be cleaned and touched up with the same type of paint used in the shop painting.
3.2 BEARING PLATES

Bearing plates shall be provided with full bearing after the supporting members have been plumbed and properly positioned, but prior to placing superimposed loads. The area under the plate shall be damp-packed solidly with bedding mortar, except where nonshrink grout is indicated on the drawings. Bedding mortar and grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE.

-- End Of Section --
SECTION 05300
STEEL DECKING
10/89

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI Cold-Formed Mnl (1996) Cold-Formed Steel Design Manual

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 611 (1997) Structural Steel (SS), Sheet, Carbon, Cold-Rolled

ASTM A 653/A 653M (1997) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A 780 (1993a) Repair of Damaged and Uncoated Areas of Hot-Dipped Galvanized Coatings

ASTM A 792/A 792M (1997) Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process

AMERICAN WELDING SOCIETY (AWS)

AWS D1.3 (1998) Structural Welding Code - Sheet Steel

STEEL DECK INSTITUTE (SDI)

SDI Pub No 29 (1995) Design Manual for Composite Decks, Form Decks, Roof Decks, and Cellular Metal Floor Deck with Electrical Distribution

STEEL STRUCTURES PAINTING COUNCIL (SSPC)

SSPC Paint 20 (1991) Zinc-Rich Primers (Type I - Inorganic and Type II - Organic)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When
used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Deck Units
Accessories
Attachments
Holes and Openings

Drawings shall include type, configuration, structural properties, location, and necessary details of deck units, accessories, and supporting members; size and location of holes to be cut and reinforcement to be provided; location and sequence of welded or fastener connections; and the manufacturer's erection instructions.

SD-03 Product Data

Deck Units

Design computations for the structural properties of the deck units or SDI certification that the units are designed in accordance with SDI specifications.

Attachments

Prior to welding operations, copies of qualified procedures and lists of names and identification symbols of qualified welders and welding operators.

SD-04 Samples

Deck Units
Accessories

A 0.19 sq meter sample of the decking material to be used, along with a sample of each of the accessories used. A sample of acoustical material to be used shall be included.

SD-07 Certificates

Deck Units
Attachments

Manufacturer's certificates attesting that the decking material meets the specified requirements. Manufacturer's certificate attesting that the operators are authorized to use the low-velocity piston tool.

1.3 DELIVERY, STORAGE, AND HANDLING

Deck units shall be delivered to the site in a dry and undamaged condition, stored off the ground with one end elevated, and stored under a weathertight covering permitting good air circulation. Finish of deck units shall be
maintained at all times by using touch-up paint whenever necessary to prevent the formation of rust.

PART 2 PRODUCTS

2.1 DECK UNITS

Deck units shall conform to SDI Pub No 29. Panels of maximum possible lengths shall be used to minimize end laps. Deck units shall be fabricated in lengths to span 3 or more supports with flush, telescoped, or nested 50 mm laps at ends, and interlocking, or nested side laps, unless otherwise indicated. Deck with cross-sectional configuration differing from the units indicated may be used, provided that the properties of the proposed units, determined in accordance with AISI Cold-Formed Mnl, are equal to or greater than the properties of the units indicated and that the material will fit the space provided without requiring revisions to adjacent materials or systems.

2.1.1 Roof Deck

Steel deck used in conjunction with insulation and built-up roofing shall conform to ASTM A 792/A 792M, ASTM A 611 or ASTM A 792/A 792M. Roof deck units shall be fabricated of the steel design thickness required by the design drawings and shall be galvanized.

2.1.2 Composite Deck

Deck to receive concrete as a filler or for composite deck assembly shall conform to ASTM A 653/A 653M or ASTM A 611. Deck used as the tension reinforcing in composite deck shall be fabricated of the steel design thickness required by the design drawings, and shall be zinc-coated in conformance with ASTM A 653/A 653M, G60 coating class. Deck units used in composite deck shall have adequate embossment to develop mechanical shear bond to provide composite action between the deck and the concrete.

2.1.3 Form Deck

Deck used as a permanent form for concrete shall conform to ASTM A 653/A 653M or ASTM A 611. Deck used as a form for concrete shall be fabricated of the steel design thickness required by the design drawings, and shall be zinc-coated in conformance with ASTM A 653/A 653M, G90 coating class.

2.2 TOUCH-UP PAINT

Touch-up paint for zinc-coated units shall be an approved galvanizing repair paint with a high-zinc dust content. Welds shall be touched-up with paint conforming to SSPC Paint 20 in accordance with ASTM A 780. Finish of deck units and accessories shall be maintained by using touch-up paint whenever necessary to prevent the formation of rust.

2.3 ADJUSTING PLATES

Adjusting plates or segments of deck units shall be provided in locations too narrow to accommodate full-size units. As far as practical, the plates shall be the same thickness and configuration as the deck units.
2.4 CLOSURE PLATES

2.4.1 Closure Plates for Roof Deck

Voids above interior walls shall be closed with sheet metal where shown. Open deck cells at parapets, end walls, eaves, and openings through roofs shall be closed with sheet metal. Sheet metal shall be same thickness as deck units.

2.4.2 Closure Plates for Composite Deck

The concrete shall be supported and retained at each floor level. Provide edge closures at all edges of the slab of sufficient strength and stiffness to support the wet concrete. Metal closures shall be provided for all openings in composite steel deck 6 mm and over, including but not limited to:

2.4.2.1 Cover Plates to Close Panels

Cover plates to close panel edge and end conditions and where panels change direction or abut. Butt joints in composite steel deck may receive a tape joint cover.

2.4.2.2 Column Closures to Close Openings

Column closures to close openings between steel deck and structural steel columns.

2.4.2.3 Sheet Metal

Where deck is cut for passage of pipes, ducts, columns, etc., and deck is to remain exposed, provide a neatly cut sheet metal collar to cover edges of deck. Do not cut deck until after installation of supplemental supports.

2.5 ACCESSORIES

The manufacturer's standard accessories shall be furnished as necessary to complete the deck installation. Metal accessories shall be of the same material as the deck and have minimum design thickness as follows: saddles, 1.204 mm (0.0474 inch); welding washers, 1.519 mm (0.0598 inch); cant strip, 0.749 mm (0.0295 inch); other metal accessories, 0.909 mm (0.0358 inch); unless otherwise indicated. Accessories shall include but not be limited to saddles, welding washers, cant strips, butt cover plates, underlapping sleeves, and ridge and valley plates.

PART 3 EXECUTION

3.1 ERECTION

Erection of deck and accessories shall be in accordance with SDI Pub No 29 and the approved detail drawings. Damaged deck and accessories including material which is permanently stained or contaminated, with burned holes or deformed shall not be installed. The deck units shall be placed on secure supports, properly adjusted, and aligned at right angles to supports before being permanently secured in place. The deck shall not be used for storage or as a working platform until the units have been secured in position. Shoring shall be in position before concrete placement begins in composite
or form deck. Loads shall be distributed by appropriate means to prevent damage during construction and to the completed assembly. The maximum uniform distributed storage load shall not exceed the design live load. There shall be no loads suspended directly from the steel deck.

3.2 SHORING

Shoring requirements for placing and curing of concrete in the composite floor deck assemblies shall be as shown.

3.3 ATTACHMENTS

All fasteners shall be installed in accordance with the manufacturer's recommended procedure, except as otherwise specified. The deck units shall be welded with nominal 16 mm diameter puddle welds or fastened with screws, powder-actuated fasteners or pneumatically driven fasteners to supports as indicated on the design drawings and in accordance with requirements of SDI Pub No 29. All welding of steel deck shall be in accordance with AWS D1.3 using methods and electrodes as recommended by the manufacturer of the steel deck being used. Welds shall be made only by operators previously qualified by tests prescribed in AWS D1.3 to perform the type of work required. Welding washers shall be used at the connections of the deck to supports. Welding washers shall not be used at sidelaps. Holes and similar defects will not be acceptable. Deck ends shall be lapped 50 mm. All partial or segments of deck units shall be attached to structural supports in accordance with Section 2.5 of SDI Diaphragm Mnl. Powder-actuated fasteners shall be driven with a low-velocity piston tool by an operator authorized by the manufacturer of the piston tool. Pneumatically driven fasteners shall be driven with a low-velocity fastening tool and shall comply with the manufacturer's recommendations.

3.4 HOLES AND OPENINGS

All holes and openings required shall be coordinated with the drawings, specifications, and other trades. Holes and openings shall be drilled or cut, reinforced and framed as indicated on the drawings or described in the specifications and as required for rigidity and load capacity. Holes and openings less than 150 mm across require no reinforcement. Holes and openings 150 to 300 mm across shall be reinforced by 1.204 mm (0.0474 inch) thick steel sheet at least 300 mm wider and longer than the opening and be fastened to the steel deck at each corner of the sheet and at a maximum of 150 mm on center. Holes and openings larger than 300 mm shall be reinforced by steel angles installed perpendicular to the steel joists and supported by the adjacent steel joists. Steel angles shall be installed perpendicular to the deck ribs and shall be fastened to the angles perpendicular to the steel joists. Openings must not interfere with seismic members such as chords and drag struts.
3.5 PREPARATION OF FIRE-PROOFED SURFACES

Deck surfaces, both composite and noncomposite, which are to receive sprayed-on fireproofing, shall be galvanized and shall be free of all grease, mill oil, paraffin, dirt, salt, and other contaminants which impair adhesion of the fireproofing. Any required cleaning shall be done prior to steel deck installation using a cleaning method that is compatible with the sprayed-on fireproofing.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI Cold-Formed Spec (1996) Specification & Commentary for the Design of Cold-Formed Steel Structural Members (Part V of the Cold-Formed Steel Design Manual)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 123/A 123M (1997ae1) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

ASTM A 153/A 153M (1998) Zinc Coating (Hot-Dip) on Iron and Steel Hardware

ASTM A 370 (1997a) Mechanical Testing of Steel Products

ASTM A 653/A 653M (1999) Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C 955 (1998) Load-Bearing (Transverse and Axial) Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Application of Gypsum Panel Products and Metal Plaster Bases

ASTM C 1007 (1998e1) Installation of Load Bearing (Transverse and Axial) Steel Studs and Related Accessories

AMERICAN WELDING SOCIETY (AWS)

AWS D1.3 (1998) Structural Welding Code - Sheet Steel

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE)
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Framing Components; G, RE

a. Cross sections, plans, and/or elevations showing component types and locations for each framing application; including shop coatings and material thicknesses for each framing component.

b. Connection details showing fastener type, quantity, location, and other information to assure proper installation.

c. Drawings depicting panel configuration, dimensions, components, locations, and construction sequence if the Contractor elects to install prefabricated/prefinished frames.

SD-07 Certificates

Mill Certificates

Mill certificates or test reports from independent testing agency, qualified in accordance with ASTM E 329, showing that the steel sheet used in the manufacture of each cold-formed component complies with the minimum yield strengths and uncoated steel thickness specified. Test reports shall be based on the results of three coupon tests in accordance with ASTM A 370.

Welds

Certified copies of welder qualifications test records showing qualification in accordance with AWS D1.3.

1.3 DELIVERY, HANDLING AND STORAGE

Materials shall be delivered and handled preventing bending or other damage, and avoiding contact with soil or other contaminating materials. Finish of the framing members shall be maintained at all times, using an approved high zinc dust content, galvanizing repair paint whenever necessary to prevent the formation of rust.

PART 2 PRODUCTS

2.1 STEEL STUDS, TRACKS, BRACING, BRIDGING, AND ACCESSORIES

Framing components shall comply with ASTM C 955 and the following:
a. Material shall be corrosion-resistant steel complying with ASTM A 653/A 653M, Grade 230 or higher, having a minimum yield of 230 MPa and a G 60 minimum zinc coating.

b. Minimum uncoated steel thickness (design thickness times 0.95):
 (1). Studs and Tracks: 0.84 mm, unless otherwise indicated on the Drawings.
 (2). Bracing and bridging: Thickness as shown on the drawings.
 (3). Accessories: Standard thickness as provided by the manufacturer.

c. Stud and Track web depth: As indicated on the Drawings.

d. Stud flange width: 41 mm.

2.2 MARKINGS

Studs and track shall have product markings on the web of the section. The markings shall be repeated throughout the length of the member at a maximum spacing of 1200 mm on center and shall be legible and easily read. The product marking shall include the following:

a. Manufacturer's identification.

b. Minimum delivered uncoated steel thickness.

c. Protective coating designator.

d. Minimum yield strength.

2.3 CONNECTIONS

Screws for steel-to-steel connections shall be self-drilling tapping in compliance with SAE J 78 of the type, size, and location as shown on the drawings. Electroplated screws shall have a Type II coating in accordance with ASTM B 633. Screws, bolts, and anchors shall be hot-dipped galvanized in accordance with ASTM A 123/A 123M or ASTM A 153/A 153M as appropriate. Screws bolts, and anchors shall be hot dipped galvanized in accordance with ASTM A 123/A 123Mor ASTM A 153/A 153M as appropriate.

PART 3 EXECUTION

3.1 DELIVERY, HANDLING AND STORAGE

a. Materials shall be delivered and handled in a manner to avoid bending or other damage and to avoid contact with the soil or other contaminating materials.

b. Finish of the framing members shall be maintained at all times, using an approved high zinc dust content galvanizing repair paint whenever necessary to prevent the formation of rust.

3.2 CONNECTIONS
3.2.1 Welds

All welding shall be performed in accordance with AWS D1.3, as modified by AISI Cold-Formed Spec. All welders, welding operations, and welding procedures shall be qualified according to AWS D1.3. All welds shall be cleaned and coated with rust inhibitive galvanizing paint.

3.2.2 Screws

Screws shall be self-drilling self-tapping type, size, and location shown on the drawings. Screw penetration through joined materials shall not be less than three exposed threads. Minimum spacings and edge distances for screws shall be as specified in AISI Cold-Formed Spec. Screws covered by sheathing materials shall have low profile heads.

3.2.3 Anchors

Anchors shall be of the type, size, and location shown on the drawings.

3.3 INSTALLATION

3.3.1 General Requirements

a. Prefabricated frames shall be square, with components attached to prevent racking during fabrication, transportation, and lifting. Design and construction of frames shall include provisions for lifting.

b. Cutting of steel framing shall be by saw, shear, or plasma cutting equipment. Oxyacetylene torch cutting is not permitted.

c. Temporary bracing shall be provided and remain in place until work is permanently stabilized.

d. Abutting lengths of track shall be butt-welded, spliced, or each length securely anchored to a common structural element. Track shall be securely anchored to the supporting structure as shown on the drawings.

e. Splicing of framing components, other than track and tension members, is not permitted.

f. Wire tying of framing members is not permitted.

3.3.2 Non-Load Bearing Walls (Curtain walls)

a. Studs shall be spaced as shown on the drawings.

b. Studs shall be plumbed, aligned, and secured to the continuous runner tracks at each end, unless the stud end terminates at a deflection track.

c. Tracks shall be securely anchored to the supporting structure as shown on the drawings.
d. Bridging spaced as shown on the drawings shall be installed prior to the installation of facing materials.

e. Framed wall openings shall include headers and supporting components as shown on the drawings. Headers shall be installed in all openings that are larger than the stud spacing in a wall.

f. At wall openings for doors, windows and other similar features, the framing system shall provide for the installation and anchorage of the required subframes or finish frames. Steel frames shall be securely attached through built-in anchors to the nearest stud on each side of the opening with self-drilling screws. Double studs shall be provided at both jambs of all door openings.

g. Installation of sheathing, wallboards, or any other collateral material shall be performed in accordance with the product manufacturer's specifications.

h. Components (Deflection Track and/or Slide Clips) shall be provided at locations shown on the drawings to accommodate potential movements of Primary Frames.

3.3.3 Load Bearing Walls

3.3.3.1 Axial Load

Installation shall comply with ASTM C 1007 and the following:

a. Studs shall be spaced as shown on the drawings.

b. Studs shall be installed seated squarely against the web of the top and bottom track to assure transfer of axial load. Studs shall be plumbed, aligned, and secured to the continuous runner tracks at each end before the installation of components which induce axial load.

c. Studs, other than at framed openings, shall align vertically to allow for full transfer of the loads to the foundation. Vertical alignment shall be maintained at floor/wall intersections. Where vertical alignment is not possible, a continuous load distribution member at the top track shall be provided as shown on the drawings.

d. Foundation bearing bottom track shall rest on a continuous, uniform, and level bearing surface.

e. Tracks shall be securely anchored to the supporting structure as shown on the drawings.

f. Bridging spaced at 1500 mm, maximum, unless otherwise as shown on the drawings shall be installed prior to loading and the installation of facing materials.

g. Framed wall openings shall include headers and supporting components as shown on the drawings. Headers shall be installed in all openings which are larger than the stud spacing in a wall.
h. At wall openings for doors, windows and other similar features, the framing system shall provide for the installation and anchorage of the required subframes or finish frames. Steel frames shall be securely attached through built-in anchors to the nearest stud on each side of the opening with self-drilling screws. Double studs shall be provided at both jambs of all door openings.

i. Installation of sheathing, wallboards, or any other collateral material shall be performed in accordance with the product manufacturer's specifications.

3.3.3.2 Lateral Load (Shear Wall Panels)

Shear wall panels shall be installed at the locations shown; stud spacing and arrangement shall be as shown; diagonal bracing shall be placed across studs, pulled tight, and attached to each stud within the shear panel as shown on the drawings.

3.4 TOLERANCES

Vertical alignment (plumbness) of studs shall be within 1/960th of the span. Horizontal alignment (levelness) of walls shall be within 1/960th of their respective lengths. Spacing of studs shall not be more than plus 3 mm from the designed spacing providing the cumulative error does not exceed the requirements of the finishing material.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 36/A 36M (1997ael) Carbon Structural Steel

ASTM A 53 (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 123/A 123M (1997ael) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

ASTM A 500 (1999) Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

ASTM A 653/A 653M (1999) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A 924/A 924M (1999) General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

AMERICAN WELDING SOCIETY (AWS)

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Miscellaneous Metal Items
Detail drawings indicating material thickness, type, grade, and class; dimensions; and construction details. Drawings shall include catalog cuts, erection details, manufacturer's descriptive data and installation instructions, and templates.

1.3 GENERAL REQUIREMENTS

The Contractor shall verify all measurements and shall take all field measurements necessary before fabrication. Welding to or on structural steel shall be in accordance with AWS D1.1. Items specified to be galvanized, when practicable and not indicated otherwise, shall be hot-dip galvanized after fabrication. Galvanizing shall be in accordance with ASTM A 123/A 123M, ASTM A 653/A 653M, or ASTM A 924/A 924M, as applicable. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and shall harmonize with the material to which fastenings are applied. Materials and parts necessary to complete each item, even though such work is not definitely shown or specified, shall be included. Poor matching of holes for fasteners shall be cause for rejection. Fastenings shall be concealed where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Joints exposed to the weather shall be formed to exclude water.

1.4 DISSIMILAR MATERIALS

Where dissimilar metals are in contact, or where aluminum is in contact with concrete, mortar, masonry, wet or pressure-treated wood, or absorptive materials subject to wetting, the surfaces shall be protected with a coat of bituminous paint or asphalt varnish.

1.5 WORKMANSHIP

Miscellaneous metalwork shall be well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Welding shall be continuous along the entire area of contact except where tack welding is permitted. Exposed connections of work in place shall not be tack welded. Exposed welds shall be ground smooth. Exposed surfaces of work in place shall have a smooth finish, and unless otherwise approved, exposed riveting shall be flush. Where tight fits are required, joints shall be milled. Corner joints shall be coped or mitered, well formed, and in true alignment. Work shall be accurately set to established lines and elevations and securely fastened in place. Installation shall be in accordance with manufacturer's installation instructions and approved drawings, cuts, and details.

1.6 ANCHORAGE

Anchorage shall be provided where necessary for fastening miscellaneous metal items securely in place. Anchorage not otherwise specified or indicated shall include slotted inserts made to engage with the anchors, expansion shields, and power-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; and lag bolts and screws for wood.

1.7 SHOP PAINTING

Surfaces of ferrous metal except galvanized surfaces, shall be cleaned and shop coated with the manufacturer's standard protective coating unless
otherwise specified. Surfaces of items to be embedded in concrete shall not be painted. Items to be finish painted shall be prepared according to manufacturer's recommendations or as specified.

PART 2 PRODUCTS

2.1 ACCESS DOORS AND PANELS

Doors and panels shall be flush type unless otherwise indicated. Frames for access doors shall be fabricated of not lighter than 1.52 mm (16 gauge) steel with welded joints and finished with anchorage for securing into construction. Access doors shall be a minimum of 350 by 500 mm and of not lighter than 1.9 mm (14 gauge) steel, with stiffened edges, complete with attachments. Access doors shall be hinged to frame and provided with a flush face, screw driver operated latch. Exposed metal surfaces shall have a baked enamel finish.

2.2 EXPANSION JOINT COVERS

Expansion joint covers shall be constructed of extruded aluminum with anodized satin finish for walls and ceilings and with standard mill finish for floor covers and exterior covers. Plates, backup angles, expansion filler strip and anchors shall be designed as indicated. Expansion joint system shall provide a fire rating as indicated on the Drawings, and with 50 mm of movement.

2.3 HANDRAILS

Handrails shall be designed to resist a concentrated load of 890 N (200 pounds) in any direction at any point of the top of the rail or 292 Newtons per meter (20 pounds per foot) applied horizontally to top of the rail, whichever is more severe.

2.3.1 Steel Handrails, Including Carbon Steel Inserts

Steel handrails, including inserts in concrete, shall be steel pipe conforming to ASTM A 53 or structural tubing conforming to ASTM A 500, Grade A or B of equivalent strength. Steel railings shall be 50 mm nominal size. Railings shall be shop painted. Pipe collars shall be hot-dip galvanized steel.

a. Joint posts, rail, and corners shall be fabricated by one of the following methods:

(1) Flush type rail fittings of commercial standard, welded and ground smooth with railing splice locks secured with 10 mm hexagonal recessed-head setscrews.

(2) Mitered and welded joints by fitting post to top rail and intermediate rail to post, mitering corners, groove welding joints, and grinding smooth. Railing splices shall be butted and reinforced by a tight fitting interior sleeve not less than 150 mm long.

(3) Railings may be bent at corners in lieu of jointing, provided bends are made in suitable jigs and the pipe is not crushed.
b. Removable sections, toe-boards, and brackets shall be provided as indicated.

2.4 MISCELLANEOUS

Miscellaneous plates and shapes for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings, and frames, shall be provided to complete the work.

2.5 PARTITIONS, DIAMOND MESH TYPE

Partitions shall be constructed of metal fabric attached to structural steel framing members. Fabric shall be 10 gauge steel wires woven into 38 mm diamond mesh with wire secured through weaving channels. Framing members shall be channels 38 by 3 mm minimum size. Channel frames shall be mortised and tenoned at intersections. Steel frames, posts, and intermediate members shall be of the sizes and shapes indicated. Cast-iron floor shoes and caps shall have setscrew adjustment. Doors and grilles shall be provided as indicated, complete with hardware and accessories including sliding mechanisms, locks, guard plates, sill shelves and brackets, and fixed pin butts. Doors and grilles shall have cover plates as indicated. Dutch doors shall have a lock for each leaf. A continuous rubber bumper shall be provided at bottom of grille frame. Locks shall be bronze, cylinder, mortise type. Keying shall be coordinated with Section 08700 BUILDERS' HARDWARE. Ferrous metal portions of partitions and accessories shall be galvanized.

2.6 SAFETY NOSING

Safety nosings shall be of cast iron with cross-hatched, abrasive surface. Nosing shall be 75 mm wide and terminating at not more than 150 mm from the ends of treads, except nosing for metal pan cement-filled treads shall extend the full length of the tread. Safety nosings shall be provided with anchors not less than 19 mm long. Integrally cast mushroom anchors are not acceptable.

2.7 STEEL STAIRS

Steel stairs shall be complete with structural or formed channel stringers, metal pan cement-filled treads, landings, columns, handrails, and necessary bolts and other fastenings as indicated. Structural steel shall conform to ASTM A 36/A 36M. Stairs and accessories shall be galvanized. Risers on stairs with metal pan treads shall be deformed to form a sanitary cove to retain the tread concrete. Integral nosings shall have braces extended into the concrete fill. Gratings for treads and landings shall conform to NAAMM MBG 531. Grating treads shall have slip-resistant nosings.

2.8 TRENCH COVERS, FRAMES, AND LINERS

Trench covers shall be designed to meet the indicated load requirements. Trench frames and anchors shall be all welded steel construction designed to match cover. Covers shall be secured to frame, and shall be raised-tread, or steel floor plate. Grating opening widths shall not exceed 25 mm. Trench liners shall be cast iron with integral frame for cover.

PART 3 EXECUTION
3.1 GENERAL INSTALLATION REQUIREMENTS

All items shall be installed at the locations shown and according to the manufacturer's recommendations. Items listed below require additional procedures as specified.

3.2 REMOVABLE ACCESS PANELS

A removable access panel not less than 300 by 300 mm shall be installed directly below each valve, flow indicator, damper, or air splitter that is located above the ceiling, other than an acoustical ceiling, and that would otherwise not be accessible.

3.3 ATTACHMENT OF HANDRAILS

Toeboards and brackets shall be installed where indicated. Splices, where required, shall be made at expansion joints. Removable sections shall be installed as indicated.

3.3.1 Installation of Steel Handrails

Installation shall be in pipe sleeves embedded in concrete and filled with molten lead or sulphur with anchorage covered with standard pipe collar pinned to post. Rail ends shall be secured by steel pipe flanges through-bolted to a back plate or by 6 mm lag bolts to studs or solid backing.

-- End Of Section --
SECTION 06100
ROUGH CARPENTRY
09/96

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN FOREST AND PAPER ASSOCIATION (AFPA)

APA-THE ENGINEERED WOOD ASSOCIATION (APA)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM F 547 (1977; R 1990) Definitions of Terms Relating to Nails for Use with Wood and Wood-Base Materials

AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA)

AWPA C2 (1995) Lumber, Timber, Bridge Ties and Mine Ties - Preservative Treatment by Pressure Processes

AWPA C9 (1995) Plywood - Preservative Treatment by Pressure Processes

AWPA M4 (1995) Standard for the Care of Preservative-Treated Wood Products

DEPARTMENT OF COMMERCE (DOC)

DOC PS 1 (1983) Construction and Industrial Plywood

DOC PS 2 (1992) Performance Standards for Woo-Based Structural-Use Panels

SOUTHERN PINE INSPECTION BUREAU (SPIB)
1.2 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01300 SUBMITTAL PROCEDURES:

SD-13 Certificates
Grading and Marking; FIO.

Manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material not normally grade marked meet the specified requirements. Certificate of Inspection for grade marked material by an American Lumber Standards Committee (ALSC) recognized inspection agency prior to shipment.

1.3 DELIVERY AND STORAGE

Materials shall be delivered to the site in undamaged condition, stored off ground in fully covered, well ventilated areas, and protected from extreme changes in temperature and humidity.

PART 2 PRODUCTS

2.1 LUMBER AND SHEATHING

2.1.1 Grading and Marking

2.1.1.1 Lumber Products

Solid sawn and finger-jointed lumber shall bear an authorized gradestamp or grademark recognized by ALSC, or an ALSC recognized certification stamp, mark, or hammerbrand. Surfaces that are to be exposed to view shall not bear grademarks, stamps, or any type of identifying mark. Hammer marking will be permitted on timbers when all surfaces will be exposed to view.

2.1.1.2 Plywood and other Sheathing Products

Materials shall bear the grademark or other identifying marks indicating grades of material and rules or standards under which produced, including requirements for qualifications and authority of the inspection organization. Except for plywood and structural-use panels, bundle marking will be permitted in lieu of marking each individual piece. Surfaces that are to be exposed to view shall not bear grademarks or other types of identifying marks.
2.1.2 Sizes

Lumber and material sizes shall conform to requirements of the rules or standards under which produced. Unless otherwise specified, lumber shall be surfaced on four sides. Unless otherwise specified, sizes indicated are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which the product is produced.

2.1.3 Treatment

Exposed areas of treated wood that are cut or drilled after treatment shall receive a field treatment in accordance with AWPA M4. Items of all-heart material of cedar, cypress, or redwood will not require preservative treatment, except when in direct contact with soil. Except as specified for all-heart material of the previously mentioned species, the following items shall be treated:

a. Wood members in contact with or within 455 mm of soil.

b. Wood members in contact with water.

c. Wood members set into concrete regardless of location, including flush-with-deck wood nailers for roofs.

d. Wood members in contact with concrete that is in contact with soil or water or that is exposed to weather.

2.1.3.1 Lumber

Lumber shall be treated in accordance with AWPA C2 with waterborne preservatives listed in AWPA P5 to a retention level as follows:

a. 4 kg per cubic meter (0.25 pcf) intended for above ground use.

2.1.3.2 Plywood

Plywood shall be treated in accordance with AWPA C9 with waterborne preservatives listed in AWPA P5 to a retention level as follows:

a. 4 kg per cubic meter (0.25 pcf) intended for above ground use.

2.1.4 Moisture Content

At the time lumber and other materials are delivered and when installed in the work their moisture content shall be as follows:

a. Treated and Untreated Lumber

100 mm or less, nominal thickness, 19 percent maximum. 125 mm or more, nominal thickness, 23 percent maximum in a 75 mm perimeter of the timber cross-section.

c. Materials Other Than Lumber: In accordance with standard under which product is produced.

2.1.5 Plywood
Plywood shall conform to DOC PS 1, APA E445 or DOC PS 2, Grade C-D with exterior glue.

2.1.6 Wood

Species and grade shall be in accordance with TABLE I at the end of this section.

2.2 BLOCKING

Blocking shall be standard or number 2 grade.

2.3 ACCESSORIES AND NAILS

Markings shall identify both the strength grade and the manufacturer. Accessories and nails shall conform to the following:

2.3.1 Bolts: Lag, Toggle, and Miscellaneous Bolts and Screws

Type, size, and finish best suited for intended use. Finish options include zinc compounds, cadmium, and aluminum paint impregnated finishes.

2.3.2 Nails and Staples

ASTM F 547, size and type best suited for purpose; staples shall be as recommended by the manufacturer of the materials to be joined. For sheathing and subflooring, length of nails shall be sufficient to extend 25 mm into supports. In general, 8-penny or larger nails shall be used for nailing through 25 mm thick lumber and for toe nailing 50 mm thick lumber; 16-penny or larger nails shall be used for nailing through 50 mm thick lumber. Nails used with treated lumber and sheathing shall be galvanized. Nailing shall be in accordance with the recommended nailing schedule contained in AFPA T11-WCD1. Where detailed nailing requirements are not specified, nail size and spacing shall be sufficient to develop an adequate strength for the connection. The connection’s strength shall be verified against the nail capacity tables in AFPA-T901. Reasonable judgement backed by experience shall ensure that the designed connection will not cause the wood to split. If a load situation exceeds a reasonable limit for nails, a specialized connector shall be used.

PART 3 EXECUTION

3.1 INSTALLATION OF MISCELLANEOUS WOOD MEMBERS

3.1.1 Blocking

Blocking shall be provided as necessary for application of siding, sheathing, subflooring, wallboard, and other materials or building items, and to provide firestopping. Blocking for firestopping shall ensure a maximum dimension of 2400 mm for any concealed space. Blocking shall be cut to fit between framing members and rigidly nailed thereto.

TABLE I. SPECIES AND GRADE
<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Const No. 2</th>
<th>No. 2</th>
<th>No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPIB-1001</td>
<td>Southern Pine</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WWPA-01</td>
<td>Douglas Fir-Larch</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idaho White Pine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lodgepole Pine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponderosa Pine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugar Pine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Englemann Spruce</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Douglas Fir South</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mountain Hemlock</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subalpine Fir</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Western Cedar</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-- End Of Section --
SECTION 06200
FINISH CARPENTRY
09/96

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM F 547 (1977; R 1995) Definitions of Terms Relating to Nails for Use with Wood and Wood-Base Materials

AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA)

AWPA C9 (1997) Plywood - Preservative Treatment by Pressure Processes

AWPA P5 (1997) Standards for Waterborne Preservatives

CALIFORNIA REDWOOD ASSOCIATION (CRA)

NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)

SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA)

SCMA Specs (1986; Supple No. 1, Aug 1993) Standard Specifications for Grades of Southern Cypress

SOUTHERN PINE INSPECTION BUREAU (SPIB)

SPIB Rules (1994; Supple 8 thru 11) Standard Grading Rules for Southern Pine Lumber

WEST COAST LUMBER INSPECTION BUREAU (WCLIB)

WCLIB Std 17 (1996; Supples VII(A-E), VIII(A-C)) Grading Rules For West Coast Lumber

WESTERN WOOD PRODUCTS ASSOCIATION (WWPA)

WWPA Grading Rules (1999)Western Lumber Grading Rules 95
1.2 DELIVERY AND STORAGE

Materials shall be delivered to the site in undamaged condition, stored off ground in fully covered, well-ventilated areas, and protected from extreme changes in temperature and humidity.

PART 2 PRODUCTS

2.1 WOOD ITEMS, SIDING, AND TRIM

The Contractor shall furnish products which optimize design by reducing the amount of wood used (engineered wood), or recycled wood products, and preservatives without arsenic or chromium when the products and methods are competitive in price or directed by the Contracting Officer.

2.1.1 Grading and Marking

Materials shall bear the grademark, stamp or other identifying marks indicating grades of material and rules or standards under which produced. Such identifying marks on a material shall be in accordance with the rule or standard under which the material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification. The inspection agency for lumber shall be certified by the Board of Review, American Lumber Standards Committee, to grade the species used. Except for plywood, wood structural panels, and lumber, bundle marking will be permitted in lieu of marking each individual piece. Surfaces that are to be architecturally exposed to view shall not bear grademarks, stamps, or other types of identifying marks.

2.1.2 Sizes and Patterns

Lumber sizes and patterns shall conform to rules or standards under which produced. Unless otherwise specified, lumber shall be surfaced on four sides. Sizes and patterns for materials other than lumber shall conform to requirements of the rules or standards under which produced. Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which the product is produced.

2.1.3 Moisture Content

The maximum moisture content of untreated trim and wood siding shall be 15 percent at the time of delivery to the jobsite and when installed. Moisture content of all other material shall be in accordance with the standard under which the product is produced.

2.1.4 Preservative Treatment

2.1.4.1 Plywood

Plywood shall be treated in accordance with AWPA C9 with waterborne preservatives listed in AWPA P5 to a retention level as follows:

a. 4 kg per cubic meter (0.25 pcf) intended for above ground use.
b. 6.4 kg per cubic meter (0.4 pcf) intended for ground contact and fresh water use.

2.1.5 Moldings

Moldings shall be of the pattern indicated and shall be of a grade compatible with the finish specified.

2.2 NAILS

Nails shall be the size and type best suited for the purpose and shall conform to ASTM F 547. Nails shall be hot-dip galvanized or aluminum when used on exterior work. For siding, length of nails shall be sufficient to extend 40 mm into supports, including wood sheathing over framing. Screws for use where nailing is impractical shall be size best suited for purpose.

PART 3 EXECUTION

3.1 MOLDING AND INTERIOR TRIM

Molding and interior trim shall be installed straight, plumb, level and with closely fitted joints. Exposed surfaces shall be machine sanded at the mill. Molded work shall be coped at returns and interior angles and mitered at external corners. Intersections of flatwork shall be shouldered to ease any inherent changes in plane. Window and door trim shall be provided in single lengths. Blind nailing shall be used to the extent practicable, and face nailing shall be set and stopped with a nonstaining putty to match the finish applied. Screws shall be used for attachment to metal; setting and stopping of screws shall be of the same quality as required where nails are used.

3.2 TABLES

TABLE I. SPECIES AND GRADE TABLES

<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Choice</th>
<th>Clear</th>
<th>C Select</th>
<th>C & Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>NELMA Grading Rules</td>
<td>Eastern Cedar</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastern Hemlock</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tamarack</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastern W. Pine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Pine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastern Spruce</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Balsam Fir</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRA RIS-01-SS</td>
<td>Redwood</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCMA Specs</td>
<td>Cypress</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIB Rules</td>
<td>Southern Pine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCLIB Std 17</td>
<td>Douglas Fir</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larch</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemlock Fir</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mountain Hemlock</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sitka Spruce</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WWPA Grading Rules

Douglas Fir X
Larch X
Hemlock Fir X
Mountain Hemlock X
Western Larch X
Idaho White Pine X
Lodgepole Pine X
Ponderosa Pine X
Sugar Pine X
Englemann Spruce X
Douglas Fir South X
Subalpine Fir X

NOTE 1: Western Cedar under WCLIB Std 17 shall be Grade B; and under WWPA Grading Rules, Western Cedar shall be Grade B bevel for siding and Grade A for trim.

NOTE 2: Except as specified in NOTE 3 below, siding and exterior trim shall be any of the species listed above. Interior trim shall be any one of the species listed above and the highest grade of the species for stain or natural finish and one grade below highest grade of species for paint finish.

NOTE 3: Southern Yellow Pine, Douglas Fir, Larch, Western Larch, and Tamarack shall not be used where painting is required and may be used on exterior work only when approved and stained with a preservative type stain.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 41 (1994) Asphalt Primer Used in Roofing, Dampproofing, and Waterproofing

ASTM D 1227 (1995) Emulsified Asphalt Used as a Protective Coating for Roofing

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-07 Certificates

Materials

Certificates attesting that the materials meet the requirements specified.

1.3 QUALIFICATIONS

Work shall be performed by skilled laborers thoroughly experienced in the type of bituminous dampproofing work specified to meet the requirements of the contract.

1.4 DELIVERY, STORAGE AND HANDLING

Dampproofing materials shall be delivered to the project site in the original sealed containers bearing the name of manufacturer, contents and brand name, and stored in a weathertight enclosure to prevent moisture damage and absorption. Dampproofing materials shall be protected from freezing. Asphalt shall be stored off the ground on pallets, and covered on top and all sides with breathable-type canvas tarpaulins. Plastic sheets cause condensation buildup; and therefore, shall not be used to cover dampproofing materials. Care shall be taken during storage to avoid
separation or settlement of the emulsion components. Damaged or deteriorated materials shall be removed from the project site.

PART 2 PRODUCTS

2.1 EMULSION-BASED ASPHALT DAMPPROOFING

2.1.1 Fibrated Emulsion-Based Asphalt

Fibrated emulsion-based asphalt dampproofing shall be cold-applied type conforming to ASTM D 1227 Type IV, asbestos-free, manufactured of refined asphalt, emulsifiers and selected clay, fibrated with mineral fibers. For spray or brush application, emulsion shall contain a minimum of 59 percent solids by weight, 56 percent solids by volume. For trowel application, emulsion shall contain a minimum of 58 percent solids by weight, 55 percent solids by volume.

2.2 SOLVENT-BASED ASPHALT DAMPPROOFING

2.2.1 Asphaltic Primer

Primer for cold-applied solvent-based asphalt dampproofing shall conform to ASTM D 41, asbestos-free, non-fibrated, manufactured with highly ductile soft asphalts and selected hydrocarbons.

2.2.2 Fibrated Asphalt

Fibrated solvent-based asphalt dampproofing shall be cold-applied type conforming to ASTM D 4479 Type I, asbestos-free, manufactured with selected asphalts, stabilizers, mineral spirits and fibrated with mineral fibers. Solvent-based asphalt shall contain 72 percent solids by weight, 65 percent solids by volume.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Surfaces scheduled for bituminous dampproofing shall be prepared in accordance with dampproofing manufacturer's recommendations. Surface preparation shall be approved prior to dampproofing application.

3.1.1 Protection of Surrounding Areas

Before starting the dampproofing work, the surrounding areas and surfaces shall be protected from spillage and migration of asphalt onto other work. Drains and conductors shall be protected from clogging with asphalt.

3.1.2 Masonry Surfaces

Surfaces shall be free of oil, grease, dirt, laitance, loose material, frost, debris and other contaminants. Mortar joints shall be flush and free of extraneous mortar and chipped or broken masonry.

3.1.3 Concrete Surfaces

Surfaces shall be properly cured, free of form release agents, oil, grease, dirt, laitance, loose material, frost, debris and other contaminants. Form
ties shall be cut flush with surface. Sharp protrusions and form match lines shall be removed. Holes, voids, spalled areas and cracks which can damage the dampproofing materials and impair performance shall be repaired. Rough surfaces shall be parged with a well-adhering coat of cement mortar.

3.1.4 Metal Surfaces

Metal surfaces shall be dry and be free of rust, scale, loose paint, oil, grease, dirt, frost and debris.

3.2 APPLICATION OF BITUMINOUS DAMPROOFING

3.2.1 Emulsion-Based Asphalt

Emulsion-based asphalt dampproofing work shall not be performed in temperatures below 4 degrees C. Emulsions shall have a smooth and uniform consistency at time of application. Dampproofing materials shall be applied in accordance with manufacturer's published instructions to produce a smooth uniform dry film of not less than 0.3 mm (12 mils) thick without voids or defects. Dull or porous spots shall be recoated. Dampproofing materials shall seal tightly around pipes and other items projecting through dampproofing. Rates of application shall be as follows:

a. Primer: 0.2 liters per square meter (1/2 gallon per 100 square feet), cold-applied.

b. Fibrated Dampproofing: 0.8 liters per square meter (2 gallons per 100 square feet), cold-applied with spray, brush or trowel.

3.2.2 Solvent-Based Asphalt

Solvent-based asphalt dampproofing work shall not be performed in temperatures below 4 degrees C. Dampproofing materials shall be applied in accordance with manufacturer's published instructions to produce a smooth uniform dry film not less than 0.3 mm (12 mils) thick without voids or defects. Dull or porous spots shall be recoated. Dampproofing materials shall seal tightly around pipes and other items projecting through dampproofing. Rates of application shall be as follows:

a. Primer: 0.4 liters per square meter (1/2 gallon per 200 square feet), cold-applied.

b. Dampproofing Coat: 0.8 liters per square meter (2 gallons per 100 square feet), cold-applied with spray, brush or trowel.

3.3 CLEAN-UP

Surfaces of other work which are stained with dampproofing materials shall be cleaned with a cleaner recommended by dampproofing manufacturer.

3.4 PROTECTION

The completed dampproofing work shall be protected from damage during and after construction.

-- End Of Section --
SECTION 07132

BITUMINOUS WATERPROOFING

09/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 41 (1994) Asphalt Primer Used in Roofing, Dampproofing, and Waterproofing
ASTM D 173 (1997) Bitumen-Saturated Cotton Fabrics Used in Roofing and Waterproofing
ASTM D 449 (1989; R 1994) Asphalt Used in Dampproofing and Waterproofing
ASTM D 1327 (1997) Bitumen-Saturated Woven Burlap Fabrics Used in Roofing and Waterproofing
ASTM D 1668 (1995) Glass Fabrics (Woven and Treated) for Roofing and Waterproofing

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

 SD-03 Product Data
 Reinforcing Fabric
 Protection Board

 Manufacturer's data including technical information which indicates full compliance with this section.

 Applications
Manufacturer's installation instructions, before delivery of materials to the site. Instructions shall specify acceptable range of asphalt application temperatures and the maximum temperature for holding asphalt in a heated condition.

SD-07 Certificates

Materials

Certificates from manufacturer attesting that asphalt manufactured and shipped to jobsite meets the specified requirements.

1.3 QUALIFICATIONS

Work shall be performed by skilled laborers thoroughly experienced in the type of bituminous waterproofing work specified to meet the requirements of the contract.

1.4 DELIVERY, STORAGE AND HANDLING

Waterproofing materials shall be delivered to the project site in the original sealed containers bearing the name of the manufacturer, contents and brand name. Asphalt shall be protected from freezing in a weathertight enclosure. Reinforcement fabrics shall be protected from moisture damage and moisture absorption in a weathertight enclosure or shall be stored off the ground on pallets, and covered on top and all sides with breathable-type canvas tarpaulins. Plastic sheets cause condensation buildup and therefore shall not be used to cover waterproofing materials. Damaged or deteriorated materials shall be removed from project site.

PART 2 PRODUCTS

2.1 ASPHALT WATERPROOFING

2.1.1 Primer

Primer for hot-applied asphalt waterproofing shall conform to ASTM D 41, asbestos-free, non-fibrated, manufactured with highly ductile soft asphalts and selected hydrocarbons.

2.1.2 Below-Grade Hot-Applied Asphalt

Hot-applied asphalt for below-grade applications shall conform to ASTM D 449, Type I, asbestos-free, manufactured from crude petroleum, suitable for use with membrane waterproofing systems.

2.1.3 Reinforcement Fabrics

2.1.3.1 Cotton Fabrics

Cotton fabrics shall be woven entirely of cotton conforming with ASTM D 173, thoroughly and uniformly saturated with asphalt.

2.1.3.2 Woven Burlap Fabrics
Woven burlap fabrics shall be composed of 100 percent jute fiber and two cotton threads at each selvage conforming with ASTM D 1327, thoroughly and uniformly saturated with asphalt. The fabric mesh shall not be completely closed or sealed by the process of saturation. Sufficient porosity shall be maintained to allow successive moppings of the plying asphalt to seep through. The surface shall not be coated or covered with talc or any other substances that will interfere with the adhesion between fabric and plying asphalt. The fabric surface shall be uniformly smooth and free of irregularities, folds and knots. The finished woven burlap fabrics shall be free of ragged edges, untrue edges, breaks or cracks, and other visible external defects.

2.1.3.3 Glass Fabrics

Glass fabrics shall conform to ASTM D 1668 Type I, asphalt-treated woven glass waterproofing fabrics coated with asphalt.

2.1.4 Flashing Cement

Flashing cement shall conform to ASTM D 4586, Type I, trowel grade, asbestos free, manufactured from asphalts characterized as adhesive, healing and ductile.

2.2 Insulation Boards

Insulation boards shall conform to ASTM C 208 cellulosic fiber boards, construction grade, 13 mm (1/2 inch) thick, fibrous-felted homogeneous panel. Insulation boards shall be manufactured from ligno-cellulosic fibers (wood or cane) by a felting or molding process, asphalt-saturated or coated, with a density of 49 to 151 kg per square meter (10 to 31 lbs. per square foot). Surfaces of insulation boards shall be free of cracks, lumps, excessive departure from planeness, or other defects that adversely affect performance.

PART 3 EXECUTION

3.1 Surface Preparation

Surfaces scheduled for bituminous waterproofing shall be prepared in accordance with waterproofing manufacturer's recommendations. Surface preparation shall be approved prior to waterproofing application.

3.1.1 Protection of Surrounding Areas

Before starting the waterproofing work, the surrounding areas and surfaces shall be protected from spillage and migration of asphalt onto other work. Drains and conductors shall be protected from clogging with asphalt.

3.1.2 Masonry Surfaces

Surfaces shall be free of oil, grease, dirt, laitance, loose material, frost, debris and other contaminants. Mortar joints shall be flush and free of extraneous mortar and chipped or broken masonry.

3.1.3 Concrete Surfaces
Surfaces shall be properly cured, free of form release agents, oil, grease, dirt, laitance, loose material, frost, debris and other contaminants. Form ties shall be cut flush with surface. Sharp protrusions and form match lines shall be removed. Holes, voids, spalled areas and cracks which can damage waterproofing materials shall be repaired. Rough surfaces shall be parged with a well-adhering coat of cement mortar.

3.1.4 Metal Surfaces

Surfaces shall be dry and be free of rust, scale, loose paint, oil, grease, dirt, frost and debris.

3.2 HOT-APPLIED ASPHALT WATERPROOFING

Asphalt waterproofing shall be applied when the ambient temperature is 4 degrees C or above. Heating kettles and tanks shall be provided with automatic thermostatic control capable of maintaining asphalt temperature. Controls shall be calibrated and maintained in working order for duration of work. At time of application, asphalt shall not be heated above the equiviscous temperature (EVT) recommended by manufacturer. Immediately before use, temperature shall be measured with a portable thermometer at the point of application. EVT and flashpoint temperatures of asphalt in kettle shall be conspicuously posted on kettle. Asphalt with a temperature not conforming to the manufacturer's recommendations shall be returned to the kettle. Asphalt overheated by more than 10 degrees C for more than 1 hour shall be removed from site.

3.2.1 Below-Grade Wall Waterproofing

Waterproofing for foundation walls shall consist of a 1-ply hot-applied asphalt membrane system. Fabrics shall be installed using the "shingle" method. Joints shall be caulked prior to primer applications. Primer shall be applied at a rate of 0.2 liters per square meter (1/2 gallon per 100 square feet). Fabrics shall be overlapped at ends and staggered a minimum 250 mm for 1-ply system. End-to-end taping is not acceptable. Each fabric shall be firmly embedded into a solid uniform coating of hot asphalt at a rate of [0.98 kg per square meter (20 lbs. per 100 square feet)] [_____] kg per square meter (lbs. per 100 square feet) by pressing with broom. Fabrics shall not touch fabrics. Hot asphalt shall penetrate each fabric to provide the required adhesion. Asphalt between fabrics shall not be excessive to prevent slippage. Waterproofing system consisting of two or more fabrics shall be provided with fabric reinforcement at corners, angles, over construction joints, and in locations where waterproofing fabrics are subject to unusual stress.

3.3 CLEAN-UP

Surfaces of other work which are stained with waterproofing materials shall be cleaned with a cleaner recommended by waterproofing manufacturer.

3.4 PROTECTION OF COMPLETED WORK

3.4.1 Floor Waterproofing

The completed waterproofing work shall be protected from damage during and after construction. Protective covering shall be placed immediately before proceeding with the work which will conceal the waterproofing.
3.4.2 Wall Waterproofing

Waterproofing against which backfill is to be placed shall be protected with a single layer of insulation board. Insulation boards shall be pressed into the final mopping while the asphalt is still hot, with edges of boards placed into moderate contact and joints staggered. For two-layer installation, joints in second layer shall be staggered over joints in first layer. Where surfaced insulation board is used, the surfaced side shall face outward. Boards shall be carefully and neatly fitted around projections, and shall cover the entire surface of the waterproofing materials. Waterproofing system not covered with protection board shall be protected to prevent damage from subsequent building operations. Installed boards shall not remain exposed at the end of a work day.

-- End Of Section --
SECTION 07212
MINERAL FIBER BLANKET THERMAL INSULATION
06/93

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 665 1991 Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

ASTM C 930 1992 Potential Health and Safety Concerns Associated with Thermal Insulation Materials and Accessories

ASTM D 3833 1988 Water Vapor Transmission of Pressure-Sensitive Tapes

ASTM E 84 1991 (Rev. A) Surface Burning Characteristics of Building Materials

ASTM E 136 1992 (Rev. A) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

CODE OF FEDERAL REGULATIONS (CFR)

29 CFR 1910.134 Respiratory Protection

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Blanket insulation.
Firesafing insulation.

Pressure sensitive tape.
Accessories.

Data identifying performance characteristics of insulation material. Data shall include recommended application requirements.
SD-08 Manufacturers Instructions

Application of Insulation.

Insulation manufacturer's recommendations for the application and installation of insulation.

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials to site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.3.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.4 SAFETY PRECAUTIONS

1.4.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.4.2 Smoking

Do not smoke during installation of blanket thermal insulation.

1.4.3 Other Safety Concerns

Consider other safety concerns and measures as outlined in ASTM C 930.

PART 2 PRODUCTS

2.1 BLANKET INSULATION

ASTM C 665, Type I, blankets without membrane coverings and II, blankets with non-reflecting coverings; Class A, membrane-faced surface with a flame spread of 25 or less, except a flame spread rating of 25 or less and a smoke developed rating of 150 or less when tested in accordance with ASTM E 84.

2.1.1 Thermal Resistance Value (R-VALUE)

As indicated.
2.1.2 Recycled Materials

Provide Thermal Insulation containing recycled materials to the extent practicable, provided the material meets all other requirements of this section.

2.1.3 Prohibited Materials

Do not provide materials containing asbestos.

2.2 SAFING INSULATION

ASTM C 665, Type I, blankets without membrane coverings; Class A, membrane-faced surface with a flame spread of 5 or less, and a smoke developed rating of 0 when tested in accordance with ASTM E 84.

2.2.1 Thermal Resistance Value (R-VALUE)

R-16.

2.3 SOUND ATTENUATION BATT INSULATION

ASTM C 665, Type I, blankets without membrane coverings; with a flame spread of 10 or less and a smoke developed rating of 10 or less when tested in accordance with ASTM E 84.

2.4 BLOCKING

Wood, metal, unfaced mineral fiber blankets in accordance with ASTM C 665, Type I, or other approved materials. Use only non-combustible materials meeting the requirements of ASTM E 136 for blocking around chimneys and heat producing devices.

2.5 PRESSURE SENSITIVE TAPE

As recommended by the vapor retarder manufacturer and having a water vapor permeance rating of one perm or less when tested in accordance with ASTM D 3833.

2.6 ACCESSORIES

2.6.1 Adhesive

As recommended by the insulation manufacturer.

2.6.2 Mechanical Fasteners

Corrosion resistant fasteners as recommended by the insulation manufacturer.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, ensure that areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If moisture or other conditions are found that do not allow the workmanlike installation of the
insulation, do not proceed but notify Contracting Officer of such conditions.

3.2 INSTALLATION

3.2.1 Blanket Insulation

Install and handle insulation in accordance with manufacturer's Instructions. Keep material dry and free of extraneous materials. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices.

3.2.1.1 Electrical wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.

3.2.1.2 Continuity of Insulation

Install blanket insulation to butt tightly against adjoining blankets and to studs, rafters, joists, sill plates, headers and any obstructions. Provide continuity and integrity of insulation at corners, wall to ceiling joints, roof, and floor. Avoid creating thermal bridges.

3.2.1.3 Installation at Bridging and Cross Bracing

Insulate at bridging and cross bracing by splitting blanket vertically at center and packing one half into each opening. Butt insulation at bridging and cross bracing; fill in bridged area with loose or scrap insulation.

3.2.1.4 Cold Climate Requirement

Place insulation to the outside of pipes.

3.2.1.5 Insulation Blanket with Affixed Vapor Retarder

Locate vapor retarder as indicated. Do not install blankets with affixed vapor retarders unless so specified. Unless the insulation manufacturer's instructions specifically recommend not to staple the flanges of the vapor retarder facing, staple flanges of vapor retarder at 6-inch intervals flush with face or set in the side of truss, joist, or stud. Avoid gaps and bulges in insulation and "fishmouth" in vapor retarders. Overlap both flanges when using face method. Seal joints and edges of vapor retarder with pressure sensitive tape. Stuff pieces of insulation into small cracks between trusses, joists, studs and other framing, such as at attic access doors, door and window heads, jambs, and sills, band joists, and headers. Cover these insulated cracks with vapor retarder material and tape all joints with pressure sensitive tape to provide air and vapor tightness.

3.2.1.6 Insulation without Affixed Vapor Retarder

Provide snug friction fit to hold insulation in place. Stuff pieces of insulation into cracks between trusses, joists, studs and other framing, such as at attic access doors, door and window heads, jambs, and sills, band joists, and headers.
3.2.1.7 Sizing of Blankets

Provide only full width blankets when insulating between trusses, joists, or studs. Size width of blankets for a snug fit where trusses, joists or studs are irregularly spaced.

3.2.1.8 Special Requirements for Ceilings
Place insulation under electrical wiring occurring across joists. Pack insulation into narrowly spaced framing. Do not block flow of air through soffit vents.

-- End Of Section --
SECTION 07214

BOARD AND BLOCK INSULATION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

- ASTM E 84 (1995; Rev. A) Surface Burning Characteristics of Building Materials

CODE OF FEDERAL REGULATIONS (CFR)

- 29 CFR 1910.134 Respiratory Protection

FEDERAL SPECIFICATIONS (FS)

- FS HH-I-1972/1 Insulation Board, Thermal, Polyurethane or Polyisocyanurate, Faced with Aluminum Foil on Both Sides of the Foam
- FS HH-I-1972/2 Insulation Board, Thermal, Polyurethane or Polyisocyanurate Faced with Asphalt/Organic Felt, Polymer/Organic Mat, Asphalt/Glass Mat or Polymer/Glass Mat on Both Sides of the Foam

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

- SD-03 Product Data
 - Block or board insulation
 - Accessories.
SD-08, Manufacturer's Instructions

Block or Board Insulation
Adhesive

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials to the site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.3.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.4 SAFETY PRECAUTIONS

1.4.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.4.2 Other Safety Considerations

Consider safety concerns and measures as outlined in ASTM C 930.

PART 2 PRODUCTS

2.1 BLOCK OR BOARD INSULATION

Provide only thermal insulating materials recommended by manufacturer for type of application indicated. Provide board or block thermal insulation conforming to the following standards and the physical properties listed below:

a. Extruded Preformed Cellular Polystyrene: ASTM C 578

b. Aluminum Foil Faced Polyurethane or Polyisocyanurate Board: FS HH-I-1972/1

c. Polyurethane or Polyisocyanurate Faced with Asphalt/Organic Felt, Polymer/Organic Mat, Asphalt/Glass Mat, or Polymer/Glass Mat on both sides of the Foam: FS HH-I-1972/2
2.1.1 Thermal Resistance

As indicated.

2.1.2 Fire Protection Requirement

a. Flame spread index of 75 or less when tested in accordance with ASTM E 84.

b. Smoke developed index of 150 or less when tested in accordance with ASTM E 84.

2.1.3 Recycled Materials

Provide thermal insulation containing recycled materials to the extent practicable, provided that the material meets all other requirements of this section.

2.1.4 Prohibited Materials

Do not provide materials containing more than one percent of asbestos.

2.2 ACCESSORIES

2.2.1 Adhesive

As recommended by insulation manufacturer.

2.2.2 Mechanical Fasteners

Corrosion resistant fasteners as recommended by the insulation manufacturer.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, ensure that all areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If installing perimeter or under slab insulation, check that the fill is flat, smooth, dry, and well tamped. If moisture or other conditions are found that do not allow the proper installation of the insulation, do not proceed but notify the Contracting Officer of such conditions.

3.2 INSTALLATION

3.2.1 Insulation Board

Install and handle insulation in accordance with the manufacturer's Installation Instructions. Keep material dry and free of extraneous materials. Observe safe work practices.
3.2.2 Electrical Wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.

3.2.3 Cold Climate Requirement

Place insulation to the outside of pipes.

3.2.4 Continuity of Insulation

Butt tightly against adjoining boards, studs, rafters, joists, sill plates, headers and obstructions. Provide continuity and integrity of insulation at corners, wall to ceiling joint, roof, and floor. Avoid creating any thermal bridges or voids.

3.3 INSTALLATION ON WALLS

3.3.1 Installation on Masonry Walls

Apply board directly to masonry with adhesive or fasteners as recommended by the insulation manufacturer. Fit between obstructions without impaling board on ties or anchors. Apply in parallel courses with joints breaking midway over course below. Put ends in moderate contact with adjoining insulation without forcing. Cut and shape as required to fit around wall penetrations, projections or openings to accommodate conduit or other services. Seal around cut-outs with sealant. Install board in wall cavities so that it leaves at least a nominal 25 mm free air space outside of the insulation to allow for cavity drainage.

3.3.2 Adhesive Attachment to Concrete and Masonry Walls

Apply adhesive to wall and completely cover wall with insulation.

c. As recommended by the insulation manufacturer.

d. Use only full back method for pieces of 0.1 square meter or less.

e. Butt all edges of insulation and seal edges with tape.

3.3.3 Mechanical Attachment on Concrete and Masonry Walls

Cut insulation to cover walls. Apply adhesive to wall and set clip or other mechanical fastener in adhesive as recommended by manufacturer. After curing of adhesive, install insulation over fasteners, bend split prongs flush with insulation. Butt all edges of insulation and seal with tape.

3.3.4 Protection Board or Coating

Install protection board or coating in accordance with manufacturer's instructions. Install protection over all exterior exposed insulation board and down to 300 mm below grade.

SECTION 07214 Page 4
3.4 PERIMETER AND UNDER SLAB INSULATION

EXTENT AND R-VALUE FOR PERIMETER AND UNDER-SLAB THERMAL INSULATION

<table>
<thead>
<tr>
<th>Weather Region by Heating Degree Days (Base 18 degrees C)</th>
<th>Minimum Required R-Values For Perimeter Insulation per Position and Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unheated Slab</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
</tr>
<tr>
<td>Over 4150</td>
<td>NP1</td>
</tr>
<tr>
<td>3601 to 4150</td>
<td>1.41</td>
</tr>
<tr>
<td>3046 to 3600</td>
<td>1.41</td>
</tr>
<tr>
<td>2491 to 3045</td>
<td>1.41</td>
</tr>
<tr>
<td>1941 to 2490</td>
<td>1.41</td>
</tr>
<tr>
<td>1526 to 1940</td>
<td>1.34</td>
</tr>
<tr>
<td>1111 to 1525</td>
<td>1.27</td>
</tr>
<tr>
<td>556 to 1110</td>
<td>1.13</td>
</tr>
<tr>
<td>0 to 555</td>
<td>0</td>
</tr>
<tr>
<td>0 to 555</td>
<td>0</td>
</tr>
<tr>
<td>556 to 1110</td>
<td>1.13</td>
</tr>
</tbody>
</table>

1. NP: Not Permitted

2. Perimeter Insulation is not required in weather regions 8 and 11 where there are less than 830 Heating Degree Days (18 degrees C).

Install perimeter thermal insulation where heated spaces are adjacent to exterior walls or slab edges in slab-on-grade or floating-slab construction.
3.4.1 Manufacturer's Instructions

Install, attach, tape edges, provide vapor retarder and other requirements such as protection against vermin, insects, damage during construction as recommended in manufacturer's instructions.

3.4.2 Insulation on Vertical Surfaces

Install thermal insulation as indicated. Fasten insulation with adhesive or mechanical fasteners.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ALUMINUM ASSOCIATION (AA)

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI Cold-Formed Mnl (1996) Cold-Formed Steel Design Manual

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 463/A 463M (1999a) Steel Sheet, Aluminum-Coated, by the Hot-Dip Process

ASTM A 653/A 653M (1999a) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A 792/A 792M (1999) Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process

ASTM D 522 (1993a) Mandrel Bend Test of Attached Organic Coatings

ASTM D 610 (1995) Evaluating Degree of Rusting on Painted Steel Surfaces

ASTM D 714 (1987; R 1994el) Evaluating Degree of Blistering of Paints

1.2 GENERAL REQUIREMENTS

The Contractor shall furnish a commercially available roofing system which satisfies all requirements contained herein and has been verified by load testing and independent design analyses to meet the specified design requirements.

1.2.1 Structural Standing Seam Metal Roof (SSSMR) System

The SSSMR system covered under this specification shall include the entire roofing system; the standing seam metal roof panels, fasteners, connectors, roof securement components, and assemblies tested and approved in accordance with ASTM E 1592. In addition, the system shall consist of panel finishes, slip sheet, insulation, vapor retarder, all accessories, components, and
trim and all connections with roof panels. This includes roof penetration items such as vents, curbs, exterior gutters and downspouts; eaves, ridge, hip, valley, rake, gable, wall, or other roof system flashings installed and any other components specified within this contract to provide a weathertight roof system.

1.2.2 Manufacturer

The SSSMR system shall be the product of a manufacturer who has been in the practice of manufacturing and designing SSSMR systems for a period of not less than 5 years and has been involved in at least five projects similar in size and complexity to this project.

1.2.3 Installer

The installer shall be certified by the SSSMR system manufacturer to have experience in installing at least three projects that are of comparable size, scope and complexity as this project for the particular roof system furnished. The installer may be either employed by the manufacturer or be an independent installer.

1.3 DESIGN REQUIREMENTS

The design of the SSSMR system shall be provided by the Contractor as a complete system. Members and connections not indicated on the drawings shall be designed by the Contractor. Roof panels, components, transitions, accessories, and assemblies shall be supplied by the same roofing system manufacturer.

1.3.1 Design Criteria

Design criteria shall be in accordance with ASCE 7.

1.3.2 Dead Loads

The dead load shall be the weight of the SSSMR system. Collateral loads such as sprinklers, mechanical and electrical systems, and ceilings shall not be attached to the panels.

1.3.3 Live Loads

1.3.3.1 Concentrated Loads

The panels and anchor clips shall be capable of supporting a 1335 N concentrated load. The concentrated load shall be applied at the panel midspan and will be resisted by a single standing seam metal roof panel assumed to be acting as a beam. The undeformed shape of the panel shall be used to determine the section properties.

1.3.3.2 Uniform Loads

The panels and concealed anchor clips shall be capable of supporting a minimum uniform live load of 960 Pa.

1.3.4 Roof Snow Loads

The design roof snow loads shall be as shown on the contract drawings.
1.3.5 Wind Loads

The design wind uplift pressure for the roof system shall be as shown on the contract drawings. The design uplift force for each connection assembly shall be that pressure given for the area under consideration, multiplied by the tributary load area of the connection assembly. The safety factor listed below shall be applied to the design force and compared against the ultimate capacity. Prying shall be considered when figuring fastener design loads.

a. Single fastener in each connection........3.0

b. Two or more fasteners in each connection...2.25

1.3.6 Thermal Loads

Roof panels shall be free to move in response to the expansion and contraction forces resulting from a total temperature range of 110 degrees C during the life of the structure.

1.3.7 Framing Members Supporting the SSSMR System

Any additions/revisions to framing members supporting the SSSMR system to accommodate the manufacturer/fabricator's design shall be the Contractor's responsibility and shall be submitted for review and approval. New or revised framing members and their connections shall be designed in accordance with AISC ASD Spec S335. Maximum deflection under applied live load, snow, or wind load shall not exceed 1/180 of the span length.

1.3.8 Roof Panels Design

Steel panels shall be designed in accordance with AISI Cold-Formed Mnl. Aluminum panels shall be designed in accordance with AA Design Manual. The structural section properties used in the design of the panels shall be determined using the unloaded shape of the roof panels. The calculated panel deflection from concentrated loads shall not exceed 1/180 of the span length. The calculated panel deflection under applied live load, snow, or wind load shall not exceed 1/180 times the span length. Deflections shall be based on panels being continuous across three or more supports. Deflection shall be calculated and measured along the major ribs of the panels.

1.3.9 Accessories and Their Fasteners

Accessories and their fasteners shall be capable of resisting the specified design wind uplift forces and shall allow for thermal movement of the roof panel system. Exposed fasteners shall not restrict free movement of the roof panel system resulting from thermal forces. There shall be a minimum of two fasteners per clip. Single fasteners with a minimum diameter of 9 mm will be allowed when the supporting structural members are prepunched or predrilled.

1.4 PERFORMANCE REQUIREMENTS

The SSSMR shall be tested for wind uplift resistance in accordance with ASTM E 1592; SSSMR systems previously tested and approved by the Corps of
Engineers' STANDARD TEST METHOD FOR STRUCTURAL PERFORMANCE OF SSMRS BY UNIFORM STATIC AIR PRESSURE DIFFERENCE may be acceptable. Two tests shall be performed. Test 1 shall simulate the edge condition with one end having crosswise restraint and other end free of crosswise restraint. The maximum span length for the edge condition shall be 750 mm. Test 2 shall simulate the interior condition with both ends free of crosswise restraint. The maximum span length for the interior condition shall be 1.5 m. External reinforcement, such as clamps on the ribs, shall not be installed to improve uplift resistance. Bolts through seams shall not be installed.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Drawings

Structural Standing Seam Metal Roof System; G, RE.

Metal roofing drawings and specifications and erection drawings; shop coating and finishing specifications; and other data as necessary to clearly describe design, materials, sizes, layouts, standing seam configuration, construction details, provisions for thermal movement, line of panel fixity, fastener sizes and spacings, sealants and erection procedures. Drawings shall reflect the intent of the architectural detailing using the manufacturer's proprietary products and fabricated items as required. The SSSMR system shop drawings shall be provided by the metal roofing manufacturer.

SD-03 Product Data

Design Analysis; G, RE.

Design analysis signed by a Registered Professional Engineer employed by the SSSMR manufacturer. The design analysis shall include a list of the design loads, and complete calculations for the support system (when provided by the Contractor), roofing system and its components; valley designs, gutter/downspout calculations, screw pullout test results, and shall indicate how expected thermal movements are accommodated.

Qualifications.

Qualifications of the manufacturer and installer.

SD-04 Samples

Accessories.

One sample of each type of flashing, trim, closure, thermal spacer block, cap and similar items. Size shall be sufficient to show construction and configuration.
Roof Panels.

One piece of each type to be used, 225 mm long, full width.

Factory Color Finish.

Three 75 by 125 mm samples of each type and color.

Fasteners.

Two samples of each type to be used, with statement regarding intended use. If so requested, random samples of bolts, nuts, and washers as delivered to the job site shall be taken in the presence of the Contracting Officer and provided to the Contracting Officer for testing to establish compliance with specified requirements.

Insulation.

One piece, 300 by 300 mm, of each type and thickness to be used, with a label indicating the rated permeance (if faced) and R-values. The flame spread, and smoke developed rating shall be shown on the label or provided in a letter of certification.

Gaskets and Insulating Compounds.

Two samples of each type to be used and descriptive data.

Sealant.

One sample, approximately 0.5 kg, and descriptive data.

Concealed Anchor Clips.

Two samples of each type used.

Subpurlins.

One piece, 225 mm long.

EPDM Rubber Boots.

One piece of each type.

SD-06 Test Reports

Test Report for Uplift Resistance of the SSSMR; G, RE.

The report shall include the following information:

a. Details of the SSSMR system showing the roof panel cross-section with dimensions and thickness.

b. Details of the anchor clip, dimensions, and thickness.

c. Type of fasteners, size, and the number required for each connection.
d. Purlins/subpurlins size and spacing used in the test.

e. Description of the seaming operation including equipment used.

f. Maximum allowable uplift pressures. These pressures are determined from the ultimate load divided by a factor of safety equal to 1.65.

g. Any additional information required to identify the SSSMR system tested.

h. Signature and seal of an independent registered engineer who witnessed the test.

SD-07 Certificates

Structural Standing Seam Metal Roof System.

a. Certification that the actual thickness of uncoated sheets used in SSSMRS components including roofing panels, subpurlins, and concealed anchor clips complies with specified requirements.

b. Certification that materials used in the installation are mill certified.

c. Previous certification of SSSMR system tested under the Corps of Engineers' Standard Test Method in lieu of ASTM E 1592 testing.

d. Certification that the sheets to be furnished are produced under a continuing quality control program and that a representative sample consisting of not less than three pieces has been tested and has met the quality standards specified for factory color finish.

e. Certification of installer. Installer certification shall be furnished.

f. Warranty certificate. At the completion of the project the Contractor shall furnish signed copies of the 5-year Warranty for Structural Standing Seam Metal Roof (SSSMR) System, a sample copy of which is attached to this section, and the 20-year Manufacturer's Material Warranties, and the manufacturer's 20-year system weathertightness warranty.

Insulation.

Certificate attesting that the polyurethane or polyisocyanurate insulation furnished for the project contains recovered material, and showing an estimated percent of such recovered material.

1.6 DELIVERY AND STORAGE

Materials shall be delivered to the site in a dry and undamaged condition and stored out of contact with the ground. Materials shall be covered with
weathertight coverings and kept dry. Storage conditions shall provide good air circulation and protection from surface staining.

1.7 WARRANTIES

The SSSMR system shall be warranted as outlined below. Any emergency temporary repairs conducted by the owner shall not negate the warranties.

1.7.1 Contractor's Weathertightness Warranty

The SSSMR system shall be warranted by the Contractor on a no penal sum basis for a period of five years against material and workmanship deficiencies; system deterioration caused by exposure to the elements and/or inadequate resistance to specified service design loads, water leaks, and wind uplift damage. The SSSMR system covered under this warranty shall include the entire roofing system including, but not limited to, the standing seam metal roof panels, fasteners, connectors, roof securement components, and assemblies tested and approved in accordance with ASTM E 1592. In addition, the system shall consist of panel finishes, slip sheet, insulation, vapor retarder, all accessories, components, and trim and all connections with roof panels. This includes roof penetration items such as vents, and curbs; exterior gutters and downspouts; eaves, ridge, hip, valley, rake, gable, wall, or other roof system flashings installed and any other components specified within this contract to provide a weathertight roof system; and items specified in other sections of these specifications that are part of the SSSMR system. All material and workmanship deficiencies, system deterioration caused by exposure to the elements and/or inadequate resistance to specified design loads, water leaks and wind uplift damage shall be repaired as approved by the Contracting Officer. See the attached Contractor's required warranty for issue resolution of warrantable defects. This warranty shall warrant and cover the entire cost of repair or replacement, including all material, labor, and related markups. The Contractor shall supplement this warranty with written warranties from the installer and system manufacturer, which shall be submitted along with Contractor's warranty; however, the Contractor shall be ultimately responsible for this warranty. The Contractor's written warranty shall be as outlined in attached WARRANTY FOR STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM, and shall start upon final acceptance of the facility. It is required that the Contractor provide a separate bond in an amount equal to the installed total roofing system cost in favor of the owner (Government) covering the Contractor's warranty responsibilities effective throughout the five year Contractor's warranty period for the entire SSSMR system as outlined above.

1.7.2 Manufacturer's Material Warranties.

The Contractor shall furnish, in writing, the following manufacturer's material warranties which cover all SSSMR system components such as roof panels, anchor clips and fasteners, flashing, accessories, and trim, fabricated from coil material:

 a. A manufacturer's 20 year material warranty warranting that the aluminum, zinc-coated steel, aluminum-zinc alloy coated steel or aluminum-coated steel as specified herein will not rupture, structurally fail, fracture, deteriorate, or become perforated under normal design atmospheric conditions and service design loads. Liability under this warranty shall be
limited exclusively to the cost of either repairing or replacing nonconforming, ruptured, perforated, or structurally failed coil material.

b. A manufacturer's 20 year exterior material finish warranty on the factory colored finish warranting that the finish, under normal atmospheric conditions at the site, will not crack, peel, or delaminate; chalk in excess of a numerical rating of eight, as determined by ASTM D 4214 test procedures; or change color in excess of five CIE or Hunter Lab color difference (delta E) units in accordance with ASTM D 2244. Liability under this warranty is exclusively limited to refinishing with an air-drying version of the specified finish or replacing the defective coated material.

c. A roofing system manufacturer's 20 year system weathertightness warranty.

1.8 COORDINATION MEETING

A coordination meeting shall be held 30 days prior to the first submittal, for mutual understanding of the Structural Standing Seam Metal Roof (SSSMR) System contract requirements. This meeting shall take place at the building site and shall include representatives from the Contractor, the roof system manufacturer, the roofing supplier, the erector, the SSSMR design engineer of record, and the Contracting Officer. All items required by paragraph SUBMITTALS shall be discussed, including applicable standard manufacturer shop drawings, and the approval process. The Contractor shall coordinate time and arrangements for the meeting.

PART 2 PRODUCTS

2.1 ROOF PANELS

Panels shall be steel and shall have a factory color finish. Length of sheets shall be sufficient to cover the entire length of any unbroken roof slope for slope lengths that do not exceed 9 m. When length of run exceeds 9 m and panel laps are provided, each sheet in the run shall extend over three or more supports. Sheets longer than 30 m may be furnished if approved by the Contracting Officer. Width of sheets shall provide not more than 600 mm of coverage in place. SSSMR system with roofing panels greater than 300 mm in width shall have standing seams rolled during installation by an electrically driven seaming machine. Height of standing seams shall be not less than 3 mm for rolled seam.

2.1.1 Steel Panels

Steel panels shall be zinc-coated steel conforming to ASTM A 653/A 653M; aluminum-zinc alloy coated steel conforming to ASTM A 792/A 792M, AZ 55 coating; or aluminum-coated steel conforming to ASTM A 463/A 463M, Type 2, coating designation T2 65. Zinc, zinc-aluminum alloy or aluminum coated panels shall be 0.584 mm thick minimum. Panels shall be within 95 percent of reported tested thickness as noted in wind uplift resistance testing required in paragraph PERFORMANCE REQUIREMENTS. Prior to shipment, mill finish panels shall be treated with a passivating chemical to inhibit the formation of oxide corrosion products. Panels that have become wet during shipment and have started to oxidize shall be rejected.

2.2 CONCEALED ANCHOR CLIPS
Concealed anchor clips shall be the same as the tested roofing system. Clip bases shall have factory punched or drilled holes for attachment. Clips shall be made from multiple pieces with the allowance for the total thermal movement required to take place within the clip. Single piece clips may be acceptable when the manufacturer can substantiate that the system can accommodate the thermal cyclic movement under sustained live or snow loads.

2.3 ACCESSORIES

Flashing, trim, metal closure strips, caps and similar metal accessories shall be the manufacturer's standard products. Exposed metal accessories shall be finished to match the panels furnished. Molded closure strips shall be bituminous-saturated fiber, closed-cell or solid-cell synthetic rubber or neoprene, or polyvinyl chloride premolded to match configuration of the panels and shall not absorb or retain water. The use of a continuous angle butted to the panel ends to form a closure will not be allowed.

2.3.1 Snow Guard

Provide clear polycarbonate with UV stabilizers. Snow guard shall be secured by adhesive. Roof panel manufacturer shall recommend or approve type of adhesive for securing the snow guard.

2.4 FASTENERS

Fasteners for steel roof panels shall be zinc-coated steel, aluminum, corrosion resisting steel, or nylon capped steel, type and size specified below or as otherwise approved for the applicable requirements. Fasteners for structural connections shall provide both tensile and shear ultimate strengths of not less than 3340 N per fastener. Fasteners for accessories shall be the manufacturer's standard. Exposed roof fasteners shall be sealed or have sealed washers on the exterior side of the roof to waterproof the fastener penetration. Washer material shall be compatible with the roofing; have a minimum diameter of 10 mm for structural connections; and gasketed portion of fasteners or washers shall be neoprene or other equally durable elastomeric material approximately 3 mm thick. Exposed fasteners for factory color finished panels shall be factory finished to match the color of the panels.

2.4.1 Screws

Screws for attaching anchor devices shall be not less than No. 14. Actual screw pull out test results shall be performed for the actual material gage and yield strength of the structural purlins or subpurlins to which the clip is to be anchored/attached. Other screws shall be as recommended by the manufacturer to meet the strength design requirements of the panels.

2.4.2 Bolts

Bolts shall be not less than 6 mm diameter, shouldered or plain shank as required, with locking washers and nuts.

2.4.3 Structural Blind Fasteners

Blind screw-type expandable fasteners shall be not less than 6 mm diameter. Blind (pop) rivets shall be not less than 7 mm minimum diameter.
2.5 SUBPURLINS

Cold formed supporting structural members/subpurlins shall have a minimum thickness of 1.5 mm and a minimum tensile yield strength of 345 MPa. Hot rolled structural members shall have a minimum thickness of 6 mm and a minimum tensile yield strength of 248 MPa. Subpurlins shall be shop painted.

2.6 FACTORY COLOR FINISH

Panels shall have a factory applied polyvinylidene fluoride finish on the exposed side. The exterior finish shall consist of a baked-on topcoat with an appropriate prime coat. Color shall match the color indicated on the drawings. The exterior coating shall be a nominal 0.025 mm thickness consisting of a topcoat of not less than 0.018 mm dry film thickness and the paint manufacturer's recommended primer of not less than 0.005 mm thickness. The interior color finish shall consist of the same coating and dry film thickness as the exterior. The exterior color finish shall meet the test requirements specified below.

2.6.1 Salt Spray Test

A sample of the sheets shall withstand a cyclic corrosion test for a minimum of 2016 hours in accordance with ASTM D 5894, including the scribe requirement in the test. Immediately upon removal of the panel from the test, the coating shall receive a rating of not less than 10, no blistering, as determined by ASTM D 714; 10, no rusting, as determined by ASTM D 610; and a rating of 6, over 2.0 to 3.0 mm failure at scribe, as determined by ASTM D 1654.

2.6.2 Formability Test

When subjected to testing in accordance with ASTM D 522 Method B, 3 mm diameter mandrel, the coating film shall show no evidence of cracking to the naked eye.

2.6.3 Accelerated Weathering, Chalking Resistance and Color Change

A sample of the sheets shall be tested in accordance with ASTM D 4587. The coating shall withstand the weathering test without cracking, peeling, blistering, loss of adhesion of the protective coating, or corrosion of the base metal. Protective coating that can be readily removed from the base metal with tape in accordance with ASTM D 3359, Test Method B, shall be considered as an area indicating loss of adhesion. Following the accelerated weathering test, the coating shall have a chalk rating not less than No. 8 in accordance with ASTM D 4214 test procedures, and the color change shall not exceed 5 CIE or Hunter Lab color difference (delta E) units in accordance with ASTM D 2244.

2.6.4 Humidity Test

When subjected to a humidity cabinet test in accordance with ASTM D 2247 for 1000 hours, a scored panel shall show no signs of blistering, cracking, creepage or corrosion.

2.6.5 Impact Resistance
Factory-painted sheet shall withstand direct and reverse impact in accordance with ASTM D 2794 13 mm diameter hemispherical head indenter, equal to 6.7 times the metal thickness in mm, expressed in Newton-meters, with no cracking.

2.6.6 Abrasion Resistance Test

When subjected to the falling sand test in accordance with ASTM D 968, Method A, the coating system shall withstand a minimum of 50 liters of sand before the appearance of the base metal. The term "appearance of base metal" refers to the metallic coating on steel.

2.6.7 Pollution Resistance

Coating shall show no visual effects when covered spot tested in a 10 percent hydrochloric acid solution for 24 hours in accordance with ASTM D 1308.

2.7 INSULATION

As specified in Section 07212.

2.8 INSULATION RETAINERS

Insulation retainers shall be type, size, and design necessary to adequately hold the insulation and to provide a neat appearance. Metallic retaining members shall be nonferrous or have a nonferrous coating. Nonmetallic retaining members, including adhesives used in conjunction with mechanical retainers or at insulation seams, shall have a fire resistance classification not less than that permitted for the insulation.

2.9 SEALANT

Sealants shall be elastomeric type containing no oil or asphalt. Exposed sealant shall be colored to match the applicable building color and shall cure to a rubberlike consistency. Sealant placed in the roof panel standing seam ribs shall be provided in accordance with the manufacturer's recommendations.

2.10 GASKETS AND INSULATING COMPOUNDS

Gaskets and insulating compounds shall be nonabsorptive and suitable for insulating contact points of incompatible materials. Insulating compounds shall be nonrunning after drying.

2.11 VAPOR RETARDER

2.11.1 Vapor Retarders Separate from Insulation

Vapor retarder material shall be polyethylene sheeting conforming to ASTM D 4397. A single ply of 0.25 mm polyethylene sheet; or, at the Contractor's option, a double ply of 0.15 mm polyethylene sheet shall be used. A fully compatible polyethylene tape which has equal or better water vapor control characteristics than the vapor retarder material shall be provided. A cloth industrial duct tape in a utility grade shall also be provided to use as needed to protect the vapor retarder from puncturing.
2.12 EPDM RUBBER BOOTS

Flashing devices around pipe penetrations shall be flexible, one-piece devices molded from weather-resistant EPDM rubber. Rubber boot material shall be as recommended by the manufacturer. The boots shall have base rings made of aluminum or corrosion resisting steel that conform to the contours of the roof panel to form a weather-tight seal.

2.13 PREFABRICATED CURBS AND EQUIPMENT SUPPORTS

Prefabricated curbs and equipment supports shall be of structural quality, hot-dipped galvanized or galvanized sheet steel, factory primed and prepared for painting with mitered and welded joints. Integral base plates and water diverter crickets shall be provided. Minimum height of curb shall be 200 mm above finish roof. Curbs shall be constructed to match roof slope and to provide a level top surface for mounting of equipment. Curb flange shall be constructed to match configuration of roof panels. Curb size shall be coordinated, prior to curb fabrication, with the mechanical equipment to be supported. Strength requirements for equipment supports shall be coordinated to include all anticipated loads. Flashings shall not be rigidly attached to underline structure.

PART 3 EXECUTION

3.1 INSTALLATION

Installation shall be in accordance with the manufacturer's erection instructions and drawings. Dissimilar materials which are not compatible when contacting each other shall be insulated by means of gaskets or insulating compounds. Molded closure strips shall be installed wherever roofing sheets terminate in open-end configurations, exclusive of flashings. The closure strip installation shall be weather-tight and sealed. Screws shall be installed with a clamping screw gun, to assure screws are not stripped. Field test shall be conducted on each gun prior to starting installation and periodically thereafter to assure it is adjusted properly to install particular type and size of screw as recommended by manufacturer's literature. Improper or mislocated drill holes shall be plugged with an oversize screw fastener and gasketed washer; however, sheets with an excess of such holes or with such holes in critical locations shall not be used. Exposed surfaces and edges shall be kept clean and free from sealant, metal cuttings, hazardous burrs, and other foreign material. Stained, discolored, or damaged sheets shall be removed from the site.

3.1.1 Field Forming of Panels for Unique Area

When roofing panels are formed from factory-color-finished steel coils at the project site, the same care and quality control measures that are taken in shop forming of roofing panels shall be observed. Rollformer shall be operated by the metal roofing manufacturer's representative. In cold weather conditions, preheating of the steel coils to be field formed shall be performed as necessary just prior to the rolling operations.

3.1.2 Subpurlins

Unless otherwise shown, subpurlins shall be anchored to the purlins or other structural framing members with bolts or screws. Attachment to the substrate (when provided) or to the panels is not permitted. The subpurlin
spacing shall not exceed 750 mm on centers at the corner, edge and ridge zones, and 1500 mm maximum on centers for the remainder of the roof. Corner, edge, and ridge zones are as defined in ASCE 7.

3.1.3 Roof Panel Installation

Roof panels shall be installed with the standing seams in the direction of the roof slope. The side seam connections for installed panels shall be completed at the end of each day's work. Method of applying joint sealant shall conform to the manufacturer's recommendation to achieve a complete weather-tight installation. End laps of panels shall be provided in accordance with the manufacturer's instructions. Closures, flashings, EPDM rubber boots, roof curbs, and related accessories shall be installed according to the manufacturer's drawings. Fasteners shall not puncture roofing sheets except as provided for in the manufacturer's instructions for erection and installation. Expansion joints for the standing seam roof system shall be installed at locations indicated on the contract drawings and other locations indicated on the manufacturer's drawings.

3.1.4 Concealed Anchor Clips

Concealed anchor clips shall be fastened directly to the structural framing members. Attachment to the substrate (when provided) or to the metal deck is not permitted. The maximum distance, parallel to the seams, between clips shall be 750 mm on center at the corner, edge, and ridge zones, and 1500 mm maximum on centers for the remainder of the roof.

3.2 INSULATION INSTALLATION

Insulation shall be continuous over entire roof surface. Where expansion joints, terminations, and other connections are made, the cavity shall be filled with batt insulation with vapor retarder providing equivalent R-value and perm rating as remaining insulation. Insulation shall be installed as indicated and in accordance with manufacturer's instructions.

3.2.1 Board Insulation with Blanket Insulation

Rigid or semirigid board insulation shall be laid in close contact. Board shall be attached to the metal roof deck with bearing plates and fasteners, as recommended by the insulation manufacturer, so that the insulation joints are held tight against each other, and shall have a minimum of 1 fastener per 0.37 square meters. Layout and joint pattern of insulation and fasteners shall be indicated on the shop drawings. If more than one layer of insulation is required, joints in the second layer shall be offset from joints in the first layer. A layer of blanket insulation shall be placed over the rigid or semirigid board insulation to be compressed against the underside of the metal roofing to reduce thermal bridging, dampen noise, and prevent roofing flutter. This layer of blanket insulation shall be compressed a minimum of 50 percent.

3.2.2 Blanket Insulation

Blanket insulation shall be installed between and parallel to the purlins with tabs of a facer lapping on the top face of the purlins. Thermal blocks shall be provided over purlins, between clips. A second layer of unfaced insulation shall be added between purlins to provide full R-value. Blanket
insulation shall be supported by an integral facing or other commercially available support system.

3.3 PROTECTION OF VAPOR RETARDER FROM ROOF DECK

A cloth industrial duct tape shall be applied over the seams of metal roof decks, at penetration edges, and at surface areas exhibiting sharp burrs or similar protrusions. For other types of roof decks, cloth industrial duct tape shall be applied over irregularities which could potentially puncture polyethylene membrane.

3.4 VAPOR RETARDER INSTALLATION

3.4.1 Polyethylene Vapor Retarder

The polyethylene vapor retarder membrane shall be installed over the entire surface. A fully compatible polyethylene tape shall be used to seal the edges of the sheets to provide a vapor tight membrane. Sheet edges shall be lapped not less than 150 mm. Sufficient material shall be provided to avoid inducing stresses in the sheets due to stretching or binding. All tears or punctures that are visible in the finished surface at any time during the construction process shall be sealed with polyethylene tape.

3.5 SNOW GUARD INSTALLATION

Install snow guards in accordance with snow guard manufacturer's recommendations.

3.6 CLEANING AND TOUCH-UP

Exposed SSSMR systems shall be cleaned at completion of installation. Debris that could cause discoloration and harm to the panels, flashings, closures and other accessories shall be removed. Grease and oil films, excess sealants, and handling marks shall be removed and the work shall be scrubbed clean. Exposed metal surfaces shall be free of dents, creases, waves, scratch marks, and solder or weld marks. Immediately upon detection, abraded or corroded spots on prepainted surfaces shall be replaced. Factory color finished surfaces shall be touched up with the manufacturer's recommended touch up paint. Spraying is not allowed for touch up.

CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY FOR STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM

FACILITY DESCRIPTION___

BUILDING NUMBER:___

CORPS OF ENGINEERS CONTRACT NUMBER:________________________________

CONTRACTOR:__

ADDRESS:___
CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY
FOR
STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM
(continued)

THE SSSMR SYSTEM INSTALLED ON THE ABOVE NAMED BUILDING IS WARRANTED BY ___________________ FOR A PERIOD OF FIVE (5) YEARS AGAINST WORKMANSHIP AND MATERIAL DEFICIENCIES, WIND DAMAGE, STRUCTURAL FAILURE, AND LEAKAGE. THE SSSMR SYSTEM COVERED UNDER THIS WARRANTY SHALL INCLUDE, BUT SHALL NOT BE LIMITED TO, THE FOLLOWING: THE ENTIRE ROOFING SYSTEM, MANUFACTURER SUPPLIED FRAMING AND STRUCTURAL MEMBERS, METAL ROOF PANELS, FASTENERS, CONNECTORS, ROOF SECUREMENT COMPONENTS, AND ASSEMBLIES TESTED AND APPROVED IN ACCORDANCE WITH ASTM E 1592. IN ADDITION, THE SYSTEM PANEL FINISHES, SLIP SHEET, INSULATION, VAPOR RETARDER, ALL ACCESSORIES, COMPONENTS, AND TRIM AND ALL CONNECTIONS ARE INCLUDED. THIS INCLUDES ROOF PENETRATION ITEMS SUCH AS VENTS, CURBS; EXTERIOR GUTTERS AND DOWNSPOUTS; EAVES, RIDGE, HIP, VALLEY, RAKE, GABLE, WALL, OR OTHER ROOF SYSTEM FLASHINGS INSTALLED AND ANY OTHER COMPONENTS SPECIFIED WITHIN THIS CONTRACT TO PROVIDE A WEATHERTIGHT ROOF SYSTEM; AND ITEMS SPECIFIED IN OTHER SECTIONS OF THE SPECIFICATIONS THAT ARE PART OF THE SSSMR SYSTEM.

ALL MATERIAL DEFICIENCIES, WIND DAMAGE, STRUCTURAL FAILURE, AND LEAKAGE ASSOCIATED WITH THE SSSMR SYSTEM COVERED UNDER THIS WARRANTY SHALL BE REPAIRED AS APPROVED BY THE CONTRACTING OFFICER. THIS WARRANTY SHALL COVER THE ENTIRE COST OF REPAIR OR REPLACEMENT, INCLUDING ALL MATERIAL, LABOR, AND RELATED MARKUPS. THE ABOVE REFERENCED WARRANTY COMMENCED ON THE DATE OF FINAL ACCEPTANCE ON ______________________ AND WILL REMAIN IN EFFECT FOR STATED DURATION FROM THIS DATE.
CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY
FOR
STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM
(continued)

THE CONTRACTOR SHALL SUPPLEMENT THIS WARRANTY WITH WRITTEN WARRANTIES FROM THE MANUFACTURER AND/OR INSTALLER OF THE SSSMR SYSTEM, WHICH SHALL BE SUBMITTED ALONG WITH THE CONTRACTOR'S WARRANTY. HOWEVER, THE CONTRACTOR WILL BE ULTIMATELY RESPONSIBLE FOR THIS WARRANTY AS OUTLINED IN THE SPECIFICATIONS AND AS INDICATED IN THIS WARRANTY EXAMPLE.

EXCLUSIONS FROM COVERAGE

1. NATURAL DISASTERS, ACTS OF GOD (LIGHTNING, FIRE, EXPLOSIONS, SUSTAINED WIND FORCES IN EXCESS OF THE DESIGN CRITERIA, EARTHQUAKES, AND HAIL).

2. ACTS OF NEGLIGENCE OR ABUSE OR MISUSE BY GOVERNMENT OR OTHER PERSONNEL, INCLUDING ACCIDENTS, VANDALISM, CIVIL DISOBEDIENCE, WAR, OR DAMAGE CAUSED BY FALLING OBJECTS.

3. DAMAGE BY STRUCTURAL FAILURE, SETTLEMENT, MOVEMENT, DISTORTION, WARPAGE, OR DISPLACEMENT OF THE BUILDING STRUCTURE OR ALTERATIONS MADE TO THE BUILDING.

4. CORROSION CAUSED BY EXPOSURE TO CORROSIVE CHEMICALS, ASH OR FUMES GENERATED OR RELEASED INSIDE OR OUTSIDE THE BUILDING FROM CHEMICAL PLANTS, FOUNDRIES, PLATING WORKS, KILNS, FERTILIZER FACTORIES, PAPER PLANTS, AND THE LIKE.

5. FAILURE OF ANY PART OF THE SSSMR SYSTEM DUE TO ACTIONS BY THE OWNER TO INHIBIT FREE DRAINAGE OF WATER FROM THE ROOF AND GUTTERS AND DOWNSPOUTS OR ALLOW PONDING WATER TO COLLECT ON THE ROOF SURFACE. CONTRACTOR'S DESIGN SHALL INSURE FREE DRAINAGE FROM THE ROOF AND NOT ALLOW PONDING WATER.

6. THIS WARRANTY APPLIES TO THE SSSMR SYSTEM. IT DOES NOT INCLUDE ANY CONSEQUENTIAL DAMAGE TO THE BUILDING INTERIOR OR CONTENTS WHICH IS COVERED BY THE WARRANTY OF CONSTRUCTION CLAUSE INCLUDED IN THIS CONTRACT.

7. THIS WARRANTY CANNOT BE TRANSFERRED TO ANOTHER OWNER WITHOUT WRITTEN CONSENT OF THE CONTRACTOR; AND THIS WARRANTY AND THE CONTRACT PROVISIONS WILL TAKE PRECEDENCE OVER ANY CONFLICTS WITH STATE STATUTES.
**REPORTS OF LEAKS AND SSSMR SYSTEM DEFICIENCIES SHALL BE RESPONDED TO WITHIN 48 HOURS OF RECEIPT OF NOTICE, BY TELEPHONE OR IN WRITING, FROM EITHER THE OWNER OR CONTRACTING OFFICER. EMERGENCY REPAIRS TO PREVENT FURTHER ROOF LEAKS SHALL BE INITIATED IMMEDIATELY; A WRITTEN PLAN SHALL BE SUBMITTED FOR APPROVAL TO REPAIR OR REPLACE THIS SSSMR SYSTEM WITHIN SEVEN (7) CALENDAR DAYS. ACTUAL WORK FOR PERMANENT REPAIRS OR REPLACEMENT SHALL BE STARTED WITHIN 30 DAYS AFTER RECEIPT OF NOTICE, AND COMPLETED WITHIN A REASONABLE TIME FRAME. IF THE CONTRACTOR FAILS TO ADEQUATELY RESPOND TO THE WARRANTY PROVISIONS, AS STATED IN THE CONTRACT AND AS CONTAINED HEREIN, THE CONTRACTING OFFICER MAY HAVE THE SSSMR SYSTEM REPAIRED OR REPLACED BY OTHERS AND CHARGE THE COST TO THE CONTRACTOR.

A FRAMED COPY OF THIS WARRANTY SHALL BE POSTED IN THE MECHANICAL ROOM OR OTHER APPROVED LOCATION DURING THE ENTIRE WARRANTY PERIOD.

-- End Of Section --
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 32 (1996) Solder Metal

ASTM D 226 (1997a) Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing

ASTM D 1784 (1999a) Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds

ASTM D 2822 (1991; R 1997el) Asphalt Roof Cement

ASTM D 4022 (1994) Coal Tar Roof Cement, Asbestos Containing

SHEET METAL & AIR CONDITIONING CONTRACTORS NATIONAL ASSOCIATION (SMACNA)

1.2 GENERAL REQUIREMENTS

Sheet metalwork shall be accomplished to form weathertight construction without waves, warps, buckles, fastening stresses or distortion, and shall allow for expansion and contraction. Cutting, fitting, drilling, and other
operations in connection with sheet metal required to accommodate the work of other trades shall be performed by sheet metal mechanics. Installation of sheet metal items used in conjunction with roofing shall be coordinated with roofing work to permit continuous roofing operations.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Materials

Drawings of sheet metal items showing weights, gauges or thicknesses; types of materials; expansion-joint spacing; fabrication details; and installation procedures.

1.4 DELIVERY, STORAGE, AND HANDLING

Materials shall be adequately packaged and protected during shipment and shall be inspected for damage, dampness, and wet-storage stains upon delivery to the jobsite. Materials shall be clearly labeled as to type and manufacturer. Sheet metal items shall be carefully handled to avoid damage. Materials shall be stored in dry, ventilated areas until immediately before installation.

PART 2 PRODUCTS

2.1 MATERIALS

Lead, lead-coated metal, and galvanized steel shall not be used. Any metal listed by SMACNA Arch. Manual for a particular item may be used, unless otherwise specified or indicated. Materials shall conform to the requirements specified below and to the thicknesses and configurations established in SMACNA Arch. Manual. Different items need not be of the same metal, except that if copper is selected for any exposed item, all exposed items shall be copper.

2.1.1 Accessories

Accessories and other items essential to complete the sheet metal installation, though not specifically indicated or specified, shall be provided.

2.1.2 Prefinished Metal

Exposed prefinished metal shall be as indicated on the Drawings, unless otherwise indicated.

2.1.3 Bituminous Cement

Type I asphalt cement conforming to ASTM D 2822 or ASTM D 4586. For coal tar roofing; coal tar cement conforming to ASTM D 4022.
2.1.4 Sealant

Unless otherwise specified, sealant shall be an elastomeric weather resistant sealant as specified in Section 07900 JOINT SEALING.

2.1.5 Fasteners

Fasteners shall be compatible with the fastened material and shall be the type best suited for the application.

2.1.6 Felt

ASTM D 226, Type I.

2.1.7 Polyvinyl Chloride (PVC) Reglets

ASTM D 1784, Class 14333D, 1.9 mm minimum thickness.

2.1.8 Solder

ASTM B 32, 95-5 tin-antimony.

2.1.9 Through-Wall Flashing

a. Electro-sheet copper not less than 0.14 kg, factory coated both sides with acid- and alkali-resistant bituminous compound not less than 1.8 kg per square meter or factory covered both sides with asphalt-saturated cotton fabric, asphalt saturated glass-fiber fabric, or with 18 kg reinforced kraft paper bonded with asphalt.

b. Stainless steel, Type 304, not less than 0.08 mm thick, completely encased by and permanently bonded on both sides to 23 kg high strength bituminized crepe kraft paper, using hot asphalt, heat, and pressure.

c. Nonreinforced, waterproof, impermeable extruded elastomeric single ply sheeting not less than 0.76 mm thick.

d. 0.09 kg copper sheet, with 0.05 mm of dense, clear, polyethylene sheet bonded to each side of the copper.

e. Other through-wall flashing material may be used provided the following performance criteria are met.

(1) No cracking or flaking when bent 180 degrees over a 0.8 mm mandrel and rebent at the same point over the same mandrel in an opposite direction at 0 degree C.

(2) Water vapor permeability not more than 115 ng per Paper second per square meter (2 perms) when tested in accordance with ASTM E 96.

(3) Minimum breaking strength of 24 kgf/15 mm width in the weakest direction when tested in accordance with ASTM D 828.
(4) No visible deterioration after being subjected to a 400-hour direct weathering test in accordance with ASTM D 822.

(5) No shrinkage in length or width and less than 5 percent loss of breaking strength after a 10-day immersion, per ASTM D 543, in 5 percent (by weight) solutions, respectively, of sulfuric acid, hydrochloric acid, sodium hydroxide or saturated lime (calcium hydroxide).

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

Gutters and downspouts shall be designed and fabricated in conformance with SMACNA Arch. Manual; louvers shall be fabricated in conformance with SMACNA Arch. Manual and as indicated. Unless otherwise specified or indicated, exposed edges shall be folded back to form a 13 mm (1/2 inch) hem on the concealed side, and bottom edges of exposed vertical surfaces shall be angled to form drips.

3.2 EXPANSION JOINTS

Expansion joints shall be provided as specified in SMACNA Arch. Manual. Expansion joints in continuous sheet metal shall be provided at 12.0 meter intervals for copper and stainless steel and at 9.6 meter intervals for aluminum, except extruded aluminum gravel stops and fasciae which shall have expansion joints at not more than 3.6 meter spacing. Joints shall be evenly spaced. An additional joint shall be provided where the distance between the last expansion joint and the end of the continuous run is more than half the required interval spacing.

3.3 CONNECTIONS AND JOINTING

3.3.1 Soldering

Soldering shall apply to copper, and stainless steel items. Edges of sheet metal shall be pretinned before soldering is begun. Soldering shall be done slowly with well heated soldering irons so as to thoroughly heat the seams and completely sweat the solder through the full width of the seam. Edges of stainless steel to be pretinned shall be treated with soldering acid flux. Soldering shall follow immediately after application of the flux. Upon completion of soldering, the acid flux residue shall be thoroughly cleaned from the sheet metal with a water solution of washing soda and rinsed with clean water.

3.3.2 Riveting

Joints in aluminum sheets 1.0 mm or less in thickness shall be mechanically made.

3.3.3 Seaming

Flat-lock and soldered-lap seams shall finish not less than 25 mm wide. Unsoldered plain-lap seams shall lap not less than 75 mm unless otherwise specified. Flat seams shall be made in the direction of the flow.
3.4 CLEATS

A continuous cleat shall be provided where indicated or specified to secure loose edges of the sheet metalwork. Butt joints of cleats shall be spaced approximately 3 mm apart. The cleat shall be fastened to supporting wood construction with nails evenly spaced not over 300 mm on centers. Where the fastening is to be made to concrete or masonry, screws shall be used and shall be driven in expansion shields set in concrete or masonry.

3.5 GUTTERS AND DOWNSPOUTS

Gutters and downspouts shall be installed as indicated. Gutters shall be supported as indicated or by cleats spaced not less than 915 mm (36 inches) apart. Downspouts shall be rigidly attached to the building. Supports for downspouts shall be spaced according to manufacturer's recommendations.

3.6 FLASHINGS

Flashings shall be installed at locations indicated and as specified below. Sealing shall be according to the flashing manufacturer's recommendations. Flashings shall be installed at intersections of roof with vertical surfaces and at projections through roof, except that flashing for heating and plumbing, including piping, roof, and floor drains, and for electrical conduit projections through roof or walls are specified in other sections. Except as otherwise indicated, counter flashings shall be provided over base flashings. Perforations in flashings made by masonry anchors shall be covered up by an application of bituminous plastic cement at the perforation. Flashing shall be installed on top of joint reinforcement. Flashing shall be formed to direct water to the outside of the system.

3.6.1 Counter Flashings

Except as otherwise indicated, counter flashings shall be provided over base flashings. Counter flashing shall be installed as shown in SMACNA Arch. Manual. Where bituminous base flashings are provided, the counter flashing shall extend down as close as practicable to the top of the cant strip. Counter flashing shall be factory formed to provide spring action against the base flashing.

3.6.2 Through-Wall Flashing

Through-wall flashing includes sill, lintel, and spandrel flashing. The flashing shall be laid with a layer of mortar above and below the flashing so that the total thickness of the two layers of the mortar and flashing are the same thickness as the regular mortar joints. Flashing shall not extend further into the masonry backup wall than the first mortar joint. Joints in flashing shall be lapped and sealed. Flashing shall be one piece for lintels and sills.

3.6.2.1 Lintel Flashing

Lintel flashing shall extend the full length of lintel. Flashing shall extend through the wall one masonry course above the lintels and shall be bent down over the vertical leg of the outer steel lintel angle not less than 50 mm, or shall be applied over top of masonry and precast concrete lintels. Bedjoints of lintels at control joints shall be underlaid with sheet metal bond breaker.
3.6.2.2 Sill Flashing

Sill flashing shall extend the full width of the sill and not less than 100 mm beyond ends of sill except at control joint where the flashing shall be terminated at the end of the sill.

3.7 FASCIA

Fascia shall be fabricated and installed as indicated and in accordance with SMACNA Arch. Manual.

3.8 REGLETS

Reglets shall be a factory fabricated product of proven design, complete with fittings and special shapes as required. Open-type reglets shall be filled with fiberboard or other suitable separator to prevent crushing of the slot during installation. Reglet plugs shall be spaced not over 300 mm on centers and reglet grooves shall be filled with sealant. Friction or slot-type reglets shall have metal flashings inserted the full depth of slot and shall be lightly punched every 300 mm to crimp the reglet and counter flashing together. Polyvinyl chloride reglets shall be sealed with the manufacturer's recommended sealant.

3.9 CONTRACTOR QUALITY CONTROL

The Contractor shall establish and maintain a quality control procedure for sheet metal used in conjunction with roofing to assure compliance of the installed sheet metalwork with the contract requirements. Any work found not to be in compliance with the contract shall be promptly removed and replaced or corrected in an approved manner. Quality control shall include, but not be limited to, the following:

a. Observation of environmental conditions; number and skill level of sheet metal workers; condition of substrate.

b. Verification of compliance of materials before, during, and after installation.

c. Inspection of sheet metalwork for proper size and thickness, fastening and joining, and proper installation.

The actual quality control observations and inspections shall be documented and a copy of the documentation furnished to the Contracting Officer at the end of each day.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM E 814 (1997) Fire Tests of Through-Penetration Fire Stops

UNDERWRITERS LABORATORIES (UL)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Firestopping Materials.

Detail drawings including manufacturer's descriptive data, typical details conforming to UL Fire Resist Dir or other details certified by another nationally recognized testing laboratory,
installation instructions or UL listing details for a firestopping assembly in lieu of fire-test data or report. For those firestop applications for which no UL tested system is available through a manufacturer, a manufacturer's engineering judgement, derived from similar UL system designs or other tests, shall be submitted for review and approval prior to installation. Submittal shall indicate the firestopping material to be provided for each type of application. When more than 5 penetrations or construction joints are to receive firestopping, drawings shall indicate location and type of application.

SD-07 Certificates

Firestopping Materials.

Certificates attesting that firestopping material complies with the specified requirements. In lieu of certificates, drawings showing UL classified materials as part of a tested assembly may be provided. Drawings showing evidence of testing by an alternate nationally recognized independent laboratory may be substituted.

Installer Qualifications.

Documentation of training and experience.

Inspection.

Manufacturer's representative certification stating that firestopping work has been inspected and found to be applied according to the manufacturer's recommendations and the specified requirements.

1.3 GENERAL REQUIREMENTS

Firestopping shall consist of furnishing and installing tested and listed firestop systems, combination of materials, or devices to form an effective barrier against the spread of flame, smoke and gases, and maintain the integrity of fire resistance rated walls, partitions, floors, and ceiling-floor assemblies, including through-penetrations and construction joints and gaps. Through-penetrations include the annular space around pipes, tubes, conduit, wires, cables and vents. Construction joints include those used to accommodate expansion, contraction, wind, or seismic movement; firestopping material shall not interfere with the required movement of the joint. Gaps requiring firestopping include gaps between the curtain wall and the floor slab and between the top of the fire-rated walls and the roof or floor deck above.

1.4 STORAGE AND DELIVERY

Materials shall be delivered in the original unopened packages or containers showing name of the manufacturer and the brand name. Materials shall be stored off the ground and shall be protected from damage and exposure to elements. Damaged or deteriorated materials shall be removed from the site.

1.5 INSTALLER QUALIFICATIONS
The Contractor shall engage an experienced Installer who is certified, licensed, or otherwise qualified by the firestopping manufacturer as having the necessary staff, training, and a minimum of 3 years experience in the installation of manufacturer's products per specified requirements. A manufacturer's willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer qualification on the buyer. The Installer shall have been trained by a direct representative of the manufacturer (not distributor or agent) in the proper selection and installation procedures.

1.6 COORDINATION

The specified work shall be coordinated with other trades. Firestopping materials, at penetrations of pipes and ducts, shall be applied prior to insulating, unless insulation meets requirements specified for firestopping. Firestopping materials at building joints and construction gaps shall be applied prior to completion of enclosing walls or assemblies. Cast-in-place firestop devices shall be located and installed in place before concrete placement. Pipe, conduit or cable bundles shall be installed through cast-in-place device after concrete placement but before area is concealed or made inaccessible.

PART 2 PRODUCTS

2.1 FIRESTOPPING MATERIALS

Firestopping materials shall consist of commercially manufactured, asbestos-free products complying with the following minimum requirements:

2.1.1 Fire Hazard Classification

Material shall have a flame spread of 25 or less, and a smoke developed rating of 50 or less, when tested in accordance with ASTM E 84 or UL 723. Material shall be an approved firestopping material as listed in UL Fire Resist Dir or by a nationally recognized testing laboratory.

2.1.2 Toxicity

Material shall be nontoxic to humans at all stages of application.

2.1.3 Fire Resistance Rating

Firestopping will not be required to have a greater fire resistance rating than that of the assembly in which it is being placed.

2.1.3.1 Through-Penetrations

Firestopping materials for through-penetrations, as described in paragraph GENERAL REQUIREMENTS, shall provide "F" and "T" fire resistance ratings in accordance with ASTM E 814 or UL 1479. Fire resistance ratings shall be as follows:

2.1.3.2 Construction Joints and Gaps
Fire resistance ratings of construction joints, as described in paragraph GENERAL REQUIREMENTS, and gaps such as those between floor slabs or roof decks and curtain walls shall be the same as the construction in which they occur. Construction joints and gaps shall be provided with firestopping materials and systems that have been tested per ASTM E 119 or UL 2079 to meet the required fire resistance rating. Systems installed at construction joints shall meet the cycling requirements of ASTM E 1399 or UL 2079.

PART 3 EXECUTION

3.1 PREPARATION

Areas to receive firestopping shall be free of dirt, grease, oil, or loose materials which may affect the fitting or fire resistance of the firestopping system. For cast-in-place firestop devices, formwork or metal deck to receive device prior to concrete placement shall be sound and capable of supporting device.

3.2 INSTALLATION

Firestopping material shall completely fill void spaces regardless of geometric configuration, subject to tolerance established by the manufacturer. Firestopping systems for filling floor voids 100 mm or more in any direction shall be capable of supporting the same load as the floor is designed to support or shall be protected by a permanent barrier to prevent loading or traffic in the firestopped area. Firestopping shall be installed in accordance with manufacturer's written instructions. Tested and listed firestop systems shall be provided in the following locations, except in floor slabs on grade:

a. Penetrations of duct, conduit, tubing, cable and pipe through floors and through fire-resistance rated walls, partitions, and ceiling-floor assemblies.

b. Penetrations of vertical shafts such as pipe chases, elevator shafts, and utility chutes.

c. Gaps at the intersection of floor slabs and curtain walls, including inside of hollow curtain walls at the floor slab.

d. Gaps at perimeter of fire-resistance rated walls and partitions, such as between the top of the walls and the bottom of roof decks.

e. Construction joints in floors and fire rated walls and partitions.

f. Other locations where required to maintain fire resistance rating of the construction.

3.2.1 Insulated Pipes and Ducts

Thermal insulation shall be cut and removed where pipes or ducts pass through firestopping, unless insulation meets requirements specified for firestopping. Thermal insulation shall be replaced with a material having equal thermal insulating and firestopping characteristics.

3.2.2 Fire Dampers
Fire dampers shall be installed and firestopped in accordance with Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.3 INSPECTION

Firestopped areas shall not be covered or enclosed until inspection is complete and approved. A manufacturer's representative shall inspect the applications initially to ensure adequate preparations (clean surfaces suitable for application, etc.) and periodically during the work to assure that the completed work has been accomplished according to the manufacturer's written instructions and the specified requirements.

-- End Of Section --
SECTION 07900

JOINT SEALING

06/97

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the
extent referenced. The publications are referred to in the text by basic
designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 509 (1994) Elastomeric Cellular Preformed Gasket
and Sealing Material

ASTM C 734 (1993) Low-Temperature Flexibility of Latex
Sealants After Artificial Weathering

ASTM D 217 (1997) Cone Penetration of Lubricating Grease
(IP50/88)

or Expanded Rubber

ASTM E 84 (1999) Surface Burning Characteristics of
Building Materials

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation;
submittals not having a "G" designation are for information only. When
used, a designation following the "G" designation identifies the office that
will review the submittal for the Government. The following shall be
submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Backimg.

Bond-Breaker.

Sealant.

Manufacturer's descriptive data including storage requirements,
shelf life, curing time, instructions for mixing and application,
and primer data (if required). A copy of the Material Safety Data
Sheet shall be provided for each solvent, primer or sealant
material.

SD-07 Certificates
Sealant.

Certificates of compliance stating that the materials conform to the specified requirements.

1.3 ENVIRONMENTAL REQUIREMENTS

The ambient temperature shall be within the limits of 4 to 32 degrees C when the sealants are applied.

1.4 DELIVERY AND STORAGE

Materials shall be delivered to the job in the manufacturer's original unopened containers. The container label or accompanying data sheet shall include the following information as applicable: manufacturer, name of material, formula or specification number, lot number, color, date of manufacture, mixing instructions, shelf life, and curing time at the standard conditions for laboratory tests. Materials shall be handled and stored to prevent inclusion of foreign materials. Materials shall be stored at temperatures between 4 and 32 degrees C unless otherwise specified by the manufacturer.

PART 2 PRODUCTS

2.1 BACKING

Backing shall be 25 to 33 percent oversize for closed cell and 40 to 50 percent oversize for open cell material, unless otherwise indicated.

2.1.1 Rubber

Cellular rubber sponge backing shall be ASTM D 1056, Type 1, open cell, or Type 2, closed cell, Class A, round cross section.

2.1.2 Synthetic Rubber

Synthetic rubber backing shall be ASTM C 509.

2.1.3 Neoprene

Neoprene backing shall be ASTM D 1056, closed cell expanded neoprene cord Type 2, Class C, Grade 2C2.

2.2 BOND-BREAKER

Bond-breaker shall be as recommended by the sealant manufacturer to prevent adhesion of the sealant to backing or to bottom of the joint.

2.3 PRIMER

Primer shall be non-staining type as recommended by sealant manufacturer for the application.

2.4 SEALANT
2.4.1 Interior Sealant

ASTM C 834. Location(s) and color(s) of sealant shall be as follows:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Small voids between walls or partitions and adjacent lockers, casework, shelving, door frames, built-in or surface-mounted equipment and fixtures, and similar items.</td>
<td>As selected</td>
</tr>
<tr>
<td>b. Perimeter of frames at doors, windows, and access panels which adjoin exposed interior concrete and masonry surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>c. Joints of interior masonry walls and partitions which adjoin columns, pilasters, concrete walls, and exterior walls unless otherwise detailed.</td>
<td>As selected</td>
</tr>
<tr>
<td>d. Joints between edge members for acoustical tile and adjoining vertical surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>e. Interior locations, not otherwise indicated or specified, where small voids exist between materials specified to be painted.</td>
<td>As selected</td>
</tr>
<tr>
<td>f. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.</td>
<td>As selected</td>
</tr>
<tr>
<td>g. Behind escutcheon plates at valve pipe penetrations and showerheads in showers.</td>
<td>As selected</td>
</tr>
</tbody>
</table>

2.4.2 Exterior Sealant

For joints in vertical surfaces, provide ASTM C 920, Type S or M, Grade NS, Class 25, Use NT. For joints in horizontal surfaces, provide ASTM C 920, Type S or M, Grade P, Class 25, Use T. Location(s) and color(s) of sealant shall be as follows:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joints and recesses formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Use sealant at both exterior and interior surfaces of exterior wall penetrations.</td>
<td>As selected</td>
</tr>
<tr>
<td>b. Joints between new and existing exterior masonry walls.</td>
<td>As selected</td>
</tr>
<tr>
<td>c. Masonry joints where shelf angles occur.</td>
<td>As selected</td>
</tr>
</tbody>
</table>
d. Joints in wash surfaces of stonework. As selected

e. Expansion and control joints. As selected

f. Interior face of expansion joints in exterior concrete or masonry walls where metal expansion joint covers are not required.

g. Voids where items pass through exterior walls.

h. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.

i. Metal-to-metal joints where sealant is indicated or specified.

j. Joints between ends of gravel stops, fascias, copings, and adjacent walls.

2.4.3 ACOUSTICAL

Rubber or polymer-based acoustical sealant shall have a flame spread of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E 84. Acoustical sealant shall have a consistency of 250 to 310 when tested in accordance with ASTM D 217, and shall remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C 734, and shall be non-staining.

2.4.4 PREFORMED

Preformed sealant shall be polybutylene or isoprene-butylene based pressure sensitive weather resistant tape or bead sealant capable of sealing out moisture, air and dust when installed as recommended by the manufacturer. At temperatures from minus 34 to plus 71 degrees C, the sealant shall be non-bleeding and shall have no loss of adhesion.

2.5 SOLVENTS AND CLEANING AGENTS

Solvents, cleaning agents, and accessory materials shall be provided as recommended by the manufacturer.

PART 3 EXECUTION

3.1 GENERAL

3.1.1 Surface Preparation

The surfaces of joints to receive sealant or caulk shall be free of all frost, condensation and moisture. Oil, grease, dirt, chalk, particles of mortar, dust, loose rust, loose mill scale, and other foreign substances shall be removed from surfaces of joints to be in contact with the sealant. Oil and grease shall be removed with solvent and surfaces shall be wiped dry with clean cloths. For surface types not listed below, the sealant manufacturer shall be contacted for specific recommendations.
3.1.2 Concrete and Masonry Surfaces

Where surfaces have been treated with curing compounds, oil, or other such materials, the materials shall be removed by sandblasting or wire brushing. Laitance, efflorescence and loose mortar shall be removed from the joint cavity.

3.1.3 Steel Surfaces

Steel surfaces to be in contact with sealant shall be sandblasted or, if sandblasting would not be practical or would damage adjacent finish work, the metal shall be scraped and wire brushed to remove loose mill scale. Protective coatings on steel surfaces shall be removed by sandblasting or by a solvent that leaves no residue.

3.1.4 Aluminum Surfaces

Aluminum surfaces to be in contact with sealants shall be cleaned of temporary protective coatings. When masking tape is used for a protective cover, the tape and any residual adhesive shall be removed just prior to applying the sealant. Solvents used to remove protective coating shall be as recommended by the manufacturer of the aluminum work and shall be non-staining.

3.1.5 Wood Surfaces

Wood surfaces to be in contact with sealants shall be free of splinters and sawdust or other loose particles.

3.2 APPLICATION

3.2.1 Masking Tape

Masking tape shall be placed on the finish surface on one or both sides of a joint cavity to protect adjacent finish surfaces from primer or sealant smears. Masking tape shall be removed within 10 minutes after joint has been filled and tooled.

3.2.2 Backing

Backing shall be installed to provide the indicated sealant depth. The installation tool shall be shaped to avoid puncturing the backing.

3.2.3 Bond-Breaker

Bond-breaker shall be applied to fully cover the bottom of the joint without contaminating the sides where sealant adhesion is required.

3.2.4 Primer

Primer shall be used on concrete masonry units, wood, or other porous surfaces in accordance with instructions furnished with the sealant. Primer shall be applied to the joint surfaces to be sealed. Surfaces adjacent to joints shall not be primed.

3.2.5 Sealant
Sealant shall be used before expiration of shelf life. Multi-component sealants shall be mixed according to manufacturer's printed instructions. Sealant in guns shall be applied with a nozzle of proper size to fit the width of joint. Joints shall be sealed as detailed in the drawings. Sealant shall be forced into joints with sufficient pressure to expel air and fill the groove solidly. Sealant shall be installed to the indicated depth without displacing the backing. Unless otherwise indicated, specified, or recommended by the manufacturer, the installed sealant shall be dry tooled to produce a uniformly smooth surface free of wrinkles and to ensure full adhesion to the sides of the joint; the use of solvents, soapy water, etc., will not be allowed. Sealants shall be installed free of air pockets, foreign embedded matter, ridges and sags. Sealer shall be applied over the sealant when and as specified by the sealant manufacturer.

3.3 CLEANING

The surfaces adjoining the sealed joints shall be cleaned of smears and other soiling resulting from the sealant application as work progresses.

-- End Of Section --
SECTION 08110

STEEL DOORS AND FRAMES

10/00

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI A250.6 (1997) Hardware on Steel Doors (Reinforcement - Application)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM E 283 (1991) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

DOOR AND HARDWARE INSTITUTE (DHI)

DHI A115.1G (1994) Installation Guide for Doors and Hardware

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 252 (1999) Fire Tests of Door Assemblies

STEEL DOOR INSTITUTE (SDOI)

SDOI SDI-106 (1999) Standard Door Type Nomenclature

UNDERWRITERS LABORATORIES (UL)

UL 10B (1997) Fire Tests of Door Assemblies
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Doors and Frames

Drawings using standard door type nomenclature in accordance with SDOI SDI-106 indicating the location of each door and frame, elevation of each model of door and frame, details of construction, method of assembling sections, location and extent of hardware reinforcement, hardware locations, type and location of anchors for frames, and thicknesses of metal. Drawings shall include catalog cuts or descriptive data for the doors, frames, and weatherstripping including air infiltration data and manufacturers printed instructions.

SD-03 Product Data

Fire Rated Doors

A letter by a nationally recognized testing laboratory which identifies the product manufacturer, type, and model; certifying that the laboratory has tested a sample assembly in accordance with UL 10B and NFPA 252 and issued a current listing for same.

SD-04 Samples

Doors and Frames

Manufacturer's standard color samples of factory applied finishes with third party certification of compliance to ANSI A250.10.

SD-07 Certificates

Fire Rated Doors

Thermal Insulated Doors

1.3 DELIVERY AND STORAGE

During shipment, welded unit type frames shall be strapped together in pairs with heads at opposite ends or shall be provided with temporary steel spreaders at the bottom of each frame; and knockdown type frames shall be securely strapped in bundles. Materials shall be delivered to the site in undamaged condition, and stored out of contact with the ground and under a weathertight covering permitting air circulation. Doors and assembled
frames shall be stored in an upright position in accordance with DHI A115.1G. Abraded, scarred, or rusty areas shall be cleaned and touched up with matching finishes.

1.4 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided.

PART 2 PRODUCTS

2.1 DOORS AND FRAMES

Doors and frames shall be factory fabricated in accordance with ANSI A250.8 and the additional requirements specified herein. Door Level shall be heavy duty (Level 2) unless otherwise indicated on the door and door frame schedules. Exterior doors and frames shall be designation A60 galvannealed. Doors and frames shall be prepared to receive hardware conforming to the templates and information provided under Section 08700 BUILDERS' HARDWARE. Doors and frames shall be reinforced, drilled, and tapped to receive mortised hinges, locks, latches, and flush bolts as required. Doors and frames shall be reinforced for surface applied hardware. Frames shall be welded type. Door frames shall be furnished with a minimum of three jamb anchors and one floor anchor per jamb. Anchors shall be not less than 4.5 mm (7 gauge) steel or diameter wire. For wall conditions that do not allow the use of a floor anchor, an additional jamb anchor shall be provided. Rubber silencers shall be furnished for installation into factory predrilled holes in door frames; adhesively applied silencers are not acceptable. Where frames are installed in plaster or masonry walls, plastic guards shall be provided on door frames at hinges and strikes. Reinforcing of door assemblies for closers and other required hardware shall be in accordance with ANSI A250.8 and the conditions of the fire door assembly listing when applicable. Exterior doors shall have top edges closed flush and sealed against water penetration.

2.2 FIRE RATED DOORS

Fire rated door assemblies shall bear the listing identification label of a nationally recognized testing laboratory qualified to perform tests of fire door assemblies in accordance with UL 10B and NFPA 252 and having a listing for the tested assemblies. The fire resistance rating shall be as shown. Doors exceeding the sizes for which listing label service is offered shall be in accordance with UL 10B. Listing identification labels shall be constructed and permanently applied by a method which results in their destruction should they be removed.

2.3 THERMAL INSULATED DOORS

The thermal insulated doors shall have a minimum insulation value of R10. The interior of thermal insulated doors shall be filled with rigid plastic foam permanently bonded to each face panel. Doors with cellular plastic cores shall have a minimum oxygen index rating of 22 percent when tested in accordance with ASTM D 2863.

2.4 WEATHERSTRIPPING
Unless otherwise specified in Section 08700 BUILDERS' HARDWARE, weatherstripping shall be as follows: Weatherstripping for head and jamb shall be manufacturer's standard elastomeric type of synthetic rubber, vinyl, or neoprene and shall be installed at the factory or on the jobsite in accordance with the door frame manufacturer's recommendations. Weatherstripping for bottom of doors shall be as shown. Air leakage rate of weatherstripping shall not exceed 0.31 l/s per linear meter (0.20 cfm per linear foot) of crack when tested in accordance with ASTM E 283 at standard test conditions.

2.5 TRANSOM AND SIDELIGHT PANELS

Panels for transom and sidelight shall be constructed in accordance with ANSI A250.8. Panels shall be nonremovable from the outside of exterior doors or the unsecure side of interior doors.

2.6 GLAZING

Glazing shall be as specified in Section 08810 GLASS AND GLAZING. Removable glazing beads shall be screw-on or snap-on type.

2.7 FACTORY FINISH

Doors and frames shall be phosphatized and primed with standard factory primer system.

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

Installation shall not begin until temperature and humidity conditions closely approximate interior conditions which will exist when area is complete and occupied; heating and air conditioning shall be operating prior to, during, and after installation. Contractor shall coordinate the work with that of other trades and shall verify opening dimensions with contract and shop drawings. Each frame shall be installed plumb and square using door as template; the frame shall be secured to the wall in accordance with the manufacturer's instructions. All damaged or defective frames shall be repaired/replaced prior to final inspection.

3.2 INSTALLATION

Installation shall be in accordance with DHI A115.1G. Preparation for surface applied hardware shall be in accordance with ANSI A250.6. Rubber silencers shall be installed in door frames after finish painting has been completed; adhesively applied silencers are not acceptable. Weatherstripping shall be installed at exterior door openings to provide a weathertight installation. Installation and operational characteristics of fire doors shall be in accordance with NFPA 80, NFPA 80A and NFPA 101. Hollow metal door frames shall be solid grouted in masonry walls.

3.2.1 Thermal Insulated Doors

Hardware and perimeter seals shall be adjusted for proper operation. Doors shall be sealed weathertight after installation of hardware and shall be in accordance with Section 07900 JOINT SEALING.
3.3 FIELD PAINTED FINISH

Steel doors and frames shall be field painted in accordance with Section 09900 PAINTING, GENERAL. Weatherstrips shall be protected from paint. Finish shall be free of scratches or other blemishes.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ALUMINUM ASSOCIATION (AA)

AA DAF-45 (1997) Designation System for Aluminum Finishes

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM E 283 (1991) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E 331 (1996) Water Penetration of Exterior Windows, Curtain Walls, and Doors by Uniform Static Air Pressure Difference

1.2 SYSTEM DESCRIPTION

Frames and swing-type aluminum doors, of size and design shown on the drawings, shall be provided at the locations indicated. Frames shall be furnished complete with doors, subframes, transoms, adjoining sidelights, trim, and other accessories indicated and specified.

1.3 PERFORMANCE REQUIREMENTS

1.3.1 Wind Load Performance

Doors and frames shall be of sufficient strength to withstand a design wind load of 1440 Pa (30 pounds per square foot) of supported area with a
deflection of not more than 1/175 times the length of the member. Doors shall be tested in accordance with ASTM E 330 at a pressure not less than 1.5 times the design load.

1.3.2 Water Penetration Performance

Frames and fixed areas, and non-handicap complying doors shall have no water penetration when tested in accordance with ASTM E 331 at a pressure of 383 Pa.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Aluminum Doors and Frames

Manufacturer's descriptive data and catalog cuts including air-infiltration data.

Installation

Cleaning

Manufacturer's installation instructions and cleaning instructions.

SD-04 Samples

Finishes

Samples of the color anodized coating, showing the extreme color range.

SD-06 Test Reports

Aluminum Doors

For full-glazed and flush doors, certified test reports from an independent testing laboratory, stating that doors are identical in design, materials, and construction to a door that has been tested and meets all test and specified requirements.

1.5 DELIVERY AND STORAGE

Materials delivered to the jobsite shall be inspected for damage, and shall be unloaded with a minimum of handling. Storage shall be in a dry location with adequate ventilation, free from dust, water, and other contaminants, and which permits easy access for inspecting and handling. Materials shall be neatly stored on the floor, properly stacked on nonabsorptive strips or wood platforms. Doors and frames shall not be covered with tarps, polyethylene film, or similar coverings.
1.6 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a one-year period shall be provided.

PART 2 PRODUCTS

2.1 ALUMINUM DOORS AND FRAMES

Extrusions shall comply with ASTM B 221M, Alloy 6063-T5 or -T6, except alloy used for anodized color coatings shall be required to produce the specified color. Aluminum sheets and strips shall comply with ASTM B 209M, alloy and temper best suited for the purpose. Fasteners shall be hard aluminum or stainless steel.

2.1.1 Finishes

Finish shall be color anodized. Color anodized finish shall be AA-M10C22A32 in accordance with the requirements of AA DAF-45. Color shall be dark bronze.

2.1.2 Welding and Fastening

Where possible, welds shall be located on unexposed surfaces. Welds required on exposed surfaces shall be smoothly dressed. Welding shall produce a uniform texture and color in the finished work, free of flux and spatter. Exposed screws or bolts will be permitted only at inconspicuous locations and shall have heads countersunk.

2.1.3 Anchors

Anchors shall be stainless steel or steel with a hot-dipped galvanized finish. Anchors of the sizes and shapes required shall be provided for securing aluminum frames to adjacent construction. Anchors shall be placed near top and bottom of each jamb and at intermediate points not more than 625 mm apart. Transom bars shall be anchored at ends, and mullions shall be anchored at head and sill. Where indicated on the drawings, vertical mullion reinforcement shall be of sufficient length to extend up to the overhead structural slab or framing and be securely attached thereto.

2.1.4 Hardware

Hardware for aluminum doors is specified in Section 08700 BUILDERS' HARDWARE. Doors and frames shall be cut, reinforced, drilled, and tapped at the factory to receive template hardware. Reinforcement shall be provided in the core of doors as required to receive locks, door closers, and other hardware. Doors to receive surface applied hardware shall be reinforced as required.

2.1.5 Glazing

<table>
<thead>
<tr>
<th>MINIMUM RECOMMENDED CONDENSATION RESISTANCE FACTOR (CRF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTSIDE</td>
</tr>
<tr>
<td>DESIGN C.</td>
</tr>
</tbody>
</table>

SECTION 08120 Page 3
Minimum Recommended Condensation Resistance Factor (CRF)

TEMPERATURE	**OUTSIDE**	**INDOOR RELATIVE HUMIDITY**
DESIGN F.	**TEMPERATURE**	**10%**
- 34 deg. C	43	51
- 32 deg. C	40	49
- 29 deg. C	37	46
- 26 deg. C	33	42
- 23 deg. C	29	39
- 21 deg. C	24	35
- 18 deg. C	18	30
- 15 deg. C	12	24
- 12 deg. C	4	18
- 9 deg. C	3	14
- 7 deg. C		3
- 4 deg. C		

Glazing shall be as specified in Section 08810 GLASS AND GLAZING. Metal glazing beads, vinyl inserts, and glazing gaskets shall be provided for securing glass. Glass stops shall be tamperproof on exterior side.

2.1.6 Weatherstripping

Weatherstripping shall be continuous silicone-treated wool pile type, or a type recommended by the door manufacturer and shall be provided on head and jamb of exterior door frames. Weatherstripping for bottom of doors shall be as shown. Weatherstripping shall be easily replaced without special tools, and shall be adjustable at meeting stiles of pairs of doors. Air leakage rate of weatherstripping shall not exceed 0.775 L/s per lineal meter (0.5 cfm per lineal foot) of crack when tested in accordance with ASTM E 283 at standard test conditions.

2.2 ALUMINUM FRAMES

Frames shall be double-glazed window wall system. Frames shall be fabricated of extruded aluminum shapes to contours as shown on the drawings.
Shapes shown are representations of design, function, and required profile. Dimensions shown are minimum. Shapes of equivalent design may be submitted, subject to approval of samples. Minimum metal wall thickness shall be 2.29 mm, except glazing beads, moldings, and trim shall be not less than 1.27 mm. Frames that are to receive glass shall have removable snap-on glass stops and glazing beads. Joints in frame members shall be milled to a hairline tight fit so that raw edges of the assembly are not visible, sealed internally to prevent water infiltration, reinforced, and secured mechanically by appropriate screws or by screw spline attachment.

2.3 ALUMINUM DOORS

Doors shall be not less than 44.4 mm (1-3/4 inches) thick. Clearances at hinge stiles, lock stiles and top rails, floors and thresholds, shall comply with manufacturer's standard. Single-acting doors shall be beveled 3 mm at lock and meeting stile edges. Double-acting doors shall have rounded edges at hinge stile, lock stile, and meeting stile edges.

2.3.1 Full-Glazed Stile and Rail Doors

Doors shall have medium stiles and rails as shown, and shall be fabricated from extruded aluminum hollow seamless tubes or from a combination of open-shaped members interlocked or welded together. Doors shall be double-glazed and shall have a minimum total average unit thermal resistance of 0.34 square meter degree K per W (R value 1.92). Top and bottom rail shall be fastened together by means of welding or by 10 mm diameter plated tensioned steel tie rods. An adjustable mechanism shall be provided in the top rail of narrow stile doors to allow for minor clearance adjustments after installation. Extruded aluminum snap-in glazing beads shall be provided on interior side of doors. Extruded aluminum theft-proof snap-in glazing beads or fixed glazing beads shall be provided on exterior or security side of doors. Glazing beads shall have vinyl insert glazing gaskets, designed to receive glass of thickness required. Glass is specified in Section 08810 GLASS AND GLAZING.

2.4 COLOR, TEXTURE, AND PATTERN

Color, Texture, and pattern shall be dark bronze, unless otherwise indicated.

PART 3 EXECUTION

3.1 INSTALLATION OF DOORS, FRAMES, AND ACCESSORIES

3.1.1 Protection of Aluminum

Aluminum shall not be used where it will be in contact with copper or where it will contact water which flows over copper surfaces. Aluminum that will be in contact with wet or pressure-treated wood, mortar, concrete, masonry, or ferrous metals shall be protected against galvanic or corrosive action by one of the following methods.

3.1.1.1 Paint

Aluminum surfaces to be protected shall be solvent cleaned and given a coat of zinc-molybdate primer and one coat of aluminum paint.
3.1.1.2 Nonabsorptive Tape or Gasket

Nonabsorptive tape or gasket shall be placed between the adjoining surfaces and shall be cemented to the aluminum surface using a cement compatible with aluminum.

3.1.2 Installation

Frames and framing members shall be accurately set in position to receive adjoining components. Frames shall be plumb, square, level, and in alignment, and securely anchored to adjacent construction. Metal-to-metal joints between framing members and joints between framing members and building surfaces shall be sealed as specified in Section 07900 JOINT SEALING. Doors shall be accurately hung with proper clearances, and adjusted to operate properly.

3.1.3 Cleaning

Doors and frames shall be cleaned in accordance with the manufacturer's approved instructions.

-- End Of Section --
SECTION 08162

HORIZONTAL SLIDING, ACCORDIAN TYPE FIRE DOORS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

UNDERWRITERS LABORATORIES INC. (UL)

UL 10B (1997) Fire Tests of Door Assemblies

1.2 SUBMITTALS

Submit the following in accordance with Section 01330, "Submittal Procedures."

SD-02 Shop Drawings

Horizontal sliding, accordian type fire doors; G

Submit drawings for all horizontal sliding, accordian type fire doors. Show types, sizes, location, metal gages, hardware, installation details, dimensions of metal frames and tracks, track anchorage, and other details of construction. For motor-operated doors, include supporting brackets for motors, location, type, ratings of motors, and safety devices.

SD-03 Product Data

Horizontal sliding, accordian type fire doors; G

Submit manufacturer's standard color chart for verification of color as indicated on the Drawings.

Electrical Work; G

Submit wiring diagrams for motors and controls

SD-08 Manufacturer's Instructions

Horizontal sliding, accordian type fire doors

Manufacturer's installation instruction shall be submitted for approval.

SD-10 Operation and Maintenance Data

Horizontal sliding, accordian type fire doors

Submit manufacturer's operation and maintenance data.
1.3 QUALITY ASSURANCE

1.3.1 Installation

Installation shall be accomplished by factory trained personnel.

1.3.2 Listing

Fire doors shall be listed by Underwriters Laboratories for ratings as indicated, when tested in accordance with the requirements of UL 10B and ASTM E 152.

1.4 DELIVERY AND STORAGE

Deliver fire doors to the job site wrapped in a protective covering bearing manufacturer's name and brand. Store doors in dry locations with adequate ventilation, free from dust or water, and in such a manner to permit access for inspection and handling. Handle doors carefully to prevent damage. Remove damaged items that cannot be restored to like-new condition and provide new items.

1.5 WARRANTY

Horizontal sliding, accordion type fire doors shall be warrantied for one (1) year from date of installation against defects in materials and workmanship.

PART 2 PRODUCTS

2.1 HORIZONTAL SLIDING, ACCORDIAN TYPE FIRE DOORS

Doors and partitions shall be the standard product of a manufacturer regularly engaged in the production of this type of product.

2.1.1 Fire Rating

The assembly shall be approved and listed by Underwriters Laboratories as a 1 hour Special Purpose Fire Door in accordance with UL 10B and ASTM E 152 without the hose stream test, and meet the UBC Standard 43-2 requirements for a smoke draft control assembly.

2.1.2 Construction

The panel system shall consist of two parallel walls independently suspended with no patographs or inter-connections except at the lead posts. Panels shall be constructed of formed steel, 0.6 mm x 4-1/2 inches 114.3 mm panels with a "V" groove, with permanent factory applied enamel finish. Panels shall be connected by full height 0.6 mm enamel coated steel hinges.

2.1.3 Perimeter Seal

Seals shall consist of continuous extruded vinyl sweeps attached to the top and bottom of the fire door to form a smoke and draft seal.

2.1.4 Weight
The hanging weight shall be 26.9 kilograms per square meter.

2.1.5 Colors and Finish

Panels surfaces shall have a permanently bonded baked enamel finish and shall be moisture, mildew and corrosion resistant. Color shall be as indicated on the Drawings.

2.1.6 Track and Trolley System

The track system shall consist of a two parallel tracks on 203.2 mm centers made of formed steel, 44.45 mm x 38.1 mm x 1.9 mm. Each panel shall be supported by a 9.52 mm diameter, steel hanger pin and a 31.75 mm diameter, double race ball bearing, roller. The weight factor shall be 13.8 kg per linear meter installed.

2.1.7 Lead Posts

Lead posts shall be 1.5 mm formed steel connected to the double walls by specially adapted panels.

2.1.8 Closing System

The closing system shall be furnished and installed to automatically close the doors. The closing system shall be connected to the fire door by means of a patented stabilizer bar assembly. The closing system shall be comprised of a Control Box, Key Switch Module, Motor Drive Unit, and Leading Edge Obstruction Detector.

2.1.8.1 Control Box

The Control Box shall house the microprocessor logic board interconnect board, battery, power supply/charger, and the motor control relays. Location of the control box shall be as located on the Shop Drawings. The control box shall be surface mounted and mounting holes shall be at 406.4 mm centers. Installed control box weight shall be 34 kilograms. The control box shall be 457.2 mm high by 457.2 mm wide and 177.8 mm deep. The control box door hinges on the left, is 457.2 mm high and 457.2 mm wide, and can arc 180 degrees. 90 degree minimum arc is required.

2.1.8.2 Key Switch Module

The Key Switch Module shall consist of a key switch and a high decibel alarm. Location of switch shall be as located on the Drawing. The key switch module shall be mounted in a four square box. Mounting hole pattern shall be Sierra wall plate S-23 (double gang wall plate).

2.1.8.3 Motor Drive Unit

The motor drive unit shall include: gearmotor(s), limit switches, torque limiting device, and clutch. Motor drive units shall be located within a 1 hour fire rated enclosure.

2.1.8.4 Operation

The microprocessor control will allow the fire door to be operated manually in either the conventional or emergency mode. When the fire door is opened
uring the emergency mode, the controller will automatically close the partition.

a. Motor drive units shall be operated on DC power supplied by the Control Box. The DC battery in the control box shall be continuously charged by building's electric service. Battery power level shall be automatically maintained at capacity. The DC battery shall be a 12 volt, gel cell, 5 year, maintenance free battery.

b. The microprocessor shall initiate loud audible signals should any of the following conditions arise: High DC voltage, Low DC voltage, High AC voltage, Low AC voltage, drive train malfunction, ROM checksum error, RAM checksum error, limit switch should the system enter either the calibrate mode or the emergency mode. The emergency mode shall be initiated by fire detection equipment supplied by others. The calibrate mode shall be field selected to allow field calibration to existing building power.

2.1.9 Related Electrical Work

2.1.9.1 Electrical

Electrical conduit shall be provided to carry one 12-conductor 1.2 mm cable and up to three 2-conductor 14 gauge cables from the control box to a J box within 609.6 mm of the motor drive units, if the control box and motor drive unit are not in the same fire rated enclosure.

a. Electrical conduit and 5-conductor multi-strand 0.6 mm (min) wired shall be provided from the control box to the key switch.

b. A 101.6 mm high by 101.6 mm wide by 63.5 mm deep electrical box shall be provided with mounting hardware to accept an S-23 Sierra double ganged wall plate.

c. A 120 volt electrical service in conduit and final connection to the control box shall be provided. If required, three phase electrical service in conduit to the control box and from the control box to the motor drive unit shall also be provided. Fire rated conduit may be required by local officials.

2.1.9.2 Mounting

All necessary structure for mounting control box and motor drive units with proper access shall be provided. Dry wall or masonry one hour fire rated enclosure shall be provided for the motor drive units and the control box including any necessary access doors.

2.1.9.3 Smoke/Fire Detector

Smoke/Fire detector systems shall be provided by others and shall provide one set of normally open no-voltage contacts. If such a contact is not available in the detection system then an isolation relay (between the detectors and the control box) that provides the proper contacts shall be provided.
a. Electrical conduit and 2-conductor cable shall be provided from the no-voltage contacts of the smoke detection system to the control box.

PART 3 EXECUTION

3.1 INSPECTION

Inspect openings prepared for fire doors and surrounding conditions. Immediately notify the Contracting Officer's Representative in writing, of any unacceptable conditions.

3.2 INSTALLATION

Accordian folding fire doors shall be installed plumb, level, rigid by an approved and certified installer in openings fully furnished and prepared by the General Contractor to create approved U.L. openings conforming to the required fire resistance ratings. All headers, blocking, supoort structure, pockets, pocket doors, and access doors shall be provided by others to conform to approved shop drawings. Headers shall be leveled with the floor to within 3.18 mm tolerance over the entire length of the header. Floors shall be ground or filled as required to provide the tolerance.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 252 (1999) Fire Tests of Door Assemblies

NATIONAL WOOD WINDOW & DOOR ASSOCIATION (NWWDA)

NWWDA I.S. 4 (1994) Water-Repellent Preservative Non-Pressure Treatment for Millwork

1.2 GENERAL REQUIREMENTS

1.2.1 Standard Products

Doors shall be of the type, size, and design indicated on the drawings, and shall be the standard products of manufacturers regularly engaged in the manufacture of wood doors.

1.2.2 Marking

Each door shall bear a stamp, brand, or other identifying mark indicating quality and construction of the door. The identifying mark or a separate certification shall include identification of the standard on which construction of the door is based, identity of the manufacturing plant, identification of the standard under which preservative treatment, if used, was made, and identification of the doors having a Type I glue bond.

1.3 SUBMITTALS
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Wood Doors.

Drawings indicating the location of each door, elevation of each type of door, details of construction, marks to be used to identify the doors, and location and extent of hardware blocking. Drawings shall include catalog cuts or descriptive data for doors, weatherstripping, flashing, and thresholds to be used.

Fire Doors.

Manufacturers preprinted installation and touch-up instructions.

SD-07 Certificates

Fire Rated Doors.

Adhesives.

Certificates for oversize fire doors and/or door/frame assemblies stating that the doors are identical in design, materials, and construction to a door that has been tested and meets the requirements for the class indicated. Certificate stating that adhesives used for proposed doors do not contain any formaldehyde.

1.4 STORAGE

Doors shall be stored in fully covered areas and protected from damage and from extremes in temperature and humidity. Doors shall be stored on supports to prevent warping or twisting, and to provide ventilation. Factory cartons or wrappers shall be kept intact until installation.

1.5 HARDWARE

Hardware, including weatherstripping and thresholds, is specified in Section 08700 BUILDERS' HARDWARE.

1.6 GLAZING

Glazing is specified in Section 08810 GLASS AND GLAZING.

1.7 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided.

PART 2 PRODUCTS

2.1 GENERAL FABRICATION REQUIREMENTS
2.1.1 Edge Sealing

Wood end-grain exposed at edges of doors shall be sealed prior to shipment.

2.1.2 Preservative Treatment

Exterior softwood doors shall be water-repellent preservative treated in accordance with NWWDA I.S. 4.

2.1.3 Adhesives

Adhesives shall be in accordance with NWWDA I.S. 1-A, requirements for Type I Bond Doors (waterproof) for exterior doors and requirements for Type II Bond Doors (water-repellent) for interior doors. Adhesive for doors to receive a transparent finish shall be nonstaining. Adhesives shall contain no formaldehydes.

2.2 FLUSH DOORS

Flush doors shall be solid core and shall conform to NWWDA I.S. 1-A, except for the one year acclimatization requirement in paragraph T-2, which shall not apply. Wood doors shall be 7-ply construction with faces, stiles, and rails bonded to the cores.

2.2.1 Core Construction

2.2.1.1 Solid Cores

Door construction shall be particle board core with vertical and horizontal edges bonded to the core.

2.2.2 Face Panels

2.2.2.1 Natural Finished Wood Veneer Doors

Veneer doors to receive natural finish shall be Custom Grade red oak veneer in accordance with NWWDA I.S. 1-A. Vertical stile strips shall be selected to provide edges of the same species and/or color as the face veneer. Door finish shall be in accordance with paragraph FIELD FINISHING.

2.3 FIRE RATED DOORS

Fire rated door assemblies shall bear the listing identification label of a nationally recognized testing laboratory qualified to perform tests of fire door assemblies in accordance with NFPA 252 and having a listing for the tested assemblies. The specific time interval rating on the labels shall be as shown. Door assemblies shall be in accordance with NFPA 80. Listing identification on labels shall be constructed and permanently applied by a method which results in their destruction should they be removed. Fire rated doors shall be mineral core with rating as indicated on the Drawings.

2.3.1 Reinforcement Blocking

Fire rated doors shall be provided, as required, with hardware reinforcement blocking, and top, bottom, and intermediate rail blocking. Lock blocks shall be manufacturer's standard Reinforcement blocking shall be in
2.3.2 Stile Edges

Composite fire rated doors shall be provided with vertical stile edges that do not contain fire retardant salts. Vertical stiles shall be of the same species and/or color as the face veneer.

2.4 SOUND DOORS AND FRAMES

Sound rated doors shall meet requirements of solid core doors as specified herein, and have a STC rating of not less than 38. Provide a wood frame and to provide a sound rated assembly.

2.5 MOULDING AND EDGING

Moulding and edging shall be as shown. Wood species for transparent finished doors shall be compatible with veneer.

2.6 FINISHING

2.6.1 Factory Coated Natural Finish

Doors indicated to receive factory coated natural finish shall be given a transparent finish conforming to AWI Qual Stds, Section 1500, Premium Grade. Finish shall be as indicated on the Drawings. Edges of unfitted doors shall be field finished after fitting to the frames.

PART 3 EXECUTION

3.1 INSTALLATION OF DOORS

3.1.1 General Use Doors

Doors shall be fit, hung, and trimmed as required. Door shall have a clearance of 3 mm at the sides and top and shall have a bottom clearance of 6 mm over thresholds and 13 mm at other locations unless otherwise shown. The lock edge or both edges of doors shall be beveled at the rate of 3 mm in 50 mm. Cuts made on the job shall be sealed immediately after cutting, using a clear varnish or sealer. Bottom of doors shall be undercut to allow clear door swing over carpeted areas. Vertical edges of doors which have not been rounded or beveled at the factory shall be eased when the doors are installed.

3.1.2 Fire Doors

Installation, hardware, and operational characteristics shall conform to NFPA 80 and NFPA 101 and shall be in strict conformance with the manufacturer's printed instructions. Properly sized pilot holes shall be drilled for screws in door edges. Factory applied labels shall remain intact where installed. Labeled hinge stile edge and top edge of door shall not be trimmed. Lockstile edge and bottom edge may be trimmed only to the extent recommended by the door manufacturer.

3.2 INSTALLATION OF WOOD FRAMES
Frames shall be set plumb and square, and rigidly anchored in place securely seated to floor using finish type nails. Double wedge blocking shall be provided near the top, bottom, and mid-point of each jamb.

3.3 FIELD FINISHING

Doors to receive field finishing, whether paint or natural finish, shall be factory primed or sealed, as required, and then shall be finished in accordance with Section 09900 PAINTING, GENERAL. Factory applied sealer shall not prevent doors from accepting field stain and finish. Color shall be as indicated on the Drawings. Field touch-up of factory finishes shall be in accordance with manufacturers instructions.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 229/A 229M (1999) Steel Wire, Oil-Tempered for Mechanical Springs

ASTM A 653/A 653M (1999) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

DOOR AND ACCESS SYSTEM MANUFACTURERS ASSOCIATION (DASMA)

DASMA 102 (1996) Specifications for Sectional Overhead Type Doors

DASMA 105 (1992) Test Method for Thermal Transmittance and Air Infiltration of Garage Doors

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (1993) Industrial Controls and Systems Controllers, Contactors, and Overload Relays Rated Not More Than 2,000 Volts AC or 750 Volts DC

NEMA ICS 6 (1993) Industrial Control and Systems, Enclosures

NEMA MG 1 (1998) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NATIONAL WOOD WINDOW & DOOR ASSOCIATION (NWWDA)

NWWDA I.S. 4 (1994) Water-Repellent Preservative Non-Pressure Treatment for Millwork

1.2 DESCRIPTION

Sectional overhead doors shall conform to DASMA 102 and the requirements specified herein. Sectional overhead doors shall be of the standard lift type designed to slide up and back into a horizontal overhead position. Each door shall be provided with a permanent label showing the manufacturer's name and address and the model/serial number of the door.

1.2.1 Wind Load Requirements

Doors and components shall be designed to withstand wind loads determined by procedures in ASCE 7 and a wind speed of 30 km/hour. Doors shall be constructed to sustain a superimposed load, both inward and outward, equal to 1-1/2 times the minimum design wind load. The door shall support the superimposed loads for a minimum period of 10 seconds without evidence of serious damage and shall be operable after conclusion of the tests. Calculations shall be provided that prove the door design meets the design windload requirements. Test data showing compliance with design windload requirements for the specific door design tested in accordance with the uniform static air pressure difference test procedures of ASTM E 330 shall be provided.

1.2.2 Operation Cycle Life

Doors shall be equipped with torsion springs designed to operate through a minimum of 50,000 cycles. One complete cycle of the door begins with the door in the closed position. The door is then moved to the open position and back to the closed position.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Sectional Overhead Door Unit.

Drawings showing the location of each door including schedules. Drawings shall include elevations of each door type; details and method of anchorage; details of construction; method of assembling sections; location and installation of hardware; shape and thickness of materials; details of joints and connections; and details of tracks, rollers, power operators, controls, and other fittings.

SD-03 Product Data

Sectional Overhead Door Unit.
Manufacturer's catalog data, test data, and summary of forces and loads on walls/jambs.

Sectional Overhead Door Unit.

Manufacturer's preprinted installation instructions.

SD-07 Certificates

Design.

Manufacturer's certificates stating that the doors and operators have been designed to meet the specified requirements.

SD-10 Operation and Maintenance Data

Sectional Overhead Door Unit.

Six complete copies of maintenance instructions listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides. The instructions shall include simplified diagrams for the equipment as installed. Also spare parts data for each different item of material and equipment specified, including a complete list of parts and supplies, source of supply, and a list of high mortality maintenance parts. Six complete copies of operation instructions outlining the step-by-step procedure required for motorized door and shutter operation. The instructions shall include the manufacturer's name, model/serial number, service manual, parts list, and brief description of all equipment and their basic operating features.

1.4 DELIVERY AND STORAGE

Doors shall be delivered to the jobsite wrapped in a protective covering with the brands and names clearly marked thereon. Doors shall be stored in a dry location that is adequately ventilated and free from dust or water, and in a manner that permits easy access for inspection and handling. Doors shall be handled carefully to prevent damage to the faces, edges, and ends. Damaged items that cannot be restored to like-new condition shall be replaced.

1.5 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period shall be provided.

PART 2 PRODUCTS

2.1 SECTIONAL OVERHEAD DOORS

2.1.1 Door Section Materials

Sectional overhead door sections shall be of the height indicated. Bottom sections may be varied to suit door height but shall not exceed 762 mm (30 inches) in height. Meeting rails shall have interlocking joints to provide weatherproof closure and to assure alignment for the full width of the door.
2.1.1.1 Steel Doors

Door sections shall be single skin with integral joint, and shall be formed of hot-dipped galvanized steel. Panels shall be constructed of galvanized steel not lighter than 1.6 mm (16 gauge) with flush surface or 1.0 mm (20 gauge) with longitudinal integral reinforcing ribs or 0.7 mm (24 gauge) with longitudinal integral reinforcing ribs and flat bottom V-grooves. Doors shall be insulated as specified in subparagraph below. Doors shall have manufacturer's standard factory applied finish. Color shall be from the manufacturer's standard colors. Color shall match metal roof panels, unless otherwise indicated.

2.1.1.2 Insulated Sandwich Doors

Door sections shall be composite construction of 2 separate steel skins (inner and outer) bonded to a foam core, such as expanded/extruded polystyrene or CFC-free polyurethane. Steel skins shall be separated by a thermal break (minimal or no metal to metal contact). Steel shall have a minimum wall thickness of 0.25 mm.

2.1.2 Insulated Sections

The panel sections shall supply a minimum R-Value of 4.0 when tested in accordance with DASMA 105. Panels shall be of the type standard with the manufacturer. Sections shall consist of a chlorofluorocarbon free urethane or polystyrene core not less than 35 mm thick, completely enclosed within metal facings. Exterior face of sections shall be as specified. Interior face shall have a minimum wall thickness of 0.25 mm steel, 3.18 mm hardboard, or 0.18 mm aluminum.

2.1.3 Tracks

Tracks shall be the manufacturer's standard 51 mm track, formed of galvanized steel not lighter than 1.9 mm for 51 mm track and 2.7 mm gauge for 76 mm track. Vertical tracks shall be attached to continuous steel angles not lighter than 3.1 mm, installed on the walls, and shall be inclined through the use of adjustable brackets to provide a weathertight closure. Horizontal track shall be reinforced with galvanized-steel angles and shall be supported from overhead structural members and cross braced as required to provide a rigid installation.

2.1.4 Hardware

Heavy duty hinges, brackets, rollers, locking devices, and other hardware required for a complete installation shall be provided. Roller brackets and hinges shall be of minimum 1.9 mm galvanized steel, and shall be securely attached to stiles with sheet metal screws or through bolts or with sheet metal screws into minimum 1.6 mm stiles. Double hinges shall be provided at ends of panels for doors more than 4800 mm wide. Rollers shall be provided with a minimum of 10 ball bearings. Doors shall be reinforced at roller-hinge connections.

2.1.5 Counterbalancing

Doors shall be counterbalanced by means of helical-wound torsion springs mounted on a steel shaft. Springs shall be oil-tempered springwire
2.1.6 Weatherstripping

Exterior doors shall be provided with weatherproof joints between sections. Head and jambs shall be provided with rubber or vinyl bulb or leaf type weatherstripping, or with nylon-brush type weatherstripping. Bottom of door shall be provided with a compressible neoprene, rubber, or vinyl weather seal. Weatherstripping shall be adjustable. On electric power operated doors, the bottom seal shall be a combination weather seal and sensing edge.

2.1.7 Operation

Doors shall be operated by means of electric power with auxiliary chain hoist. Equipment shall be designed and manufactured for usage in non-hazardous areas.

2.1.7.1 Electric Power With Auxiliary Chain-Hoist Operation

Electric power operators shall be heavy-duty industrial type. The unit shall operate the door through the operational cycle life specified. The electric power operator shall be complete with electric motor, auxiliary operation, necessary means of reduction, magnetic brake, brackets, push button controls, limit switches, magnetic reversing starter, and other accessories necessary to operate components specified in other paragraphs of this section. Trolley type operators shall be used on standard lift and low headroom tracks. Jackshaft type operators shall be used on vertical lift and high lift tracks. The operator shall be designed so that the motor may be removed without disturbing the limit-switch settings and without affecting the emergency chain operator. Doors shall be provided with an auxiliary operator for immediate emergency manual operation of the door in case of electrical failure. The emergency manual operating mechanism shall be arranged so that it may be operated from the floor without affecting the timing of the limit switches. A mechanical device shall be included that will disconnect the motor from the drive operating mechanism when the auxiliary operator is used. Operation shall be by means of galvanized endless chain operating over a sprocket and extending to within 900 mm of the floor. Operating force shall not exceed 155 N (35 pounds) for hand chain and hand crank. Where control voltages differ from motor voltage, a control voltage transformer shall be provided in and as part of the electric power operator system. Control voltage shall not exceed 120 volts.

a. Motors: Drive motors shall conform to NEMA MG 1, shall be high-starting torque, reversible type, and shall be of sufficient wattage and torque output to move the door in either direction from any position at a speed range of 0.15 to 0.20 m per second (6 to 8 inches per second) without exceeding the rated capacity. Motors shall be suitable for operation on 230 volts, unless otherwise indicated on the Drawings, 60 hertz, single phase current and shall be suitable for across-the-line starting. Motors shall be designed to operate at full capacity over a supply voltage variation of plus or minus 10 percent of the motor voltage rating. Motors shall be provided with overload protection.

b. Controls: Control equipment shall conform to NEMA ICS 2. Enclosures shall conform to NEMA ICS 6, Type 12 (industrial use),
Type 7 or 9 in hazardous locations, and shall be in accordance with NFPA 70. Exterior control stations shall be weatherproof key-operated type with corrosion-resistant cast-metal cover. Each control station shall be of the 3-position button type, marked "OPEN," "CLOSE," and "STOP." The "OPEN" and "STOP" controls shall be of the momentary contact type with seal-in contact. The "CLOSE" control shall be of the constant pressure type. When the door is in motion and the "STOP" control is pressed, the door shall stop instantly and remain in the stop position; from the stop position, the door shall be operable in either direction by the "OPEN" or "CLOSE" controls. Controls shall be of the full-guarded type to prevent accidental operation. Readily adjustable limit switches shall be provided to automatically stop the doors at their fully open and closed positions.

c. Sensing Edge Device: The bottom edge of electric power operated doors shall have a sensing edge that will immediately reverse or stop the door movement upon contact with an obstruction and cause the door to return to its full open position. The sensing edge shall not substitute for a limit switch. Exterior doors shall be provided with a combination compressible weather seal and sensing edge. The sensing edge shall be an electrical type for non-hazardous areas with components connected in series to assure the edge is operable before the door will open.

d. Electrical Work: Conduit and wiring necessary for proper operation shall be provided under Section 16415 ELECTRICAL WORK, INTERIOR. Flexible connections between doors and fixed supports shall be made with extra flexible Type SJ0 cable, except in hazardous locations where wiring shall conform to NFPA 70, as appropriate. The cable shall have a spring-loaded automatic take up reel or a coil cord equivalent device.

2.1.8 Locking

Locking shall consist of . Locking for motor operated doors shall consist of self-locking gearing and optional master keyed cylinder with electrical interlock. Lock shall be Best as required to match base standard.

2.1.9 Finish

2.1.9.1 Steel

Steel surfaces shall be hot-dip galvanized G60 in accordance with ASTM A 653/A 653M, and shall be treated for paint adhesion and shall receive a baked on prime coat for field finishing. Finish coat shall be in accordance with Section09900PAINTING, GENERAL.

2.1.9.2 Wood

Wood members shall receive a water-repellent treatment in accordance with MWWDA I.S. 4. Wood and hardboard surfaces shall be given a prime coat of paint at the factory.

2.1.10 Color

Color shall be as indicated on the Drawings.
PART 3 EXECUTION

3.1 INSTALLATION

Doors shall be installed in accordance with approved detail drawings and manufacturer's instructions. Anchors and inserts for guides, brackets, motors, switches, hardware, and other accessories shall be accurately located. Door tracks shall be normal track and vertical lift track as indicated on the Drawings. Upon completion, doors shall be free from warp, twist, or distortion. Doors shall be lubricated, properly adjusted, and demonstrated to operate freely. Aluminum materials that will be in contact with wet or pressure treated wood, mortar, masonry or ferrous metals shall be protected against galvanic or corrosive action. Doors to receive field finishing shall be finished in accordance with Section 09900 PAINTING, GENERAL. Caulking and sealants shall be in accordance with Section 07900 JOINT SEALING.

-- End Of Section --
SECTION 08700

BUILDERS' HARDWARE

03/96

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM E 283 (1991) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

BHMA L & R Directory (Effective thru Jun 1999) Directory of Certified Locks & Latches

BHMA Closer Directory (Effective thru Jul 1999) Directory of Certified Door Closers

BHMA A156.1 (1997) Butts and Hinges

BHMA A156.2 (1996) Bored and Preassembled Locks and Latches

BHMA A156.3 (1994) Exit Devices

BHMA A156.4 (1992) Door Controls - Closers

BHMA A156.5 (1992) Auxiliary Locks & Associated Products

BHMA A156.6 (1994) Architectural Door Trim

BHMA A156.7 (1997) Template Hinge Dimensions

BHMA A156.8 (1994) Door Controls - Overhead Stops and Holders

BHMA A156.16 (1989) Auxiliary Hardware

BHMA A156.18 (1993) Materials and Finishes
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Exit Devices
Drawings; G, RE

Detail drawings for hardware devices for computerized keying systems, magnetic cards, keyless push button access control systems, and other electrical hardware devices showing complete wiring and schematic diagrams and other details required to demonstrate proper function of units.

Detail drawings for hardware devices for computerized keying systems, magnetic cards, keyless push button access control systems, and other electrical hardware devices showing complete...
wiring and schematic diagrams and other details required to demonstrate proper function of units.

SD-03 Product Data

Exit Device Accessories

Manufacturer's descriptive data, technical literature, catalog cuts, and installation instructions. Spare parts data for locksets, exit devices, closers, electric locks, electric strikes, electro-magnetic closer holder release devices, and electric exit devices, after approval of the detail drawings, and not later than 3 month(s) prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply.

Hardware Schedule

Hardware schedule listing all items to be furnished. The schedule shall include for each item: the quantities; manufacturer's name and catalog numbers; the ANSI number specified, sizes; detail information or catalog cuts; finishes; door and frame size and materials; location and hardware set identification cross-references to drawings; corresponding reference standard type number or function number from manufacturer's catalog if not covered by ANSI or BHMA; and list of abbreviations and template numbers.

Keying; G, RE

Keying schedule developed in accordance with DHI Keying Systems, after the keying meeting with the user.

SD-07 Certificates

Hardware and Accessories

The hardware manufacturer's certificates of compliance stating that the supplied material or hardware item meets specified requirements. Each certificate shall be signed by an official authorized to certify in behalf of the product manufacturer and shall identify quantity and date or dates of shipment or delivery to which the certificates apply. A statement that the proposed hardware items appear in BHMA L & R Directory, BHMA Closer Directory and BHMA Exit Devices Directory directories of certified products may be submitted in lieu of certificates.

1.3 PREDELIVERY CONFERENCE

Upon approval of the Hardware Schedule, the construction Contractor shall arrange a conference with the hardware supplier, Contracting Officer and the using agency to determine keying system requirements. Location of the key control storage system, set-up and key identification labeling will also be determined.

1.4 DELIVERY, STORAGE, AND HANDLING
Hardware shall be delivered to the project site in the manufacturer's original packages. Each article of hardware shall be individually packaged in the manufacturer's standard commercial carton or container, and shall be properly marked or labeled to be readily identifiable with the approved hardware schedule. Each change key shall be tagged or otherwise identified with the door for which its cylinder is intended. Where double cylinder functions are used or where it is not obvious which is the key side of a door, appropriate instructions shall be included with the lock and on the hardware schedule. Manufacturer's printed installation instructions, fasteners, and special tools shall be included in each package.

1.5 SPECIAL TOOLS

Special tools, such as those supplied by the manufacturer, unique wrenches, and dogging keys, shall be provided as required to adjust hardware items.

1.6 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided.

1.7 OPERATION AND MAINTENANCE MANUALS

Six complete copies of maintenance instructions listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides shall be provided. The instructions for electric locks, electric strikes, electro-magnetic closer holder release devices, and electric exit devices shall include simplified diagrams as installed.

PART 2 PRODUCTS

2.1 GENERAL HARDWARE REQUIREMENTS

Hardware shall conform to the requirements specified herein and the HARDWARE SETS listing at the end of this section. Hardware set numbers correspond to the set numbers shown on the drawings.

2.2 TEMPLATES

Requirements for hardware to be mounted on metal doors or metal frames shall be coordinated between hardware manufacturer and door or frame manufacturer by use of templates and other information to establish location, reinforcement required, size of holes, and similar details. Templates of hinges shall conform to BHMA A156.7.

2.3 HINGES

<table>
<thead>
<tr>
<th>Door and Frame</th>
<th>Wood Door With Hollow Metal</th>
<th>Mineral Core Wood or Metal</th>
<th>Mineral Core Wood or Metal</th>
</tr>
</thead>
</table>

SECTION 08700 Page 4
TABLE II. HINGE SIZES CHART

<table>
<thead>
<tr>
<th>Thickness of Doors in mm (Inches)</th>
<th>Width of Doors in mm (Inches)</th>
<th>Height of Hinge in mm (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 - 29 (7/8 - 1-1/8 screen)</td>
<td>To 915 (36)</td>
<td>76.2 (3)</td>
</tr>
<tr>
<td>35 (1-3/8)</td>
<td>To 810 (32)</td>
<td>88.9 (3-1/2)</td>
</tr>
<tr>
<td>35 (1-3/8)</td>
<td>Over 810 to 940 (32 - 37)</td>
<td>101.6 (4)</td>
</tr>
<tr>
<td>44 (1-3/4)</td>
<td>To 915 (36)</td>
<td>114.3 (4-1/2)</td>
</tr>
<tr>
<td>44 (1-3/4)</td>
<td>Over 915 to 1220 (36 - 48)</td>
<td>127.0 (5) H/W</td>
</tr>
<tr>
<td>51 57 & 63</td>
<td>Over 1220 (48)</td>
<td>152.4 (6) H/W</td>
</tr>
<tr>
<td>(2, 2-1/4 & 2-1/2)</td>
<td>To 1060 (42)</td>
<td>127.0 (5) H/W</td>
</tr>
<tr>
<td>51 57 & 63</td>
<td>Over 1060 (42)</td>
<td>152.4 (6) H/W</td>
</tr>
<tr>
<td>(2, 2-1/4 & 2-1/2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hinges shall conform to BHMA A156.1. Hinges used on metal doors and frames shall also conform to BHMA A156.7. Hinges shall be at a minimum, Heavy Weight, 114.3 mm x 114.3 mm ANSI 5111, five knuckle with four ball bearings, non-rising removable pin with button tip and plug. Base shall be stainless steel or brass for exterior doors. Except as otherwise specified, hinge sizes shall conform to the hinge manufacturer's printed recommendations.

2.3.1 Hinges for Reverse Bevel Doors with Locks

Hinges for reverse bevel doors with locks shall have pins that are made nonremovable by means such as a set screw in the barrel, or safety stud, when the door is in the closed position.
2.3.2 Contractor's Option

Hinges with antifriction bearings may be furnished in lieu of ball bearing hinges, except where prohibited for fire doors by the requirements of NFPA 80.

2.4 LOCKS AND LATCHES

To the maximum extent possible, locksets, latchsets and deadlocks, and all components thereof, including cylinders and removable cores, shall be the products of a single manufacturer. Lock fronts for double-acting doors shall be rounded. Strikes for wood frames and pairs of wood doors shall be furnished with wrought boxes.

2.4.1 Lever Handle Cylindrical Locksets

Lever Handle Cylindrical Locksets, and strikes shall be series 4000, and shall be BHMA A156.2, Grade 1. Lever handle cylindrical locksets and deadbolts shall have adjustable bevel fronts or otherwise conform to the shape of the door. Lever handles shall be curved return 14D, Best Series 9K, Grade 1, function ANSI F81 or approved equal.

2.4.2 Tubular Deadbolts

Tubular deadbolts shall conform to BHMA A156.5, Grade 1.

2.4.3 Lock Cylinders/Interchangeable Key Cores

Lock cylinders/Interchangeable key cores shall comply with BHMA A156.5. Lock cylinders/Interchangeable key cores shall be Best Lock Corp., seven pin interchangeable key core compatible. Steel construction interchangeable construction key cores shall be provided. Final key cores shall be provided by this contract and be an extension of the existing Best style A3 keying system. Final coded core shall be delivered to LRAFB Locksmith Shop directly from the manufacturer or his designated supplier. Provide two coded keys with each core. Disassembly of Lever Handle Cylindrical lockset or exit device shall not be required to remove core from lockset. All locksets, and lockable exit devices shall accept and be Best Lock Corp., 7 pin interchangeable key core compatible.

2.4.4 Lock Trim

Lock trim shall be cast, forged, or heavy wrought construction of commercial plain design. In addition to meeting the test requirement of BHMA A156.2, lever handles, roses, and escutcheons shall be 1.27 mm thick, if unreinforced. If reinforced, the outer shell shall be 0.89 mm thick and the combined thickness shall be 1.78 mm except that knob shanks shall be 1.52 mm thick. Knob diameter shall be 54 to 57 mm. Lever handles shall be of plain design with ends returned to no more than 10 mm from the door face.

2.4.5 Electromagnetic Locks

Electromagnetic locks shall allow for locking or unlocking of doors from a remote location by means of card reader. Electromagnetic locks shall be fail safe (unlocked when power is off) and shall conform to BHMA A156.23.
2.5 EXIT DEVICES AND EXIT DEVICE ACCESSORIES

Exit devices and exit device accessories shall conform to BHMA A156.3, Grade 1.

2.5.1 Exit Devices and Auxiliary Items

Trim shall be of wrought construction and commercial plain design with straight, beveled, or smoothly rounded sides, corners, and edges. Adjustable strikes shall be provided for rim type and vertical rod devices. Open back strikes shall be provided for pairs of doors with mortise and vertical rod devices; except open back strikes shall be used on labeled doors only where specifically provided for in the published listings. Touch bars shall be provided in lieu of conventional crossbars and arms.

2.5.2 Door Coordinator

Door coordinator with carry bar shall be Type 21 and shall be provided for each pair of doors equipped with an overlapping astragal. The coordinator may be mechanically operated and shall be capable of holding the active door of a pair open until the inactive door has preceded it in the closing cycle. When used as fire exit hardware, the coordinator and carry bar shall be listed or labeled by a nationally recognized independent testing laboratory.

2.5.3 Removable Mullions

Removable mullions shall be Type 22 of the box type and shall be used only with those exit devices for which the mullions were manufactured. Mullions shall be furnished with mullion stabilizers of the same manufacturer.

2.5.4 Electric Exit Devices

Electric exit devices shall conform to BHMA A156.3 with factory installed electric lock modification having the capability to lock or unlock from remote location by means of card reader. Exit devices shall comply with life safety requirements of NFPA 101.

2.5.5 Automatic Flush Bolts

Automatic flush bolts shall be Type 25 in accordance with BHMA A156.3, and shall be installed at the top and bottom of the inactive leaf of pairs of fire rated doors where specified in the hardware sets. Flush bolts shall be mortised in the strike edge of the door.

2.6 KEYING

Locks shall be keyed in sets or subsets as scheduled. Locks shall be furnished with the manufacturer's standard construction key system. Change keys for locks shall be stamped with change number and the inscription "U.S. Property - Do Not Duplicate." Keys shall be supplied as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locks</td>
<td>3 change keys each lock.</td>
</tr>
<tr>
<td>Master keyed sets</td>
<td>3 keys each set.</td>
</tr>
<tr>
<td>Grand master keys</td>
<td>3 total.</td>
</tr>
</tbody>
</table>
The keys shall be furnished to the Contracting Officer arranged in a container in sets or subsets as scheduled.

2.7 DOOR CLOSING DEVICES

Door closing devices shall conform to BHMA A156.4, Grade 1. Closing devices shall be products of one manufacturer for each type specified. The opening resistance of closing devices shall not exceed 67 N applied at the latch stile or exceed 22 N where low opening resistance is scheduled.

2.7.1 Surface Type Closers

Surface type closers shall be Grade 1, Series C02000 Full Cover with options PT-4H, Size 1 or 2 through Size 6, and PT-4D with back check position valve. Except as otherwise specified, sizes shall conform to the manufacturer's published recommendations. All closers shall be top jamb (push side) mounted.

2.8 DOOR CONTROLS - OVERHEAD HOLDERS

Door controls - overhead holders shall conform to BHMA A156.8.

2.9 SMOKE DETECTORS AND ELECTRO-MAGNETIC HOLDERS

Electro-magnetic door holders shall conform to BHMA A156.15 and shall release the door upon activation of the building fire alarm system or interruption of electric power.

2.10 POWER ASSIST AND LOW ENERGY POWER OPERATORS

Power assist and low energy power operators shall conform to BHMA A156.19 and shall be electrically operated.

2.11 ARCHITECTURAL DOOR TRIM

Architectural door trim shall conform to BHMA A156.6.

2.11.1 Door Protection Plates

2.11.1.1 Kick Plates

Kick plates shall be Type J102 stainless steel. Width of plates shall be 50 mm less than door width for single doors and 25 mm less for pairs of doors. Height shall be [250] [300] [400] mm, except where the bottom rail is less than [250] [300] [400] mm the plate shall extend to within 13 mm of the panel mold or glass bead. Edges of metal plates shall be beveled.

2.11.2 Push Plates

2.11.2.1 Push Plates

Push-pull plates shall be Type J301/304, Grade 1, 1.27 mm thick minimum stainless steel beveled four edges.

2.11.2.2 Door Pulls

Door pull and plate shall be Category J407 stainless steel, Grade 1.
2.12 AUXILIARY HARDWARE

Auxiliary hardware, consisting of door stops, , shall conform to BHMA A156.16. Lever extension flush bolts shall be Type L14081. Other auxiliary hardware of the types listed below, shall conform to BHMA A156.16.

2.13 MISCELLANEOUS

2.13.1 Automatic Door Bottoms

Automatic door bottoms shall be surface type with aluminum housing cover, anodized clear finish. Door bottom shall have a wool, felt, rubber, vinyl, or neoprene seal and shall be actuated by the opening and closing of the door. The door bottom shall exclude light when the door is in the closed position and shall inhibit the flow of air through the unit.

2.13.2 Metal Thresholds

Thresholds shall conform to BHMA A156.21. Thresholds for exterior doors shall be extruded aluminum of the type indicated and shall provide proper clearance and an effective seal with specified weather stripping. Latching thresholds shall be of such height that the bottom of the door shall be 3 mm over the tread of the threshold and 3 mm below the top of the stop. Where required, thresholds shall be modified to receive projecting bolts of flush bolts .

2.13.3 Rain Drips

Extruded aluminum, not less than 1.78 mm thick, clear anodized . Door sill rain drips shall be 38 mm to 44 mm high by 16 mm projection. Overhead rain drips shall be approximately 38 mm high by 63 mm projection and shall extend 50 mm on either side of the door opening width.

2.13.4 Aluminum Housed Type Weatherseals

Weatherseals of the type indicated shall consist of extruded aluminum retainers not less than 1.78 mm wall thickness with vinyl, neoprene, silicone rubber, polyurethane or vinyl brush inserts. Aluminum shall be clear (natural) anodized. Weatherseal material shall be of an industrial/commercial grade. Seals shall remain functional through all weather and temperature conditions. Air leakage rate of weatherstripping shall not exceed 0.775 liters per second per lineal meter of crack when tested in accordance with ASTM E 283 at standard test conditions.

2.13.5 Gasketing

Gasketing shall be a compression type seal, silicon based, self-adhesive product for use on steel door frames with steel doors for ratings as indicted on the Drawings. Color shall be bronze. Air leakage rate of weatherstripping shall not exceed 0.775 liters per second per lineal meter of crack when tested in accordance with ASTM E 283 at standard test conditions.

2.13.6 Door Stops
Wall stops, floor stops and combination stop and holders shall conform to BHMA A156.16.

2.14 FASTENINGS

Fastenings of proper type, size, quantity, and finish shall be supplied with each article of hardware. Machine screws and expansion shields shall be used for attaching hardware to concrete or masonry. Fastenings exposed to the weather in the finished work shall be of brass, bronze, or stainless steel. Sex bolts, through bolts, or machine screws and grommet nuts, where used on reverse-bevel exterior doors equipped with half-surface or full-surface hinges, shall employ one-way screws or other approved tamperproof screws. Screws for the jamb leaf of half-mortise and full-surface hinges attached to structural steel frames shall be one-way or other approved tamperproof type.

2.15 FINISHES

Unless otherwise specified, finishes shall conform to those identified in BHMA A156.18. All finishes shall be Satin Chromium Plated unless otherwise noted.

2.16 HARDWARE FOR FIRE DOORS

Hardware for fire doors shall conform to the requirements of NFPA 80 and NFPA 101.

PART 3 EXECUTION

3.1 APPLICATION

Hardware shall be located in accordance with DHI Locations for CSD and DHI Locations for SSD, except that deadlocks shall be mounted 1220 mm above finish floor. When approved, slight variations in locations or dimensions will be permitted. Application shall be in accordance with DHI ANSI/DHI A15.1G or DHI ANSI/DHI A15-W. Door control devices for exterior doors such as closers and holders, shall be attached to doors with thru bolts and nuts or sex bolts. Alternate fastening methods may be approved by the Contracting Officer when manufacturers' documentation is submitted to verify that the fastening devices and door reinforcements are adequate to resist wind induced stresses. Electric hardware items and access control devices shall be installed in accordance with manufacturer's printed installation procedures.

3.1.1 Hardware for Fire Doors and Smoke-Control Door Assemblies

Hardware for fire doors shall be installed in accordance with the requirements of NFPA 80. Exit devices installed on fire doors shall have a visible label bearing the marking "Fire Exit Hardware". Other hardware installed on fire doors, such as locksets, closers, and hinges shall have a visible label or stamp indicating that the hardware items have been approved by an approved testing agency for installation on fire-rated doors. Hardware for smoke-control door assemblies shall be installed in accordance with NFPA 105.

3.1.2 Door-Closing Devices
Door-closing devices shall be installed and adjusted in accordance with the templates and printed instructions supplied by the manufacturer of the devices. Insofar as practicable, doors opening to or from halls and corridors shall have the closer mounted on the room side of the door.

3.1.3 Kick Plates

Kick plates shall be installed on the push side of single-acting doors and on both sides of double-acting doors.

3.1.4 Auxiliary Hardware

Lever extension flush bolts shall be installed at the top and bottom of the inactive leaf of pairs of doors. The bottom bolt shall operate into a dust-proof floor strike or threshold.

3.1.5 Thresholds

Thresholds shall be secured with a minimum of three fasteners per single door width and six fasteners per double door width with a maximum spacing of 300 mm. Exterior thresholds shall be installed in a bed of sealant with expansion anchors and stainless steel screws, except that bronze or anodized bronze thresholds shall be installed with expansion anchors with brass screws. Minimum screw size shall be No. 10 length, dependent on job conditions, with a minimum of 19 mm thread engagement into the floor or anchoring device used.

3.1.6 Rain Drips

Door sill rain drips shall align with the bottom edge of the door. Overhead rain drips shall align with bottom edge of door frame rabbet. Drips shall be set in sealant and fastened with stainless steel screws.

3.1.7 Weatherseals

Weatherseals shall be located as indicated, snug to door face and fastened in place with color matched metal screws after door and frames have been finish painted. Screw spacing shall be as recommended by manufacturer.

3.1.8 Gasketing

Gasketing shall be installed at the inside edge of the hinge and head and latch sides of door frame. Frames shall be tolerated for a 3 mm clearance between door and frame. Frames shall be treated with tape primer prior to installation.

3.2 OPERATIONAL TESTS

Prior to acceptance of any electrical hardware system, an operational test shall be performed to determine if devices are operating as intended by the specifications. Wiring shall be tested for correct voltage, current carrying capacity, and proper grounding. Stray voltages in lock wiring shall be eliminated to prevent locking devices from releasing in critical situations.

3.3 FIELD QUALITY CONTROL
Supplier shall inspect the completed installation and certify that the hardware has been furnished and installed in accordance with the manufacturers' instructions and as specified. The inspection report shall identify any malfunctioning items and recommend adjustment or replacement as appropriate.

3.4 MANUFACTURERS SCHEDULED

B - Best Lock Company
CR - Corbin/Russwin Architectural Hardware
G - Glynn Johnson Corp.
L - LCN Door Closers
M - Mas-Hamilton
P - Pemko Manufacturing Company
R - Rockwood Manufacturing Company
S - Stanley Hardware
SX - Simplex
V - Von Duprin

3.5 HARDWARE SETS

SET # 1

6 - Ea. Hinges FBB168 - 4" x 4" x US26D x NRP S
1 - Mullion 5654 x SP28 - W/Weatherstrip V
1 - Exit Device EL33NL/OP x 626 V
1 - Cylinder 1E72 x 626 B
1 - Exit Device 33EO x 626 V
2 - Offset Pulls BF158 x 630 R
1 - Power Transfer EPT-10 x SP28 V
1 - Power Supply PS873-2 V
2 - Closer 4041 - Cush x AL x TB L
2 - Drop Plates 4040-18PA x AL L
2 - Cush Shoe Supports 4040 - 30 x AL L
2 - Blade Stop Spacers 4040 - 61 x AL L
2 - Kick Plate B3E - 10" x D.W. -1" x US32D - .050 GA R
2 - Stops 471 x 626 R
1 - Sets Weatherstrip 306AV - (Head & Jamb) P
2 - Door Bottoms 315CN x D.W. P
1 - Threshold 171A x D.W. P

NOTE: 1. Door has IDS
3. Outside Card Swipe Shunt Alarm and Retract Latch.
4. Inside Card Swipe Shunt Alarm for Valid Egress

SET # 2

3 - Ea. Hinges FBB179 - 4" x 4" x US26D x NRP S
1 - Lockset ML2057 - LWM x 626 - L/C CR
1 - Cylinder 1E74 x 626 B
1 - Closer 4041 or P4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Stop 440 x 626 R
3 - Silencers 608 R
SET # 3

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hinges</td>
<td>FBB179 - 4" x 4" x US26D</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>ML2055 - LWM x 626 - L/C</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>1E74 x 626</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>4041 or P4041 x AL x TB</td>
</tr>
<tr>
<td>1</td>
<td>Kick Plate</td>
<td>B3E - 10" x D.W. -2" x US32D - .050 GA</td>
</tr>
<tr>
<td>1</td>
<td>Stop</td>
<td>440 x 626</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>608</td>
</tr>
<tr>
<td>1</td>
<td>Seal</td>
<td>S88D - (Head & Jamb) (Door 237 only)</td>
</tr>
</tbody>
</table>

SET # 3 CON'T

<table>
<thead>
<tr>
<th>Number</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Door Bottom</td>
<td>411ARL x D.W. (Door 237 only)</td>
</tr>
</tbody>
</table>

SET # 4

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hinges</td>
<td>FBB179 - 4" x 4" x US26D</td>
</tr>
<tr>
<td>1</td>
<td>Unican</td>
<td>L1021 - B x US26D</td>
</tr>
<tr>
<td>1</td>
<td>Core</td>
<td>IC-7 x 626</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>4041 x AL x TB</td>
</tr>
<tr>
<td>1</td>
<td>Kick Plate</td>
<td>B3E - 10" x D.W. -2" x US32D - .050 GA</td>
</tr>
<tr>
<td>1</td>
<td>Stop</td>
<td>440 x 626</td>
</tr>
<tr>
<td>1</td>
<td>Seal</td>
<td>S88D (Head & Jamb)</td>
</tr>
</tbody>
</table>

SET # 4 CON'T

<table>
<thead>
<tr>
<th>Number</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Door Bottom</td>
<td>411ARL x D.W.</td>
</tr>
</tbody>
</table>

NOTE: Door Signage furnish in room signage Spec.

SET # 5

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Hinges</td>
<td>FBB168 - 4" x 4" x US26D</td>
</tr>
<tr>
<td>2</td>
<td>Exit Devices</td>
<td>9927EO - F x 626</td>
</tr>
<tr>
<td>2</td>
<td>Sentronic Closers</td>
<td>4040 - SE x AL x TB - 24VDC</td>
</tr>
<tr>
<td>2</td>
<td>Kick Plates</td>
<td>B3E - 10" x D.W. -4" x US32D - .050 GA</td>
</tr>
<tr>
<td>2</td>
<td>Stops</td>
<td>440 x 626</td>
</tr>
<tr>
<td>1</td>
<td>Seal</td>
<td>S88D (Head & Jamb)</td>
</tr>
</tbody>
</table>

NOTE: Sentronic Closers tied into fire alarm at header

SET # 6

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hinges</td>
<td>FBB168 - 4" x 4" x US26D x NRP</td>
</tr>
<tr>
<td>1</td>
<td>Exit Device</td>
<td>99L -(994L-03) x 626</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>1E72 x 626</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>P4041 x AL x TB</td>
</tr>
<tr>
<td>1</td>
<td>Kick Plate</td>
<td>B3E - 10" x D.W. -2" x US32D - .050 GA</td>
</tr>
<tr>
<td>1</td>
<td>Stop</td>
<td>440 x 626</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>608</td>
</tr>
</tbody>
</table>

SET # 7

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item Description</th>
<th>Model/Size/Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Hinges</td>
<td>FBB168 - 4" x 4" x US26D x NRP</td>
</tr>
<tr>
<td>1</td>
<td>Mullion</td>
<td>4954 x SP28</td>
</tr>
<tr>
<td>1</td>
<td>Exit Device</td>
<td>99L -(994L-03) x 626</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>1E72 x 626</td>
</tr>
<tr>
<td>1</td>
<td>Exit Device</td>
<td>99L -(994L-03-DT) x 626</td>
</tr>
</tbody>
</table>
2 - Closers 4041 - Cush x AL x TB L
2 - Cush 4040 - 30 x AL L
2 - Kick Plates B3E - 10" x D.W. -2" x US32D - .050 GA R
2 - Stops 471 x 626 R
2 - Set Weatherstrip 306AV - (Head & Jamb) P
2 - Door Bottoms 3452AV x D.W. P
1 - Threshold 171A x D.W. P
1 - Overhead Rain Drip 346C x D.W. + 4" P

NOTE: 1. Door has IDS

SET # 8

3 - Ea. Hinges FBB179 - 4" x 4" x US26D S
1 - Lockset ML2051 - LWM x 626 - L/C CR
1 - Cylinder 1E74 x 626 B
1 - Stop 440 x 626 R
3 - Silencers 608 R

SET # 9

3 - Ea. Hinges FBB179 - 4" x 4" x US26D S
1 - Privacy Lock ML2030 - LWM x 626 CR
1 - Closer 4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Overhead Stop GJ450S x 652 G
3 - Silencers 608 R

SET # 10

3 - Ea. Hinges FBB168 - 4" x 4" x US26D x NRP S
1 - Exit Device 99L-(994L-03) x 626 V
1 - Cylinder 1E72 x 626 B
1 - Closer 4041 - Cush x AL x TB L
1 - Cush Shoe Support 4040-30 x AL L
1 - Kick Plate B3E - 10" x D.W. -2" US32D - .050 GA R
1 - Stop 471 x 626 R
1 - Set Weatherstrip 306AV - (Head & Jamb) P
1 - Door Bottom 3452AV x D.W. P
1 - Threshold 171A x D.W. P
1 - Overhead Rain Drip 346C x D.W. +4" P

NOTE: 1. Door has IDS

SET # 11

3 - Ea. Hinges FBB168 - 4" x 4" x US26D x NRP S
1 - Lockset ML2057 - LWM x 626 - L/C CR
1 - Cylinder 1E74 x 626 B
1 - Closer 4041H - Cush x AL x TB L
1 - Cush Shoe Support 4040-30 x AL L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Set Weatherstrip 306AV - (Head & Jamb) P
1 - Door Bottom 3452AV x D.W. P
1 - Threshold 171A x D.W. P
1 - Overhead Rain Drip 346C x D.W. +4" P
NOTE: 1. Door has IDS

SET # 12

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>6 Ea.</td>
<td>FBB168 - 4" x 4" x US26D x NRP</td>
</tr>
<tr>
<td>Flush Bolts</td>
<td>2</td>
<td>555 x 626 - 12"</td>
</tr>
<tr>
<td>Lockset</td>
<td>1</td>
<td>ML2067 - LWM x 626 - L/C</td>
</tr>
<tr>
<td>Cylinder</td>
<td>1</td>
<td>1E74 x 626</td>
</tr>
<tr>
<td>Closers</td>
<td>2</td>
<td>4041H - Cush x AL x TB</td>
</tr>
<tr>
<td>Cush Shoe Support</td>
<td>2</td>
<td>4040-30 x AL</td>
</tr>
<tr>
<td>Kick Plates</td>
<td>2</td>
<td>B3E - 10" x D.W. -2" x US32D - .050 GA</td>
</tr>
<tr>
<td>Set Weatherstrip</td>
<td>1</td>
<td>306AV - (Head & Jamb)</td>
</tr>
<tr>
<td>Door Bottoms</td>
<td>2</td>
<td>3452AV x D.W.</td>
</tr>
<tr>
<td>Threshold</td>
<td>1</td>
<td>171A x D.W.</td>
</tr>
<tr>
<td>Overhead Rain Drip</td>
<td>1</td>
<td>346C x D.W.</td>
</tr>
<tr>
<td>Astragal Seal</td>
<td>1</td>
<td>355CS x D.H.</td>
</tr>
</tbody>
</table>

SET # 13

All hardware by Overhead Door Supplier

NOTE: 1. Door has IDS

SET # 14

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>6 Ea.</td>
<td>FBB168 - 4" x 4" x US26D x NRP</td>
</tr>
<tr>
<td>Mullion</td>
<td>1</td>
<td>9954 x SP28</td>
</tr>
<tr>
<td>Combination</td>
<td>1</td>
<td>CDX08 (Interconnect with Exit Device)</td>
</tr>
<tr>
<td>Exit Device</td>
<td>1</td>
<td>SER1000E x Lever</td>
</tr>
<tr>
<td>Exit Device</td>
<td>1</td>
<td>1000E x Dummy Lever</td>
</tr>
<tr>
<td>Closers</td>
<td>2</td>
<td>4041 - Cush x AL x TB</td>
</tr>
<tr>
<td>Cush Shoe Supports</td>
<td>2</td>
<td>4040-30 x AL</td>
</tr>
<tr>
<td>Kick Plates</td>
<td>2</td>
<td>B3E - 10" x D.W. -1" x US32D - .050 GA</td>
</tr>
<tr>
<td>Stops</td>
<td>2</td>
<td>440 x 626</td>
</tr>
<tr>
<td>Seal</td>
<td>1</td>
<td>S88D - (Head & Jamb)</td>
</tr>
<tr>
<td>Auto Door Bottoms</td>
<td>2</td>
<td>411ARL x D.W.</td>
</tr>
<tr>
<td>Pcs Meeting Stile Astragal</td>
<td>2</td>
<td>29310CP x D.H.</td>
</tr>
</tbody>
</table>

NOTE: 1. Door has IDS
3. Outside Card swipe shunts alarm and retracts latch
4. Inside card swipe shunts alarm for valid egress
5. Audit trail done through IDS keypad/card swipe

SET # 15

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>3</td>
<td>FBB179 - 4" x 4" x US26D</td>
</tr>
<tr>
<td>Unican</td>
<td>1</td>
<td>L1021B x US26D</td>
</tr>
<tr>
<td>Core</td>
<td>1</td>
<td>IC-7 x 626</td>
</tr>
<tr>
<td>Closers</td>
<td>1</td>
<td>4041 x AL x TB</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>1</td>
<td>B3E - 10" x D.W. -2" x US32D - .050 GA</td>
</tr>
<tr>
<td>Stop</td>
<td>1</td>
<td>440 x 626</td>
</tr>
<tr>
<td>Silencers</td>
<td>3</td>
<td>608</td>
</tr>
</tbody>
</table>

SET # 16

SECTION 08700 Page 15
6 - Ea. Hinges FBB179 - 4" x 4" x US26D x NRP
2 - Flush Bolts 555 x 626 - 12"
1 - Dust Proof Strike 571 x 626
1 - Unican L1021B x US26D
1 - Core IC-7 x 626
2 - Closers 4041H - Cush x AL x TB
2 - Cush Shoe Supports 4040-30 x AL
2 - Kick Plates B3E - 10" x D.W. -2" x US32D - .050 GA
2 - Stops 440 x 626
4 - Silencers 608

SET # 17

6 - Ea. Hinges FBB179 - 4" x 4" x US26D
2 - Flush Bolts 555 x 626 - 12"
1 - Dust Proof Strike 571 x 626
1 - Unican L1021B x US26D
1 - Core IC-7 x 626
2 - Closers 4041H x AL x TB
2 - Kick Plates B3E - 10" x D.W. -2" x US32D - .050 GA
2 - Stops 440 x 626
4 - Silencers 608

SET # 18

6 - Ea. Hinges FBB179 - 4" x 4" x US26D
2 - Flush Bolts 555 x 626 - 12"
1 - Dust Proof Strike 571 x 626
1 - Lockset ML2067 - LWM x 626 - L/C
1 - Cylinder 1E74 x 626
2 - Closers 4041H or P4041H x AL x TB
2 - Stops 440 x 626
4 - Silencers 608

SET # 19

3 - Ea. Hinges FBB168 - 4" x 4" x US26D
1 - Lockset ML2051 - LWM x 626 - L/C
1 - Cylinder 1E74 x 626
1 - Closer 4041 x AL x TB
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA
3 - Silencers 608

SET # 20

1 - Cylinder 1E74 x 626

NOTE: Balance of hardware by Woven Gate Supplier

SET # 21

6 - Ea. Hinges FBB168 - 4" x 4" x US26D x NRP
1 - Mullion 4954 x SP28
1 - Exit Device EL99L - (994-03) x 626
1 - Cylinder 1E72 x 626
1 - Exit Device 99L - (994L-03-DT) x 626

SECTION 08700 Page 16
1 - Power Transfer EPT-10" x SP28
1 - Power Supply PS873-2
2 - Closers 4041-Cush x AL x TB
2 - Cush Shoe Supports 4040-30 x AL
2 - Kick Plates B3E - 10" x D.W. -2" x US32D - .050 GA
2 - Stops 471 x 626
2 - Set Weatherstrip 306AV - (Head & Jamb)
2 - Door Bottoms 3452AV x D.W.
1 - Threshold 171A x D.W.
1 - Overhead Rain Drip 346C x D.W. +4"

NOTE: 1. Door has IDS
2. Key pads/card swipe furnished in security spec.
3. Outside card swipe shunts alarm for valid Egress
4. Inside card swipe shunts alarm for valid Egress
5. Power Supply mounted above ceiling

SET # 22

3 - Ea. Hinges FBB168 - 4" x 4" x US26D
1 - Exit Device 99L - (994L-03) - F x 626
1 - Cylinder 1E72 x 626
1 - Closer P4041 x AL x TB
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA
1 - Stop 440 x 626
3 - Silencers 608

SET # 23

6 - Ea. Hinges FBB168 - 4" x 4" x US26D
1 - Set Auto Flush Bolts 1945 x 626
1 - Dust Proof Strike 1880 x 626
1 - Coordinator 1672 x USP
2 - Brackets 1601AB x USP
1 - Lockset ML2067 - LWM x 626 - L/C
1 - Cylinder 1E74 x 626
2 - Closer 4041 - Cush x AL x TB
2 - Cush Shoe Supports 4040-30 x AL
2 - Kick Plates B3E - 10" x D.W. -2" x US32D - .050 GA
4 - Silencers 608

SET # 24

8 - Ea. Hinges FBB168 - 4" x 4 " x US26D x NRP
1 - Flush Bolt 555 x 626 x 24" (Top)
1 - Flush Bolt 555 x 626 x 12"
1 - Lockset ML2067 - LWM x 626 - L/C
1 - Cylinder 1E74 x 626
2 - Closers 4041H - Cush x AL x TB
2 - Cush Shoe Supports 4040-30 x AL
2 - Kick Plates B3E - 10" x D.W. -1" x US32D x .050 GA
1 - Set Weatherstrip 306AV - (Head & Jamb)
2 - Door Bottoms 3452AV x D.W.
1 - Threshold 171A x D.W.
1 - Overhead Rain Drip 346C x D.W.
1 - Astragal Seal 355CS x D.H.
SET # 25

3 - Ea. Hinges FBB179 - 4" x 4" x US26D S
1 - Push Plate 70B x US32D R
1 - Pull Plate BF110 x 70B x US32D R
1 - Closer 4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Wall Stop 409 x 630 (Door 163 & 251) R
3 - Silencers 608 R

SET # 26

All Hardware by Horizontal Sliding Door Supplier

SET # 27

3 - Ea. Hinges FBB168 - 4" 4" x Us26D S
1 - Unican LP1021B x US26D SX
1 - Cylinder IC-7 x 626 B
1 - Exit Device 99EO - F x 626 V
1 - Closer P4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Stop 440 x 626 R
3 - Silencers 608 R

SET # 28

4 - Ea. Hinges FBB168 - 4" x 4" x US26D x NRP S
1 - Lockset ML2057 - LWM x 626 - L/C CR
1 - Cylinder 1E74 x 626 B
1 - Closer P4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Stop 440 x 626 R
3 - Silencers 608 R

NOTE: Door 229 has IDS

SET # 29

3 - Ea. Hinges FBB179 - 5" x 4" x US26D X NRP S
1 - Unican L1021B x US26D SX
1 - Core IC-7 x 626 B
1 - Closer 4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Stop 440 x 626 R
1 - Seal S88D - (Head & Jamb) P
1 - Auto Door Bottom 411ARL x D.W. P

NOTE: Door Signage furnish in room signage Spec.

SET #30

3 - Ea. Hinges FBB168 - 4" x 4" x US26D S
1 - Lock X08 M
1 - Cylinder 1E74 x 626 B
1 - Closer 4041 x AL x TB L
1 - Kick Plate B3E - 10" x D.W. -2" x US32D - .050 GA R
1 - Stop 440 x 626 R
1 - Seal S88D - (Head & Jamb) P
1 - Auto Door Bottom 411ARL x D.W. P
1 - Electric Strike 6211WD x 630 - 240DC V
1 - Power Supply PS861 V

NOTE: 1. Door has IDS
2. Key pad/Card swipe furnished in security spec.
3. Outside card swipe shunts alarm and released electric strike
4. Inside card swipe shunts alarm
5. Power Supply mount above ceiling

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 509 (1994) Elastomeric Cellular Preformed Gasket and Sealing Material

ASTM C 1036 (1991; R 1997) Flat Glass

ASTM C 1048 (1997b) Heat-Treated Flat Glass - Kind HS, Kind FT Coated and Uncoated Glass

ASTM C 1172 (1996el) Laminated Architectural Flat Glass

ASTM E 773 (1997) Accelerated Weathering of Sealed Insulating Glass Units

ASTM E 774 (1997) Classification of the Durability of Sealed Insulating Glass Units

ASTM E 1300 (1998) Determining the Minimum Thickness and Type of Glass Required to Resist a Specified Load

CODE OF FEDERAL REGULATIONS (CFR)

16 CFR 1201 Safety Standard for Architectural Glazing Materials

GLASS ASSOCIATION OF NORTH AMERICA (GANA)
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation
 Drawings showing complete details of the proposed setting methods, mullion details, edge blocking, size of openings, frame details, materials, and types and thickness of glass.

SD-03 Product Data
 Insulating Glass
 Glazing Accessories
 Manufacturer's descriptive product data, handling and storage recommendations, installation instructions, and cleaning instructions.

SD-04 Samples
 Insulating Glass
 Two 203 x 254 mm samples of each of the following: tinted glass, and insulating glass units.

SD-07 Certificates
 Insulating Glass
 Certificates stating that the glass meets the specified requirements. Labels or manufacturers marking affixed to the glass will be accepted in lieu of certificates.

1.3 SYSTEM DESCRIPTION

Glazing systems shall be fabricated and installed watertight and airtight to withstand thermal movement and wind loading without glass breakage, gasket failure, deterioration of glazing accessories, and defects in the work. Glazed panels shall comply with the safety standards, as indicated in
accordance with ANSI Z97.1. Glazed panels shall comply with indicated wind/snow loading in accordance with ASTM E 1300.

1.4 DELIVERY, STORAGE AND HANDLING

Glazing compounds shall be delivered to the site in the manufacturer's unopened containers. Glass shall be stored indoors in a safe, well ventilated dry location in accordance with manufacturer's instructions, and shall not be unpacked until needed for installation. Glass shall not be stored on site over 1 month.

1.5 PROJECT/SITE CONDITIONS

Glazing work shall not be started until outdoor temperature is above 5 degrees C and rising, unless procedures recommended by glass manufacturer and approved by Contracting Officer are made to warm the glass and rabbet surfaces. Ventilation shall be provided to prevent condensation of moisture on glazing work during installation. Glazing work shall not be performed during damp or raining weather.

1.6 WARRANTY

1.6.1 Insulating Glass

Manufacturer shall warrant the insulating glass to be free of fogging or film formation on the internal glass surfaces caused by failure of the hermetic seal for a period of 10 years from Date of Substantial Completion. Warranty shall be signed by manufacturer.

PART 2 PRODUCTS

2.1 INSULATING GLASS

Insulating glass shall be Class A preassembled units of dual-seal construction consisting of lites of glass separated by an aluminum, steel, or stainless steel, spacer and dehydrated space conforming to ASTM E 773 and ASTM E 774. Spacer shall be roll-formed, with bent or tightly welded or keyed and sealed joints to completely seal the spacer periphery and eliminate moisture and hydrocarbon vapor transmission into airspace through the corners. Primary seal shall be compressed polyisobutylene and the secondary seal shall be a specially formulated silicone. Glass types shall be as follows:

2.1.1 Heat-Absorbing Insulating Glass

Interior glass pane shall be Type I annealed glass, Class 1 - clear, Quality q3 - glazing select, conforming to ASTM C 1036 and exterior glass panes for heat-absorbing insulating units shall be Type I annealed flat glass, Class 2-tinted, Quality q3 - glazing select, conforming with ASTM C 1036.

2.2 HEAT-TREATED GLASS

Heat-treated glass shall conform to the following requirements.

2.2.1 Tempered Glass
Tempered glass shall be kind FT fully tempered transparent flat type, Class 1-clear and frosted as indicated on the Drawings, Condition A uncoated surface, Quality q3 - glazing select conforming to ASTM C 1048 and GANA Standards Manual.

2.3 LAMINATED GLAZINGS

2.3.1 Laminated Glass

Laminated glass shall consist of two layers of Type I transparent float glass, Class 1-clear Quality q3 - glazing select, conforming to ASTM C 1036. Glass shall be bonded together with 1.52 mm thick PVB interlayer under pressure, or alternatives such as resin laminates, conforming to requirements of 16 CFR 1201 and ASTM C 1172. Color shall be clear.

2.4 SPANDREL GLASS

2.4.1 Ceramic-Opacified Spandrel Glass

Ceramic-opacified spandrel glass shall be kind HS heat-strengthened transparent flat type, Condition B, coated with a colored ceramic material on No. 2 surface, Quality q3 - glazing select, conforming to ASTM C 1048. Color shall be as selected by the Contracting Officer.

2.5 GLAZING ACCESSORIES

2.5.1 Preformed Tape

Preformed tape shall be elastomeric rubber extruded into a ribbon of a width and thickness suitable for specific application. Tape shall be of type which will remain resilient, have excellent adhesion, and be chemically compatible to glass, metal, or wood.

2.5.2 Sealant

Sealant shall be elastomeric conforming to ASTM C 920, Type S or M, Grade NS, Class 12.5, Use G, of type chemically compatible with setting blocks, preformed sealing tape and sealants used in manufacturing insulating glass. Color of sealant shall be as selected.

2.5.3 Glazing Gaskets

Glazing gaskets shall be extruded with continuous integral locking projection designed to engage into metal glass holding members to provide a watertight seal during dynamic loading, building movements and thermal movements. Glazing gaskets for a single glazed opening shall be continuous one-piece units with factory-fabricated injection-molded corners free of flashing and burrs. Glazing gaskets shall be in lengths or units recommended by manufacturer to ensure against pull-back at corners. Glazing gasket profiles shall be as indicated on drawings.

2.5.3.1 Fixed Glazing Gaskets

Fixed glazing gaskets shall be closed-cell (sponge) smooth extruded compression gaskets of cured elastomeric virgin neoprene compounds conforming to ASTM C 509, Type 2, Option 1.
2.5.3.2 Wedge Glazing Gaskets

Wedge glazing gaskets shall be high-quality extrusions of cured elastomeric virgin neoprene compounds, ozone resistant, conforming to ASTM C 864, Option 1, Shore A durometer between 65 and 75.

2.5.3.3 Aluminum Framing Glazing Gaskets

Glazing gaskets for aluminum framing shall be permanent, elastic, non-shrinking, non-migrating, watertight and weathertight.

2.5.4 Setting and Edge Blocking

Neoprene setting blocks shall be dense extruded type conforming to ASTM D 395, Method B, Shore A durometer between 70 and 90. Edge blocking shall be Shore A durometer of 50 (+ or - 5). Silicone setting blocks shall be required when blocks are in contact with silicone sealant. Profiles, lengths and locations shall be as required and recommended in writing by glass manufacturer.

PART 3 EXECUTION

3.1 PREPARATION

Openings and framing systems scheduled to receive glass shall be examined for compliance with approved shop drawings, GANA Glazing Manual and glass manufacturer's recommendations including size, squareness, offsets at corners, presence and function of weep system, face and edge clearance requirements and effective sealing between joints of glass-framing members. Detrimental materials shall be removed from glazing rabbet and glass surfaces and wiped dry with solvent. Glazing surfaces shall be dry and free of frost.

3.2 INSTALLATION

Glass and glazing work shall be performed in accordance with approved shop drawings, GANA Glazing Manual, glass manufacturer's instructions and warranty requirements. Glass shall be installed with factory labels intact and removed only when instructed. Wired glass and fire/safety rated glass shall be installed in accordance with NFPA 80. Edges and corners shall not be ground, nipped or cut after leaving factory. Springing, forcing or twisting of units during installation will not be permitted.

3.3 CLEANING

Upon completion of project, outside surfaces of glass shall be washed clean and the inside surfaces of glass shall be washed and polished in accordance with glass manufacturer's recommendations.

3.4 PROTECTION

Glass work shall be protected immediately after installation. Glazed openings shall be identified with suitable warning tapes, cloth or paper flags, attached with non-staining adhesives. Reflective glass shall be protected with a protective material to eliminate any contamination of the reflective coating. Protective material shall be placed far enough away from the coated glass to allow air to circulate to reduce heat buildup and
moisture accumulation on the glass. Glass units which are broken, chipped, cracked, abraded, or otherwise damaged during construction activities shall be removed and replaced with new units.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 853 (1993; R 1998) Steel Wire, Carbon, for General Use
ASTM B 164 (1998) Nickel-Copper Alloy Rod, Bar, and Wire
ASTM C 79/C 79M (1997) Treated Core and Nontreated Core Gypsum Sheathing Board
ASTM C 475 (1994) Joint Compound and Joint Tape for Finishing Gypsum Board
ASTM C 630/C 630M (1996a) Water-Resistant Gypsum Backing Board
ASTM C 645 (2000) Nonstructural Steel Framing Members
ASTM C 754 (1999a) Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products
ASTM C 955 (1998) Load-Bearing (Transverse and Axial) Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Application of Gypsum Panel Products and Metal Plaster Bases
ASTM C 1002 (1998) Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases
1.2 SYSTEM DESCRIPTION

1.2.1 Fire-Rated Construction

Joints of fire-rated gypsum board enclosures shall be closed and sealed in accordance with UL test requirements or GA requirements, and as required to meet pressurization requirements. Penetrations through rated partitions and ceilings shall be sealed tight in accordance with tested systems. Fire ratings shall be as indicated.

1.2.2 Pressurized Enclosures

Pressurized fire-rated gypsum board enclosures shall allow the mechanical and electrical life-safety systems to operate in accordance with the design intent. Air pressure within elevator shaft shall be 360 Pa. Air pressure within stair shaft shall be 240 Pa. Maximum mid-span deflection shall be L/360.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Steel Framing
Control Joints
Fire-Resistant Assemblies

Drawings and installation details for ceiling framing, furring, special wall framing, and framed openings in walls and ceilings.
SD-07 Certificates

Gypsum Wallboard
Water-Resistant Gypsum Board
Steel Framing
Fire-Rated Gypsum Board

Certificates stating that the steel framing and gypsum wallboard meet the specified requirements.

1.4 QUALIFICATIONS

Manufacturer shall specialize in manufacturing the types of material specified and shall have a minimum of 5 years of documented successful experience. Installer shall specialize in the type of gypsum board work required and shall have a minimum of 3 years of documented successful experience.

1.5 DELIVERY, STORAGE AND HANDLING

Materials shall be delivered in original containers bearing the name of manufacturer, contents, and brand name. Materials shall be stored off the ground in a weathertight structure for protection. Gypsum boards shall be stacked flat, off floor and supported to prevent sagging and warpage. Adhesives and joint materials shall be stored in accordance with manufacturer's printed instructions. Damaged or deteriorated materials shall be removed from jobsite.

1.6 ENVIRONMENTAL CONDITIONS

Environmental conditions for application and finishing of gypsum board shall be in accordance with ASTM C 840. During the application of gypsum board without adhesive, a room temperature of not less than 4 degrees C shall be maintained. During the application of gypsum board with adhesive, a room temperature of not less than 10 degrees C shall be maintained for 48 hours prior to application and continuously afterwards until completely dry. Building spaces shall be ventilated to remove water not required for drying joint treatment materials. Drafts shall be avoided during dry hot weather to prevent materials from drying too rapidly.

PART 2 MATERIALS

2.1 NON-LOADBEARING STUD WALLS

2.1.1 Studs

Studs for non-loadbearing walls shall conform to ASTM C 645. Studs shall be C-shaped, roll formed steel with minimum uncoated design thickness of made from G40 hot-dip galvanized coated sheet.

2.1.2 Runner Tracks

Floor and ceiling runner tracks shall conform to ASTM C 645. Tracks shall be prefabricated, U-shaped with minimum 25 mm flanges, unpunched web, thickness to match studs, made from G40 hot-dip galvanized coated sheet.
2.2 LOADBEARING STUD WALLS

2.2.1 Studs

Studs for loadbearing walls shall conform to ASTM C 955. Studs shall be C-shaped roll formed steel made from minimum G60 hot-dip galvanized coated sheet. Stud sizes and base metal design thickness shall be as shown.

2.2.2 Runner Tracks

Floor and ceiling runner tracks shall conform to ASTM C 955. Runners shall be prefabricated, U-shaped with minimum 19 mm flanges, unpunched web, thickness to match studs, made from G60 hot-dip galvanized coated sheet.

2.2.3 Bridging

Bridging for loadbearing walls shall conform to ASTM C 955. Bridging shall be minimum 19 x 19 mm cold-rolled steel channel with weld attachment clips at each stud or V-bar type weld or screw attached to each stud flange at 1200 mm o.c. horizontal. Bridging shall be adequate to provide lateral support for the stud.

2.3 SUSPENDED CEILING FRAMING

Suspended ceiling framing system shall have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. The suspension system shall have a maximum deflection of L/240. Carrying channels shall be formed from minimum 1.40 mm thick cold-rolled steel, 38 x 19 mm. Furring members shall be formed from cold-rolled steel, 22 x 65 mm. Carrying channels and furring members shall be made from hot-dip galvanized coated sheet.

2.4 GYPSUM BOARD

Gypsum board shall have square-cut ends, tapered or beveled edges and shall be maximum possible length. Gypsum board thickness shall be as shown.

2.4.1 Standard Gypsum Board

Regular gypsum board shall conform to ASTM C 36/C 36M, and shall be 1200 mm wide.

2.4.2 Fire-Rated Gypsum Board

Fire-rated gypsum board shall conform to ASTM C 36/C 36M, and shall be Type X or Type C as required, 1200 mm wide.

2.4.3 Water-Resistant Gypsum Board

Water-resistant gypsum board shall conform to ASTM C 630/C 630M, regular, with water-resistant paper faces, paintable surfaces, and shall be 1200 mm width and maximum permissible length.

2.4.4 Exterior Sheathing Board
Exterior sheathing board shall conform to ASTM C 79/C 79M, Type X, shall have water-resistant core, water-repellant paper faces each side, with tongue-and-groove edges, and be 600 mm wide, or square edges and 1200 mm wide.

Glass mat gypsum sheathing shall conform to ASTM C 1177/C 1177M, shall have a water-resistant core with water and mold/mildew resistant fiberglass faces embedded into the core and shall have square edges 1200 mm wide by 12.7 mm thick.

2.5 TRIM, MOLDINGS, AND ACCESSORIES

2.5.1 Taping and Embedding Compound

Taping and embedding compound shall conform to ASTM C 475. Compound shall be specifically formulated and manufactured for use in embedding tape at gypsum wallboard joints and fastener heads, and shall be compatible with tape and substrate.

2.5.2 Finishing or Topping Compound

Finishing or topping compound shall conform to ASTM C 475. Compound shall be specifically formulated and manufactured for use as a finishing compound for gypsum board.

2.5.3 All-Purpose Compound

All-purpose compound shall be specifically formulated and manufactured to use as a taping and finishing compound, and shall be compatible with tape and substrate.

2.5.4 Joint Tape

Joint tape shall conform to ASTM C 475 and shall be as recommended by gypsum board manufacturer.

2.5.5 Trim, Control Joints, Beads, Stops and Nosings

Items used to protect edges, corners, and to provide architectural features shall be in accordance with ASTM C 1047.

2.6 FASTENINGS AND ADHESIVES

2.6.1 Nails

Nails shall conform to ASTM C 514. Nails shall be hard-drawn low or medium-low carbon steel, suitable for intended use. Special nails for predecorated gypsum board shall be as recommended by predecorated gypsum board manufacturer.

2.6.2 Screws

Screws shall conform to ASTM C 1002. Screws shall be self-drilling and self-tapping steel, Type S for wood or light-gauge steel framing.

2.6.3 Adhesives
Adhesives shall conform to ASTM C 557. Adhesives shall be formulated to bond gypsum board to wood framing members. For securing gypsum board to metal framing, adhesive shall be as recommended by gypsum board manufacturer.

2.6.4 Hangers

Suspended ceiling runner channel hangers shall be soft, annealed steel wire not less than No. 8 SWG, conforming to ASTM A 853 or flat iron or steel straps, at least 2 x 22 mm size, coated with zinc, cadmium, or rust-inhibiting paint.

2.6.5 Wire and Clip Type Fastenings

Tie wire, clips, rings, and other fastenings shall be corrosion-resisting steel conforming to ASTM A 580/A 580M, composition 302, 304, or 316, Condition A, or nickel-copper alloy conforming to ASTM B 164, annealed condition except that walls, partitions, and other vertical surfaces not incorporated in ceiling construction may be erected with soft, annealed steel conforming to ASTM A 853.

2.6.5.1 Tie Wire

Tie wire for constructing partitions and vertical furring, for securing metal lath to supports, and for lacing shall be not less than No. 18 SWG. Tie wire for other applications shall be not less than No. 16 SWG.

2.6.5.2 Clips

Clips used in lieu of tie wire for securing the furring channels to the runner channels in ceiling construction shall be made from strip not less than 3 mm thick or shall be hairpin clip, formed of wire not less than 0.4 mm nominal diameter. Other clips and rings or fastenings of similar materials shall be equivalent in holding power to that provided by tie wire for the specific application.

PART 3 EXECUTION

3.1 INTERIOR WALL FRAMING

Steel framing and furring members shall be installed in accordance with ASTM C 754. Members shall be in alignment with spacings not to exceed the maximum spacings indicated on drawings. Runners shall be aligned accurately at the floor and ceiling and securely anchored.

3.1.1 Wall Openings

The framing system shall provide for the installation and anchorage of the required subframes or finish frames for wall openings at doors, pass-through openings, and access panels. Partitions abutting continuous suspended ceilings shall be strengthened for rigidity at rough openings of more than 750 mm wide. Studs at openings shall be 0.84 mm (0.0329 in) minimum bare metal thickness and spot grouted at jamb anchor inserts. Double studs shall be fastened together with screws and secured to floor and overhead runners. Two studs shall be used for framing solid-core doors, doors over 900 mm wide and extra-heavy doors such as X-ray room doors.
3.1.2 Wall Control Joints

Control joints for expansion and contraction in the walls shall be constructed with double studs installed 13 mm apart in interior walls or wall furrings where indicated on drawings. Control joint spacing shall not exceed 9 m. Ceiling-height door frames may be used as vertical control joints. Door frames of less than ceiling height may be used as control joints only if standard control joints extend to ceiling from both corners of top of door frame. Control joints between studs shall be filled with firesafing insulation in fire rated partitions.

3.1.3 Blocking

Blocking shall be provided as necessary for mounted equipment. Blocking shall be metal or wood and shall be cut to fit between framing members. Blocking shall be rigidly anchored to the framing members. Under no circumstances will accessories or other wall mounted equipment be anchored directly to gypsum wallboard.

3.2 SUSPENDED CEILING FRAMING

Suspended ceiling system framing shall be installed in accordance with ASTM C 754.

3.2.1 Hangers

Hangers shall be spaced not more than 1200 mm along runner channels and 900 mm in the other direction or 1050 mm in both directions unless otherwise indicated. Locations of hanger wires shall be coordinated with other work. Hangers at ends of runner channels shall be located not more than 150 mm from wall. Hanger wire shall be looped around bottom chord of open-web steel joists, or secured to structural elements with suitable fasteners. Sags or twists which develop in the suspended system shall be adjusted. Damaged or faulty parts shall be replaced.

3.2.2 Main Runners

Main runner channels shall be installed in accordance with ASTM C 754. Hanger wires shall be double strand saddle-tied to runner channels and the ends of hanger wire shall be twisted three times around itself. Main runners shall be located to within 150 mm of the paralleling wall to support the ends of cross furring. Main runners shall not come in contact with abutting masonry or concrete walls. Where main runners are spliced, ends shall be overlapped 300 mm with flanges of channels interlocked, and shall be securely tied at each end of splice with wire looped twice around the channels.

3.2.3 Furring Channels

Furring channels shall be spaced in accordance with ASTM C 754. Furring channels shall be secured to the runner channels and to structural supports at each crossing with tie wire, hairpin clips, or equivalent fastenings. Furring channels shall be located within 50 mm of parallel walls and beams, and shall be cut 13 mm short of abutting walls.

3.2.4 Ceiling Openings
Support members shall be provided as required at ceiling openings for access panels, recessed light fixtures, and air supply or exhaust. Support members shall be not less than 38 mm main runner channels and vertically installed suspension wires or straps shall be located to provide at least the minimum support specified herein for furring and wallboard attachment. Intermediate structural members not a part of the structural system, shall be provided for attachment or suspension of support members.

3.2.5 Light Fixtures and Air Diffusers

Light fixtures and air diffusers shall be supported directly from suspended ceiling runners. Wires shall be provided at appropriate locations to carry the weight of recessed or surface mounted light fixtures and air diffusers.

3.2.6 Control Joints

Ceiling control joints for expansion and contraction shall be located where indicated on drawings. A control joint or intermediate blocking shall be installed where ceiling framing members change direction.

3.2.6.1 Interior Ceilings With Perimeter Relief

Control joints shall be installed so that linear dimensions between control joints shall not exceed 15 m in either direction nor more than 230 square meters.

3.2.6.2 Interior Ceilings Without Perimeter Relief

Control joints shall be installed so that linear dimensions between control joints shall not exceed 9 m in either direction nor more than 84 square meters.

3.3 APPLICATION OF GYPSUM BOARD

Gypsum board shall be installed in accordance with ASTM C 840, AG 214 and GA 216 and as specified. Paragraph 17.3.1 GENERAL of ASTM C 840 which permits usage of water resistant gypsum board as a base for adhesive application of ceramic on ceilings, does not apply. Edges and ends of gypsum boards shall be cut to obtain neat fitting joints. End joints of adjoining boards shall be staggered, and shall be staggered on opposite sides of wall. Boards shall be applied with moderate contact without forcing in place. Holes for pipes, fixtures or other small openings shall be cut with a tool which will provide a neat fit. Screws shall be driven so that the heads are slightly below the plane of paper face. Fracturing the paper face or damaging the core shall be avoided. Trim shall be installed at external and internal angles formed by the intersecting gypsum board surfaces with other surfaces. Corner beads shall be installed to vertical and horizontal corners in accordance with manufacturer's published instructions. Boards of maximum practical length shall be used so that an absolute minimum number of end joints occur. Gypsum board partitions in rooms with ceiling heights less than 3 m shall have full height boards installed vertically with no end joints in the gypsum installation.

3.3.1 Two-Ply Gypsum Board
Second layer of gypsum board shall be applied perpendicular to first layer with joints staggered and secured with mechanical fasteners. The use of adhesive shall be in accordance with ASTM C 840.

3.3.2 Water-Resistant Gypsum Board

Water-resistant gypsum board shall be installed at the locations indicated.

3.3.3 Adhesively-Applied Gypsum Board

Walls scheduled to receive adhesively-applied gypsum board shall be dry, free of dust, oil, or form release agents, protrusions or voids, or foreign matter that would affect a proper bond.

3.3.4 Exterior Gypsum Sheathing

Exterior gypsum sheathing and glass mat gypsum sheathing shall be flashed at openings so that water intrusion will not contact the sheathing. Vertical end and edge joints shall abut over the centers of framing members and shall be offset a minimum of one framing space between adjacent rows of gypsum sheathing. Sheathing shall be installed in accordance with manufacturer's instructions.

3.4 TRIM, MOLDINGS, AND ACCESSORIES INSTALLATION

Trim, moldings and accessories shall be installed in accordance with GA 216.

3.5 GYPSUM BOARD FINISH

Gypsum board shall be finished in accordance with ASTM C 840, GA 214 and GA 216. Plenum areas above ceilings shall be finished to Level 1 in accordance with GA 214. Water resistant gypsum backing board, ASTM C 630/C 630M, to receive ceramic tile shall be finished to Level 2 in accordance with GA 214. Walls and ceilings to receive a heavy-grade wall covering or heavy textured finish before painting shall be finished to Level 3 in accordance with GA 214. Walls and ceilings without critical lighting to receive flat paints, light textures, or wall coverings shall be finished to Level 4 in accordance with GA 214. Unless otherwise specified, all gypsum board walls, partitions and ceilings shall be finished to Level 5 in accordance with GA 214.

3.6 FIRE-RESISTANT ASSEMBLIES

Gypsum wallboard construction for fire-rated assemblies shall be in accordance with UL Fire Resist Dir, or GA 600 for the design number indicated on drawings.

3.7 PATCHING

Surface defects and damage shall be corrected as required to leave gypsum board smooth, uniform in appearance, and ready to receive finish as specified.

-- End Of Section --
SECTION 09310

CERAMIC TILE

07/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI A108.1A (1992) Installation of Ceramic Tile in the Wet-Set Method, with Portland Cement Mortar

ANSI A108.4 (1992) Installation of Ceramic Tile with Organic Adhesives or Water Cleanable Tile Setting Epoxy Adhesive

ANSI A108.5 (1992) Installation of Ceramic Tile with Dry-Set Portland Cement Mortar or Latex-Portland Cement Mortar

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

SECTION 09310 Page 1

ASTM C 1028 (1996) Determining the Static Coefficient of Friction of Ceramic Tile and Other Like Surfaces by the Horizontal Dynamometer Pull-Meter Method

MARBLE INSTITUTE OF AMERICA (MIA)

TILE COUNCIL OF AMERICA (TCA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Tile
Setting-Bed
Mortar, Grout, and Adhesive

Manufacturer's catalog data.

Tile
Mortar and Grout

Manufacturers preprinted installation and cleaning instructions.

SD-04 Samples

Tile

Accessories
Marble Thresholds

Samples of sufficient size to show color range, pattern, type and joints.

SD-07 Certificates

Tile
Mortar, Grout, and Adhesive
Certificates indicating conformance with specified requirements. A master grade certificate shall be furnished for tile.

1.3 DELIVERY AND STORAGE

Materials shall be delivered to the project site in manufacturer's original unopened containers with seals unbroken and labels and hallmarks intact. Materials shall be kept dry, protected from weather, and stored under cover in accordance with manufacturer's instructions.

1.4 ENVIRONMENTAL REQUIREMENTS

Ceramic tile work shall not be performed unless the substrate and ambient temperature is at least 10 degrees C and rising. Temperature shall be maintained above 10 degrees C while the work is being performed and for at least 7 days after completion of the work. When temporary heaters are used they shall be vented to the outside to avoid carbon dioxide damage to new tilework.

1.5 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period shall be provided.

PART 2 PRODUCTS

2.1 TILE

Tile shall be standard grade conforming to ANSI A137.1. Containers shall be grade sealed. Seals shall be marked to correspond with the marks on the signed master grade certificate. Tile shall be impact resistant with a minimum breaking strength for wall tile of 41 kg and 113 kg for floor tile in accordance with ASTM C 648. Tile for cold climate projects shall be rated frost resistant by the manufacturer as determined by ASTM C 1026. Water absorption shall be 0.50 maximum percent in accordance with ASTM C 373. Floor tile shall have a minimum coefficient of friction of 0.50 wet and dry in accordance with ASTM C 1028. Floor tile shall be Class III-Medium Heavy Traffic, durability classification as rated by the manufacturer when tested in accordance with ASTM C 1027 for abrasion resistance as related to foot traffic.

2.1.1 Mosaic Tile

Ceramic mosaic tile and trim shall be unglazed porcelain polished with sharply formed face. Tile size shall be as indicated on the Drawings. Color shall be as indicated on the Drawings.

2.2 WATER

Water shall be potable.

2.3 MORTAR, GROUT, AND ADHESIVE

Mortar, grout, and adhesive shall conform to the following:

2.3.1 Dry-Set Portland Cement Mortar
ANSI A118.1.

2.3.2 Latex-Portland Cement Mortar
ANSI A118.4.

2.3.3 Organic Adhesive
ANSI A136.1, Type I.

2.3.4 Epoxy Resin Grout
ANSI A118.3.

2.4 MARBLE THRESHOLDS

Marble thresholds shall be of size required by drawings or conditions. Marble shall be Group A as classified by MIA Design Manual. Marble shall have a fine sand-rubbed finish and shall be white or gray in color as approved by the Contracting Officer. Marble abrasion shall be not less than 12.0 when tested in accordance with ASTM C 241.

PART 3 EXECUTION

3.1 PREPARATORY WORK AND WORKMANSHIP

Surface to receive tile shall be inspected and shall conform to the requirements of ANSI A108.1A or ANSI A108.1B for surface conditions for the type setting bed specified and for workmanship. Variations of surface to be tiled shall fall within maximum values shown below:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>WALLS</th>
<th>FLOORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry-Set Mortar</td>
<td>3 mm in 2.4 meters</td>
<td>3.0 mm in 3 meters</td>
</tr>
<tr>
<td>Organic Adhesives</td>
<td>3 mm in 2.4 meters</td>
<td>1.5 mm in 1 meters</td>
</tr>
<tr>
<td>Latex portland cement mortar</td>
<td>3 mm in 2.4 meters</td>
<td>3.0 mm in 3 meters</td>
</tr>
<tr>
<td>Epoxy</td>
<td>3 mm in 2.4 meters</td>
<td>3.0 mm in 3 meters</td>
</tr>
</tbody>
</table>

3.2 GENERAL INSTALLATION REQUIREMENTS

Tile work shall not be started until roughing in for mechanical and electrical work has been completed and tested, and built-in items requiring membrane waterproofing have been installed and tested. Floor tile installation shall not be started in spaces requiring wall tile until after wall tile has been installed. Tile in colors and patterns indicated shall be applied in the area shown on the drawings. Tile shall be installed with the respective surfaces in true even planes to the elevations and grades shown. Special shapes shall be provided as required for sills, jambs, recesses, offsets, external corners, and other conditions to provide a complete and neatly finished installation. Tile bases and coves shall be solidly backed with mortar.

3.3 INSTALLATION OF WALL TILE

Wall tile shall be installed in accordance with the TCA Hdbk, method W242 or W243.
3.3.1 Dry-Set Mortar and Latex-Portland Cement Mortar

Dry-set or Latex-portland cement shall be used to install tile in accordance with ANSI A108.5. Latex portland cement shall be used when installing porcelain ceramic tile.

3.3.2 Organic Adhesive

Organic adhesive installation of ceramic tile shall conform to ANSI A108.4.

3.4 INSTALLATION OF MARBLE THRESHOLDS

Thresholds shall be installed where indicated in a manner similar to that of the ceramic tile floor. Thresholds shall be the full width of the opening. Head joints at ends shall not exceed 6 mm in width and shall be grouted full as specified for ceramic tile.

3.5 EXPANSION JOINTS

Joints shall be formed as indicated and sealed as specified in Section 07900JOINT SEALING.

3.5.1 Walls

Expansion joints shall be provided at control joints in backing material. Wherever backing material changes, an expansion joint shall be installed to separate the different materials.

3.6 CLEANING AND PROTECTING

Upon completion, tile surfaces shall be thoroughly cleaned in accordance with manufacturer's approved cleaning instructions. Acid shall not be used for cleaning glazed tile. Floor tile with resinous grout or with factory mixed grout shall be cleaned in accordance with instructions of the grout manufacturer. After the grout has set, tile wall surfaces shall be given a protective coat of a noncorrosive soap or other approved method of protection. Tiled floor areas shall be covered with building paper before foot traffic is permitted over the finished tile floors. Board walkways shall be laid on tiled floors that are to be continuously used as passageways by workmen. Damaged or defective tiles shall be replaced.

-- End Of Section --
SECTION 09510

ACOUSTICAL CEILINGS

08/96

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 636 (1996) Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-In Panels

ASTM E 1264 (1990) Standard Classification for Acoustical Ceiling Products

ASTM E 1414 (1991a) Standard Test for Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum

COE TECHNICAL INSTRUCTIONS (TI)

TI 809-04 (1998) Seismic Design for Buildings

UNDERWRITERS LABORATORIES (UL)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Approved Detail Drawings
Drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan.

SD-03 Product Data

Acoustical Ceiling Systems

Manufacturer's descriptive data, catalog cuts, and installation instructions. Submittals which do not provide adequate data for the product evaluation will be rejected.

SD-04 Samples

Acoustical Units

Two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color.

SD-06 Test Reports

Fire Resistive Ceilings

Ceiling Attenuation Class and Test

Reports by an independent testing laboratory attesting that acoustical ceiling systems meet specified sound transmission requirements. Data attesting to conformance of the proposed system to Underwriters Laboratories requirements for the fire endurance rating listed in UL Fire Resist Dir may be submitted in lieu of test reports.

SD-07 Certificates

Acoustical Units

Certificate attesting that the mineral based acoustical units furnished for the project contains recycled material and showing an estimated percent of such material.

1.3 GENERAL REQUIREMENTS

Acoustical treatment shall consist of sound controlling units mechanically mounted on a ceiling suspension system. The unit size, texture, finish, and color shall be as specified. The Contractor has the option to substitute inch-pound (I-P) Recessed Light Fixtures (RLF) for metric RLF. If the Contractor opts to furnish I-P RLF, other ceiling elements like acoustical ceiling tiles, air diffusers, air registers and grills, shall also be I-P products. The Contractor shall coordinate the whole ceiling system with other details, like the location of access panels and ceiling penetrations, etc., shown on the drawings. If I-P products are used, the Contractor shall be responsible for all associated labor and materials and for the final assembly and performance of the specified work and products. The location and extent of acoustical treatment shall be as shown on the approved detail drawings. Reclamation of mineral fiber acoustical ceiling panels to be removed from the job site shall be in accordance with paragraph RECLAMATION PROCEDURES.
1.4 DELIVERY AND STORAGE

Materials shall be delivered to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Materials shall be carefully handled and stored in dry, watertight enclosures. Immediately before installation, acoustical units shall be stored for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation.

1.5 ENVIRONMENTAL REQUIREMENTS

A uniform temperature of not less than 16 degrees C nor more than 29 degrees C and a relative humidity of not more than 70 percent shall be maintained before, during, and after installation of acoustical units.

1.6 SCHEDULING

Interior finish work such as plastering, concrete and terrazzo work shall be complete and dry before installation. Mechanical, electrical, and other work above the ceiling line shall be completed and heating, ventilating, and air conditioning systems shall be installed and operating in order to maintain temperature and humidity requirements.

1.7 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided. Standard performance guarantee or warranty shall contain an agreement to repair or replace acoustical panels that fail within the warranty period. Failures include, but are not limited to, sagging and warping of panels; rusting and manufacturers defects of grid system.

PART 2 PRODUCTS

2.1 ACOUSTICAL UNITS

Acoustical units shall conform to ASTM E 1264, Class A, and the following requirements:

2.1.1 Units for Exposed-Grid System

Type: III (mineral fiber with painted finish). Type III acoustical units shall have a minimum recycled material content of 18 percent.

Minimum NRC: 0.70 when tested on mounting No. E-400

Pattern: C and E.

Nominal size: As indicated on the Drawings.

Edge detail: Square.

Finish: Factory-applied standard finish.

Minimum LR coefficient: 0.84.
Minimum CAC: 35.

2.1.2 Moisture Resistant Units for Exposed-Grid System

Type: III (mineral fiber with painted finish). Type III acoustical units shall have a minimum recycled material content of 18 percent.

Minimum NRC: 55 when tested on mounting No. E-400

Pattern: C and E.

Nominal size: As indicated on the Drawings.

Edge detail: Square.

Finish: Factory-applied standard finish.

Minimum LR coefficient: 0.80.

Minimum CAC: 40.

2.2 SUSPENSION SYSTEM

Suspension system shall be standard, and shall conform to ASTM C 635 for intermediate-duty systems. Surfaces exposed to view shall be aluminum or steel with a factory-applied white baked-enamel finish. Wall molding shall have a flange of not less than 23 mm. Standard corners shall be provided. Suspended ceiling framing system shall have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. The suspension system shall have a maximum deflection of 1/360 of span length. Seismic details shall conform to the guidance in TI 809-04 and ASTM E 580 as shown on the drawings.

2.3 HANGERS

Hangers shall be galvanized steel wire. Hangers and attachment shall support a minimum 1330 N ultimate vertical load without failure of supporting material or attachment.

2.4 FINISHES

Acoustical units and suspension system members shall have manufacturer's standard textures, patterns and finishes as specified. Ceiling suspension system components shall be treated to inhibit corrosion.

2.5 COLORS AND PATTERNS

Colors and patterns for acoustical units and suspension system components shall be as indicated on the Drawings.

2.6 CEILING ATTENUATION CLASS AND TEST

Ceiling attenuation class (CAC) range of acoustical units, when required, shall be determined in accordance with ASTM E 1414. Test ceiling shall be continuous at the partition and shall be assembled in the suspension system in the same manner that the ceiling will be installed on the project. System shall be tested with all acoustical units installed.
PART 3 EXECUTION

3.1 INSTALLATION

Acoustical work shall be provided complete with necessary fastenings, clips, and other accessories required for a complete installation. Mechanical fastenings shall not be exposed in the finished work. Hangers shall be laid out for each individual room or space. Hangers shall be placed to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Main runners and carrying channels shall be kept clear of abutting walls and partitions. At least two main runners shall be provided for each ceiling span. Wherever required to bypass an object with the hanger wires, a subsuspension system shall be installed, so that all hanger wires will be plumb.

3.1.1 Suspension System

Suspension system shall be installed in accordance with ASTM C 636 and as specified herein. There shall be no hanger wires or other loads suspended from underside of steel decking.

3.1.1.1 Plumb Hangers

Hangers shall be plumb and shall not press against insulation covering ducts and pipes.

3.1.1.2 Splayed Hangers

Where hangers must be splayed (sloped or slanted) around obstructions, the resulting horizontal force shall be offset by bracing, countersplaying, or other acceptable means.

3.1.2 Wall Molding

Wall molding shall be provided where ceilings abut vertical surfaces. Wall molding shall be secured not more than 75 mm from ends of each length and not more than 400 mm on centers between end fastenings. Wall molding springs shall be provided at each acoustical unit in semi-exposed or concealed systems.

3.1.3 Acoustical Units

Acoustical units shall be installed in accordance with the approved installation instructions of the manufacturer. Edges of acoustical units shall be in close contact with metal supports, with each other, and in true alignment. Acoustical units shall be arranged so that units less than one-half width are minimized. Units in exposed-grid system shall be held in place with manufacturer's standard hold-down clips, if units weigh less than 5 kg per square meter or if required for fire resistance rating.
3.2 CLEANING

Following installation, dirty or discolored surfaces of acoustical units shall be cleaned and left free from defects. Units that are damaged or improperly installed shall be removed and new units provided as directed.

-- End Of Section --
SECTION 09650

RESILIENT FLOORING
07/96

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 2240 (1997) Rubber Property - Durometer Hardness
ASTM D 4078 (1992; R 1996) Water Emulsion Floor Polish
ASTM F 1066 (1995a) Vinyl Composition Floor Tile

1.2 FIRE RESISTANCE REQUIREMENTS

Flooring in corridors and exits shall have a minimum average critical radiant flux of 0.45 watts per square centimeter when tested in accordance with ASTM E 648. The smoke density rating shall be less than 450 when tested in accordance with ASTM E 662.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Resilient Flooring and Accessories

Manufacturer's descriptive data and installation instructions including cleaning and maintenance instructions.

SD-04 Samples

Flooring
Three samples of each indicated color and type of flooring and base. Sample size shall be minimum 60 x 100 mm.

SD-06 Test Reports

Moisture Test

Copies of test reports showing that representative product samples of the flooring proposed for use have been tested by an independent testing laboratory within the past three years or when formulation change occurred and conforms to the requirements specified.

1.4 DELIVERY AND STORAGE

Materials shall be delivered to the building site in original unopened containers bearing the manufacturer’s name, project identification, and handling instructions. Materials shall be stored in a clean dry area with temperature maintained above 21 degrees C for 2 days prior to installation, and shall be stacked according to manufacturer’s recommendations. Materials shall be protected from the direct flow of heat from hot-air registers, radiators and other heating fixtures and appliances.

1.5 ENVIRONMENTAL REQUIREMENTS

Areas to receive resilient flooring shall be maintained at a temperature above 21 degrees C and below 38 degrees C for 2 days before application, during application and 2 days after application. A minimum temperature of 13 degrees C shall be maintained thereafter.

1.6 SCHEDULING

Resilient flooring application shall be scheduled after the completion of other work which would damage the finished surface of the flooring.

1.7 WARRANTY

Manufacturer’s standard performance guarantees or warranties that extend beyond a one year period shall be provided.

PART 2 PRODUCTS

2.1 VINYL-COMPOSITION TILE TYPE

Vinyl-composition tile shall conform to ASTM F 1066, Class 2, (through pattern tile), Composition 1, asbestos-free, and shall be 300 mm square and 3.2 mm thick. Tile shall have the color and pattern uniformly distributed throughout the thickness of the tile. Flooring in any one continuous area shall be from the same lot and shall have the same shade and pattern.

2.2 STAIR TREADS, RISERS, AND STRINGERS

Treads, risers, and stringers shall conform to composition rubber compounded from a mixture of synthetic and reclaimed rubber. Overall thickness at treads shall be not less than 3 mm. Durometer hardness shall be 90, plus or minus 5, when tested in accordance with ASTM D 2240. Design shall be
either a one piece nosing/tread/riser or a two piece nosing/tread with a matching coved riser. Installation shall include stringer angles on both the wall and banister sides, and landing trim. Surface of treads shall be raised stud pattern.

2.3 RESILIENT BASE

Base shall be manufacturers standard rubber, coved style (installed with resilient flooring). Base shall be 100 mm high and a minimum 3 mm thick. Job Formed corners shall be furnished.

2.4 TRANSITION STRIP

A rubber transition strip tapered to meet abutting material shall be provided.

2.5 ADHESIVE

Adhesive for flooring and wall base shall be as recommended by the flooring manufacturer.

2.6 POLISH

Polish shall conform to ASTM D 4078.

2.7 CAULKING AND SEALANTS

Caulking and sealants shall be in accordance with Section 07900 JOINT SEALING.

2.8 MANUFACTURER'S COLOR AND TEXTURE

Color and texture shall be as indicated on the Drawings.

PART 3 EXECUTION

3.1 EXAMINATION/VERIFICATION OF CONDITIONS

The Contractor shall examine and verify that site conditions are in agreement with the design package and shall report all conditions that will prevent a proper installation. The Contractor shall not take any corrective action without written permission from the Government.

3.2 SURFACE PREPARATION

Flooring shall be in a smooth, true, level plane, except where indicated as sloped. Before any work under this section is begun, all defects such as rough or scaling concrete, low spots, high spots, and uneven surfaces shall have been corrected, and all damaged portions of concrete slabs shall have been repaired as recommended by the flooring manufacturer. Concrete curing compounds, other than the type that does not adversely affect adhesion, shall be entirely removed from the slabs. Paint, varnish, oils, release agents, sealers, waxes, and adhesives shall be removed, as recommended by the flooring manufacturer.

3.3 MOISTURE TEST
The suitability of the concrete subfloor for receiving the resilient flooring with regard to moisture content shall be determined by a moisture test as recommended by the flooring manufacturer.

3.4 INSTALLATION OF VINYL-COMPOSITION TILE

Tile flooring shall be installed with adhesive in accordance with the manufacturer's installation instructions. Tile lines and joints shall be kept square, symmetrical, tight, and even. Edge width shall vary as necessary to maintain full-size tiles in the field, but no edge tile shall be less than one-half the field tile size, except where irregular shaped rooms make it impossible. Flooring shall be cut to, and fitted, around all permanent fixtures, built-in furniture and cabinets, pipes, and outlets. Edge tile shall be cut, fitted, and scribed to walls and partitions after field flooring has been applied.

3.5 INSTALLATION OF FEATURE STRIPS

Edge strips shall be secured with adhesive as recommended by the manufacturer. Edge strips shall be provided at locations where flooring termination is higher than the adjacent finished flooring, except at doorways where thresholds are provided.

3.6 INSTALLATION OF RESILIENT BASE

Wall base shall be installed with adhesive in accordance with the manufacturer's written instructions. Base joints shall be tight and base shall be even with adjacent resilient flooring. Voids along the top edge of base at masonry walls shall be filled with caulk.

3.7 INSTALLATION OF TREADS AND RISERS

Stair treads and risers shall be installed with adhesive in accordance with the manufacturer's written installation instructions. Treads and risers shall cover the full width of the stairs. Stairs wider than manufacturer's standard lengths shall have equal length pieces butted together to cover the treads.

3.8 CLEANING

Immediately upon completion of installation of tile in a room or an area, flooring and adjacent surfaces shall be cleaned to remove all surplus adhesive. After installation, flooring shall be washed with a cleaning solution, rinsed thoroughly with clear cold water, and, except for raised pattern rubber flooring, rubber tile and sheet rubber flooring, rubber stair treads, and static control vinyl tile, given two coats of polish in accordance with manufacturers written instructions. After each polish coat, floors shall be buffed to an even luster with an electric polishing machine. Raised pattern rubber flooring, rubber tile and sheet rubber flooring, rubber stair treads, and static control vinyl tile shall be cleaned and maintained as recommended by the manufacturer.
3.9 PROTECTION

From the time of laying until acceptance, flooring shall be protected from damage as recommended by the flooring manufacturer. Flooring which becomes damaged, loose, broken, or curled shall be removed and replaced.

-- End Of Section --
SECTION 09680

CARPET

10/00

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 418 (1993; R 1997) Pile Yarn Floor Covering Construction

ASTM D 3278 (1996el) Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus

CARPET AND RUG INSTITUTE (CRI)

CODE OF FEDERAL REGULATIONS (CFR)

40 CFR 247 Guidelines for Procurement of Products that contain Recycled Material

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

 Installation
 Molding

 Three copies of drawings indicating areas receiving carpet, carpet types, textures and patterns, direction of pile, location of seams, and locations of edge molding.

SD-03 Product Data
Carpet

Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading, and flame resistance characteristics for each type of carpet material and installation accessory.

Surface Preparation

Installation

Three copies of the manufacturer's printed installation instructions for the carpet, including preparation of substrate, seaming techniques, and recommended adhesives and tapes.

Regulatory Requirements

Three copies of report stating that carpet contains recycled materials and/or involvement in a recycling or reuse program. Report shall include percentage of recycled material.

SD-04 Samples

Carpet

Molding

a. Carpet: Two "Production Quality" samples 450 x 450 mm of each carpet proposed for use, showing quality, pattern, and color specified.

b. Vinyl Moldings: Two pieces of each type at least 300 mm long.

c. Special Treatment Materials: Two samples showing system and installation method.

SD-06 Test Reports

Moisture and Alkalinity Tests

Three copies of test reports of moisture and alkalinity content of concrete slab stating date of test, person conducting the test, and the area tested.

SD-07 Certificates

Carpet

Certificates of compliance from a laboratory accredited by the National Laboratory Accreditation Program of the National Institute of Standards and Technology attesting that each type of carpet and carpet with cushion material conforms to the standards specified.

SD-10 Operation and Maintenance Data

Carpet

Cleaning and Protection
Three copies of carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods, and cleaning cycles.

1.3 REGULATORY REQUIREMENTS

Carpet and adhesives shall bear the Carpet and Rug Institute (CRI) Indoor Air Quality (IAQ) label or demonstrate compliance with testing criteria and frequencies through independent laboratory test results. Carpet type bearing the label will indicate that the carpet has been tested and meets the criteria of the CRI IAQ Carpet Testing Program, and minimizes the impact on indoor air quality. Contractor shall procure carpet in accordance with 40 CFR 247, shall submit a report stating that the carpet contains recycled materials and indicating the actual percentage of recycled material. Contractor shall, as much as possible, select material manufacturers that reduce pollutant and waste, recycle waste, reuse resources and scrap, and reclaim flooring materials instead of disposing into a landfill. Where possible, product shall be purchased locally to reduce emissions of fossil fuels from transporting.

1.4 DELIVERY AND STORAGE

Materials shall be delivered to the site in the manufacturer's original wrappings and packages clearly labeled with the manufacturer's name, brand name, size, dye lot number, and related information. Materials shall be stored in a clean, dry, well ventilated area, protected from damage and soiling, and shall be maintained at a temperature above 16 degrees C for 2 days prior to installation.

1.5 ENVIRONMENTAL REQUIREMENTS

Areas in which carpeting is to be installed shall be maintained at a temperature above 16 degrees C for 2 days before installation, during installation, and for 2 days after installation. A minimum temperature of 13 degrees C shall be maintained thereafter for the duration of the contract. Traffic or movement of furniture or equipment in carpeted area shall not be permitted for 24 hours after installation. Other work which would damage the carpet shall be completed prior to installation of carpet.

1.6 WARRANTY

Manufacturer's standard performance guarantees or warranties including minimum ten (10) year wear warranty, two (2) year material and workmanship and ten (10) year tuft bind and delamination.

PART 2 PRODUCTS

2.1 CARPET TYPE AC

Carpet shall be first quality; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Carpet materials and treatments shall be reasonably nonallergenic and free of other recognized health hazards. All grade carpets shall have a static control construction which gives adequate durability and performance.
2.1.1 Physical Characteristics

Carpet shall comply with the following:

b. Carpet Construction: Tufted.

c. Type: Broadloom 3.6 m minimum usable carpet width.

d. Pile Type: Textured loop.

e. Pile Fiber: Commercial 100% branded (federally registered trademark) nylon continuous filament.

f. Pile or Wire Height: Minimum 3.95 mm in accordance with ASTM D 418.

g. Yarn Ply: Minimum 2 in accordance with ASTM D 1423.

h. Gauge or Pitch: Minimum 39.4 per 10 cm in accordance with ASTM D 418.

i. Stitches or Rows/Wires: Minimum 43.26 per 10 cm.

j. Finished Pile Yarn Weight: Minimum 1085 gms per square meter. This does not include weight of backings. Weight shall be determined in accordance with ASTM D 418.

l. Backing Materials: Primary backing materials shall be those customarily used and accepted by the trade for each type of carpet. Secondary backing to suit project requirements shall be those customarily used and accepted by the trade for each type of carpet, except when a special unitary back designed for gluedown is provided.

2.2 CARPET TYPE AD

Carpet shall be first quality; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Carpet materials and treatments shall be reasonably nonallergenic and free of other recognized health hazards. All grade carpets shall have a static control construction which gives adequate durability and performance.

2.2.1 Physical Characteristics

Carpet shall comply with the following:

a. Recycle Efforts: Use of nylon carpet with backing containing recovered carpet.

b. Carpet Construction: Tufted.
c. Type: Broadloom 3.6 m minimum usable carpet width

d. Pile Type: Pattern-loop.

f. Pile or Wire Height: Minimum 3.12 mm in accordance with ASTM D 418.

g. Yarn Ply: Minimum 2 in accordance with ASTM D 1423.

h. Gauge or Pitch: Minimum 39.4 per 10 cm in accordance with ASTM D 418.

i. Stitches or Rows/Wires: Minimum 39.4 per 10 cm.

j. Finished Pile Yarn Weight: Minimum 746 gms per square meter. This does not include weight of backings. Weight shall be determined in accordance with ASTM D 418.

k. Dye Method: 64% Solution dyed and 36% Yarn dyed.

l. Backing Materials: Primary backing materials shall be those customarily used and accepted by the trade for each type of carpet.

2.3 CARPET TYPE AE

Carpet shall be first quality; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Carpet materials and treatments shall be reasonably nonallergenic and free of other recognized health hazards. All grade carpets shall have a static control construction which gives adequate durability and performance.

2.3.1 Physical Characteristics

Carpet shall comply with the following:

a. Recycle Efforts: Use of nylon carpet with backing containing recovered carpet.

b. Carpet Construction: Tufted.

c. Type: Broadloom 3.6 m minimum usable carpet width

d. Pile Type: Pattern-loop.

e. Pile Fiber: Solutia Ultron VIP BCF Nylon.

f. Pile or Wire Height: Minimum 3.61 mm in accordance with ASTM D 418.

g. Yarn Ply: Minimum 2 in accordance with ASTM D 1423.

h. Gauge or Pitch: Minimum 39.4 per 10 cm in accordance with ASTM D 418.
i. Stitches or Rows/Wires: Minimum 47.2 per 10 cm.

j. Finished Pile Yarn Weight: Minimum 949 gms per square meter. This does not include weight of backings. Weight shall be determined in accordance with ASTM D 418.

k. Backing Materials: Primary backing materials shall be those customarily used and accepted by the trade for each type of carpet.

2.4 ENTRY SQUARE WALK OFF MAT TYPE AJ

Carpet shall be first quality; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Carpet materials and treatments shall be reasonably nonallergenic and free of other recognized health hazards. All grade carpets shall have a static control construction which gives adequate durability and performance.

2.4.1 Physical Characteristics

Carpet shall comply with the following:

a. Recycle Efforts: Use of nylon carpet with backing containing recovered carpet.

b. Carpet Construction: Tufted.

c. Type: Carpet squares.

d. Pile Type: Graphic-loop.

e. Pile Fiber: Supra SolutionQ BCF Nylon 6.6.

f. Pile or Wire Height: Minimum 3.63 mm in accordance with ASTM D 418.

g. Yarn Ply: Minimum 2 in accordance with ASTM D 1423.

h. Stitches or Rows/Wires: Minimum 47.2 per 10 cm.

i. Finished Pile Yarn Weight: Minimum 949 gms per square meter. This does not include weight of backings. Weight shall be determined in accordance with ASTM D 418.

j. Backing Materials: Primary backing materials shall be those customarily used and accepted by the trade for each type of carpet.

2.5 ADHESIVES AND CONCRETE PRIMER

Adhesives and concrete primers for installation of carpet shall be waterproof, nonflammable, meet local air-quality standards, and shall be as required by the carpet manufacturer. Seam adhesive shall be waterproof, nonflammable, and nonstaining as recommended by the carpet manufacturer. Release adhesive for modular tile carpet shall be as recommended by the carpet manufacturer. Adhesives flashpoint shall be minimum 60 degrees C in accordance with ASTM D 3278.
2.6 MOLDING

Vinyl molding shall be heavy-duty and designed for the type of carpet being installed. Floor flange shall be a minimum 50 mm wide. Color shall be as indicated on the Drawings or as selected by the Contracting Officer.

2.7 TAPE

Tape for seams shall be as recommended by the carpet manufacturer for the type of seam used in installation.

2.8 COLOR, TEXTURE, AND PATTERN

Color, texture, and pattern shall be as indicated on the Drawings.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Carpet shall not be installed on surfaces that are unsuitable and will prevent a proper installation. Holes, cracks, depressions, or rough areas shall be repaired using material recommended by the carpet or adhesive manufacturer. Floor shall be free of any foreign materials and swept broom clean. Before beginning work, subfloor shall be tested with glue and carpet to determine "open time" and bond.

3.2 MOISTURE AND ALKALINITY TESTS

Concrete slab shall be tested for moisture content and excessive alkalinity in accordance with CRI 104.

3.3 PREPARATION OF CONCRETE SUBFLOOR

Installation of the carpeting shall not commence until concrete substrate is at least 90 days old. The concrete surfaces shall be prepared in accordance with instructions of the carpet manufacturer. Type of concrete sealer, when required, shall be compatible with the carpet.

3.4 INSTALLATION

Installation shall be in accordance with the manufacturer's instructions and CRI 104. Edges of carpet meeting hard surface flooring shall be protected with molding. Installation shall be in accordance with the molding manufacturer's instructions.

3.4.1 Broadloom Installation

Broadloom carpet shall be installed direct glue down and shall be smooth, uniform, and secure, with a minimum of seams. Seams shall be uniform, unnoticeable, and treated with a seam adhesive. Side seams shall be run toward the light where practical and where such layout does not increase the number of seams. Breadths shall be installed parallel, with carpet pile in the same direction. Patterns shall be accurately matched. Cutouts, as at door jambs, columns and ducts shall be neatly cut and fitted securely. Seams at doorways shall be located parallel to and centered directly under doors. Seams shall not be made perpendicular to doors or at pivot points.
Seams at changes in directions of corridors shall follow the wall line parallel to the carpet direction. Corridors with widths less than 1.8 m shall have the carpet laid lengthwise down the corridors.

3.5 CLEANING AND PROTECTION

3.5.1 Cleaning

After installation of the carpet, debris, scraps, and other foreign matter shall be removed. Soiled spots and adhesive shall be removed from the face of the carpet with appropriate spot remover. Protruding face yarn shall be cut off and removed. Carpet shall be vacuumed clean.

3.5.2 Protection

The installed carpet shall be protected from soiling and damage with heavy, reinforced, nonstaining kraft paper, plywood, or hardboard sheets. Edges of kraft paper protection shall be lapped and secured to provide a continuous cover. Traffic shall be restricted for at least 45 hours. Protective covering shall be removed when directed by the Contracting Officer.

3.6 REMNANTS

Remnants remaining from the installation, consisting of scrap pieces more than 600 mm in dimension with more than 0.6 square meters total, shall be provided. Non-retained scraps shall be removed from site and recycled appropriately.

-- End Of Section --
SECTION 09720

WALLCOVERINGS

01/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM E 84 (1996a) Surface Burning Characteristics of Building Materials

ASTM F 793 (1993) Standard Classification of Wallcovering by Durability Characteristics

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Wallcoverings
Manufacturer's Instructions

Manufacturer's descriptive data, documentation stating physical characteristics, flame resistance, mildew and germicidal characteristics.

Installation

Preprinted installation instructions for wallcovering and accessories.

Maintenance
Clean-Up

Preprinted cleaning and maintenance instructions for wallcovering and accessories.

SD-04 Samples

Wallcoverings

Three samples of each indicated type, pattern, and color of wallcovering. Samples of wall covering shall be minimum 125 x 175
mm and of sufficient size to show pattern repeat. Three samples of each indicated type corner guard and wainscot cap.

SD-07 Certificates

Wallcoverings

Manufacturer's statement attesting that the product furnished meets or exceeds specification requirements. The statement must; be dated after the award of the contract, state Contractor's name and address, name the project and location, and list the requirements being certified.

1.3 DELIVERY AND STORAGE

Materials shall be delivered to the site in manufacturers original unopened containers labeled with manufacturers name, pattern, texture, size and related information. Materials shall be stored in accordance with the manufacturer's instructions in a clean dry ventilated area with temperature maintained above 16 degrees C for two days prior to installation.

1.4 ENVIRONMENTAL REQUIREMENTS

Areas to receive wallcovering shall be maintained at a temperature above 16 degrees C for 7 days before, during, and 7 days after application.

1.5 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a one-year period shall be provided.

PART 2 PRODUCTS

2.1 WALLCOVERINGS

Wallcoverings shall be material designed specifically for the specified use. The wallcovering shall contain a non-mercury based mildewcide. The wallcovering shall be type made without the use of cadmium based stabilizers. Wallcovering shall have a Class A flame spread rating of 0-25 and smoke development rating of 0-50 when tested in accordance with ASTM E 84.

2.1.1 Vinyl Wallcovering

Vinyl wallcovering shall be a vinyl coated woven or nonwoven fabric with germicidal additives and shall conform to ASTM F 793, Category V Type II, (0.445 to 0.815 kg) total weight per square meter and width of 1371.6 mm.

2.2 CORNER GUARDS

Corner guards shall be 2 mm thick and shall cover 75 mm each side of corner at right angles. Corner guards shall be clear from the same lot and color.

2.3 PRIMER AND ADHESIVE
Primer and adhesive shall be of a type recommended by the wallcovering manufacturer and shall contain a non-mercury based mildewcide. Adhesive shall be strippable type. Adhesive to install cap shall be of a type recommended by the manufacturer of the wainscot cap.

2.4 COLOR, TEXTURE, AND PATTERN

Color, texture, and pattern shall be as indicated on the Drawings.

PART 3 EXECUTION

3.1 EXAMINATION

Contractor shall inspect all areas and conditions under which wallcoverings are to be installed. Contractor shall notify in writing of any conditions detrimental to the proper and timely completion of the installation. Work will proceed only when conditions have been corrected and accepted by the installer.

3.2 SURFACE PREPARATION

Wallcovering shall not be applied to surfaces that are rough, that contain stains that will bleed through the wallcovering, or that are otherwise unsuitable for proper installation. Cracks and holes shall be filled and rough spots shall be sanded smooth. Surfaces to receive wallcovering shall be thoroughly dry. Interior surfaces of exterior masonry walls shall be sealed to prevent moisture penetration, then primed with a wallcovering primer in accordance with the manufacturer's instructions. Moisture content of plaster, concrete, and masonry shall be tested with an electric moisture meter and reading shall be not more than 5 percent. Masonry walls shall have flush joints. Concrete and masonry walls shall be coated with a thin coat of joint compound or cement plaster as a substrate preparation. To promote adequate adhesion of wall lining over masonry walls, the walls shall be primed as recommended by the wall lining manufacturer. Surface of walls shall be primed as required by manufacturer's instructions to permit ultimate removal of wallcovering from the wall surface. Primer shall be allowed to completely dry before adhesive application.

3.3 INSTALLATION

3.3.1 Fabric Wallcovering

Wallcovering shall be installed in accordance with the manufacturer's installation instructions. Glue and adhesive spillage shall be immediately removed from wallcovering face and seams with a remover recommended by the manufacturer. After the installation is complete, the fabric wallcovering shall be vacuumed with a ceiling to floor motion.

3.3.2 Corner Guards and Wainscot Cap

Corner guards and wainscot cap shall be installed where shown on the drawings and in accordance with the manufacturer's printed instructions. Corner guards shall run from top of base to a height of 1200 mm.

3.4 CLEAN-UP
Upon completion of the work, wallcovering shall be left clean and free of dirt or soiling. Surplus materials, rubbish, and debris resulting from the wallcovering installation shall be removed and area shall be left clean.

-- End Of Section --
SECTION 09900

PAINTING, GENERAL

07/92

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH)

ACGIH Limit Values (1999) Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 3273 (1994) Resistance to Growth of Mold on the Surface of Interior Coating in an Environmental Chamber

ASTM D 3274 (1995) Evaluating Degree of Surface Disfigurement of Paint Films by Microbial (Fungal or Algal) Growth or Soil and Dirt Accumulation

ASTM D 4258 (1999) Surface Cleaning Concrete for Coating

COMMERCIAL ITEM DESCRIPTIONS (CID)

CID A-A-1500 (Rev A; Notice 1) Sealer, Surface (Latex Block Filler)

CID A-A-1788 (Canc. Notice 1)) Varnish, Oil; Interior

CID A-A-2246 (Rev B) Paint, Latex

CID A-A-2247 (Basic) Paint, Latex (Semigloss, Interior)

CID A-A-2248 (Basic) Paint, Latex, (Flat, Interior)

CID A-A-2336 (Rev A) Primer Coating (Alkyd, Exterior Wood, White and Tints)

CID A-A-2339 (Canc. Notice 1) Stain (Wood, Solvent-Dye Type)

CID A-A-2542 Sealer, Terrazzo and Concrete Floors, Waterbased

CID A-A-2834 (Basic) Urethane, Waterborne (Low VOC, Clear)
CID A-A-2867 Coating, Polyurethane, Single Component Moisture Cure, Alipathic
CID A-A-2962 (Rev A) Enamel, Alkyd (Metric)
CID A-A-2994 Primer Coating, Interior, for Walls and Wood

FEDERAL SPECIFICATIONS (FS)
FS TT-C-555 (Rev B; Am 1) Coating, Textured (for Interior and Exterior Masonry Surfaces)
FS TT-E-2784 (Rev A) Enamel (Acrylic-Emulsion, Exterior Gloss and Semigloss) (Metric)

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)
SSPC Paint 5 (1995) Zinc Dust, Zinc Oxide and Phenolic Varnish Paint
SSPC Paint 20 (1991) Zinc-Rich Primers (Type I - "Inorganic" and Type II - "Organic")
SSPC Paint 23 (1991) Latex Primer for Steel surfaces
SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (Without Lead and Chromate Pigments)
SSPC SP 1 (1982) Solvent Cleaning
SSPC SP 2 (1995) Hand Tool Cleaning
SSPC SP 3 (1995) Power Tool Cleaning
SSPC SP 7/NACE 4 (1994) Brush-Off Blast Cleaning

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Paint

The names, quantity represented, and intended use for the proprietary brands of materials proposed to be substituted for the specified materials when the required quantity of a particular batch is 200 L or less.
Mixing and Thinning

Application

Manufacturer's current printed product description, material safety data sheets (MSDS) and technical data sheets for each coating system. Detailed mixing, thinning and application instructions, minimum and maximum application temperature, and curing and drying times between coats for epoxy, moisture-curing polyurethane, and liquid glaze coatings. Detailed application instructions for textured coatings shall be provided.

SD-04 Samples

Paint

While the material is at the site or source of supply, and at a time agreeable to the Contractor and the Contracting Officer, a 1 liter sample of each color and batch, except for quantities of 200 liters or less, shall be taken by random selection from the sealed containers by the Contractor in the presence of a representative of the Contracting Officer. The contents of the containers to be sampled shall be thoroughly mixed to ensure that the sample is representative. Samples shall be identified by designated name, specification number, manufacturer name and address, batch number, project contract number, intended use, and quantity involved.

SD-06 Test Reports

Paint

A statement as to the quantity represented and the intended use, plus the following test report for batches in excess of 200 L:

a. A test report showing that the proposed batch to be used meets specified requirements:

b. A test report showing that a previous batch of the same formulation as the batch to be used met specified requirements, plus, on the proposed batch to be used, a report of test results for properties of weight per liter, viscosity, fineness of grind, drying time, color, and gloss.

SD-07 Certificates

Lead

Mildewcide and Insecticide

Volatile Organic Compound (VOC) Content

Certificate stating that paints for interior use contain no mercurial mildewcide or insecticide. Certificate stating that paints proposed for use contain not more than 0.06 percent lead by weight of the total nonvolatile. Certificate stating that paints proposed for use meet Federal VOC regulations and those of the of the local Air Pollution Control Districts having jurisdiction over the geographical area in which the project is located.
1.3 PACKAGING, LABELING, AND STORING

Paints shall be in sealed containers that legibly show the designated name, formula or specification number, batch number, color, quantity, date of manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name of manufacturer. Pigmented paints shall be furnished in containers not larger than 20 liters. Paints and thinner shall be stored in accordance with the manufacturer's written directions and as a minimum stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors and at temperatures between 4 and 35 degrees C. Paints shall be stored on the project site or segregated at the source of supply sufficiently in advance of need to allow 30 days for testing.

1.4 APPROVAL OF MATERIALS

When samples are tested, approval of materials will be based on tests of the samples; otherwise, materials will be approved based on test reports furnished with them. If materials are approved based on test reports furnished, samples will be retained by the Government for testing should the materials appear defective during or after application. In addition to any other remedies under the contract the cost of retesting defective materials will be at the Contractor's expense.

1.5 ENVIRONMENTAL CONDITIONS

Unless otherwise recommended by the paint manufacturer, the ambient temperature shall be between 7 and 35 degrees C when applying coatings other than water-thinned, epoxy, and moisture-curing polyurethane coatings. Water-thinned coatings shall be applied only when ambient temperature is between 10 and 32 degrees C. Epoxy, and moisture-curing polyurethane coatings shall be applied only within the minimum and maximum temperatures recommended by the coating manufacturer. Moisture-curing polyurethane shall not be applied when the relative humidity is below 30 percent.

1.6 SAFETY AND HEALTH

Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis as specified in the CONTRACT CLAUSES. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.

1.6.1 Worker Exposures

Exposure of workers to hazardous chemical substances shall not exceed limits established by ACGIH Limit Values, or as required by a more stringent applicable regulation.

1.6.2 Toxic Compounds

Toxic products having ineffective physiological warning properties, such as no or low odor or irritation levels, shall not be used unless approved by the Contracting Officer.
1.6.3 Training

Workers having access to an affected work area shall be informed of the contents of the applicable material data safety sheets (MDSS) and shall be informed of potential health and safety hazard and protective controls associated with materials used on the project. An affected work area is one which may receive mists and odors from the painting operations. Workers involved in preparation, painting and clean-up shall be trained in the safe handling and application, and the exposure limit, for each material which the worker will use in the project. Personnel having a need to use respirators and masks shall be instructed in the use and maintenance of such equipment.

1.6.4 Coordination

Work shall be coordinated to minimize exposure of building occupants, other Contractor personnel, and visitors to mists and odors from preparation, painting and clean-up operations.

PART 2 PRODUCTS

2.1 PAINT

The term "paint" as used herein includes emulsions, enamels, paints, stains, varnishes, sealers, cement-emulsion filler, and other coatings, whether used as prime, intermediate, or finish coat. Paint shall conform to the requirements listed in the painting schedules at the end of this section, except when the required amount of a material of a particular batch is 200 liters or less, an approved first-line proprietary paint material with similar intended formulation, usage and color to that specified may be used. Additional requirements are as follows:

2.1.1 Colors and Tints

Colors shall be as selected from manufacturer's standard colors, as indicated. Manufacturer's standard color is for identification of color only. Tinting of epoxy and urethane paints shall be done by the manufacturer. Stains shall conform in shade to manufacturer's standard color. The color of the undercoats shall vary slightly from the color of the next coat.

2.1.2 Mildewcide and Insecticide

Paint specified for all coats applied to fabrics and vapor barrier jackets over insulation shall contain a mildewcide that will not adversely affect the color, texture, or durability of the coating. The mildewcide shall be incorporated into the paint by the manufacturer and shall attain a surface disfigurement rating of 8 or greater when tested in accordance with ASTM D 3273 and evaluated in accordance with ASTM D 3274. Mercurial mildewcide shall not be used in interior paint. Insecticides shall not be used in paint.

2.1.3 Lead

Paints containing lead in excess of 0.06 percent by weight of the total nonvolatile content (calculated as lead metal) shall not be used.
2.1.4 Chromium

Paints containing zinc chromate or strontium chromate pigments shall not be used.

2.1.5 Volatile Organic Compound (VOC) Content

Paints shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards and shall conform to the restrictions of the local air pollution control authority.

PART 3 EXECUTION

3.1 PROTECTION OF AREAS NOT TO BE PAINTED

Items not to be painted which are in contact with or adjacent to painted surfaces shall be removed or protected prior to surface preparation and painting operations. Items removed prior to painting shall be replaced when painting is completed. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Surfaces contaminated by coating materials shall be restored to original condition.

3.2 SURFACE PREPARATION

Surfaces to be painted shall be clean and free of foreign matter before application of paint or surface treatments. Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primmed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas.

3.2.1 Concrete, Stucco and Masonry Surfaces

Concrete, stucco and masonry surfaces shall be allowed to dry at least 30 days before painting, except concrete slab on grade which shall be allowed to cure 90 days before painting. Surfaces shall be cleaned in accordance with ASTM D 4258. Glaze, efflorescence, laitance, dirt, grease, oil, asphalt, surface deposits of free iron and other foreign matter shall be removed prior to painting. Surfaces to receive polyurethane or epoxy coatings shall be acid-etched or mechanically abraded as specified by the coating manufacturer, rinsed with water, allowed to dry, and treated with the manufacturer's recommended conditioner prior to application of the first coat.

3.2.2 Ferrous Surfaces

Ferrous surfaces including those that have been shop-coated, shall be solvent-cleaned or detergent-washed in accordance with SSPC SP 1. Surfaces that contain loose rust, loose mill scale, and other foreign substances shall be cleaned mechanically with hand tools according to SSPC SP 2, power tools according to SSPC SP 3 or by sandblasting according to SSPC SP 7/NACE 4. Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection.
3.2.3 Nonferrous Metallic Surfaces

Galvanized, aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces shall be solvent-cleaned or detergent-washed in accordance with SSPC SP 1.

3.2.4 Gypsum Board Surfaces

Gypsum board surfaces shall be dry and shall have all loose dirt and dust removed by brushing with a soft brush, rubbing with a cloth, or vacuum-cleaning prior to application of the first-coat material. A damp cloth or sponge may be used if paint will be water-based.

3.2.5 Mastic-Type Surfaces

Mastic-type surfaces shall be prepared by removing foreign material.

3.2.6 Wood Surfaces

Wood surfaces shall be cleaned of foreign matter. Moisture content of the wood shall not exceed 12 percent as measured by a moisture meter, unless otherwise authorized. Wood surfaces adjacent to surfaces to receive water-thinned paints shall be primed and/or touched up before applying water-thinned paints. Small, dry seasoned knots shall be scraped, cleaned, and given a thin coat of commercial knot sealer, before application of the priming coat. Pitch on large, open, unseasoned knots and all other beads or streaks of pitch shall be scraped off, or, if it is still soft, removed with mineral spirits or turpentine, and the resinous area shall be thinly coated with knot sealer. Finishing nails shall be set, and all holes and surface imperfections shall be primed. After priming, holes and imperfections in finish surfaces shall be filled with putty or plastic wood filler, colored to match the finish coat if natural finish is required, allowed to dry, and sanded smooth. Putty or wood filler shall be compatible with subsequent coatings.

3.2.6.1 Interior Wood Stain

Interior wood surfaces to receive stain shall be sanded. Oak and other open-grain wood to receive stain shall be given a coat of wood filler not less than 8 hours before the application of stain; excess filler shall be removed and the surface sanded smooth.

3.2.6.2 Sanding of Wood Floors

Sanding of wood floors is specified in Section 09640 WOOD STRIP FLOORING. Floors of oak or similar open-grain wood shall be filled with wood filler recommended by the finish manufacturer and the excess filler removed.

3.3 MIXING AND THINNING

When thinning is approved as necessary to suit surface, temperature, weather conditions, or application methods, paints may be thinned in accordance with the manufacturer's directions. When thinning is allowed, paints shall be thinned immediately prior to application with not more than 0.125 L of suitable thinner per liter. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required
gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different manufacturers shall not be mixed.

3.3.1 Cement-Emulsion Filler Coat

Cement and aggregate shall be dry-mixed so that uniform distribution and intermixing are obtained. Mixing liquid and one-half of the total amount of water shall be premixed and added gradually to the white portland cement and aggregate with constant stirring until a thick, smooth material is obtained. Emulsion paint shall then be added to the mixture and stirred until uniformity is obtained. The blend shall have a thick, creamy consistency. The remainder of the water shall be added if necessary to obtain a material with adequate application properties. Blending resin emulsion or emulsion paint with any other component shall be done with caution; too rapid an agitation will cause air entrapment and foaming.

3.3.2 Two-Component Systems

Two-component systems shall be mixed in accordance with manufacturer's instructions. Any thinning of the first coat to ensure proper penetration and sealing shall be as recommended by the manufacturer for each type of substrate.

3.4 APPLICATION

Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Unless otherwise specified or recommended by the paint manufacturer, paint may be applied by brush, roller, or spray. At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application. Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish. Hiding shall be complete. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness equal to that of adjacent painted surfaces. Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch.

3.4.1 Ventilation

Affected areas shall be ventilated during paint application so that workers exposure to chemical substances shall not exceed limits as established by ACGIH Limit Values, or as required by a more stringent applicable regulation. Interior work zones having a volume of 280 cubic meters or less shall be ventilated at a minimum of 2 air exchanges per hour. Ventilation in larger work zones shall be maintained by means of mechanical exhaust. Solvent vapors shall be exhausted outdoors, away from air intakes and workers. Return air inlets in the work zone shall be temporarily sealed before start of work until the coatings have dried.

3.4.2 Respirators

Operators and personnel in the vicinity of operating paint sprayers shall wear respirators.

SECTION 09900 Page 8
3.4.3 First Coat

The first coat on plaster, gypsum wallboard, and other surfaces shall include repeated touching up of suction spots or overall application of primer or sealer to produce uniform color and gloss. Excess sealer shall be wiped off after each application. The first coat on both faces of wood doors shall be applied at essentially the same time. Glazed doors and sashes shall be given the specified coating system within 3 weeks of the time they are glazed, but not before the glazing material has set; paint shall overlay glass about 1.78 mm all around. Each varnish coat shall be sanded lightly prior to application of subsequent coats.

3.4.4 Timing

Surfaces that have been cleaned, pretreated, and otherwise prepared for painting shall be given a coat of the specified first coat as soon as practical after such pretreatment has been completed, but prior to any deterioration of the prepared surface. Sufficient time shall elapse between successive coats to permit proper drying. This period shall be modified as necessary to suit weather conditions. Oil-based or oleoresinous solvent-type paints shall be considered dry for recoating when the paint feels firm, does not deform or feel sticky under moderate pressure of the thumb, and the application of another coat of paint does not cause the undercoat to lift or lose adhesion. Manufacturer's instructions for application, curing and drying time between coats of two-component systems shall be followed.

3.4.5 Stains

Stain shall be applied at the rate specified in the manufacturer's printed directions. Oil-type stain shall be applied by brushing with the grain for the full length of the board or course of siding.

3.4.6 Fillers

Concrete and masonry surface voids shall be filled; however, surface irregularities need not be completely filled. The dried filler shall be uniform and free of pinholes. Filler shall not be applied over caulking compound.

3.4.6.1 Cement-Emulsion Filler

Immediately before filler application, surfaces shall be dampened uniformly and thoroughly, with no free surface water visible, by several applications of potable water with a fog spray, allowing time between the sprayings for water to be absorbed. Cement-emulsion filler shall be scrubbed into the surface vigorously with a stiff-bristled brush having tampico or palmyra bristles not longer than 63 mm. At least 24 hours shall elapse before applying exterior emulsion paint over cement-emulsion filler. When the ambient temperature is over 29 degrees C, cement-emulsion filler surfaces shall be dampened lightly with a fog spray of potable water immediately prior to application of the subsequent paint coat.

3.4.6.2 Latex Filler

Latex filler, CID A-A-1500, shall be applied according to the manufacturer's instructions. Surface voids shall be filled and excess filler shall be
removed from the surface with a rubber squeegee. The filler shall be allowed to dry the length of time specified by the manufacturer prior to applying successive coats of paint.

3.4.7 Textured Coating

Application of textured coating, FS TT-C-555, shall be as specified in the manufacturer's printed directions.

3.4.8 Ferrous-Metal Primer

Primer for ferrous-metal shall be applied to ferrous surfaces to receive paint other than asphalt varnish prior to deterioration of the prepared surface. The semitransparent film applied to some pipes and tubing at the mill is not to be considered a shop coat, but shall be overcoated with the specified ferrous-metal primer prior to application of finish coats.

3.5 PIPE COLOR CODE MARKING

Pipes in exposed areas and in accessible pipe spaces shall be provided with color band and titles adjacent to all valves, except those provided at plumbing fixtures, at not more than 12 meter spacing on straight pipe runs, adjacent to change in direction, and on both sides where pipes pass through walls or floors. Color code marking shall be of the color listed in TABLE I and the size listed in TABLE II. The arrows shall be installed adjacent to each band to indicate the direction of flow in the pipe. The legends shall be printed in upper-case black letters as listed in TABLE I. Letter sizes shall be as listed in TABLE II. Marking shall be painted or applied using colored, pressure-sensitive adhesive markers of standard manufacture. Paint shall be as specified for insulated and uninsulated piping.

<table>
<thead>
<tr>
<th>Material</th>
<th>Band</th>
<th>Arrow*</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold water (potable)</td>
<td>Green</td>
<td>White</td>
<td>POTABLE WATER</td>
</tr>
<tr>
<td>Fire protection water</td>
<td>Red</td>
<td>White</td>
<td>FIRE PR. WATER</td>
</tr>
<tr>
<td>Fire Sprinkler Water</td>
<td>Red</td>
<td>White</td>
<td>FIRE SPR. WATER</td>
</tr>
<tr>
<td>Hot water (domestic)</td>
<td>Green</td>
<td>White</td>
<td>H.W.</td>
</tr>
<tr>
<td>Hot water recirculating (domestic)</td>
<td>Green</td>
<td>White</td>
<td>H.W.R.</td>
</tr>
<tr>
<td>High temp. water supply</td>
<td>Yellow</td>
<td>Black</td>
<td>H.T.W.S.</td>
</tr>
<tr>
<td>High temp. water return</td>
<td>Yellow</td>
<td>Black</td>
<td>H.T.W.R.</td>
</tr>
<tr>
<td>Boiler feed water</td>
<td>Yellow</td>
<td>Black</td>
<td>B.F.</td>
</tr>
<tr>
<td>Low temp. water supply (heating)</td>
<td>Yellow</td>
<td>Black</td>
<td>L.T.W.S.</td>
</tr>
<tr>
<td>Low temp. water return (heating)</td>
<td>Yellow</td>
<td>Black</td>
<td>L.T.W.R.</td>
</tr>
<tr>
<td>Condenser water supply</td>
<td>Green</td>
<td>White</td>
<td>COND. W.S.</td>
</tr>
<tr>
<td>Condenser water return</td>
<td>Green</td>
<td>White</td>
<td>COND. W.R.</td>
</tr>
<tr>
<td>Chilled water supply</td>
<td>Green</td>
<td>White</td>
<td>C.H.W.S.</td>
</tr>
<tr>
<td>Chilled water return</td>
<td>Green</td>
<td>White</td>
<td>C.H.W.R.</td>
</tr>
<tr>
<td>Treated water</td>
<td>Green</td>
<td>White</td>
<td>TR. WATER</td>
</tr>
<tr>
<td>Chemical feed</td>
<td>Yellow</td>
<td>Black</td>
<td>CH. FEED</td>
</tr>
<tr>
<td>Compressed air</td>
<td>Blue</td>
<td>White</td>
<td>COMP. AIR</td>
</tr>
<tr>
<td>Natural gas</td>
<td>Yellow</td>
<td>Black</td>
<td>NAT. GAS</td>
</tr>
<tr>
<td>Propane Gas</td>
<td>Yellow</td>
<td>Black</td>
<td>PROP. GAS</td>
</tr>
<tr>
<td>Refrigerants</td>
<td>Blue</td>
<td>White</td>
<td>REFRIGERANT</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>Yellow</td>
<td>Black</td>
<td>FUEL OIL</td>
</tr>
</tbody>
</table>

SECTION 09900 Page 10
Steam Yellow Black STEAM
Condensate Yellow Black CONDENSATE

Hydraulic fluid under
4.1 MPa Green White HYDRAULIC

Hydraulic fluid
4.1 MPa
and Greater Yellow Black HYDRAULIC

Table II. Color Code Marking Sizes

<table>
<thead>
<tr>
<th>Outside Diameter of Pipe Covering (mm)</th>
<th>Width of Color Band (mm)</th>
<th>Arrow Length x Width (mm)</th>
<th>Size of Legend Letters and Numerals (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 38</td>
<td>200</td>
<td>200 x 57</td>
<td>13</td>
</tr>
<tr>
<td>38 to 60</td>
<td>200</td>
<td>200 x 57</td>
<td>19</td>
</tr>
<tr>
<td>60 to 150</td>
<td>300</td>
<td>200 x 57</td>
<td>31</td>
</tr>
<tr>
<td>200 to 225</td>
<td>600</td>
<td>300 x 110</td>
<td>63</td>
</tr>
<tr>
<td>Over 250</td>
<td>800</td>
<td>300 x 115</td>
<td>88</td>
</tr>
</tbody>
</table>

3.6 Misellaneous Painting

3.6.1 Lettering

Lettering shall be provided as scheduled on the drawings, shall be block type, and shall be black enamel. Samples shall be approved before application.

3.7 Surfaces to be Painted

Surfaces listed in the painting schedules at the end of this section, other than those listed in paragraph SURFACES NOT TO BE PAINTED, shall be painted as scheduled.

3.8 Surfaces Not to be Painted

In addition, surfaces of hardware, fittings, and other factory finished items shall not be painted.

3.9 Cleaning

Cloths, cotton waste and other debris that might constitute a fire hazard shall be placed in closed metal containers and removed at the end of each day. Upon completion of the work, staging, scaffolding, and containers shall be removed from the site or destroyed in an approved manner. Paint and other deposits on adjacent surfaces shall be removed and the entire job left clean and acceptable.

3.10 Painting Schedules

The following painting schedules identify the surfaces to be painted and prescribe the paint to be used and the number of coats of paint to be
applied. Contractor options are indicated by ------or------ between optional systems or coats.

EXTERIOR PAINTING SCHEDULE

<table>
<thead>
<tr>
<th>Surface</th>
<th>First Coat</th>
<th>Second Coat</th>
<th>Third Coat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete, unless otherwise specified.</td>
<td>FS TT-E-2784</td>
<td>FS TT-E-2784</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Type III</td>
<td>Type III</td>
<td></td>
</tr>
<tr>
<td>Plaster.</td>
<td>FS TT-E-2784</td>
<td>FS TT-E-2784</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Type III</td>
<td>Type III</td>
<td></td>
</tr>
<tr>
<td>Primer as recommended by FS TT-C-555</td>
<td>FS TT-C-555</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Type II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood, unless otherwise specified.</td>
<td>CID A-A-2336</td>
<td>FS TT-E-2784</td>
<td>FS TT-E-2784</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood, unless otherwise specified.</td>
<td>FS TT-E-2784</td>
<td>FS TT-E-2784</td>
<td>FS TT-E-2784</td>
</tr>
<tr>
<td></td>
<td>Type I</td>
<td>Type 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade C</td>
<td>Grade C</td>
<td></td>
</tr>
<tr>
<td>Ferrous metal subject to high temperature, up to 232 degrees C (450 degrees F), as follows: Boiler Stacks and Accessories.</td>
<td>SSPC Paint 25</td>
<td>CID A-A-2962</td>
<td>CID A-A-2962</td>
</tr>
<tr>
<td></td>
<td>Type I</td>
<td>Type 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade C</td>
<td>Grade C</td>
<td></td>
</tr>
<tr>
<td>Ferrous metal subject to high temperature, up to 232 degrees C (450 degrees F), as follows: Boiler Stacks and Accessories.</td>
<td>SSPC Paint 23</td>
<td>FS TT-E-2784</td>
<td>FS TT-E-2784</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 09900 Page 12
| Galvanized metal | FS TT-E-2784 | FS TT-E-2784 | FS TT-E-2784 |
INTERIOR PAINTING SCHEDULE

<table>
<thead>
<tr>
<th>Surface</th>
<th>First Coat</th>
<th>Second Coat</th>
<th>Third Coat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete masonry units requiring a smooth finish</td>
<td>CID A-A-1500</td>
<td>CID A-A-2994 Type II</td>
<td>CID A-A-2246</td>
</tr>
<tr>
<td>Concrete: floors requiring dust reduction.</td>
<td>CID A-A-2542 Type I</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ferrous Metal unless otherwise specified</td>
<td>SSPC Paint 25 Type I</td>
<td>CID A-A-2962 Type I</td>
<td>CID A-A-2962 Type I</td>
</tr>
<tr>
<td>Galvanized metal:</td>
<td>FS TT-E-2784</td>
<td>CID A-A-2867 Type I</td>
<td>None</td>
</tr>
<tr>
<td>SSPC Paint 5 Type I</td>
<td>CID A-A-2962 Type I</td>
<td>CID A-A-2962 Type I</td>
<td>CID A-A-2962 Type I</td>
</tr>
<tr>
<td>SSPC Paint 23 Type I</td>
<td>FS TT-E-2784</td>
<td>CID A-A-2867 Type I</td>
<td>None</td>
</tr>
<tr>
<td>CID A-A-2867</td>
<td>CID A-A-2867 None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Galvanized metal:</td>
<td>FS TT-E-2784</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>SSPC Paint 25</td>
<td>Type I</td>
<td>Type I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade C</td>
<td>Grade C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>FS TT-E-2784</th>
<th>FS TT-E-2784</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPC Paint 23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wood</th>
<th>CID A-A-2994</th>
<th>CID A-A-2246</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>unless otherwise specified.</td>
<td></td>
<td></td>
<td>------</td>
</tr>
</tbody>
</table>

| Wood: stain and varnish finishes as follows: | Commercially available stain | CID A-A-1788 | CID A-A-1788 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FS TT-E-2784</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
uninsulated ducts and pipes, pipe hangers, louvers, grilles, and air outlets, in areas having painted adjacent surfaces.

| Facing of vapor barrier jackets of presized or finished cloth | Two coats of paint to match adjacent areas | None |

-- End Of Section --
PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

Supplementary parts necessary to complete each item shall be included even though such work is not shown definitely or specified. The Contractor shall furnish to the proper trades, all anchors, sockets, or fastenings required for securing items to other construction. Details and specifications of items for which standard products are available, are representative guides of requirements for such items. Standard products, generally meeting such requirements, will be accepted, if details of construction and installation are approved by the Contracting Officer. Gages of sheet iron and steel specified are U.S. Standard for sheet and plate. Extruded section shall be at least 1/8-inch thick, unless otherwise specified or shown on the drawings.

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

 SD-03 Shop Drawings

 Projection Screens

 Shop drawings showing sizes, details of construction, method of construction, method of assembling, hardware materials (where applicable), colors, method of mounting, location of each item, and other details shall be submitted for approval for all items specified herein. Materials fabricated or delivered to the job site before approval of the shop drawings shall be subject to rejection.

 SD-03 Product Data

 Projection Screens

 Manufacturer's technical data and catalog cuts including installation and cleaning instructions.

PART 2 MATERIALS

2.1 PROJECTION SCREEN

2.1.1 Front Projection
Standard duty, ceiling-mounted type similar to Model B as manufactured by Da-Lite or equal. Screen shall be hanging, manual, spring operated. Size shall be as indicated on the drawings. Screen shall be mounted in the location indicated on the drawings.

2.1.2 Ceiling Mounted Motorized Projection Screen

Electrically operated 110-120V, AC, 60Hz, 3 wire motor mounted inside screen roller, instantly reversible, lifetime lubricated, with thermal overload protector and electric brake. Preset, accessible limit switches. Roller of 50.8 mm diameter metal. Case to be of wood with double top for extra rigidity and strength. Motor compartment to be metal lined. Case to be finished with a primer coat. Viewing surface flame and mildew resistant. Bottom or viewing surface enclosed in dowel; dowel to disappear inside case when retracted. 3-position control switch to stop or reverse screen at any point. Switches furnished with cover plate. Project screen shall be similar to Senior Electrol as manufactured by Da-Lite or equal.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Projection Screen

Install projection screens in accordance with manufacturer's recommendations.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

COMMERCIAL ITEM DESCRIPTIONS (CID)

CID A-A-60003 Partitions, Toilet, Complete

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Approved Detail Drawings; G, AE

Drawings showing plans, elevations, details of construction, hardware, reinforcing, fittings, mountings, and anchorings.

SD-03 Product Data

Toilet Partition System; G, AE

Manufacturer's technical data and catalog cuts including installation and cleaning instructions.

SD-04 Samples

Toilet Partition System; G, AE

Manufacturer's standard color charts and color samples.

1.3 SYSTEM DESCRIPTION

Toilet partition system, including toilet enclosures, room entrance screens, and urinal screens, shall be a complete and usable system of panels, hardware, and support components. The partition system shall be provided by a single manufacturer and shall be a standard product as shown in the most recent catalog data. The partition system shall be as shown on the approved detail drawings.
1.4 DELIVERY, STORAGE, AND HANDLING

Components shall be delivered to the jobsite in the manufacturer's original packaging with the brand, item identification, and project reference clearly marked. Components shall be stored in a dry location that is adequately ventilated; free from dust, water, or other contaminants; and shall have easy access for inspection and handling.

1.5 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided.

PART 2 PRODUCTS

2.1 TOILET ENCLOSURES

Toilet enclosures shall conform to CID A-A-60003, Type I, Style C, overhead braced. Width, length, and height of toilet enclosures shall be as shown. Finish surface of panels shall be solid phenolic, Finish 4. Panels indicated to receive toilet paper holders or grab bars as specified in Section 10800 TOILET ACCESSORIES, shall be prepared for mounting of the items required. Grab bars shall withstand a bending stress, shear stress, shear force, and a tensile force induced by 1112 N. Grab bars shall not rotate within their fittings.

2.2 URINAL SCREENS

Urinal screens shall conform to CID A-A-60003, Type III, Style A, floor supported. Finish surface of screens shall be solid phenolic, Finish 4. Width and height of urinal screens shall be as shown.

2.3 HARDWARE

Hardware for the toilet partition system shall conform to CID A-A-60003 for the specified type and style of partitions. Hardware finish shall be highly resistant to alkalies, urine, and other common toilet room acids.

2.4 COLORS

Color of finishes for toilet partition system components shall be manufacturer's standard as indicated on the Drawings.

PART 3 EXECUTION

3.1 INSTALLATION

Toilet partitions shall be installed straight and plumb in accordance with approved manufacturer's instructions with horizontal lines level and rigidly anchored to the supporting construction. Where indicated, anchorage to walls shall be by toggle-bolting. Drilling and cutting for installation of anchors shall be at locations that will be concealed in the finished work.

3.2 ADJUSTING AND CLEANING

Doors shall have a uniform vertical edge clearance of approximately 5 mm and shall rest open at approximately 30 degrees when unlatched. Baked
enamel finish shall be touched up with the same color of paint that was used for the finish. Toilet partitions shall be cleaned in accordance with approved manufacturer's instructions and shall be protected from damage until accepted.

-- End Of Section --
SECTION 10260
WALL AND CORNER PROTECTION
12/95

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM D 635 (1998) Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position

ASTM E 84 (1998e1) Surface Burning Characteristics of Building Materials

SOCIETY OF AMERICAN AUTOMOTIVE ENGINEERS (SAE)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Corner Guards

Drawings indicating locations and typical elevations of each type of item. Drawings shall show vertical and horizontal dimensions, full size sections, thickness of materials, and fastening details.

SD-03 Product Data

Corner Guards
Manufacturer's descriptive data, catalog cuts, installation instructions, and recommended cleaning instructions.

SD-04 Samples

Finish

Manufacturer's standard samples indicating color and texture of materials requiring color and finish selection.

SD-07 Certificates

Corner Guards

Statements attesting that the items comply with specified fire and safety code requirements.

1.3 DELIVERY AND STORAGE

Materials shall be delivered to the project site in manufacturer's original unopened containers with seals unbroken and labels and trademarks intact. Materials shall be kept dry, protected from weather and damage, and stored under cover. Materials shall be stored at approximately 21 degrees C for at least 48 hours prior to installation.

1.4 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided.

PART 2 PRODUCTS

2.1 GENERAL

To the maximum extent possible, corner guards, door and door frame protectors, wall guards (bumper guards), wall panels and wall covering shall be the standard products of a single manufacturer and shall be furnished as detailed. Drawings show general configuration of products required, and items differing in minor details from those shown will be acceptable.

2.1.1 Resilient Material

Resilient material shall consist of high impact resistant extruded acrylic vinyl, polyvinyl chloride, or injection molded thermal plastic and shall conform to the following:

2.1.1.1 Minimum Impact Resistance

Minimum impact resistance shall be 960.8 N.m/m (18 ft. lb/sq. inch) when tested in accordance with ASTM D 256, (Izod impact, ft. lbs per sq inch notched).

2.1.1.2 Fire Rating

Fire rating shall be Class 1 when tested in accordance with ASTM E 84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less. Material shall be rated self extinguishing when tested in accordance
with ASTM D 635. Material shall be labeled and tested by an approved nationally known testing laboratory. Resilient material used for protection on fire rated doors and frames shall be listed by the testing laboratory performing the tests. Resilient material installed on fire rated wood/steel door and frame assemblies shall have been tested on similar type assemblies. Test results of material tested on any other combination of door/frame assembly will not be acceptable.

2.1.1.3 Integral Color

Colored components shall have integral color and shall be matched in accordance with SAE J1545 to within plus or minus 1.0 on the CIE-LCH scales.

2.2 CORNER GUARDS

2.2.1 Resilient Corner Guards

Corner guard units shall be surface mounted type, radius formed to profile shown. Corner guards shall be 75 mm x 75 mm x 1200 mm height. Mounting hardware, cushions, and base plates shall be furnished. Assembly shall consist of a snap-on corner guard formed from high impact resistant resilient material, minimum 1.98 mm thick, mounted on a continuous aluminum retainer. Extruded aluminum retainer shall conform to ASTM B 221, alloy 6063, temper T5 or T6. Flush mounted type guards shall act as a stop for adjacent wall finish material. Factory fabricated end closure caps shall be furnished for top and bottom of surface mounted corner guards. Flush mounted corner guards installed in fire rated wall shall maintain the rating of the wall. Insulating materials that are an integral part of the corner guard system shall be provided by the manufacturer of the corner guard system. Exposed metal portions of fire rated assemblies shall have a paintable surface.

2.3 TRIM, FASTENERS AND ANCHORS

Vinyl trim, fasteners and anchors shall be provided for each specific installation as shown.

2.4 FINISH

2.4.1 Resilient Material Finish

Finish for resilient material shall be embossed stipple texture with colors in accordance with SAE J1545.

2.5 ADHESIVES

Adhesive for resilient material shall be in accordance with manufacturers recommendations.

2.6 COLOR

Color shall be as indicated on the Drawings.

PART 3 EXECUTION

3.1 INSTALLATION
3.1.1 Corner Guards

Material shall be mounted at location indicated in accordance with manufacturer's recommendations.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

CEILINGS AND INTERIOR SYSTEMS CONTRACTORS ASSOCIATION (CISCA)

CISCA Access Floors (1987) Recommended Test Procedures for Access Floors

FEDERAL SPECIFICATIONS (FS)

FS SS-T-312 (Rev B; Int Am 1; Notice 2; Canc. Notice 1)
Tile, Floor: Asphalt, Rubber, Vinyl, and Vinyl Composition

INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS (ICBO)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA LD 3 (1995) High-Pressure Decorative Laminates

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

UNDERWRITERS LABORATORIES (UL)

UL 779 (1995; Rev thru Jan 1997) Electrically Conductive Floorings

CORPS OF ENGINEERS

ETL 93-5 Fire Protection Engineering Criteria – Electronic Equipment Installation
1.2 SYSTEM DESCRIPTION

Raised flooring shall be installed at the location and elevation and in the arrangement shown on the drawings. The floor system shall be of the stringer or stringerless type, complete with all supplemental items, and shall be the standard product of a manufacturer specializing in the manufacture of raised floor systems.

1.2.1 Floor Panels

Floor panel testing shall be conducted in accordance with CISCA Access Floors. When tested as specified, all deflection and deformation measurements shall be made at the point of load application on the top surface of the panel. Floor panels shall be capable of supporting 6675 N concentrated load without deflecting more than 2.03 mm and without permanent deformation in excess of 0.25 mm in any of the specified tests. Floor panels shall be capable of supporting 16.76 kPa per square meter uniform live load without deflection more than 1.02 mm. Floor panels shall be capable of supporting 4450 N rolling load without deflecting more than 1.02 mm and without permanent deformation in excess of 0.51 mm. In accordance with CISCA Access Floors, the permanent deformation limit under rolling load shall be satisfied in all of the specified tests. In the specified tests, the permanent deformation shall be measured after 10 passes with Wheel 1 and after 10,000 passes with Wheel 2.

1.2.2 Stringers

Stringers shall be capable of supporting a 1110 N concentrated load at midspan without permanent deformation in excess of 0.25 mm.

1.2.3 Pedestals

Pedestals shall be capable of supporting a 22.24 kN axial load without permanent deformation.

1.2.4 Pedestal Adhesive

Adhesive shall be capable of securing a pedestal in place with sufficient bonding strength to resist an overturning force of 113 Nm.

1.2.5 Bond Strength of Factory Installed Floor Covering

Bond strength of floor covering shall be sufficient to permit handling of the panels by use of the panel lifting device, and to withstand moving caster loads up to 4.45 kN, without separation of the covering from the panel.

1.2.6 Leakage

When the space below the finished floor is to be an air plenum, air leakage through the joints between panels and around the perimeter of the floor system shall not exceed 0.15 L/s of air per linear meter of joint subjected to 2.5 mm, water gauge, positive pressure in the plenum.

1.2.7 Grounding
The raised floor system shall be grounded for safety hazard and static suppression.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Raised Floor System G

Drawings showing layout of the work, sizes and details of components, details at floor perimeter, bracing to resist seismic or other lateral loads, typical cutout details including size and shape limitation, method of grounding, description of shop coating, and installation height above structural floor.

SD-03 Product Data

Raised Floor System G

Manufacturer's descriptive data, catalog cuts, and installation instructions. The data shall include information about any design and production techniques, procedures and policies used to conserve energy, reduce material, improve waste management or incorporate green building/recycled products into the manufacturer of their components or products. Cleaning and maintenance instructions shall be included. Design calculations which demonstrate that the proposed floor system meets requirements for seismic loading, prepared in accordance with subparagraph Underfloor Bracing under paragraph PANEL SUPPORT SYSTEM and ICBO Bldg Code. Certified copies of test reports may be submitted in lieu of calculations.

SD-04 Samples

Raised Floor System

One sample of each panel type and suspension system proposed for use.

SD-06 Test Reports

Tests G

Testing of Electrical Resistance

Certified copies of test reports from an approved testing laboratory, attesting that the proposed floor system components meet the performance requirements specified.

SD-07 Certificates

Raised Floor System G
Certificate of compliance attesting that the raised floor system meets specification requirements.

1.4 DELIVERY, STORAGE, AND HANDLING

Materials shall be stored in original protective packaging in a safe, dry, and clean location and shall be handled in a manner to prevent damage. Panels shall be stored at temperatures between 4 and 32 degrees C, and between 20 percent and 70 percent humidity.

1.5 EXTRA MATERIALS

Spare floor panels, spare complete pedestal assemblies, and spare stringers shall be furnished at the rate of one space for each 100 or fraction thereof required.

1.6 OPERATION AND MAINTENANCE MANUALS

Provide maintenance instructions for proper care of the floor panel surface. When conductive flooring is specified, require submittal of maintenance instructions to identify special cleaning and maintenance requirements to maintain "conductivity" properties of the panel finish.

PART 2 PRODUCTS

2.1 FLOOR PANELS

2.1.1 Panel Construction

Except for edge panels, panel size shall be 600 by 600 mm. Finished panels shall be within a 0.25 mm tolerance of the nominal size, and shall be square within a tolerance of 0.38 mm measured corner-to-corner. The top surface of panels shall be flat within a 0.51 mm tolerance measured corner-to-corner. Panels shall be permanently marked to indicate load rating and model number.

2.1.1.1 Aluminum Panels

Aluminum panels shall be of die-cast or extruded construction.

2.1.1.2 Hollow Formed Steel Panels

Steel panels shall be of die-formed construction, consisting of a flat steel top sheet welded to one or more formed steel stiffener sheets. Panels shall be chemically cleaned, bonderized, and painted with the manufacturer's standard finish.

2.1.2 Floor Covering

Floor panels shall be surfaced with materials firmly bonded in place with waterproof adhesive. The electrical resistance shall remain stable over the life expectancy of the floor covering. Any antistatic agent used in the manufacturing process shall be an integral part of the material, and shall not be surface applied. Bolt heads or similar attachments shall not rise above the traffic surface.
2.1.2.1 High Pressure Laminate

High pressure laminate surfacing shall conform to NEMA LD 3, Grade HW 62. Total system electrical resistivity from the wearing surface of the floor to the ground connection shall be between 150,000 ohms and 20,000,000,000 ohms.

2.1.2.2 Conductive Surfacing

Conductive surfacing shall conform to NEMA LD 3, Grade HW 62. The total system electrical resistivity from the wearing surface of the floor to the ground connection shall be between 25,000 ohms and 1,000,000 ohms.

2.1.2.3 Conductive High Pressure Laminate

Conductive high pressure laminate floor surfacing shall conform to FS SS-T-312, Type III, Vinyl Tile and UL 779. The total system electrical resistivity from the wearing surface of the floor to the ground connection shall be between 25,000 ohms and 1,000,000 ohms.

2.1.3 Edge Strip

Panels shall be edged with extruded vinyl edge strips secured in place with mechanical interlock or adhesive bond, or shall be of a replaceable type. Top of strip shall be approximately 3 mm wide, and shall be flush with the floor surfacing.

2.1.4 Accessories

Registers, grilles, perforated panels, and plenum dividers shall be provided where indicated, and shall be the manufacturer's standard type. Registers, grilles, and perforated panels shall be designed to support the same static loads as floor panels without structural failure, and shall be capable of delivering the air volumes indicated. Registers and perforated panels shall be 25 percent open area and shall be equipped with adjustable dampers.

2.1.5 Resilient Base

Base shall be manufacturers standard rubber coved style (installed with resilient flooring). Base shall be 100 mm high and a minimum 3 mm thick. Job Formed corners shall be furnished.

2.1.6 Lifting Device

Each individual room shall be provided with one floor panel lifting device standard with the floor manufacturer. A minimum of two devices shall be furnished.

2.2 PANEL SUPPORT SYSTEM

2.2.1 Pedestals

Pedestals shall be of steel or aluminum or a combination thereof. Ferrous materials shall have a factory-applied corrosion-resistant finish. Pedestal base plates shall provide a minimum of 10,300 square millimeter of bearing surface and shall be a minimum of 3 mm thick. Pedestal shafts shall be threaded to permit height adjustment within a range of approximately 50 mm, to permit overall floor adjustment within plus or minus 2.5 mm of the
required elevation, and to permit leveling of the finished floor surface within 1.56 mm in 3000 mm in all directions. Locking devices shall be provided to positively lock the final pedestal vertical adjustments in place. Pedestal caps shall interlock with panels to preclude tilting or rocking of the panels.

2.2.2 Stringers

Stringers shall be of rolled steel or extruded aluminum, and shall interlock with the pedestal heads to prevent lateral movement.

2.2.3 Underfloor Bracing

Special bracing to resist the effects of seismic or other forces shall be in accordance with Section 13080 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT as shown on the approved detail drawings.

2.3 FASCIA

Aluminum or steel fascia plates shall be provided at open ends of floor, at sides of ramps and steps, and elsewhere as required to enclose the free area under the raised floor. Steel plates shall have a factory applied baked enamel finish. Finish on aluminum plates shall be as standard with the floor system manufacturer. Fascia plates shall be reinforced on the back, and shall be supported using the manufacturer's standard lateral bracing at maximum 1200 mm on center. Trim, angles, and fasteners shall be provided as required.

2.4 STEPS AND RAMPS

Steps and ramps shall be securely fastened to the raised floor system and to the structural floor. Construction shall include standard floor system components and custom components as required, and shall include all supports, fasteners, and trim necessary for a finished installation. Step nosings, threshold strips, and floor bevel strips shall be cast or extruded aluminum with nonslip traffic surfaces.

2.4.1 Steps

Height of risers shall not exceed 180 mm. Steps shall be designed to support a uniform load of 7.18k Pa. Treads shall be surfaced with the manufacturer's standard nonslip floor finish.

2.4.2 Ramps

Slope of ramps shall not exceed 25 mm rise to 300 mm of run. Ramps shall be designed to support the same loads as specified for floor panels. Ramps shall be surfaced with the manufacturer's standard nonslip floor finish.

2.5 RAILINGS

Railings shall be the double rail and post type, fabricated of at least 25 mm round or square seamless aluminum tubing with a satin natural anodized finish. At steps and ramps, the top rail shall be approximately 900 mm high and parallel to the incline. The top rail shall be 1050 mm high at open ends of the floor. Guardrails shall have intermediate rails or an ornamental pattern such that a sphere 100 m in diameter cannot pass thru.
2.6 TESTS

Raised flooring shall be factory tested by an independent laboratory at the same position and maximum design elevation and in the same arrangement as shown on the drawings for installation so as to duplicate service conditions as much as possible.

2.6.1 Load Tests

Floor panel, stringer, and pedestal testing shall be conducted in accordance with CISCA Access Floors.

2.7 TEST FOR BOND STRENGTH OF FACTORY INSTALLED FLOOR COVERING

The test panel shall be supported on pedestals and stringers as specified for the installed floor. The supports shall be braced as necessary to prevent sideways movement during the test. A test load of 4.45 kN shall be imposed on the test assembly through a hard plastic caster 75 mm in diameter and 25 mm wide. The caster shall be rolled completely across the center of the panel. The panel shall withstand 20 passes of the caster with no delamination or separation of the covering.

2.8 COLOR

Color shall be as indicated on the Drawings.

PART 3 EXECUTION

3.1 INSTALLATION

The floor system shall be installed in accordance with the manufacturer's instructions and with the approved detail drawings. Open ends of the floor, where the floor system does not abut wall or other construction, shall have positive anchorage and rigid support. Areas to receive raised flooring shall be maintained between 16 and 32 degrees C, and between 20 percent and 70 percent humidity for 24 hours prior to and during installation.

3.1.1 Preparation for Installation

The area in which the floor system is to be installed shall be cleared of all debris. Structural floor surfaces shall be thoroughly cleaned and all dust shall be removed. Floor coatings required for dust or vapor control shall be installed prior to installation of pedestals only if the pedestal adhesive will not damage the coating. If the coating and adhesive are not compatible, the coating shall be applied after the pedestals have been installed and the adhesive has cured.

3.1.2 Pedestals

Pedestals shall be accurately spaced, and shall be set plumb and in true alignment. Base plates shall be in full and firm contact with the structural floor, and shall be secured to the structural floor with adhesive.

3.1.3 Stringers
Stringers shall be interlocked with the pedestal caps to preclude lateral movement, and shall be spaced uniformly in parallel lines at the indicated elevation.

3.1.4 Auxiliary Framing

Auxiliary framing or pedestals shall be provided around columns and other permanent construction, at sides of ramps, at open ends of the floor, and beneath panels that are substantially cut to accommodate utility systems. Special framing for additional lateral support shall be as shown on the approved detail drawings.

3.1.5 Panels

The panels shall be interlocked with supports in a manner that will preclude lateral movement. Perimeter panels, cutout panels, and panels adjoining columns, stairs, and ramps must be fastened to the supporting components to form a rigid boundary for the interior panels. Floors shall be level within 2 mm measured with a 250 mm straightedge in all directions. Cut edges of steel and wood-core panels shall be painted as recommended by the panel manufacturer. Cut edges of composite panels shall be coated with a silicone rubber sealant or with an adhesive recommended by the panel manufacturer. Extruded vinyl edging shall be secured in place at all cut edges of all panel cut-outs to prevent abrasion of cables. Where the space below the floor is a plenum, cutouts for conduit and similar penetrations shall be closed using self-extinguishing sponge rubber.

3.1.6 Resilient Base

Base shall be provided at vertical wall intersections. Cracks and voids in walls and other vertical surfaces to receive base shall be filled with an approved filler. The base shall be applied after the floor system has been completely installed. Base shall be applied with adhesive in accordance with the manufacturer's recommendations.

3.1.7 Fascia Plates

Exposed floor ends and exposed openings of ramps and stairs shall be covered with aluminum or steel closures.

3.1.8 Repair of Zinc Coating

Zinc coating that has been damaged, and cut edges of zinc-coated components and accessories, shall be repaired by the application of a galvanizing repair paint. Areas to be repaired shall be thoroughly cleaned prior to application of the paint.

3.2 TESTING OF ELECTRICAL RESISTANCE

Testing of electrical resistance in the completed installation shall be conducted in the presence of the Contracting Officer. Testing shall be in accordance with NFPA 99 modified by placing one electrode on the center of the panel surface and connecting the other electrode to the metal flooring support. Measurements shall be made at five or more locations. Each measurement shall be the average of five readings of 15 seconds duration at each location. During the tests, relative humidity shall be 45 to 55 percent and temperature shall be 21 to 24 degrees C. The panels used in
the testing will be selected at random and will include two panels most
distant from the ground connection. Electrical resistance shall be measured
with instruments that are accurate within 2 percent and that have been
calibrated within 60 days prior to the performance of the resistance tests.
The metal-to-metal resistance from panel to supporting pedestal shall not
exceed 10 ohms. The resistance between the wearing surface of the floor
covering and the ground connection, as measured on the completed
installation, shall be in accordance with paragraph FLOOR COVERING.

3.3 CLEANING AND PROTECTION

3.3.1 Cleaning

The space below the completed floor shall be free of all debris. Before any
traffic or other work on the completed raised floor is started, the
completed floor shall be cleaned in accordance with the floor covering
manufacturer's instructions.

3.3.2 Protection

Traffic areas of raised floor systems shall be protected with a covering of
building paper, fiberboard, or other suitable material to prevent damage to
the surface. Cutouts shall be covered with material of sufficient strength
to support the loads to be encountered. Plywood or similar material shall
be placed on the floor to serve as runways for installation of heavy
equipment. Protection shall be maintained until the raised floor system is
accepted.

3.4 FIRE SAFETY

An automatic detection system shall be installed below the raised floor
meeting the requirements of NFPA 75 paragraph 6-2.1 and shall sound an
audible and visual alarm. Air space below the raised floor shall be
subdivided into areas not exceeding 929 squared meters by tight,
noncombustible bulkheads. All penetrations for piping and cables shall be
sealed to maintain bulkhead properties. Cabling and equipment installation
shall be in accordance with MIL-HDBK-1008C and ETL 93-5.

3.5 SPECIAL INSPECTION AND TESTING FOR SEISMIC-RESISTING SYSTEMS

Special inspections and testing for seismic-resisting systems and components
shall be done in accordance with Section 01452 SPECIAL INSPECTION FOR
SEISMIC-RESISTING SYSTEMS.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 36/A 36M (1997a)l Carbon Structural Steel
ASTM A 123/A 123M (1997ael) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
ASTM A 570/A 570M (1998) Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural Quality
ASTM A 653/A 653M (1999a) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
ASTM A 924/A 924M (1999) General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

AMERICAN WELDING SOCIETY (AWS)

AWS D1.2 (1997) Structural Welding Code - Aluminum

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)
1.2 GENERAL

All exterior signage shall be provided by a single manufacturer. Exterior signage shall be of the design, detail, sizes, types, and message content shown on the drawings, shall conform to the requirements specified, and shall be provided at the locations indicated. Signs shall be complete with lettering, framing as detailed, and related components for a complete installation.

1.3 CHARACTER PROPORTIONS AND HEIGHTS

Letters and numbers on indicated signs for handicapped-accessible buildings shall have a width-to-height ratio between 3:5 and 1:1 and a stroke-width-to-height ratio between 1:5 and 1:10. Characters and numbers on indicated signs shall be sized according to the viewing distance from which they are to be read. The minimum height is measured using an upper case letter "X". Lower case characters are permitted.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Approved Detail Drawings

Drawings showing elevations of each type of sign; dimensions, details, and methods of mounting or anchoring; shape and thickness of materials; and details of construction. A schedule showing the location, each sign type, and message shall be included.

SD-03 Product Data

Exterior Signs

Exterior signage schedule in electronic media with spread sheet format. Spread sheet shall include sign location, sign type, and message.

SD-04 Samples

Exterior Signs

One 300 mm length of framing for illuminated signs. One sample of each type of sign. Each sample shall consist of a complete sign panel with letters and symbols. Samples may be installed in the work, provided each sample is identified and location recorded.
Two samples of manufacturer's standard color chips for each material requiring color selection and 305 mm square sample of sign face color sample.

1.5 QUALIFICATIONS

Signs, plaques, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of the products. Items of equipment shall essentially duplicate equipment that has been in satisfactory use at least 2 years prior to bid opening.

1.6 DELIVERY AND STORAGE

Materials shall be wrapped for shipment and storage, delivered to the jobsite in manufacturer's original packaging, and stored in a clean, dry area in accordance with manufacturer's instructions.

1.7 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided.

PART 2 PRODUCTS

2.1 GRAPHICS FOR EXTERIOR SIGNAGE SYSTEMS

2.1.1 Graphics

Signage graphics shall conform to the following:

Pressure sensitive precision cut vinyl letters with reflecting surface shall be provided.

Message shall be applied to panel using the silkscreen process. Silkscreened images shall be executed with photo screens prepared from original art. Handcut screens will not be accepted. Original art shall be defined as artwork that is a first generation pattern of the original specified art. Edges and corners shall be clean. Rounded corners, cut or ragged edges, edge buildup, bleeding or surfaces pinholes will not be accepted.

2.1.2 Messages

See drawings and schedule for message content. Typeface: Helvetica medium. Type size as indicated.

2.2 ALUMINUM ALLOY PRODUCTS

Aluminum alloy products shall conform to ASTM B 209M for sheet or plate, ASTM B 221M for extrusions and ASTM B 26/B 26M or ASTM B 108 for castings. Aluminum extrusions shall be provided at least 3 mm thick and aluminum plate or sheet at least 16 gauge thick. Welding for aluminum products shall conform to AWS C1.1.

2.3 ORGANIC COATING
Surfaces shall be cleaned, primed, and given a semi-gloss baked enamel or two-component acrylic polyurethane finish in accordance with NAAMM AMP 505 with total dry film thickness not less than 0.030 mm.

2.4 STEEL PRODUCTS

Structural steel products shall conform to ASTM A 36/A 36M. Sheet and strip steel products shall conform to ASTM A 570/A 570M. Welding for steel products shall conform to AWS D1.2.

2.5 VINYL SHEETING FOR GRAPHICS

Vinyl sheeting shall be 5 to 7 year premium type and shall be in accordance with the flammability requirements of ASTM E 84 and shall be a minimum 0.08 mm film thickness. Film shall include a precoated pressure sensitive adhesive backing, Class 1, or positionable pressure sensitive adhesive backing, Class 3.

2.6 ANCHORS AND FASTENERS

Exposed anchor and fastener materials shall be compatible with metal to which applied and shall match in color and finish and shall be non-rusting, non-corroding, and non-staining. Exposed fasteners shall be tamper-proof.

2.7 SHOP FABRICATION AND MANUFACTURE

2.7.1 Factory Workmanship

Work shall be assembled in the shop, as far as practical, ready for installation at the site. Work that cannot be shop assembled shall be given a trial fit in the shop to ensure proper field assembly. Holes for bolts and screws shall be drilled or punched. Drilling and punching shall produce clean, true lines and surfaces. Welding to or on structural steel shall be in accordance with AWS D1.1. Welding shall be continuous along the entire area of contact. Exposed welds shall be ground smooth. Exposed surfaces of work shall have a smooth finish and exposed riveting shall be flush. Fastenings shall be concealed where practical. Items specified to be galvanized shall be by hot-dip process after fabrication if practical. Galvanization shall be in accordance with ASTM A 123/A 123M and ASTM A 653/A 653M, as applicable. Other metallic coatings of steel sheet shall be in accordance with ASTM A 924/A 924M. Joints exposed to the weather shall be formed to exclude water. Drainage and weep holes shall be included as required to prevent condensation buildup.

2.7.2 Dissimilar Materials

Where dissimilar metals are in contact, or where aluminum is in contact with concrete, mortar, masonry, wet or pressure-treated wood, or absorptive materials subject to wetting, the surfaces shall be protected with a coat of asphalt varnish or a coat of zinc-molybdate primer to prevent galvanic or corrosive action.

2.7.3 Shop Painting

Surfaces of miscellaneous metal work, except nonferrous metal, corrosion resisting steel, and zinc-coated work, shall be given one coat of zinc-molybdate primer or an approved rust-resisting treatment and metallic primer
in accordance with manufacturer's standard practice. Surfaces of items to be embedded in concrete shall not be painted. Upon completion of work, damaged surfaces shall be recoated.

2.8 COLOR, FINISH, AND CONTRAST

Color of products shall be as indicated on the Drawings. For buildings required to be handicapped-accessible, the characters and background of signs shall be eggshell, matte, or other non-glare finish. Characters and symbols shall contrast with their background - either light characters on a dark background or dark characters on a light background.

PART 3 EXECUTION

3.1 INSTALLATION

Signs shall be installed in accordance with approved manufacturer's instructions at locations shown on the approved detail drawings. Signs shall be installed plumb and true at mounting heights indicated, and by method shown or specified. Signs mounted on other surfaces shall not be installed until finishes on such surfaces have been completed.

3.1.1 Anchorage

Anchorage and fastener materials shall be in accordance with approved manufacturer's instructions for the indicated substrate. Anchorage not otherwise specified or indicated shall include slotted inserts, expansion shields, and powder-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine carriage bolts for steel; lag bolts and screws for wood.

3.1.2 Protection and Cleaning

The work shall be protected against damage during construction.

3.2 FIELD PAINTED FINISH

Miscellaneous metals and frames shall be field painted in accordance with Section 09900 PAINTING, GENERAL. Anodized metals, masonry, and glass shall be protected from paint. Finish shall be free of scratches or other blemishes.

-- End Of Section --
SECTION 10440

INTERIOR SIGNAGE

06/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings

Drawings showing elevations of each type of sign, dimensions, details and methods of mounting or anchoring, shape and thickness of materials, and details of construction. A schedule showing the location, each sign type, and message shall be included.

SD-03 Product Data

Installation

Manufacturer's descriptive data, catalogs cuts, installation and cleaning instructions.

SD-04 Samples

Interior Signage

One sample of each of the following sign types showing typical quality and workmanship. The samples may be installed in the work, provided each sample is identified and location recorded.

b. Door identification sign.
Two samples of manufacturer's standard color chips for each material requiring color selection.

1.3 GENERAL

Interior signage shall be of the design, detail, sizes, types, and message content shown on the drawings, shall conform to the requirements specified, and shall be provided at the locations indicated. Signs shall be complete with lettering, framing as detailed, and related components for a complete installation.

1.3.1 Character Proportions and Heights

Letters and numbers on indicated signs in handicapped-accessible buildings, which do not designate permanent rooms or spaces, shall have a width-to-height ratio between 3:5 and 1:1 and a stroke-width-to-height ratio between 1:5 and 1:10. Characters and numbers on indicated signs shall be sized according to the viewing distance from which they are to be read. The minimum height is measured using an upper case letter "X". Lower case characters are permitted. Suspended or projected overhead signs shall have a minimum character height of 75 mm.

1.3.2 Raised and Brailled Characters and Pictorial Symbol Signs (Pictograms)

Letters and numbers on indicated signs which designate permanent rooms and spaces in handicapped-accessible buildings shall be raised 0.8 mm upper case, sans serif or simple serif type and shall be accompanied with Grade 2 Braille. Raised characters shall be at least 16 mm in height, but no higher than 50 mm. Pictograms shall be accompanied by the equivalent verbal description placed directly below the pictogram. The border dimension of the pictogram shall be 152 mm minimum in height. Indicated accessible facilities shall use the international symbol of accessibility.

1.4 QUALIFICATIONS

Signs, plaques, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening.

1.5 DELIVERY AND STORAGE

Materials shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.1 ROOM IDENTIFICATION/DIRECTIONAL SIGNAGE SYSTEM

Signs shall be fabricated of Type ES/MP laminated thermosetting plastic suitable for engraving or acrylic plastic conforming to ANSI Z97.1.

2.1.1 Standard Room Signs

Signs shall consist of matte finish acrylic plastic or laminated thermosetting Type MP plastic.
2.1.2 Changeable Message Strip Signs

Changeable message strip signs shall consist of polycarbonate face with message slots and associated end caps, as detailed, for insertion of changeable message strips. Size of signs shall be as shown on the drawings. Individual message strips to permit removal, change, and reinsertion shall be provided as detailed. Corners of signs shall be squared.

2.1.3 Type of Mounting For Signs

Extruded aluminum brackets, mounted as shown, shall be furnished for hanging, projecting, and double-sided signs. Mounting for framed, hanging, and projecting signs shall be by mechanical fasteners. Surface mounted signs shall be provided with 1.6 mm thick vinyl foam tape. Sign inserts shall be provided with 1.6 mm thick foam tape.

2.1.4 Graphics

Signage graphics for modular identification/directional signs shall conform to the following:

Pressure sensitive prespaced and prealigned precision computer cut vinyl letters on release paper shall be provided. Edges and corners of finished letter forms and graphics shall be true and clean. Vinyl sheeting for graphics shall be 5 to 7 year premium type and shall be a minimum 0.08 mm film thickness. Film shall include a precoated pressure sensitive adhesive backing.

2.2 BUILDING DIRECTORIES

Building directories shall be lobby directories or floor directories, and shall be provided with a changeable directory listing consisting of the areas, offices and personnel located within the facility. Dimensions, details, and materials of sign shall be as shown on the drawings. Where required, message content shall be as shown on drawings and schedule.

2.2.1 Changeable Letter/Message Strip Directory System

Directory shall consist of a non-illuminated unit with step or groove, laser or rotary engraved removable name strips. Design of unit shall be as shown in the drawings.

2.2.1.1 Construction

The directory shall be constructed of an aluminum 50 mm deep frame with satin dark bronze anodized finish. Unit shall be surface mounted. Unit shall have a 75 mm high header with lettering as shown. Unit shall have a 9.3 mm face concealed hinge door and locking system with tempered safety glass. Door frame shall be aluminum with satin dark bronze.

2.2.1.2 Message Strips
Namestrips shall be updatable by user with coupon book reordering and with 5 to 7 day delivery. Namestrips shall be acrylic sized per manufacturer's standard.

2.3 FABRICATION AND MANUFACTURE

2.3.1 Factory Workmanship

Holes for bolts and screws shall be drilled or punched. Drilling and punching shall produce clean, true lines and surfaces. Exposed surfaces of work shall have a smooth finish and exposed riveting shall be flush. Fastenings shall be concealed where practicable.

2.3.2 Dissimilar Materials

Where dissimilar metals are in contact, the surfaces will be protected to prevent galvanic or corrosive action.

2.4 COLOR, FINISH, AND CONTRAST

Color shall be as indicated on the Drawings. In buildings required to be handicapped-accessible, the characters and background of signs shall be eggshell, matte, or other non-glare finish. Characters and symbols shall contrast with their background — either light characters on a dark background or dark characters on a light background.

PART 3 EXECUTION

3.1 INSTALLATION

Signs shall be installed in accordance with approved manufacturer's instructions at locations shown on the detail drawings. Illuminated signage shall be in conformance with the requirements of Section 16415 ELECTRICAL WORK, INTERIOR. Signs shall be installed plumb and true at mounting heights indicated, and by method shown or specified. Required blocking shall be installed as detailed. Signs which designate permanent rooms and spaces in handicapped-accessible buildings shall be installed on the wall adjacent to the latch side of the door. Where there is no wall space to the latch side of the door, including at double leaf doors, signs shall be placed on the nearest adjacent wall. Mounting location for such signage shall be so that a person may approach within 75 mm of signage without encountering protruding objects or standing within the swing of a door. Signs on doors or other surfaces shall not be installed until finishes on such surfaces have been installed. Signs installed on glass surfaces shall be installed with matching blank back-up plates in accordance with manufacturer's instructions.

3.1.1 Anchorage

Anchorage shall be in accordance with approved manufacturer's instructions. Anchorage not otherwise specified or shown shall include slotted inserts, expansion shields, and powder-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine carriage bolts for steel; lag bolts and screws for wood. Exposed anchor and fastener materials shall be compatible with metal to which applied and shall have matching color and finish. Where recommended by signage manufacturer, foam tape pads may be used for anchorage. Foam tape pads shall be minimum 2 mm thick.
closed cell vinyl foam with adhesive backing. Adhesive shall be transparent, long aging, high tech formulation on two sides of the vinyl foam. Adhesive surfaces shall be protected with a 0.13 mm green flatstock treated with silicone. Foam pads shall be sized for the signage as per signage manufacturer's recommendations. Signs mounted to painted gypsum board surfaces shall be removable for painting maintenance. Signs mounted to lay-in ceiling grids shall be mounted with clip connections to ceiling tees.

3.1.2 Protection and Cleaning

The work shall be protected against damage during construction. Hardware and electrical equipment shall be adjusted for proper operation. Glass, frames, and other sign surfaces shall be cleaned in accordance with the manufacturer's approved instructions.
SECTION 10800

TOILET ACCESSORIES

08/98

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM C 1036 (1991) Flat Glass

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Finishes
Accessory Items

Manufacturer's descriptive data and catalog cuts indicating materials of construction, fasteners proposed for use for each type of wall construction, mounting instructions, operation instructions, and cleaning instructions.

SD-04 Samples

Finishes
Accessory Items

One sample of each accessory proposed for use. Approved samples may be incorporated into the finished work, provided they are identified and their locations noted.

1.3 DELIVERY, STORAGE, AND HANDLING

Toilet accessories shall be wrapped for shipment and storage, delivered to the jobsite in manufacturer's original packaging, and stored in a clean, dry area protected from construction damage and vandalism.

1.4 WARRANTY
Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided.

PART 2 PRODUCTS

2.1 MANUFACTURED UNITS

Toilet accessories shall be provided where indicated in accordance with paragraph SCHEDULE. Porcelain type, tile-wall accessories are specified in Section 09310 CERAMIC TILE. Each accessory item shall be complete with the necessary mounting plates and shall be of sturdy construction with corrosion resistant surface.

2.1.1 Anchors and Fasteners

Anchors and fasteners shall be capable of developing a restraining force commensurate with the strength of the accessory to be mounted and shall be suited for use with the supporting construction. Exposed fasteners shall be of tamperproof design and shall be finished to match the accessory.

2.1.2 Finishes

Except where noted otherwise, finishes on metal shall be provided as follows:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel</td>
<td>No. 4 satin finish</td>
</tr>
<tr>
<td>Carbon steel, copper alloy, and brass</td>
<td>Chromium plated, bright</td>
</tr>
</tbody>
</table>

2.2 ACCESSORY ITEMS

Accessory items shall conform to the requirements specified below.

2.2.1 Grab Bar (GB)

Grab bar shall be 18 gauge, 32 mm OD Type 304 stainless steel. Grab bar shall be form and length as indicated. Concealed mounting flange shall have mounting holes concealed. Grab bar shall have peened non-slip surface. Installed bars shall be capable of withstanding a 2.225 kN vertical load without coming loose from the fastenings and without obvious permanent deformation. Space between wall and grab bar shall be 38 mm.

2.2.2 Mirrors, Glass (MG)

Glass for mirrors shall be Type I transparent flat type, Class 1-clear. Glazing Quality ql 6 mm thick conforming to ASTM C 1036. Glass shall be coated on one surface with silver coating, copper protective coating, and mirror backing paint. Silver coating shall be highly adhesive pure silver coating of a thickness which shall provide reflectivity of 83 percent or more of incident light when viewed through 6 mm thick glass, and shall be free of pinholes or other defects. Copper protective coating shall be pure bright reflective copper, homogeneous without sludge, pinholes or other defects, and shall be of proper thickness to prevent "adhesion pull" by
mirror backing paint. Mirror backing paint shall consist of two coats of special scratch and abrasion-resistant paint and shall be baked in uniform thickness to provide a protection for silver and copper coatings which will permit normal cutting and edge fabrication.

2.2.3 Paper Towel Dispenser

Paper towel dispensers shall be surface mounted and capable of holding a brown roll 203.2 mm x 243,840 mm roll.

2.2.4 Soap Dispenser (SD)

Soap dispenser shall be surface mounted and capable of holding a Kimberly Clark Sanifresh Triangle Lotion Soap, 16.9 fl. oz. for use with wall mounted dispensers.

2.2.5 Toilet Tissue Dispenser (TTD)

Toilet tissue holder shall be surface mounted. Holder shall be capable of holding a Kimberly Clark 609,600 mm 2 ply universal core 304.8 mm diameter roll.

PART 3 EXECUTION

3.1 INSTALLATION

Toilet accessories shall be securely fastened to the supporting construction in accordance with the manufacturer's approved instructions. Accessories shall be protected from damage from the time of installation until acceptance.

3.2 CLEANING

Material shall be cleaned in accordance with manufacturer's recommendations. Alkaline or abrasive agents shall not be used. Precautions shall be taken to avoid scratching or marring of surfaces.

3.3 SCHEDULE

As indicated on the Drawings.

-- End Of Section --
SECTION 12490

WINDOW TREATMENT

PART 1 WORK DESCRIPTION

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

FEDERAL SPECIFICATIONS (FS)

FS AA-V-00200 (Rev B) Venetian Blinds

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Approved Detail Drawings

Drawings showing fabrication and installation details. Drawings shall show layout and locations of track, direction of draw, mounting heights, and details.

SD-03 Product Data

Window Treatments

Hardware

Manufacturer’s data composed of catalog cuts, brochures, product information, and maintenance instructions.

SD-04 Samples

Window Treatments

Three samples of each type and color of window treatment. Blind slats or louvers shall be 150 mm in length for each color. Track shall be 150 mm in length. Shade material shall be minimum 150 x 150 mm in size.

1.3 GENERAL
Window treatment shall be provided, complete with necessary brackets, fittings, and hardware. Each window treatment type shall be a complete unit provided in accordance with paragraph WINDOW TREATMENT PLACEMENT SCHEDULE. Equipment shall be mounted and operated as indicated. Windows to receive a treatment shall be completely covered. The Contractor shall take measurements at the building and shall be responsible for the proper fitting and hanging of the equipment.

1.4 DELIVERY, STORAGE, AND HANDLING

Components shall be delivered to the jobsite in the manufacturer's original packaging with the brand or company name, item identification, and project reference clearly marked. Components shall be stored in a dry location that is adequately ventilated and free from dust, water, or other contaminants and shall have easy access for inspection and handling. Materials shall be stored flat in a clean dry area with temperature maintained above 10 degrees C.

1.5 FIELD MEASUREMENTS

The Contractor shall become familiar with details of the work, verify dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work.

1.6 WARRANTY

Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided.

PART 2 PRODUCTS

2.1 WINDOW BLINDS

Each blind, including hardware, accessory items, mounting brackets and fastenings, shall be provided as a complete unit produced by one manufacturer. All parts shall be one color unless otherwise shown, and match the color of the blind slat. Steel features shall be treated for corrosion resistance.

2.1.1 Horizontal Blinds

Horizontal blinds shall conform to FS AA-V-00200, Type II (25 mm (1 inch) slats), except as modified below. Blind units shall be capable of nominally 180 degree partial tilting operation and full-height raising. Blinds shall be inside mount as shown. Tapes for Type I slats shall be longitudinal reinforced vinyl plastic in 1-piece turn ladder construction.

2.1.1.1 Head Channel and Slats

Head channel shall be steel or aluminum nominal for Type II. Slats shall be aluminum, not less than 0.203 mm thick, and of sufficient strength to prevent sag or bow in the finished blind. A sufficient amount of slats shall be provided to assure proper control, uniform spacing, and adequate overlap.

2.1.1.2 Controls
The slats shall be tilted by a transparent tilting wand, hung vertically by its own weight, and shall swivel for easy operation. The tilter control shall be of enclosed construction. Moving parts and mechanical drive shall be made of compatible materials which do not require lubrication during normal expected life. The tilter shall tilt the slats to any desired angle and hold them at that angle so that any vibration or movement of ladders and slats will not drive the tilter and change the angle of slats. A mechanism shall be included to prevent over tightening. The wand shall be of sufficient length to reach to within 1500 mm of the floor.

2.1.1.3 Intermediate Brackets

Intermediate brackets shall be provided for installation of blinds over 1200 mm wide and shall be installed as recommended by the manufacturer.

2.1.1.4 Hold-Down Brackets

Universal type hold-down brackets for sill or jamb mount shall be provided.

2.2 COLOR

Color shall be as indicated on the Drawings.

PART 3 EXECUTION

3.1 INSTALLATION

Installation shall be in accordance with the approved detail drawings and manufacturer's installation instructions. Units shall be level, plumb, secure, and at proper height and location relative to window units. The Contractor shall furnish and install supplementary or miscellaneous items in total, including clips, brackets, or anchorages incidental to or necessary for a sound, secure, and complete installation. Installation shall not be initiated until completion of room painting and finishing operations. Upon completion of the installation, window treatments shall be adjusted for form and appearance, shall be in proper operating condition, and shall be free from damage or blemishes. Damaged units shall be repaired or replaced by the Contractor as directed by the Contracting Officer.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 36/A 36M (1997a) Carbon Structural Steel

ASTM A 53 (1999) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 153/A 153M (1998) Zinc Coating (Hot-Dip) on Iron and Steel Hardware

ASTM A 325M (1997) High-Strength Bolts for Structural Steel Joints (Metric)

ASTM A 500 (1999) Cold-Formed Welded and Seamless Carbon Structural Tubing in Rounds and Shapes

ASTM A 572/A 572M (1999) High-Strength Low-Alloy Columbium-Vanadium Structural Steel

ASTM A 603 (1998) Zinc-Coated Steel Structural Wire Rope

ASTM A 653/A 653M (1999) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM E 488 (1996) Strength of Anchors in Concrete and Masonry Elements

ASME INTERNATIONAL (ASME)

ASME B18.2.1 (1996) Square and Hex Bolts and Screws (Inch Series)

ASME B18.2.2 (1987; R 1999) Square and Hex Nuts (Inch Series)

CORPS OF ENGINEERS, HUNTSVILLE CENTER (CEHNC)

TI 809-04 (1998) Seismic Design for Buildings

1.2 SYSTEM DESCRIPTION

1.2.1 General Requirements

The requirements for seismic protection measures described in this section shall be applied to the mechanical equipment and systems outlined in Section 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT, the electrical equipment and systems outlined in Section 16070 SEISMIC PROTECTION FOR ELECTRICAL
EQUIPMENT, and the miscellaneous equipment and systems listed below. Seismic protection requirements shall be in accordance with TI 809-04 and additional data furnished by the Contracting Officer, and shall be provided in addition to any other requirements called for in other sections of these specifications. The design for seismic protection shall be based on a Seismic Use Group II building occupancy, Class C and on site response coefficients for \(S_{<SBS>} = 0.53 \) and \(S_{<SBS}>1 = 0.19 \). Resistance to lateral forces induced by earthquakes shall be accomplished without consideration of friction resulting from gravity loads. The basic force formulas, for Ground Motions A and B in Chapter 3 of TI 809-04, use the design spectral response acceleration parameters for the performance objective of the building, not for equipment in the building; therefore, corresponding adjustments to the formulas shall be required.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
- Bracing; G, A/E
- Resilient Vibration Isolation Devices; G, A/E
- Equipment Requirements; G, A/E

Detail drawings along with catalog cuts, templates, and erection and installation details, as appropriate, for the items listed. Submittals shall be complete in detail; shall indicate thickness, type, grade, class of metal, and dimensions; and shall show construction details, reinforcement, anchorage, and installation with relation to the building construction. For equipment and systems in buildings that have a performance objective higher than life-safety, the drawings shall be stamped by the registered engineer who stamps the calculations required above.

SD-03 Product Data
- Bracing; G, A/E
- Equipment Requirements; G, A/E

Copies of the design calculations with the detail drawings. Calculations shall be stamped by a registered engineer and shall verify the capability of structural members to which bracing is attached for carrying the load from the brace.

PART 2 PRODUCTS

2.1 BOLTS AND NUTS

Squarehead and hexhead bolts, and heavy hexagon nuts, ASME B18.2.1, ASME B18.2.2, or ASTM A 325M for bolts and nuts. Bolts and nuts used underground and/or exposed to weather shall be galvanized in accordance with ASTM A 153/A 153M.
2.2 SWAY BRACING

Material used for members listed in this section, shall be structural steel conforming with the following:

a. Plates, rods, and rolled shapes, ASTM A 36/A 36M. If the Contractor does the design, both ASTM A 36/A 36M and ASTM A 572/A 572M, grade 503 will be allowed.

b. Wire rope, ASTM A 603.

c. Tubes, ASTM A 500, Grade B.

d. Pipes, ASTM A 53, Type E or S, Grade B.

e. Light gauge angles, less than 6 mm thickness, ASTM A 653/A 653M.

PART 3 EXECUTION

3.1 BRACING

Bracing shall conform to the arrangements shown. Trapeze-type hanger shall be secured with not less than two 13 mm bolts.

3.2 BUILDING DRIFT

Sway braces for a piping run shall not be attached to two dissimilar structural elements of a building that may respond differentially during an earthquake unless a flexible joint is provided.

3.3 ANCHOR BOLTS

3.3.1 Cast-In-Place

Floor or pad mounted equipment shall use cast-in-place anchor bolts, except as specified below. One nut shall be provided on each bolt. Anchor bolts shall conform to ASTM A 307. Anchor bolts shall have an embedded straight length equal to at least 12 times nominal diameter of the bolt. Anchor bolts that exceed the normal depth of equipment foundation piers or pads shall either extend into concrete floor or the foundation shall be increased in depth to accommodate bolt lengths.

3.3.2 Expansion or Chemically Bonded Anchors

Expansion or chemically bonded anchors shall not be used unless test data in accordance with ASTM E 488 has been provided to verify the adequacy of the specific anchor and application. Expansion or chemically bonded anchors shall not be used to resist pull-out in overhead and wall installations if the adhesive is manufactured with temperature sensitive epoxies and the location is accessible to a building fire. Expansion and chemically bonded anchors shall be installed in accordance with the manufacturer's recommendations. The allowable forces shall be adjusted for the spacing between anchor bolts and the distance between the anchor bolt and the nearest edge, as specified by the manufacturer.

3.3.2.1 General Testing
Expansion and chemically bonded anchors shall be tested in place after installation. The tests shall occur not more than 24 hours after installation of the anchor and shall be conducted by an independent testing agency; testing shall be performed on random anchor bolts as described below.

3.3.2.2 Torque Wrench Testing

Torque wrench testing shall be done on not less than 50 percent of the total installed expansion anchors and at least one anchor for every piece of equipment containing more than two anchors. The test torque shall equal the minimum required installation torque as required by the bolt manufacturer. Torque wrenches shall be calibrated at the beginning of each day the torque tests are performed. Torque wrenches shall be recalibrated for each bolt diameter whenever tests are run on bolts of various diameters. The applied torque shall be between 20 and 100 percent of wrench capacity. The test torque shall be reached within one half turn of the nut, except for 9 mm sleeve anchors which shall reach their torque by one quarter turn of the nut. If any anchor fails the test, similar anchors not previously tested shall be tested until 20 consecutive anchors pass. Failed anchors shall be retightened and retested to the specified torque; if the anchor still fails the test it shall be replaced.

3.3.2.3 Pullout Testing

Expansion and chemically bonded anchors shall be tested by applying a pullout load using a hydraulic ram attached to the anchor bolt. At least 5 percent of the anchors, but not less than 3 per day shall be tested. The load shall be applied to the anchor without removing the nut; when that is not possible, the nut shall be removed and a threaded coupler shall be installed of the same tightness as the original nut. The test setup shall be checked to verify that the anchor is not restrained from withdrawing by the baseplate, the test fixture, or any other fixtures. The support for the testing apparatus shall be at least 1.5 times the embedment length away from the bolt being tested. Each tested anchor shall be loaded to 1 times the design tension value for the anchor. The anchor shall have no observable movement at the test load. If any anchor fails the test, similar anchors not previously tested shall be tested until 20 consecutive anchors pass. Failed anchors shall be retightened and retested to the specified load; if the anchor still fails the test it shall be replaced.

3.4 RESILIENT VIBRATION ISOLATION DEVICES

Where the need for these devices is determined, based on the magnitude of the design seismic forces, selection of anchor bolts for vibration isolation devices and/or snubbers for equipment base and foundations shall follow the same procedure as in paragraph ANCHOR BOLTS, except that an equipment weight equal to five times the actual equipment weight shall be used.

3.4.1 Resilient and Spring-Type Vibration Devices

Vibration isolation devices shall be selected so that the maximum movement of equipment from the static deflection point shall be 13 mm.

3.4.2 Multidirectional Seismic Snubbers
Multidirectional seismic snubbers employing elastomeric pads shall be installed on floor- or slab-mounted equipment. These snubbers shall provide 6 mm free vertical and horizontal movement from the static deflection point. Snubber medium shall consist of multiple pads of cotton duct and neoprene or other suitable materials arranged around a flanged steel trunnion so both horizontal and vertical forces are resisted by the snubber medium.

3.5 SWAY BRACES FOR PIPING

Transverse sway bracing for steel and copper pipe shall be provided at intervals not to exceed those shown on the drawings. Transverse sway bracing for pipes of materials other than steel and copper shall be provided at intervals not to exceed the hanger spacing as specified in Section 15400 PLUMBING, GENERAL PURPOSE. Bracing shall consist of at least one vertical angle 50 x 50 mm x 16 gauge and one diagonal angle of the same size.

3.5.1 Longitudinal Sway Bracing

Longitudinal sway bracing shall be provided in accordance with Section 15070 SEISMIC CONTROL FOR MECHANICAL EQUIPMENT.

3.5.2 Anchor Rods, Angles, and Bars

Anchor rods, angles, and bars shall be bolted to either pipe clamps or pipe flanges at one end and cast-in-place concrete or masonry insert or clip angles bolted to the steel structure on the other end. Rods shall be solid metal or pipe as specified below. Anchor rods, angles, and bars shall not exceed lengths given in the tabulation below.

3.5.3 Maximum Length for Anchor Braces

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (millimeters)</th>
<th>Maximum Length* (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angles</td>
<td>38 x 38 x 6</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>50 x 50 x 6</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>64 x 38 x 6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>75 x 64 x 6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>75 x 75 x 6</td>
<td>3.0</td>
</tr>
<tr>
<td>Rods</td>
<td>91</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.0</td>
</tr>
<tr>
<td>Flat Bars</td>
<td>38 x 6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>50 x 6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>50 x 10</td>
<td>0.5</td>
</tr>
<tr>
<td>Pipes (40s)</td>
<td>25</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.0</td>
</tr>
</tbody>
</table>

3.5.4 Bolts
Bolts used for attachment of anchors to pipe and structure shall be not less than 13 mm diameter.

3.6 SPECIAL INSPECTION AND TESTING FOR SEISMIC-RESISTING SYSTEMS

Special inspections and testing for seismic-resisting systems and components shall be done in accordance with Section 01452 SPECIAL INSPECTION FOR SEISMIC-RESISTING SYSTEMS.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI C135.30 (1988) Zinc-Coated Ferrous Ground Rods for Overhead or Underground Line Construction

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (1996; Errata 96-4) National Electrical Code

NFPA 780 (1997) Installation of Lightning Protection Systems

UNDERWRITERS LABORATORIES (UL)

UL 96 (1994; Rev thru Dec 1996) Lightning Protection Components

UL 96A (1994) Installation Requirements for Lightning Protection Systems

UL 467 (1993; Rev thru Aug 1996) Grounding and Bonding Equipment

1.2 GENERAL REQUIREMENTS

1.2.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work. No departures shall be made without the prior approval of the Contracting Officer.

1.2.2 System Requirements

The system furnished under this specification shall consist of the standard products of a manufacturer regularly engaged in the production of lightning protection systems and shall be the manufacturer's latest UL approved design. The lightning protection system shall conform to NFPA 70 and NFPA 780, UL 96 and UL 96A, except where requirements in excess thereof are specified herein.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

- **SD-02 Shop Drawings**
 - Drawings; GA

 Detail drawings consisting of a complete list of material, including manufacturer's descriptive and technical literature, catalog cuts, drawings, and installation instructions. Detail drawings shall demonstrate that the system has been coordinated and will function as a unit. Drawings shall show proposed layout and mounting and relationship to other parts of the work.

- **SD-07 Certificates**
 - Materials; GA

 Where material or equipment is specified to comply with requirements of UL, proof of such compliance. The label of or listing in UL Elec Const Dir will be acceptable evidence. In lieu of the label or listing, a written certificate from an approved nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of Underwriters Laboratories may be submitted.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 General Requirements

No combination of materials shall be used that form an electrolytic couple of such nature that corrosion is accelerated in the presence of moisture unless moisture is permanently excluded from the junction of such metals. Where unusual conditions exist which would cause corrosion of conductors, conductors with protective coatings or oversize conductors shall be used. Where a mechanical hazard is involved, the conductor size shall be increased to compensate for the hazard or the conductors shall be protected by covering them with molding or tubing made of wood or nonmagnetic material. When metallic conduit or tubing is used, the conductor shall be electrically connected at the upper and lower ends.

2.1.2 Main and Secondary Conductors

Conductors shall be in accordance with NFPA 780 and UL 96 for Class I, Class II, or Class II modified materials as applicable.
2.1.2.1 Copper

Copper conductors used on nonmetallic stacks shall weigh not less than 170 kg per 300 m, and the size of any wire in the cable shall be not less than 2.5 mm. The thickness of any web or ribbon used on stacks shall be not less than 4 mm. Counterpoise shall be copper conductors not smaller than 70 mm.

2.1.2.2 Aluminum

Aluminum shall not contact the earth nor shall it be used in any other manner that will contribute to rapid deterioration of the metal. Appropriate precautions shall be observed at connections with dissimilar metals. Aluminum conductors for bonding and interconnecting metallic bodies to the main cable shall be at least equivalent to strength and cross-sectional area of a 25 mm aluminum wire. When perforated strips are provided, strips that are much wider than solid strips shall be. A strip width that is at least twice that of the diameter of the perforations shall be used. Aluminum strip for connecting exposed water pipes shall be not less than 4 mm in thickness and at least 38.1 mm wide.

2.1.3 Air Terminals

Terminals shall be in accordance with UL 96 and NFPA 780. The tip of air terminals on buildings used for manufacturing, processing, handling, or storing explosives, ammunition, or explosive ingredients shall be a minimum of 600 mm above the ridge parapet, ventilator or perimeter. On open or hooded vents emitting explosive dusts or vapors under natural or forced draft, air terminals shall be a minimum of 1.5 m above the opening. On open stacks emitting explosive dusts, gases, or vapor under forced draft, air terminals shall extend a minimum of 4.5 m above vent opening. Air terminals more than 600 mm in length shall be supported by a suitable brace, with guides not less than one-half the height of the terminal.

2.1.4 Ground Rods

Rods made of copper-clad steel shall conform to UL 467 and galvanized ferrous rods shall conform to ANSI C135.30. Ground rods shall be not less than 19.1 mm in diameter and 3.048 m in length. Ground rods of copper-clad steel, stainless steel, galvanized ferrous, and solid copper shall not be mixed on the job.

2.1.5 Connectors

Clamp-type connectors for splicing conductors shall conform to UL 96, class as applicable, and, Class 2, style and size as required for the installation.

2.1.6 Lightning Protection Components

Lightning protection components, such as bonding plates, air terminal supports, chimney bands, clips, and fasteners shall conform to UL 96, classes as applicable.
PART 3 EXECUTION

3.1 INTEGRAL SYSTEM

3.1.1 General Requirements

The lightning protection system shall consist of air terminals, roof conductors, down conductors, ground connections, and grounds, electrically interconnected to form the shortest distance to ground. All conductors on the structures shall be exposed except where conductors are in protective sleeves exposed on the outside walls. Secondary conductors shall interconnect with grounded metallic parts within the building. Interconnections made within side-flash distances shall be at or above the level of the grounded metallic parts.

3.1.1.1 Air Terminals

Air terminal design and support shall be in accordance with NFPA 780. Terminals shall be rigidly connected to, and made electrically continuous with, roof conductors by means of pressure connectors or crimped joints of T-shaped malleable metal and connected to the air terminal by a dowel or threaded fitting. Air terminals at the ends of the structure shall be set not more than 600 mm from the ends of the ridge or edges and corners of roofs. Spacing of air terminals 600 mm in height on ridges, parapets, and around the perimeter of buildings with flat roofs shall not exceed 7.5 meters. In specific instances where it is necessary to exceed this spacing, the specified height of air terminals shall be increased not less than 50 mm for each 300 mm of increase over 7.5 meters. On large, flat or gently sloping roofs, as defined in NFPA 780, air terminals shall be placed at points of the intersection of imaginary lines dividing the surface into rectangles having sides not exceeding 15 m in length. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure. Metal projections and metal parts of buildings, smokestacks, and other metal objects that do not contain hazardous materials and that may be struck but not appreciably damaged by lightning, need not be provided with air terminals. However, these metal objects shall be bonded to the lightning conductor through a metal conductor of the same unit weight per length as the main conductor. Where metal ventilators are installed, air terminals shall be mounted thereon, where practicable. Any air terminal erected by necessity adjacent to a metal ventilator shall be bonded to the ventilator near the top and bottom. Where metal ventilators are installed with air terminals mounted thereon, the air terminal shall not be more than 610 mm away from the farther edge or corner. If the air terminal is farther than this distance, an additional air terminal shall be added in order to meet this requirement. Where metal ventilators are installed with air terminals mounted adjacent, the air terminal shall not be more than 610 mm away from the farther edge or corner. If the air terminal is farther than this distance, an additional air terminal shall be added in order to meet this requirement.

3.1.1.2 Roof Conductors

Roof conductors shall be connected directly to the roof or ridge roll. Sharp bends or turns in conductors shall be avoided. Necessary turns shall have a radius of not less than 200 mm. Conductors shall preserve a downward or horizontal course and shall be rigidly fastened every 900 mm along the
roof and down the building to ground. Metal ventilators shall be rigidly connected to the roof conductor at three places. All connections shall be electrically continuous. Roof conductors shall be cours ed along the contours of flat roofs, ridges, parapets, and edges; and where necessary, over flat surfaces, in such a way as to join each air terminal to all the rest. Roof conductors surrounding tank tops, decks, flat surfaces, and flat roofs shall be connected to form a closed loop.

3.1.1.3 Down Conductors

Down conductors shall be electrically continuous from air terminals and roof conductors to grounding electrodes in accordance with MIL-HDBK 419. Down conductors shall be cours ed over extreme outer portions of the building, such as corners, with consideration given to the location of ground connections and air terminals. Each building or structure shall have not less than two down conductors located as widely separated as practicable, at diagonally opposite corners. On rectangular structures having gable, hip, or gambrel roofs more than 35 m long, there shall be at least one additional down conductor for each additional 15 m of length or fraction thereof. On rectangular structures having French, flat, or sawtooth roofs exceeding 75 m in perimeter, there shall be at least one additional down conductor for each 30 m of perimeter or fraction thereof. On an L- or T-shaped structure, there shall be at least one additional down conductor; on an H-shaped structure, at least two additional down conductors; and on a wing-built structure, at least one additional down conductor for each wing. On irregularly shaped structures, the total number of down conductors shall be sufficient to make the average distance between them along the perimeter not greater than 30 meters. On structures exceeding 15 m in height, there shall be at least one additional down conductor for each additional 18 m of height or fraction thereof, except that this application shall not cause down conductors to be placed about the perimeter of the structure at intervals of less than 15 meters. Additional down conductors shall be installed when necessary to avoid "dead ends" or branch conductors ending at air terminals, except where the air terminal is on a roof below the main protected level and the "dead end" or branch conductor is less than 5 m in length and maintains a horizontal or downward coursing. Down conductors shall be equally and symmetrically spaced about the perimeter of the structure. Down conductors shall be protected by placing in rigid steel conduit for a minimum distance of 1800 mm 72 inches above finished grade level. If the conduit is metal, the down conductor shall be bonded at the top and bottom of the conduit.

3.1.1.4 Interconnection of Metallic Parts

Metal doors, windows, and gutters shall be connected directly to the grounds or down conductors using not smaller than No. 6 copper conductor, or equivalent. Conductors placed where there is probability of unusual wear, mechanical injury, or corrosion shall be of greater electrical capacity than would normally be used, or shall be protected. The ground connection to metal doors and windows shall be by means of mechanical ties under pressure, or equivalent.

3.1.1.5 Ground Connections

Ground connections comprising continuations of down conductors from the structure to the grounding electrode shall securely connect the down conductor and ground in a manner to ensure electrical continuity between the
two. All connections shall be of the clamp type. There shall be a ground connection for each down conductor. Metal water pipes and other large underground metallic objects shall be bonded together with all grounding mediums. Ground connections shall be protected from mechanical injury. In making ground connections, advantage shall be taken of all permanently moist places where practicable, although such places shall be avoided if the area is wet with waste water that contains chemical substances, especially those corrosive to metal.

3.1.1.6 Grounding Electrodes

A grounding electrode shall be provided for each down conductor located as shown. A driven ground shall extend into the earth for a distance of not less than 3.0 meters. Ground rods shall be set not less than 900 mm, nor more than 2.5 m, from the structures foundation. The complete installation shall have a total resistance to ground of not more than 10 ohms if a counterpoise is not used. Ground rods shall be tested individually prior to connection to the system and the system as a whole shall be tested not less than 48 hours after rainfall. When the resistance of the complete installation exceeds the specified value or two ground rods individually exceed 10 ohms, the Contracting Officer shall be notified immediately. A counterpoise, where required, shall be of 70 mm copper cable or equivalent material having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 600 mm deep at a distance not less than 900 mm nor more than 2.5 m from the nearest point of the structure. All connections between ground connectors and grounds or counterpoise, and between counterpoise and grounds shall be electrically continuous. Where so indicated on the drawings, an alternate method for grounding electrodes in shallow soil shall be provided by digging trenches radially from the building. The lower ends of the down conductors or their equivalent in the form of metal strips or wires are then buried in the trenches.

3.1.2 Metal Roofs

Wood-Frame, Wall-Bearing Masonry or Tile Structure with Metallic Roof and Nonmetallic Exterior Walls, or Reinforced Concrete Building with Metallic Roof: Metal roofs which are in the form of sections insulated from each other shall be made electrically continuous by bonding. Air terminals shall be connected to, and made electrically continuous with, the metal roof as well as the roof conductors and down conductors. Ridge cables and roof conductors shall be bonded to the roof at the upper and lower edges of the roof and at intervals not to exceed 30 meters. The down conductors shall be bonded to roof conductors and to the lower edge of the metal roof. Where the metal of the roof is in small sections, the air terminals and down conductors shall have connections made to at least four of the sections. All connections shall have electrical continuity and have a surface contact of at least 1935 square millimeters.

3.1.3 Metal Roofs With Metal Walls

The metal roof and the metal walls shall be bonded and made electrically continuous and considered as one unit. The air terminals shall be connected to and made electrically continuous with the metal roof as well as the roof and down conductors. All connections shall have electrical continuity and have a surface contact of at least 1935 square millimeters.
3.1.4 Steel Frame Building

The steel framework shall be made electrically continuous. Electrical continuity may be provided by bolting, riveting, or welding steel frame, unless a specific method is noted on the drawings. The air terminals shall be connected to the structural steel framework at the ridge. Short runs of conductors shall be used as necessary to join air terminals to the metal framework so that proper placing of air terminals is maintained. Separate down conductors from air terminals to ground connections are not required. Where a grounded metal pipe water system enters the building, the structural steel framework and the water system shall be connected at the point of entrance by a ground connector. Connections to pipes shall be by means of ground clamps with lugs. Connections to structural framework shall be by means of nut and bolt or welding. All connections between columns and ground connections shall be made at the bottom of the steel columns. Ground connections to grounding electrodes or counterpoise shall be run from not less than one-half of all the columns distributed equally around the perimeter of the structure at intervals averaging not more than 18 meters.

3.1.5 Tanks and Towers

3.1.5.1 Metal or Reinforced-Concrete Tanks and Towers

The metal or reinforcing steel shall be made electrically continuous. Electrical continuity may be provided by bolting, riveting, or welding metal and tying or clipping reinforcing bars, unless a specific method is noted on the drawings. Air terminals and down conductors are required except on bolted, riveted, or welded 4.8 mm minimum, steel plate tanks. Ground connections and grounding electrodes are not required on metal tanks that are electrically continuous with a metallic underground pipe system. On other structures, two ground connections shall be provided approximately 180 degrees apart, at the base of the structure. Where buried metal pipes enter the tank or tower, one ground connection shall be connected to them, approximately 300 mm below finished grade. Metal guy wires on tanks and towers shall be grounded. Metal guy wires or cables attached to steel anchor rods set in earth will be considered as grounded. Metal guy wires or cables set in concrete or attached to buildings or nonconducting supports shall be grounded to a ground rod driven full length into the ground.

3.1.6 Stacks

Metal guy wires for stacks shall be grounded. Metal guy wires or cables attached to steel anchor rods set in the earth will be considered as sufficiently well grounded. Metal guy wires or cables attached to anchor rods set in concrete or attached to buildings or nonconducting supports shall be grounded to a ground rod driven full length into the ground.

3.2 INTERCONNECTION OF METAL BODIES

Metal bodies of conductance shall be protected if not within the zone of protection of an air terminal. Metal bodies of conductance having an area of 0.258 square meters or greater or a volume of 0.0164 cubic meters or greater shall be bonded to the lightning protection system using main size conductors and a bonding plate having a surface contact area of not less than 1935.5 square millimeters. Provisions shall be made to guard against the corrosive effect of bonding dissimilar metals. Metal bodies of inductance shall be bonded at their closest point to the lightning
protection system using secondary bonding conductors and fittings. A metal body that exceeds 1.5 m in any dimension, that is situated wholly within a building, and that does not at any point come within 1.8 m of a lightning conductor or metal connected thereto shall be independently grounded.

3.3 FENCES

Except as indicated below, metal fences that are electrically continuous with metal posts extending at least 600 mm into the ground require no additional grounding. Other fences shall be grounded on each side of every gate. Fences shall be grounded by means of ground rods every 300 to 450 m of length when fences are located in isolated places, and every 150 to 225 m when in proximity (30 m or less) to public roads, highways, and buildings. All metal fences shall be grounded at or near points crossed by overhead lines in excess of 600 volts and at distances not exceeding 45 m on each side of line crossings.

3.4 INSPECTION

The lightning protection system will be inspected by the Contracting Officer to determine conformance with the requirements of this specification. No part of the system shall be concealed until so authorized by the Contracting Officer.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ALUMINUM ASSOCIATION (AA)

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AISC FCD (1995a) Quality Certification Program

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 36/A 36M (1997ael) Carbon Structural Steel
ASTM A 53/A 53M (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
ASTM A 252 (1998) Welded and Seamless Steel Pipe Piles
ASTM A 325M (1997) High-Strength Bolts for Structural Steel Joints (Metric)
ASTM A 463/A 463M (1999a) Steel Sheet, Aluminum-Coated by the Hot-Dip Process
ASTM A 490 (1997) Heat-Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength
<table>
<thead>
<tr>
<th>ASTM A 490M</th>
<th>(1993) High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 500</td>
<td>(1999) Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes</td>
</tr>
<tr>
<td>ASTM A 501</td>
<td>(1999) Hot-Formed Welded and Seamless Carbon Steel Structural Tubing</td>
</tr>
<tr>
<td>ASTM A 529/A 529M</td>
<td>(1996) High-Strength Carbon-Manganese Steel of Structural Quality</td>
</tr>
<tr>
<td>ASTM A 570/A 570M</td>
<td>(1998) Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural Quality</td>
</tr>
<tr>
<td>ASTM A 572/A 572M</td>
<td>(1999b) High-Strength Low-Alloy Columbium-Vanadium Structural Steel</td>
</tr>
<tr>
<td>ASTM A 588/A 588M</td>
<td>(1997a) High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 in. (100 mm) Thick</td>
</tr>
<tr>
<td>ASTM A 606</td>
<td>(1998) Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance</td>
</tr>
<tr>
<td>ASTM A 607</td>
<td>(1998) Steel, Sheet and Strip, High-Strength, Low-Alloy, Columbium or Vanadium, or Both, Hot-Rolled and Cold-Rolled</td>
</tr>
<tr>
<td>ASTM A 618</td>
<td>(1999) Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing</td>
</tr>
<tr>
<td>ASTM A 653/A 653M</td>
<td>(1999a) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process</td>
</tr>
<tr>
<td>ASTM A 792/A 792M</td>
<td>(1999) Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process</td>
</tr>
<tr>
<td>ASTM B 221M</td>
<td>(1996) Aluminum and Aluminum-Alloy Extruded Bars, rods, Wire, Profiles, and Tubes (Metric)</td>
</tr>
</tbody>
</table>

ASTM D 522 (1993a) Mandrel Bend Test of Attached Organic Coatings

ASTM D 610 (1995) Evaluating Degree of Rusting on Painted Steel Surfaces

ASTM D 714 (1987; R 1994e1) Evaluating Degree of Blistering of Paints

ASTM D 1654 (1992) Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments

ASTM D 3359 (1997) Measuring Adhesion by Tape Test

ASTM D 5894 (1996) Standard Practice for Cyclic Salt Fog/UV Exposure of Painted Metal,
(Alternating Exposures in a Fog/Dry Cabinet and a UV/Condensation Cabinet)

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

AMERICAN WELDING SOCIETY (AWS)

ENGINEERING TECHNICAL INSTRUCTIONS AND ENERGY SAVINGS ANALYSIS

TI 809-04 (1998) Seismic Design for Buildings

TI 809-07 (1998) Design of Cold-Formed Load Bearing Steel Systems and Masonry Veneer/Steel Stud Walls

MATERIAL HANDLING INDUSTRY (MHI)

MHI CMAA 70 (1994) Electric Overhead Traveling Cranes

METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)

SHEET METAL & AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Drawings

Detail drawings consisting of catalog cuts, design and erection drawings, and an isometric view of the roof showing the design wind uplift pressure and dimensions of edge and corner zones. Shop
painting and finishing specifications. Anchor bolt placement plan and column reactions.

SD-03 Product Data

Design Analysis

Design analysis (building and foundations including anchor bolt plans) as one package with the drawings.

Instruction Manuals

Manufacturer's literature for individual building component systems.

Erection

Manufacturer's erection instruction and erection drawings describing the preparation requirements, assembly sequence, temporary bracing, shoring, and related information necessary for erection of the metal building including its structural framework and components.

Qualifications

Qualifications of the manufacturer, the manufacturer's Representative when one is used, and qualifications and experience of the building erector. A brief list of locations where buildings of similar design have been used shall be included with the detail drawings and shall also include information regarding date of completion, name and address of owner, and how the structure is used.

SD-04 Samples

Accessories

One sample of each type of flashing, trim, closure, cap and similar items. Size shall be sufficient to show construction and configuration.

Roofing and Siding

One piece of each type and finish (exterior and interior) to be used, 225 mm long, full width. The sample for factory color finished covering shall be accompanied by certified laboratory test reports showing that the sheets to be furnished are produced under a continuing quality control program and that a representative sample consisting of not less than 5 pieces has been tested and has met the quality standards specified for factory color finish.

Fasteners

Two samples of each type to be used, with statement regarding intended use. If so requested, random samples of bolts, nuts, and washers as delivered to the job site shall be taken in the presence
of the Contracting Officer and provided to the Contracting Officer for testing to establish compliance with specified requirements.

Insulation

One piece of each type to be used, and descriptive data covering installation.

Gaskets and Insulating Compounds

Two samples of each type to be used and descriptive data.

Sealant

One sample, approximately 0.5 kg, and descriptive data.

Skylights

One piece, 225 mm long, full width.

Wall Liners

One piece, 225 mm long, full width.

SD-07 Certificates

Metal Building Systems

a. A Certificate from the metal building manufacturer stating that the metal building was designed from a complete set of the contract drawings and specifications and that the building furnished complies with the specified requirements.

b. Mill certification for structural bolts, framing steel, roofing and siding, and steel wall liner panels.

c. Warranty certificate. At the completion of the project the Contractor shall furnish signed copies of the 5-year Warranty for Metal Building System, a sample copy of which is attached to this section, the 20-year Manufacturer's Material Warranties, and the Manufacturer's 20-year System Weathertightness Warranty when one is required.

Insulation

Certificate attesting that the polyisocyanurate insulation furnished for the project contains recovered material, and showing an estimated percent of such recovered material.

1.3 GENERAL REQUIREMENTS

The metal building system covered under this specification shall be provided by a single manufacturer and shall include all components and assemblies that form a building. Structural Standing Seam Metal Roofing System, when specified, shall be furnished as part of a single manufacturer's system.
1.3.1 Building Configuration

Buildings shall have structural steel main building frames, and secondary framing including purlins and girts, engineered and fabricated by the building systems supplier. Buildings shall have vertical steel walls and gable roof system including gutters and downspouts. Roof slope shall be as shown on the drawings. Buildings shall be single-span structures with one of the following framing systems: self-framing. Building dimensions shall be not less than those indicated. The minimum inside clear dimensions shall be as shown on the drawings.

1.3.2 Qualifications

1.3.2.1 Manufacturer

Metal building shall be the product of a recognized steel building systems manufacturer who has been in the practice of manufacturing steel building systems for a period of not less than 5 years. The manufacturer shall be chiefly engaged in the practice of designing and fabricating steel building systems. The manufacturer shall be certified under the Metal Building Systems (MB) Certification Program, AISC FCD. Structural framing and covering shall be designed by a licensed Professional Engineer experienced in design of this work.

1.3.2.2 Installer

Erector shall have specialized experience in the erection of steel building systems for a period of at least 3 years. Framing shall be erected in accordance with MBMA Low Rise Manual, common industry practices and erection instructions describing the basic sequence of assembly, temporary bracing, shoring, and related information necessary for erection of the metal building including its structural framework and components. The erector shall furnish temporary guys and bracing where needed for squaring, plumbing, and securing the structural framing against loads acting on the exposed framing, such as wind loads and seismic forces, as well as loads due to erection equipment and erection operation. Bracing furnished by the manufacturer for the metal building system shall not be assumed to be adequate during erection. Structural members shall not be field cut or altered without approval of the metal building manufacturer. Welds, abrasions, and surfaces not shop primed shall be primed after erection.

1.3.2.3 Manufacturer's Representative

A representative designated by the building manufacturer, who is familiar with the design of the building supplied and experienced in the erection of metal buildings similar in size to the one required under this contract, shall be present at the job site during construction, from the start of the structural framing erection until completion of the installation of the exterior covering, to assure that the building is erected properly.

1.4 DESIGN REQUIREMENTS

Criteria and definitions shall be in accordance with MBMA Low Rise Manual, except criteria for seismic loads which shall be in accordance with TI 809-04 and all other loads and load combinations in accordance with ASCE 7.
1.4.1 Dead Loads

The dead load shall consist of the weight of all permanent construction such as roof, framing, covering members and all other materials of the building system.

1.4.2 Collateral Loads

Collateral load as indicated on the Drawings shall be applied to the entire structure to account for the weight of additional permanent materials other than the building system, such as sprinklers, mechanical systems, electrical systems, hung partitions, and ceilings. This allowance does not include the weight of hung equipment weighing 25 kg or more. Equipment loads of 25 kg or more shall be shown on the shop (detail) drawings and the structure (frame, purlins, girts) shall be strengthened as required. The Contractor is responsible for providing the building manufacturer the magnitude and approximate location of all concentrated loads greater than 25 kgs before design of the building commences.

1.4.3 Roof Live Loads

1.4.3.1 Uniform Loads

Uniform roof live loads, including maintenance traffic and construction loads, shall be determined and applied in accordance with ASCE 7.

1.4.3.2 Concentrated Loads

In addition to ASCE 7 roof live loads, a minimum design concentrated load of 1335 N shall be used to simulate a construction load on roof panels. The concentrated load shall be applied at the panel midspan and shall be resisted by a single standing seam metal roof panel, or a 610 mm wide corrugated metal panel, assumed to be acting as a beam. The undeformed shape of the panel shall be used to determine the section properties.

1.4.4 Roof Snow Loads

The design roof snow loads, including effects of drifting, shall be determined and applied in accordance with ASCE 7.

1.4.5 Wind Loads

Wind pressures shall be computed and applied in accordance with ASCE 7.

1.4.6 Seismic Loads

Seismic loads shall be computed in accordance with TI 809-04.

1.4.7 Framing and Structural Members

Structural steel members and their connections shall be designed in accordance with AISC ASD Spec S335 or AISC Pub No. S342 L. Structural cold-formed steel framing members and their connections shall be designed in accordance with TI 809-07. Aluminum structural members and their connections shall be designed in accordance with AA Design Manual. Maximum deflection under applied live load, snow, or wind load shall not exceed 1/180th of the span length. Members with openings in their webs shall be
designed with consideration of the additional stresses which will result due to the openings. Deflections of the steel framing above and along the side of commercially framed door openings shall be limited to a maximum allowable deflection of 1/360 of the opening width to ensure proper operation of the doors. The contractor shall include the loads that the door transfers to the building frame in the design. Framed openings shall be designed to structurally replace the covering and framing displaced. The subpurlin and/or purlin spacing shall not exceed 750 mm on centers at the corner, edge and ridge zones, and 1500 mm maximum on centers for the remainder of the roof. The maximum deflection of steel framing that provides lateral support for masonry veneer panels shall be 1/600 of the height of framing span.

1.4.8 Provisions for Gutters And Downspouts

Gutters and downspouts shall be designed according to the requirements of SMACNA Arch. Manual for storms which should be exceeded only once in 5 years and with adequate provisions for thermal expansion and contraction. Supports for gutters and downspouts shall be designed for the anticipated loads.

1.4.9 Drift Provisions

Lateral deflections, or drift, at the roof level of a structure in relation to the floor or slab on grade, caused by deflection of horizontal force resisting elements, shall conform to MBMA Low Rise Manual, unless otherwise indicated on the Drawings.

1.4.10 Grounding and Lightning Protection

Grounding and lightning protection shall be provided as specified in Section 13100 LIGHTNING PROTECTION SYSTEM.

1.5 DESIGN ANALYSIS

The design analysis shall be the design of a licensed Professional Engineer experienced in design of this work and shall include complete calculations for the building, its components, and the foundations. Foundations shown on the drawings are based on loads derived from a representative set of similar building types. The Contractor shall obtain the services of a licensed Professional Engineer to verify that the foundations shown are adequate for the building supplied using the criteria in paragraph Foundations. Formulas and references shall be identified. Assumptions and conclusions shall be explained, and cross-referencing shall be clear. Wind forces on various parts of the structure, both positive and negative pressure, shall be calculated with the controlling pressure summarized. Lateral forces due to seismic loading shall be calculated and tabulated for the various parts and portions of the building. Computer programmed designs shall be accompanied by stress values and a letter of certification, signed by a licensed Professional Engineer, stating the design criteria and procedures used and attesting to the adequacy and accuracy of the design. A narrative of the computer program delineating the basic methodology shall be included. Computer program output shall be annotated and supplemented with sketches to verify the input and output. Critical load conditions used in the final sizing of the members shall be emphasized. The design analysis shall include the name and office phone number of the designer, who shall function as a point of contact to answer questions during the detail drawing review.
1.6 DELIVERY AND STORAGE

Materials shall be delivered to the site in a dry and undamaged condition and stored out of contact with the ground. Materials other than framing and structural members shall be covered with weathertight coverings and kept dry. Storage accommodations for roofing and siding shall provide good air circulation and protection from surface staining.

1.7 WARRANTIES

The Metal Building System, composed of framing and structural members, roofing and siding, gutters and downspouts, accessories, fasteners, trim, and miscellaneous building closure items such as doors and windows (when furnished by the manufacturer) shall be warranted as described below against material and workmanship deficiencies, system deterioration caused by exposure to the elements and service design loads, leaks and wind uplift damage. Any emergency temporary repairs conducted by the owner shall not negate the warranties.

1.7.1 Prime Contractor's Weathertightness Warranty

The Metal Building System shall be warranted by the Contractor on a no penal sum basis for a period of five years against materials and workmanship deficiencies; system deterioration caused by exposure to the elements and/or inadequate resistance to specified service design loads, water leaks, and wind uplift damage. The Metal Building System covered under this warranty shall include but is not limited to the following: framing and structural members, roofing and siding panels and seams, interior or exterior gutters and downspouts, accessories, fasteners, trim, flashings and miscellaneous building closure items such as doors and windows (when furnished by the manufacturer), connectors, components, and fasteners, and other system components and assemblies installed to provide a weathertight system; and items specified in other sections of these specifications that become part of the metal building system. All material and workmanship deficiencies, system deterioration caused by exposure to the elements and/or inadequate resistance to specified service design loads, water leaks and wind uplift damage shall be repaired as approved by the Contracting Officer. See the attached Contractor's written warranty for issue resolution of warrantable defects. This warranty shall warrant and cover the entire cost of repair or replacement, including all material, labor, and related markups. The Contractor shall supplement this warranty with written warranties from the installer and/or system manufacturer, which shall be submitted along with Contractor's warranty. However, the Contractor is ultimately responsible for this warranty. The Contractor's written warranty shall be as outlined in attached WARRANTY FOR METAL BUILDING SYSTEMS, and start upon final acceptance of the facility. The Contractor shall provide a separate bond in an amount equal to the installed total metal building system cost in favor of the owner (Government) covering the Contractor's warranty responsibilities effective throughout the five year Contractor's warranty period for the entire metal building system as outlined above.

1.7.2 Manufacturer's Material and/or System Weathertightness Warranties

The Contractor shall furnish, in writing, the following manufacturer's material warranties to the Contracting Officer which cover all Metal Building System components:
a. A manufacturer’s 20 year material warranty warranting that the specified aluminum, zinc-coated steel, aluminum-zinc alloy coated steel or aluminum-coated steel will not rupture, structurally fail, fracture, deteriorate, or become perforated under normal design atmospheric conditions and service design loads. Liability under this warranty shall be limited exclusively to the cost of either repairing or replacing nonconforming, ruptured, perforated, or structurally failed securement system including fasteners and coil material.

b. A manufacturer’s 20 year exterior material finish warranty on the factory colored finish warranting that the finish, under normal atmospheric conditions at the site, will not crack, peel, or delaminate; chalk in excess of a numerical rating of eight, as determined by ASTM D 4214 test procedures; or change colors in excess of five CIE or Hunter Lab color difference (delta E) units in accordance with ASTM D 2244. Liability under this warranty is exclusively limited to replacing the defective coated material.

1.8 COORDINATION MEETING

A coordination meeting shall be held within 45 days after contract award for mutual understanding of the metal building system contract requirements. This meeting shall take place at the building site and shall include representatives from the Contractor, the roofing/metal building system manufacturer, the roofing/metal building supplier, the erector, the designer, and the Contracting Officer. All items required by paragraph SUBMITTALS shall be discussed, including applicable standard manufacturer shop drawings, and the approval process. The Contractor shall coordinate time and arrangements for the meeting.

PART 2 PRODUCTS

2.1 BUILDING COMPONENTS

Each piece or part of the assembly shall be clearly and legibly marked to correspond with the drawings.

2.2 FRAMING AND STRUCTURAL MEMBERS

Steel 3 mm or more in thickness shall conform to ASTM A 36/A 36M, ASTM A 529/A 529M, ASTM A 572/A 572M, or ASTM A 588/A 588M. Uncoated steel less than 3 mm in thickness shall conform to ASTM A 570/A 570M, ASTM A 606, or ASTM A 607. Galvanized steel shall conform to ASTM A 653/A 653M, G 90 coating designation, 1.143 mm minimum thickness. Aluminum-zinc coated steel shall conform to ASTM A 792/A 792M, AZ 55 coating designation, 1.143 mm minimum thickness. Aluminum sheet shall conform to ASTM B 209M, 0.813 mm minimum thickness. Aluminum structural shapes and tubes shall conform to ASTM B 221M, or ASTM B 308/B 308M. Structural pipe shall conform to ASTM A 53/A 53M, ASTM A 252, ASTM A 500, ASTM A 501, ASTM A 618, ASTM B 221M, ASTM B 241/B 241M or ASTM B 429. Holes for structural connections shall be made in the shop.

2.3 ROOFING AND SIDING

Roofing and siding shall be either steel or aluminum and shall have a factory color finish.
2.3.1 Roofing

Roofing is specified in Section 07416 STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM.

2.3.2 Siding

Length of sheet shall be sufficient to cover the entire height of any unbroken height of wall surface unless otherwise approved. Width of sheets with interlocking ribs shall provide not less than 305 mm of coverage in place. Provisions shall be made for thermal expansion and contraction consistent with the type of system to be used. Siding shall have interlocking ribs for securing adjacent sheets. Siding shall be fastened to framework using concealed fasteners.

2.3.3 Steel Panels

Steel roofing panels are specified in Section 07416 STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM. shall be zinc-coated steel conforming to ASTM A 653/A 653M, G 90 coating designation; aluminum-zinc alloy coated steel conforming to ASTM A 792/A 792M, AZ 55 coating; or aluminum-coated steel conforming to ASTM A 463/A 463M, Type 2, coating designation T2 E5. Panels shall be 0.610 mm thick minimum, except that when the mid field of the roof is subject to design wind uplift pressures of 2.87 kPa or greater or the steel covering is used as a diaphragm, the entire roof system shall have a minimum thickness of 0.762 mm. Prior to shipment, mill finish panels shall be treated to inhibit the formation of oxide corrosion. Panels that have become wet during shipment but have not started to oxidize shall be dried, and retreated in accordance with manufacturer's standard practice.

2.3.4 Factory Color Finish

Panels shall have a factory applied polyvinylidene fluoride finish on the exposed side. The exterior finish shall consist of a baked-on topcoat with an appropriate prime coat. Color shall match the color indicated on the drawings. The exterior coating shall be a nominal [0.025] [0.050] mm thickness consisting of a topcoat of not less than 0.018 mm dry film thickness and the paint manufacturer's recommended primer of not less than [0.005] [0.025] mm thickness. The interior color finish shall consist of a backer coat with a dry film thickness of 0.013 mm. The exterior color finish shall meet the test requirements specified below.

2.3.4.1 Salt Spray Test

A sample of the sheets shall withstand a cyclic corrosion test for a minimum of 2016 hours in accordance with ASTM D 5894, including the scribe requirement in the test. Immediately upon removal of the panel from the test, the coating shall receive a rating of not less than 10, no blistering, as determined by ASTM D 714; 10, no rusting, as determined by ASTM D 610 and a rating of 6, over 2.0 to 3.0 mm failure at scribe, as determined by ASTM D 1654.

2.3.4.2 Formability Test

When subjected to testing in accordance with ASTM D 522 Method B, 3 mm diameter mandrel, the coating film shall show no evidence of cracking to the naked eye.
2.3.4.3 Accelerated Weathering, Chalking Resistance and Color Change

A sample of the sheets shall be tested in accordance with ASTM D 4587. The coating shall withstand the weathering test without cracking, peeling, blistering, loss of adhesion of the protective coating, or corrosion of the base metal. Protective coating that can be readily removed from the base metal with tape in accordance with ASTM D 3359, Test Method B, shall be considered as an area indicating loss of adhesion. Following the accelerated weathering test, the coating shall have a chalk rating not less than No. 8 in accordance with ASTM D 4214 test procedures, and the color change shall not exceed 5 CIE or Hunter Lab color difference (delta E) units in accordance with ASTM D 2244. For sheets required to have a low gloss finish, the chalk rating shall be not less than No. 6 and the color difference shall be not greater than 7 units.

2.3.4.4 Humidity Test

When subjected to a humidity cabinet test in accordance with ASTM D 2247 for 1000 hours, a scored panel shall show no signs of blistering, cracking, creepage or corrosion.

2.3.4.5 Impact Resistance

Factory-painted sheet shall withstand direct and reverse impact in accordance with ASTM D 2794 13 mm diameter hemispherical head indenter, equal to 6.7 times the metal thickness in mm, expressed in Newton-meters, with no loss of adhesion.

2.3.4.6 Abrasion Resistance Test

When subjected to the falling sand test in accordance with ASTM D 968, Method A, the coating system shall withstand a minimum of 50 liters of sand before the appearance of the base metal. The term "appearance of base metal" refers to the metallic coating on steel or the aluminum base metal.

2.3.4.7 Pollution Resistance

Coating shall show no visual effects when covered spot tested in a 10 percent hydrochloric acid solution for 24 hours in accordance with ASTM D 1308.

2.3.5 Accessories

Flashing, trim, metal closure strips and curbs, fascia, caps, diverters, and similar metal accessories shall be the manufacturer's standard products. Exposed metal accessories shall be finished to match the building finish. Molded closure strips shall be bituminous-saturated fiber, closed-cell or solid-cell synthetic rubber or neoprene, or polyvinyl chloride premolded to match configuration of the roofing or siding and shall not absorb or retain water.

2.4 WALL LINERS

Wall liners shall be 0.6 mm thick minimum for aluminum or 0.45 mm thick minimum for steel with the same composition specified for siding, and formed or patterned to prevent waviness and distortion, and shall extend from floor
to as height as indicated on the Drawings. Matching metal trim shall be provided at base of wall liner, at top of wall liner, around openings in walls and over interior and exterior corners. Wall liners shall have the same factory color finish as specified for the exterior face of the wall panels. Colors shall be as indicated.

2.5 FASTENERS

Fasteners for standing seam metal roofs shall be in accordance with Section 07416 STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM.

2.5.1 Screws

Screws shall be as recommended by the manufacturer to meet the design strength requirements.

2.5.2 End-Welded Studs

Automatic end-welded studs shall be shouldered type with a shank diameter of not less than 5 mm and cap or nut for holding covering against the shoulder.

2.5.3 Explosive Actuated Fasteners

Fasteners for use with explosive actuated tools shall have a shank of not less than 3.68 mm with a shank length of not less than 13 mm for fastening panels to steel and not less than 25 mm for fastening panels to concrete.

2.5.4 Blind Rivets

Blind rivets shall be aluminum with 5 mm nominal diameter shank or stainless steel with 3 mm nominal diameter shank. Rivets shall be threaded stem type if used for other than the fastening of trim. Rivets with hollow stems shall have closed ends.

2.5.5 Bolts

Bolts shall be not less than 6 mm diameter, shouldered or plain shank as required, with proper nuts.

2.6 GUTTERS AND DOWNSPOUTS

Gutters and downspouts shall be fabricated of aluminum, zinc-coated steel or aluminum-zinc alloy coated steel and shall have manufacturer's factory color finish. Minimum uncoated thickness of materials shall be 0.455 mm for steel and 0.8128 mm for aluminum. All accessories necessary for the complete installation of the gutters and downspouts shall be furnished. Accessories shall include gutter straps, downspout elbows, downspout straps and fasteners fabricated from metal compatible with the gutters and downspouts.

2.7 INSULATION

Thermal resistance of insulation shall be not less than the R-values shown on the contract drawings. R-values shall be determined at a mean temperature of 24 degrees C in accordance with ASTM C 518. Insulation shall be a standard product with the insulation manufacturer, factory marked...
Identification shall be on individual pieces or individual packages. Blanket insulation shall have a facing as specified in paragraph VAPOR RETARDER. Roof and wall insulation, including facings, shall have a flame spread not in excess of 75 and a smoke developed rating not in excess of 150 when tested in accordance with ASTM E 84. The stated R-value of the insulation shall be certified by an independent Registered Professional Engineer if tests are conducted in the insulation manufacturer's laboratory.

2.7.1 Rigid Board Insulation

2.7.1.1 Polyisocyanurate

Polyisocyanurate insulation shall conform to ASTM C 1289, Type I, Class 2 (having a minimum recovered material content of 9 percent by weight of core material in the polyisocyanurate portion). For impermeable faced polyisocyanurate (Ex: aluminum foil) the maximum design R-value per 25 mm of insulation used shall be 1.27 mm.

2.7.1.2 Polystyrene

Insulation shall conform to ASTM C 578, Type IV.

2.7.1.3 Mineral Fiber

Insulation shall conform to ASTM C 612.

2.7.1.4 Blanket Insulation

Blanket insulation shall conform to ASTM C 991 or ASTM C 553.

2.7.1.5 Insulation Retainers

Retainers shall be type, size and design necessary to adequately hold the insulation and to provide a neat appearance. Metallic retaining members shall be nonferrous or have a nonferrous coating. Nonmetallic retaining members, including adhesives used in conjunction with mechanical retainers or at insulation seams, shall have a fire resistance classification not less than that permitted for the insulation.

2.8 SEALANT

Sealant shall be an elastomeric type containing no oil or asphalt. Exposed sealant shall be colored to match the applicable building color and shall cure to a rubber like consistency.

2.9 GASKETS AND INSULATING COMPOUNDS

Gaskets and insulating compounds shall be nonabsorptive and suitable for insulating contact points of incompatible materials. Insulating compounds shall be nonrunning after drying.

2.10 VAPOR RETARDER

2.10.1 Vapor Retarders as Integral Facing
Insulation facing shall have a permeability of [1.15] [_____] ng per Pa-second-square meter or less when tested in accordance with ASTM E 96. Facing shall be white reinforced polypropylene kraft laminate (PSK). Facings and finishes shall be factory applied.

2.10.2 Vapor Retarders Separate from Insulation

Vapor retarder material shall be polyethylene sheeting conforming to the requirements of ASTM D 4397. A single ply of 0.25 mm polyethylene sheet; or, at the option of the Contractor, a double ply of 0.15 mm polyethylene sheet shall be used. A fully compatible polyethylene tape shall be provided which has equal or better water vapor control characteristics than the vapor retarder material. A cloth industrial duct tape in a utility grade shall also be provided to use as needed to protect the vapor retarder from puncturing.

2.11 SHOP PRIMING

Ferrous surfaces shall be cleaned of oil, grease, loose rust, loose mill scale, and other foreign substances and shop primed. Primer coating shall be in accordance with the manufacturer's standard system.
wind and erection stresses. Supports for electric overhead traveling cranes shall be positioned and aligned in accordance with MHI CMMA 70.

3.1.2 Roofing and Siding Installation

Siding shall be applied with the longitudinal configurations in the vertical position. Roofing shall be applied with the longitudinal configurations in the direction of the roof slope. Accessories shall be fastened into framing members, except as otherwise approved. Closure strips shall be provided as indicated and where necessary to provide weathertight construction. Fastener and fastener spacing shall be in accordance with manufacture design.

3.1.3 Installation of Gutters and Downspouts

Gutters and downspouts shall be rigidly attached to the building. Spacing of cleats for gutters shall be 400 mm maximum. Spacing of brackets and spacers for gutters shall be 1 m maximum. Supports for downspouts shall be spaced according to manufacturer's recommendations.

3.1.4 Louvers and Ventilators

Louvers and ventilators shall be rigidly attached to the supporting construction to assure a weather tight installation.

3.1.5 Doors and Windows

Doors and windows, including frames and hardware, shall be securely anchored to the supporting construction, shall be installed plumb and true, and shall be adjusted as necessary to provide proper operation. Joints at doors and windows shall be sealed according to manufacturer's recommendations to provide weathertight construction.

3.1.6 Insulation Installation

Insulation shall be installed as indicated and in accordance with manufacturer's instructions.

3.1.6.1 Board Insulation with Blanket Insulation

Rigid or semirigid board insulation shall be laid in close contact. If more than one layer of insulation is required, joints in the second layer shall be offset from joints in the first layer. A layer of blanket insulation shall be placed over the rigid or semirigid board insulation to be compressed against the underside of the metal roofing to reduce thermal bridging, dampen noise, and prevent roofing flutter. This layer of blanket insulation shall be compressed a minimum of 50 percent.

3.1.6.2 Blanket Insulation

Blanket insulation shall be installed over the purlins and held tight against the metal roofing. It shall be supported by an integral facing or other commercially available support system.

3.1.7 Vapor Retarder Installation
3.1.7.1 Integral Facing on Blanket Insulation

Integral facing on blanket insulation shall have the facing lapped and sealed with a compatible tape to provide a vapor tight membrane.

3.1.7.2 Polyethylene Vapor Retarder

The polyethylene vapor retarder membrane shall be installed over the entire surface. A fully compatible polyethylene tape shall be used to seal the edges of the sheets to provide a vapor tight membrane. Sheet edges shall be lapped not less than 150 mm. Sufficient material shall be provided to avoid inducing stresses in the sheets due to stretching or binding. All tears or punctures that are visible in the finished surface at any time during the construction process shall be sealed with polyethylene tape.

3.1.8 Wall Liner

Wall liner shall be securely fastened into place in accordance with the manufacturer's recommendation and in a manner to present a neat appearance.

3.2 SPECIAL INSPECTION AND TESTING FOR SEISMIC-RESISTING SYSTEMS

Special inspections and testing for seismic-resisting systems and components shall be done in accordance with Section 01452 SPECIAL INSPECTION FOR SEISMIC-RESISTING SYSTEMS.

3.3 FIELD PAINTING

Immediately upon detection, abraded or corroded spots on shop-painted surfaces shall be wire brushed and touched up with the same material used for the shop coat. Shop-primed ferrous surfaces exposed on the outside of the building and all shop-primed surfaces of doors and windows shall be painted with two coats of an approved exterior enamel. Factory color finished surfaces shall be touched up as necessary with the manufacturer's recommended touch-up paint.
CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY
FOR
METAL BUILDING SYSTEM

FACILITY DESCRIPTION:

BUILDING NUMBER:

CORPS OF ENGINEERS CONTRACT NUMBER:

CONTRACTOR

CONTRACTOR:
ADDRESS:

POINT OF CONTACT:

TELEPHONE NUMBER:

OWNER

OWNER:
ADDRESS:

POINT OF CONTACT:

TELEPHONE NUMBER:

CONSTRUCTION AGENT

CONSTRUCTION AGENT:
ADDRESS:

POINT OF CONTACT:

TELEPHONE NUMBER:
CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY
FOR
METAL BUILDING SYSTEM
(continued)

THE METAL BUILDING SYSTEM INSTALLED ON THE ABOVE NAMED BUILDING IS WARRANTED BY FOR A PERIOD OF FIVE (5) YEARS AGAINST WORKMANSHIP AND MATERIAL DEFICIENCIES, WIND DAMAGE AND STRUCTURAL FAILURE WITHIN PROJECT SPECIFIED DESIGN LOADS, AND LEAKAGE. THE METAL BUILDING SYSTEM COVERED UNDER THIS WARRANTY SHALL INCLUDE, BUT SHALL NOT BE LIMITED TO, THE FOLLOWING: FRAMING AND STRUCTURAL MEMBERS, ROOFING AND SIDING PANELS AND SEAMS, INTERIOR OR EXTERIOR GUTTERS AND DOWNSPOUTS, ACCESSORIES, TRIM, FLASHINGS AND MISCELLANEOUS BUILDING CLOSURE ITEMS SUCH AS DOORS AND WINDOWS (WHEN FURNISHED BY THE MANUFACTURER), CONNECTORS, COMPONENTS, AND FASTENERS, AND OTHER SYSTEM COMPONENTS AND ASSEMBLIES INSTALLED TO PROVIDE A WEATHERTIGHT SYSTEM; AND ITEMS SPECIFIED IN OTHER SECTIONS OF THESE SPECIFICATIONS THAT BECOME PART OF THE METAL BUILDING SYSTEM. ALL MATERIAL AND WORKMANSHIP DEFICIENCIES, SYSTEM DETERIORATION CAUSED BY EXPOSURE TO THE ELEMENTS AND/OR INADEQUATE RESISTANCE TO SPECIFIED SERVICE DESIGN LOADS, WATER LEAKS AND WIND UPLIFT DAMAGE SHALL BE REPAIRED AS APPROVED BY THE CONTRACTING OFFICER.

ALL MATERIAL DEFICIENCIES, WIND DAMAGE, STRUCTURAL FAILURE AND LEAKAGE ASSOCIATED WITH THE METAL BUILDING SYSTEM COVERED UNDER THIS WARRANTY SHALL BE REPAIRED AS APPROVED BY THE CONTRACTING OFFICER. THIS WARRANTY SHALL COVER THE ENTIRE COST OF REPAIR OR REPLACEMENT, INCLUDING ALL MATERIAL, LABOR, AND RELATED MARKUPS. THE ABOVE REFERENCED WARRANTY COMMENCED ON THE DATE OF FINAL ACCEPTANCE ON AND WILL REMAIN IN EFFECT FOR STATED DURATION FROM THIS DATE.

SIGNED, DATED, AND NOTARIZED (BY COMPANY PRESIDENT)

________________________ ___
(Company President) (Date)
CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY
FOR
METAL BUILDING SYSTEM
(continued)

THE CONTRACTOR SHALL SUPPLEMENT THIS WARRANTY WITH WRITTEN WARRANTIES FROM THE MANUFACTURER AND/OR INSTALLER OF THE METAL BUILDING SYSTEM, WHICH SHALL BE SUBMITTED ALONG WITH THE CONTRACTOR’S WARRANTY. HOWEVER, THE CONTRACTOR WILL BE ULTIMATELY RESPONSIBLE FOR THIS WARRANTY AS OUTLINED IN THE SPECIFICATIONS AND AS INDICATED IN THIS WARRANTY.

EXCLUSIONS FROM COVERAGE

1. NATURAL DISASTERS, ACTS OF GOD (LIGHTNING, FIRE, EXPLOSIONS, SUSTAINED WIND FORCES IN EXCESS OF THE DESIGN CRITERIA, EARTHQUAKES, AND HAIL).

2. ACTS OF NEGLIGENCE OR ABUSE OR MISUSE BY GOVERNMENT OR OTHER PERSONNEL, INCLUDING ACCIDENTS, VANDALISM, CIVIL DISOBEDIENCE, WAR, OR DAMAGE CAUSED BY FALLING OBJECTS.

3. DAMAGE BY STRUCTURAL FAILURE, SETTLEMENT, MOVEMENT, DISTORTION, WARPAGE, OR DISPLACEMENT OF THE BUILDING STRUCTURE OR ALTERATIONS MADE TO THE BUILDING.

4. CORROSION CAUSED BY EXPOSURE TO CORROSIVE CHEMICALS, ASH OR FUMES GENERATED OR RELEASED INSIDE OR OUTSIDE THE BUILDING FROM CHEMICAL PLANTS, FOUNDRIES, PLATING WORKS, KILNS, FERTILIZER FACTORIES, PAPER PLANTS, AND THE LIKE.

5. FAILURE OF ANY PART OF THE BUILDING SYSTEM DUE TO ACTIONS BY THE OWNER WHICH INHIBIT FREE DRAINAGE FROM THE ROOF, AND GUTTERS AND DOWNSPOUTS; OR CONDITIONS WHICH CREATE PONDING WATER ON THE ROOF OR AGAINST THE BUILDING SIDING.

6. THIS WARRANTY APPLIES TO THE METAL BUILDING SYSTEM. IT DOES NOT INCLUDE ANY CONSEQUENTIAL DAMAGE TO THE BUILDING INTERIOR OR CONTENTS WHICH IS COVERED BY THE WARRANTY OF CONSTRUCTION CLAUSE INCLUDED IN THIS CONTRACT.

7. THIS WARRANTY CANNOT BE TRANSFERRED TO ANOTHER OWNER WITHOUT WRITTEN CONSENT OF THE CONTRACTOR AND THIS WARRANTY AND THE CONTRACT PROVISIONS WILL TAKE PRECEDENCE OVER ANY CONFLICTS WITH STATE STATUTES. REPORTS OF LEAKS AND BUILDING SYSTEM DEFICIENCIES SHALL BE RESPONDED TO WITHIN 48 HOURS OF RECEIPT OF NOTICE BY TELEPHONE OR IN WRITING FROM EITHER THE OWNER, OR CONTRACTING OFFICER. EMERGENCY REPAIRS, TO PREVENT FURTHER ROOF LEAKS, SHALL BE INITIATED IMMEDIATELY; A WRITTEN PLAN SHALL BE SUBMITTED FOR APPROVAL TO REPAIR OR REPLACE THIS SSSMR SYSTEM WITHIN SEVEN CALENDAR DAYS. ACTUAL WORK FOR PERMANENT REPAIRS OR REPLACEMENT SHALL BE STARTED WITHIN 30 DAYS AFTER RECEIPT OF NOTICE, AND COMPLETED WITHIN A REASONABLE TIME FRAME. IF THE CONTRACTOR FAILS TO ADEQUATELY RESPOND TO THE WARRANTY PROVISIONS, AS STATED
CONTRACTOR'S FIVE (5) YEAR NO PENAL SUM WARRANTY
FOR METAL BUILDING SYSTEM
(Exclusions from Coverage Continued)

-- End Of Section --
SECTION 13720

ELECTRONIC SECURITY SYSTEM

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI X3.154 (1988; R 1994) Office Machines and Supplies - Alphanumeric Machines-Keyboard Arrangement

CODE OF FEDERAL REGULATIONS (CFR)

47 CFR 15 Radio Frequency Devices

47 CFR 68 Connection of Terminal Equipment to the Telephone Network

ELECTRONIC INDUSTRIES ALLIANCE (EIA)

EIA 170 (1957) Electrical Performance Standards - Monochrome Television Studio Facilities

EIA ANSI/EIA/TIA-232-F (1997) Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Std 142 (1991) IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems

INTERNATIONAL TELECOMMUNICATION UNION (ITU)

ITU V.34 (1994) Data Communication Over the Telephone Network A Modem Operating at Data Signaling
Rates of up to 28,800 bits for use on the General Switched Telephone Network and on Leased Point-to-Point Two-Wire Telephone Type Circuits

ITU V.42 (1993) Data Communications Over the Telephone Network Error-Correcting Procedures for DCEs Using Asynchronous-to-Synchronous Conversion

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (1997) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA ICS 1 (1993) Industrial Control and Systems

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (1999) National Electrical Code<ADD>

UNDERWRITERS LABORATORIES (UL)

UL 294 (1999) Access Control System Units

UL 639 (1997; Rev thru Mar 1999) Intrusion Detection Units

UL 681 (1999) Installation and Classification of Burglar and Holdup Alarm Systems

UL 796 (1999) Printed-Wiring Boards

UL 1037 (1999) Antitheft Alarms and Devices

UL 1076 (1995; Rev thru Feb 1999) Proprietary Burglar Alarm Units and Systems

The Contractor shall provide an Electronic Security System (ESS) as described and shown including installation of any Government Furnished Equipment. All computing devices, as defined in 47 CFR 15, shall be certified to comply with the requirements for Class A computing devices and labeled as set forth in 47 CFR 15. Electronic equipment shall comply with 47 CFR 15.

1.2.1 Central Station

The central station shall be configured to provide operator interface, interaction, dynamic and real time monitoring, display, and control. The central station shall control system networks to interconnect all system components including subordinate or separate control stations, enrollment stations and field equipment.

1.2.2 Systems Networks
System networks shall interconnect all components of the system. These networks shall include communications between a central station and any subordinate or separate station, enrollment stations, local annunciation stations, portal control stations or redundant central stations. The systems network shall provide totally automatic communication of status changes, commands, field initiated interrupts and any other communications required for proper system operation. System communication shall not require operator initiation or response. System communication shall return to normal after any partial or total network interruption such as power loss or transient upset. The system shall automatically annunciate communication failures to the operator with identification of the communication link that has experienced a partial or total failure. A communications controller may be used as an interface between the central station display systems and the field device network. The communications controller shall provide those functions needed to attain the specified network communications performance.

1.2.2.1 Console Network

A console network, if required, shall provide communication between a central station and any subordinate or separate stations of the system. Where redundant central or parallel stations are required, the console network shall allow the configuration of stations as master and slave. The console network may be a part of the field device network or may be separate depending upon the manufacturer's system configuration.

1.2.2.2 Field Device Network

The field device network shall provide communication between a central control station and field devices of the system. The field device network shall be configured as shown in the drawings. Field devices shall consist of alarm annunciation local processors and entry control local processors. Each field device shall be interrogated during each interrogation cycle. The field device network shall provide line supervision that detects and annunciates communications interruptions or compromised communications between any field device and the central station.

1.2.3 Field Equipment

Field equipment shall include local processors, sensors and controls. Local processors shall serve as an interface between the central station and sensors and controls. Data exchange between the central station and the local processors shall include down-line transmission of commands, software and databases to local processors. The up line data exchange from the local processor to the central station shall include status data such as intrusion alarms, status reports and entry control records. Local processors are categorized as alarm annunciation or entry control.

1.2.4 System Definitions

1.2.4.1 Intrusion Alarm

An alarm resulting from the detection of a specified target, caused by an attempt to intrude into the protected area, or when entry into an entry controlled area is attempted without successfully using entry control procedures.
1.2.4.2 Nuisance Alarm
An alarm resulting from the detection of an appropriate alarm stimulus, but
which does not represent an attempt to intrude into the protected area.

1.2.4.3 False Alarm
An alarm when there is no alarm stimulus.

1.2.4.4 Duress Alarm
An alarm condition which results from a set of pre-established conditions such
as entering a special code into a keypad or by activating a switch. This
alarm category shall take precedence over other alarm categories.

1.2.4.5 Fail-Safe Alarm
An alarm resulting from detection of diminished functional capabilities.

1.2.4.6 Power Loss Alarm
An alarm resulting from a loss of primary power.

1.2.4.7 Entry Control Alarm
An alarm resulting from improper use of entry control procedures or equipment.

1.2.4.8 Identifier
A card credential, keypad personal identification number or code, biometric
characteristic or any other unique identification entered as data into the
entry control database for the purpose of identifying an individual.
Identifiers shall be used by the electronic security system for the purpose of
validating passage requests for areas equipped with entry control equipment.

1.2.4.9 Entry Control Devices
Any equipment which gives a user the means to input identifier data into the
entry control system for verification.

1.2.4.10 Facility Interface Device
A facility interface device shall be any type of mechanism which is controlled
in response to passage requests and allows passage through a portal.

1.2.5 Probability of Detection
Each zone shall have a continuous probability of detection greater than 90
percent and shall be demonstrated with a confidence level of 95 percent. This
probability of detection is defined as 49 successful detections out of 50
tests or 96 successful detections out of 100 tests.

1.2.6 False Alarm Rate

1.2.6.1 Interior
A false alarm rate of no more than 1 false alarm per sensor per 30 days at the specified probability of detection shall be provided.

1.2.6.2 Exterior

A false alarm rate of no more than 1 false alarm per sensor per 5 days at the specified probability of detection shall be provided.

1.2.7 Detection Resolution

The system shall have detection resolution sufficient to locate intrusions at each device and zone; and tampering at individual devices.

Electrically powered ESS equipment shall operate on 120 volt Hz ac sources as shown. Equipment shall be able to tolerate variations in the voltage source of plus or minus 10 percent, and variations in the line frequency of plus or minus 2 percent with no degradation of performance.

1.2.9 Power Line Surge Protection

Equipment connected to alternating current circuits shall be protected from power line surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used for surge protection.

1.2.10 Sensor and Device Wiring and Communication Circuit Surge Protection

Inputs shall be protected against surges induced on device wiring. Outputs shall be protected against surges induced on control and device wiring installed outdoors and as shown. Communications equipment shall be protected against surges induced on any communications circuit. Cables and conductors, except fiber optics, which serve as communications circuits from console to field equipment, and between field equipment, shall have surge protection circuits installed at each end. Protection shall be furnished at equipment, and additional triple electrode gas surge protectors rated for the application on each wireline circuit shall be installed within 1 m of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following two waveforms:

a. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 Volts and a peak current of 60 amperes.

b. An 8 microsecond rise time by 20 microsecond pulse width waveform with a peak voltage of 1000 Volts and a peak current of 500 amperes.

1.2.11 Power Line Conditioners

A power line conditioner shall be furnished for the console equipment and each local processor. The power line conditioners shall be of the ferro-resonant design, with no moving parts and no tap switching, while electrically isolating the secondary from the power line side. The power line conditioners shall be sized for 125 percent of the actual connected kVA load. Characteristics of the power line conditioners shall be as follows:

a. At 85 percent load, the output voltage shall not deviate by more than plus or minus 1 percent of nominal when the input voltage fluctuates between minus 20 percent to plus 10 percent of nominal.
b. During load changes of zero to full load, the output voltage shall not deviate by more than plus or minus 3 percent of nominal. Full correction of load switching disturbances shall be accomplished within 5 cycles, and 95 percent correction shall be accomplished within 2 cycles of the onset of the disturbance.

c. Total harmonic distortion shall not exceed 3-1/2 percent at full load.

1.2.12 Environmental Conditions

1.2.12.1 Interior, Controlled Environment

System components, except the console equipment installed in interior locations, having controlled environments shall be rated for continuous operation under ambient environmental conditions of 2 to 50 degrees C dry bulb and 20 to 90 percent relative humidity, non-condensing.

1.2.12.2 Interior, Uncontrolled Environment

System components installed in interior locations having uncontrolled environments shall be rated for continuous operation under ambient environmental conditions of minus 18 to plus 50 degrees C dry bulb and 10 to 95 percent relative humidity, non-condensing.

1.2.12.3 Exterior Environment

System components that are installed in locations exposed to weather shall be rated for continuous operation under ambient environmental conditions of minus 34 degrees C to 50 degrees C dry bulb and 10 to 95 percent relative humidity, condensing. In addition, the system components shall be rated for continuous operation when exposed to performance conditions as specified in UL 294 and UL 639 for outdoor use equipment. Components shall be rated for continuous operation when exposed to rain as specified in NEMA 250, winds up to 137 km per hr and snow cover up to 610 mm thick, measured vertically.

1.2.12.4 Hazardous Environment

System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers or flyings, shall be rated and installed according to Chapter 5 of the NFPA 70 and as shown.

1.2.12.5 Console

Console equipment, unless designated otherwise, shall be rated for continuous operation under ambient environmental conditions of 16 to 29 degrees C and a relative humidity of 20 to 80 percent.

All items of computer software and technical data (including technical data which relates to computer software), which is specifically identified in this specification shall be delivered in accordance with the CONTRACT CLAUSES, SPECIAL CONTRACT REQUIREMENTS, and in accordance with the Contract Data Requirements List (CDRL), DD FORM 1423, which is attached to and thereby made a part of this contract. All data delivered shall be identified by reference to the particular specification paragraph against which it is furnished.
1.3.1 Group I Technical Data Package

The data package shall include the following:

a. System block diagram.
b. Console installation, block diagrams, and wiring diagrams.
c. Local processor installation, typical block, and wiring diagrams.
d. Local processor physical layout and schematics.
e. Device wiring and installation drawings.
f. Details of connections to power sources, including power supplies and grounding.
g. Details of surge protection device installation.
h. Sensor detection patterns.

1.3.1.2 Manufacturer's Data

The data package shall include manufacturer's data for all materials and equipment, including terminal devices, local processors and central station equipment provided under this specification.

1.3.1.3 System Description and Analyses

The data package shall include system descriptions, analyses, and calculations used in sizing equipment specified. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance of this specification. The data package shall include the following:

a. Central processor memory size.
b. Communication speeds and protocol descriptions.
c. Hard disk size and configuration.
d. Floppy disk size and configuration.
e. Start-up operations.
f. Sample copy of each report provided.
g. Color photographs representative of typical graphics.

1.3.1.4 Software Data

The software data package shall consist of descriptions of the operation and capability of system, and application software as specified.

1.3.1.5 Certifications
Specified manufacturer's certifications shall be included with the data package certification.

1.3.1.6 Key Control Plan

The Contractor shall provide a key control plan. The key control plan shall include the following:

a. Procedures that will be used to log and positively control all keys during installation.

b. A listing of all keys and where they are used.

c. A listing of all persons allowed access to the keys.

1.3.2 Group II Technical Data Package

The Contractor shall prepare a report of "Current Site Conditions" to the Government documenting changes to the site, or conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions. The Contractor shall not correct any deficiency without written permission from the Government.

1.3.3 Group III Technical Data Package

The Contractor shall prepare test procedures and reports for the pre-delivery test.

1.3.4 Group IV Technical Data Package

The Contractor shall prepare test procedures and reports for the performance verification test and the endurance test. The Contractor shall deliver the performance verification test and endurance test procedures to the Government for approval.

1.3.4.1 Operation and Maintenance Manuals

A draft copy of the operation and maintenance manuals, as specified for the Group V technical data package, shall be delivered to the Government prior to beginning the performance verification test for use during site testing.

1.3.4.2 Training Documentation

Lesson plans and training manuals for the training phases, including type of training to be provided, and a list of reference material, shall be delivered for approval.

1.3.4.3 Data Entry

The Contractor shall enter all data needed to make the system operational. The Contractor shall deliver the data to the Government on data entry forms, utilizing data from the contract documents, Contractor's field surveys, and other pertinent information in the Contractor's possession required for complete installation of the data base. The Contractor shall identify and request from the Government, any additional data needed to provide a complete
and operational ESS. The completed forms shall be delivered to the Government for review and approval at least 30 days prior to the Contractor's scheduled need date.

The Contractor shall create and install the graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the Government, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 200 x 250 mm in size, of each type of graphic to be used for the completed system. The graphics examples shall be delivered to the Government for review and approval at least 30 days prior to the Contractor's scheduled need date.

Five copies of the final manuals as specified, bound in hardback, loose-leaf binders, shall be delivered to the Government within 30 days after completing the endurance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each subcontractor installing equipment and systems, and nearest service representative for each item of equipment. The manuals shall have a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include modifications made during installation, checkout, and acceptance. The number of copies of each manual to be delivered shall be as specified on DD FORM 1423.

1.3.5.1 Functional Design Manual

The functional design manual shall identify the operational requirements for the system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes.

1.3.5.2 Hardware Manual

A manual describing all equipment furnished including:

a. General description and specifications.

b. Installation and checkout procedures.

c. Equipment electrical schematics and layout drawings.

d. System schematics and layout drawings.

e. Alignment and calibration procedures.

f. Manufacturer's repair parts list indicating sources of supply.

g. Interface definition.

1.3.5.3 Software Manual
The software manual shall describe the functions of all software and shall include all other information necessary to enable proper loading, testing, and operation. The manual shall include:

a. Definition of terms and functions.
b. Use of system and applications software.
c. Procedures for system initialization, start-up and shutdown.
d. Alarm reports.
e. Reports generation.
f. Data base format and data entry requirements.
g. Directory of all disk files.
h. Description of all communication protocols, including data formats, command characters, and a sample of each type of data transfer.

1.3.5.4 Operator's Manual

The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:

b. System start-up and shutdown procedures.
c. Use of system, and applications software.
d. Recovery and restart procedures.
e. Graphic alarm presentation.
f. Use of report generator and generation of reports.
g. Data entry.
h. Operator commands.
i. Alarm and system messages and printing formats.
j. System entry requirements.

1.3.5.5 Maintenance Manual

The maintenance manual shall include descriptions of maintenance for all equipment including inspection, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.

1.3.5.6 Final System Drawings

The Contractor shall maintain a separate set of drawings, elementary diagrams and wiring diagrams of the system to be used for final system drawings. This set shall be accurately kept up-to-date by the Contractor with all changes and
additions to the ESS and shall be delivered to the Government with the final endurance test report. In addition to being complete and accurate, this set of drawings shall be kept neat and shall not be used for installation purposes. Final drawings submitted with the endurance test report shall be finished drawings on vellum and CD-ROM. CD-ROM files shall be in AutoCAD format, latest release.

1.4 TESTING

1.4.1 General

The Contractor shall perform site testing, and adjustment of the completed ESS. The Contractor shall provide personnel, equipment, instrumentation, and supplies necessary to perform testing. Written notification of planned testing shall be given to the Government at least 14 days prior to the test; notice shall not be given until after the Contractor has received written approval of the specific test procedures.

1.4.2 Test Procedures and Reports

Test procedures shall explain in detail, step-by-step actions and expected results, demonstrating compliance with the requirements specified. Test reports shall be used to document results of the tests. Reports shall be delivered to the Government within 7 days after completion of each test.

1.5 TRAINING

The Contractor shall conduct training courses for designated personnel in the maintenance and operation of the system as specified. The training shall be oriented to the specific system being installed. Training manuals shall be delivered for each trainee with 2 additional copies delivered for archiving at the project site. The manuals shall include an agenda, defined objectives for each lesson, and a detailed description of the subject matter for each lesson. The Contractor shall furnish audio-visual equipment and other training materials and supplies. Where the Contractor presents portions of the course by audio-visual material, copies of the audio-visual material shall be delivered to the Government either as a part of the printed training manuals or on the same media as that used during the training sessions. A training day is defined as 8 hours of classroom instruction, including 2 15-minute breaks and excluding lunchtime, Monday through Friday, during the daytime shift in effect at the training facility. For guidance in planning the required instruction, the Contractor shall assume that attendees will have a high school education or equivalent, and are familiar with ESS. Approval of the planned training schedule shall be obtained from the Government at least 30 days prior to the training.

1.5.2 Operator's Training I

The first course shall be taught at the project site for a period of 5 consecutive training days at least three months prior to the scheduled performance verification test. A maximum of six personnel shall attend this course. Upon completion of this course, each student, using appropriate documentation, shall be able to perform elementary operations with guidance and describe the general hardware architecture and functionality of the system. This course shall include:

 a. General System hardware architecture.
b. Functional operation of the system.

c. Operator commands.

d. Data base entry.

e. Reports generation.

f. Alarm reporting.

g. Diagnostics.

1.5.3 Operator's Training II

The second course shall be taught at the project site for a period of 5 consecutive training days during or after the Contractor's field testing, but before commencing the performance verification test. A maximum of 6 personnel shall attend the course. No part of the training given during this course will be counted toward completion of the performance verification test. The course shall include instruction on the specific hardware configuration of the installed system and specific instructions for operating the installed system. Upon completion of this course, each student shall be able to start the system, operate the system, recover the system after a failure, and describe the specific hardware architecture and operation of the system.

1.5.4 Operator's Training III

The third course shall be taught while the endurance test is in progress for a total of 16 hours of instruction per student, in time blocks of 4 hours. A maximum of 6 personnel shall attend the course. The schedule of instruction shall allow for each student to receive individual instruction for a 4-hour period in the morning (or afternoon) of the same weekday. The Contractor shall schedule his activities during this period so that the specified amount of time will be available during the endurance test for instructing the students. The course shall consist of hands-on training under the constant monitoring of the instructor. The instructor shall be responsible for determining the appropriate password to be issued to the student commensurate with each student's acquired skills at the beginning of each of these individual training sessions. Upon completion of this course, the students shall be fully proficient in the operation of the system.

1.5.5 System Manager Training

Three system managers shall be trained for at least 3 consecutive days. The system manager training shall consist of the operator's training and the following:

a. Enrollment/disenrollment.

b. Assignments of identifier data.

c. Assign operator password/levels.

d. Change database configuration.

e. Modify graphics.
f. Print special or custom reports.

g. System backup.

h. Any other functions necessary to manage the system.

1.5.6 Maintenance Personnel Training

The system maintenance course shall be taught at the project site after completion of the endurance test for a period of 5 training days. A maximum of 5 personnel, designated by the Government, will attend the course. The training shall include:

a. Physical layout of each piece of hardware.

b. Troubleshooting and diagnostics procedures.

c. Repair instructions.

d. Preventive maintenance procedures and schedules.

e. Calibration procedures. Upon completion of this course, the students shall be fully proficient in the maintenance of the system.

1.6.1 Signal and Data Transmission System (DTS) Line Supervision

All signal and DTS lines shall be supervised by the system. The system shall supervise the signal lines by monitoring the circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment. The system shall initiate an alarm in response to a current change of 10 percent or greater. The system shall also initiate an alarm in response to opening, closing, shorting, or grounding of the signal and DTS lines.

The Contractor shall provide DTS as recommended by the manufacturer.

1.8.1 Warranty Period

The Contractor shall provide services required and equipment necessary to maintain the entire system in an operational state as specified, for a period of 1 year after formal written acceptance of the system, and shall provide necessary material required for performing scheduled adjustments or other nonscheduled work.

1.8.2 Description of Work

The adjustment and repair of the system includes all computer equipment, software updates, communications transmission equipment and DTS, local processors, sensors and entry control, facility interface, and support equipment. Responsibility shall be limited to Contractor installed equipment. The manufacturer's required adjustments and other work as necessary shall be provided.

1.8.3 Personnel
Service personnel shall be certified in the maintenance and repair of similar types of equipment and qualified to accomplish work promptly and satisfactorily. The Government shall be advised in writing of the name of the designated service representative, and of any change in personnel.

1.8.4 Schedule of Work

The Contractor shall perform 2 minor inspections at 6 month intervals (or more often if required by the manufacturer), and 2 major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.

1.8.4.1 Minor Inspections

Minor inspections shall include visual checks and operational tests of console equipment, peripheral equipment, local processors, sensors, and electrical and mechanical controls. Minor inspections shall also include mechanical adjustments, new ribbons, and other necessary adjustments on printers.

1.8.4.2 Major Inspections

Major inspections shall include work described under paragraph Minor Inspections and the following work:

- a. Clean all system equipment and local processors, including interior and exterior surfaces.
- b. Perform diagnostics on all equipment.
- c. Check, walk test, and calibrate each sensor.
- d. Run all system software diagnostics and correct all diagnosed problems.
- e. Resolve any previous outstanding problems.
- f. Purge and compress data bases.

1.8.4.3 Scheduled Work

Scheduled work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.

The Government will initiate service calls when the system is not functioning properly. Qualified personnel shall be available to provide service to the complete system. The Government shall be furnished with a telephone number where the service supervisor can be reached at all times. Service personnel shall be at site within 2 hours after receiving a request for service. The system shall be restored to proper operating condition within 8 hours after service personnel arrive onsite.

1.8.6 Operation

Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable tests of the performance verification test.
1.8.7 Records and Logs

The Contractor shall keep records and logs of each task, and shall organize cumulative records for each component, and for the complete system chronologically. A continuous log shall be maintained for all devices. The log shall contain all initial settings. Complete logs shall be kept and shall be available for inspection on site, demonstrating that planned and systematic adjustments and repairs have been accomplished for the system.

1.8.8 Work Requests

The Contractor shall separately record each service call request, as received. The form shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing what has to be done, the amount and nature of the material to be used, the time and date work started, and the time and date of completion. The Contractor shall deliver a record of the work performed within 5 days after work is accomplished.

1.8.9 System Modifications

The Contractor shall make any recommendations for system modification in writing to the Government. System modifications shall not be made without prior approval of the Government. Any modifications made to the system shall be incorporated into the operation and maintenance manuals, and other documentation affected.

1.8.10 Software

The Contractor shall provide a description of all software updates to the Government, who will then decide whether or not they are appropriate for implementation. After notification by the Government, the Contractor shall implement the designated software updates and verify operation in the system. These updates shall be accomplished in a timely manner, fully coordinated with system operators, and shall be incorporated into the operation and maintenance manuals, and software documentation. There shall be at least 1 scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Contractor's software.

PART 2 PRODUCTS

2.1 MANUFACTURER

New equipment shall interface with the existing base central station equipment, Advantor. No substitutions.

2.2.1 Materials and Equipment

Units of the same type of equipment shall be products of a single manufacturer. All material and equipment shall be new and currently in production. Each major component of equipment shall have the manufacturer's model and serial number in a conspicuous place. System equipment shall conform to UL 294 and UL 1076.

2.2.2.1 Interior Sensor
Sensors to be used in an interior environment shall be housed in an enclosure that provides protection against dust, falling dirt, and dripping noncorrosive liquids.

2.2.2.2 Exterior Sensor

Sensors to be used in an exterior environment shall be housed in an enclosure that provides protection against windblown dust, rain and splashing water, and hose directed water. Sensors shall be undamaged by the formation of ice on the enclosure.

2.2.2.3 Interior Electronics

System electronics to be used in an interior environment shall be housed in enclosures which meet the requirements of NEMA 250 Type 12.

2.2.2.4 Exterior Electronics

System electronics to be used in an exterior environment shall be housed in enclosures which meet the requirements of NEMA 250 Type 4X.

2.2.2.5 Corrosion Resistant

System electronics to be used in a corrosive environment as defined in NEMA 250 shall be housed in metallic enclosures which meet the requirements of NEMA 250 Type 4X.

2.2.2.6 Hazardous Environment Equipment

System electronics to be used in a hazardous environment shall be housed in enclosures which meet the requirements of paragraph Hazardous Environment.

2.2.3 Nameplates

Laminated plastic nameplates shall be provided for local processors. Each nameplate shall identify the local processor and its location within the system. Laminated plastic shall be 3 mm thick, white with black center core. Nameplates shall be a minimum of 25 x 75 mm, with minimum 6 mm high engraved block lettering. Nameplates shall be attached to the inside of the enclosure housing the local processor. Other major components of the system shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a corrosion resistant plate secured to the item of equipment. Nameplates will not be required for devices smaller than 25 x 75 mm.

2.2.4 Tamper Provisions

2.2.4.1 Tamper Switches

Enclosures, cabinets, housings, boxes, and fittings having hinged doors or removable covers and which contain circuits or connections of the system and its power supplies, shall be provided with cover operated, corrosion-resistant tamper switches, arranged to initiate an alarm signal when the door or cover is moved. The enclosure and the tamper switch shall function together and shall not allow direct line of sight to any internal components before the switch activates. Tamper switches shall be inaccessible until the switch is
activated; have mounting hardware concealed so that the location of the switch cannot be observed from the exterior of the enclosure; be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating; shall be spring-loaded and held in the closed position by the door or cover; and shall be wired so that they break the circuit when the door or cover is disturbed.

a. Nonsensor Enclosures: Tamper switches on nonsensor enclosures which must be opened to make routine maintenance adjustments to the system and to service the power supplies shall be push/pull-set, automatic reset type.

b. Sensor Enclosures: Tamper switches on sensor enclosures which must be opened to make routine maintenance adjustments to the sensor shall be provided.

2.2.4.2 Enclosure Covers

Covers of pull and junction boxes provided to facilitate initial installation of the system need not be provided with tamper switches if they contain no splices or connections, but shall be protected by tack welding or brazing the covers in place or by tamper resistant security fasteners. Labels shall be affixed to such boxes indicating they contain no connections.

2.2.5.1 Locks

Locks shall be provided on system enclosures for maintenance purposes. Locks shall be UL listed, conventional key type lock having a combination of 5 cylinder pin and 5-point 3 position side bar. Keys shall be stamped "U.S. GOVT. DO NOT DUP." The locks shall be arranged so that the key can only be withdrawn when in the locked position. Maintenance locks shall be keyed alike and only 2 keys shall be furnished for all of these locks. These keys shall be controlled in accordance with the key control plan as specified in paragraph Key Control Plan.

2.2.5.2 Key-Lock-Operated Switches

Key-lock-operated switches required to be installed on system components shall be UL listed, conventional key type lock having a combination of 5 cylinder pin and 5-point 3 position side bar. Keys shall be stamped "U.S. GOVT. DO NOT DUP." Key-lock-operated switches shall be 2 position, with the key removable in either position. All key-lock-operated switches shall be keyed differently and only 2 keys shall be furnished for each key-lock-operated-switch. These keys shall be controlled in accordance with the key control plan as specified in paragraph Key Control Plan.

2.2.5.3 Construction Locks

If the Contractor requires locks during installation and construction, a set of temporary locks shall be used. The final set of locks installed and delivered to the Government shall not include any of the temporary locks.

2.2.6 System Components

System components shall be designed for continuous operation. Electronic components shall be solid state type, mounted on printed circuit boards conforming to UL 796. Printed circuit board connectors shall be plug-in, quick-disconnect type. Power dissipating components shall incorporate safety
margins of not less that 25 percent with respect to dissipation ratings, maximum voltages, and current carrying capacity. Control relays and similar switching devices shall be solid state type or sealed electro-mechanical.

2.2.6.1 Modularity

Equipment shall be designed for increase of system capability by installation of modular components. System components shall be designed to facilitate maintenance through replacement of modular subassemblies and parts.

2.2.6.2 Maintainability

Components shall be designed to be maintained using commercially available tools and equipment. Components shall be arranged and assembled so they are accessible to maintenance personnel. There shall be no degradation in tamper protection, structural integrity, EMI/RFI attenuation, or line supervision after maintenance when it is performed in accordance with manufacturer's instructions. The system shall be configured and installed to yield a mean time to repair (MTTR) of not more than 8 hours. Repair time is the clock time from when maintenance personnel gain entrance to the system and begin work, until the system is fully functional.

2.2.6.3 Interchangeability

The system shall be constructed with off-the-shelf components which are physically, electrically and functionally interchangeable with equivalent components as complete items. Replacement of equivalent components shall not require modification of either the new component or of other components with which the replacement items are used. Custom designed or one-of-a-kind items shall not be used. Interchangeable components or modules shall not require trial and error matching in order to meet integrated system requirements, system accuracy, or restore complete system functionality.

2.2.6.4 Product Safety

System components shall conform to applicable rules and requirements of NFPA 70, NFPA 72, NFPA 101, and UL 294. System components shall be equipped with instruction plates including warnings and cautions describing physical safety, and special or important procedures to be followed in operating and servicing system equipment.

2.2.7 Controls and Designations

Controls and designations shall be as specified in NEMA ICS 1.

2.2.8 Special Test Equipment

The Contractor shall provide all special test equipment, special hardware, software, tools, and programming or initialization equipment needed to start or maintain any part of the system and its components. Special test equipment is defined as any test equipment not normally used in an electronics maintenance facility.

2.2.9 Alarm Output

The alarm output of each sensor shall be a single pole double throw (SPDT) contact rated for a minimum of 0.25 A at 24 Volts dc.
2.3 CENTRAL STATION HARDWARE

The central station computer shall be a standard unmodified digital computer of modular design. The CPU word size shall be 64 bits or larger. The operating speed of the processor shall be at least 1 GHz.

2.3.1 Memory

The computer shall contain at least 512 megabytes of usable installed memory, expandable to a minimum of 1024 megabytes without additional chassis or power supplies.

2.3.2 Power Supply

The power supply shall have a minimum capacity of 250 Watts.

2.3.3 Serial Ports

a. Two EIA ANSI/EIA/TIA-232-F serial ports shall be provided for general use.

b. Adjustable data transmission rates from 9600 to 57.6 Kbps shall be selectable under program control.

c. Sixteen additional EIA ANSI/EIA/TIA-232-F serial ports shall be provided as part of a communications coprocessor. The coprocessor word size shall be 32 bytes or larger and the operating speed of the coprocessor shall be at least 66 MHZ. Communications with the field equipment shall be managed by this device. Multiplexed serial ports shall be expandable to 48 ports with 8 character transmit and receive buffers to each port. Total buffer size shall be a minimum of 1 megabyte.

2.3.4 Parallel Port

An enhanced parallel port shall be provided.

2.3.5 Color Monitor

The monitor shall be no less than 430 mm, with a minimum resolution of 1280 by 1024 pixels, noninterlaced, and a maximum dot pitch of 0.28 millimeters. The video card shall support at least 256 colors at a resolution of 1280 by 1024 at a minimum refresh rate of 70 Hz.

2.3.6 Keyboard A101

A keyboard having a minimum 64 character, standard ASCII character, based on ANSI X3.154 shall be furnished.

2.3.7 Enhancement Hardware

Enhancement hardware such as special function keyboards, special function keys, touch screen devices, or mouse shall be provided for frequently used operator commands such as: Help, Alarm Acknowledge, Place Zone In Access, Place Zone In Secure, System Test, Print Reports, Change Operator, Security Lighting Controls, and Display Graphics.
2.3.8 Disk Storage

A hard disk with controller having a maximum average access time of 10 milliseconds shall be provided. The hard disk shall provide a minimum of 40.0 gigabytes of formatted storage. Additionally, a PCMCIA slot with a removable 500 megabyte hard drive shall be provided.

2.3.9 Floppy Disk Drives

A high density floppy disk drive and controller in 90 mm size shall be provided.

2.3.10 Magnetic Tape System

A 4 mm cartridge magnetic tape system shall be provided. The system capacity shall be 8.0 gigabytes minimum per tape. Each tape shall be computer grade, in a rigid cartridge with spring-loaded cover and write-protect.

2.3.11 Modem

A modem shall be provided and operate at 56,000 bps, full duplex on circuits using asynchronous communications. Modem shall have error detection, auto answer/autodial, and call-in-progress detection. The modem shall meet the requirements of ITU V.34, ITU V.42 for error correction and ITU V.42 for data compression standards, and shall be suitable for operating on unconditioned voice grade telephone lines in conformance with 47 CFR 68.

2.3.12 Audible Alarm

The manufacturer's standard audible alarm shall be provided.

2.3.13 Mouse

A mouse with a minimum resolution of 400 dots per inch shall be provided.

2.3.14 CD-ROM Drive

A CD-ROM drive having a nominal storage capacity of 650 megabytes shall be provided. The CD-ROM drive shall have the following minimum characteristics:

 a. Data Transfer Rate: 1.2 Mbps.
 b. Average Access Time: 150 milliseconds.
 d. Data throughput: 1 Mbyte/second, minimum.

2.3.15 Dot Matrix Alarm Printer

A dot matrix alarm printer shall be provided and interconnected to the central station equipment. The dot matrix alarm printer shall have a minimum 96 character, standard ASCII character set, based on ANSI X3.154 and with graphics capability. The printer shall be able to print in both red and black without ribbon change. The printers shall have adjustable sprockets for paper width up to 11 inches, print at least 80 columns per line and have a minimum speed of 200 characters per second. Character spacing shall be selectable at
10, 12 or 17 characters per inch. The printers shall utilize sprocket-fed fan fold paper. The units shall have programmable control of top-of-form. Twenty-five thousand sheets of printer paper and 12 ribbons shall be provided after successful completion of the endurance test.

2.3.16 Report Printer

A report printer shall be provided and interconnected to the central station equipment. The printer shall be a laser printer with printer resolution of at least 600 dots per inch. The printer shall have at least 2 megabytes of RAM. Printing speed shall be at least 8 pages per minute with a 100 sheet paper cassette and with automatic feed. Two thousand sheets of paper and 5 toner cartridges shall be furnished after successful completion of the endurance test.

2.3.17 Controllers

Controllers required for operation of specified peripherals, serial, and parallel ports shall be provided.

2.3.18 Uninterruptible Power Supply (UPS)

A self contained UPS, suitable for installation and operation at the central station, shall be provided. The UPS shall be sized to provide a minimum of 6 hours of operation of the central station equipment. Equipment connected to the UPS shall not be affected by a power outage of a duration less than the rated capacity of the UPS. UPS shall be complete with necessary power supplies, transformers, batteries, and accessories and shall include visual indication of normal power operation, UPS operation, abnormal operation and visual and audible indication of low battery power. The UPS shall be as specified in Section 16265, UNINTERRUPTIBLE POWER SUPPLY (UPS) SYSTEM ABOVE 15 kVa CAPACITY. The UPS condition shall be monitored by the ESS and displayed at the Central Station.

Enrollment stations shall be provided and located as shown to enroll personnel into, and disenroll personnel from the system database. The enrollment equipment shall only be accessible to authorized entry control enrollment personnel. The Contractor shall provide enough credential cards for all personnel to be enrolled at the site plus an extra 50 percent for future use. The enrollment equipment shall include subsystem configuration controls and electronic diagnostic aids for subsystem setup and troubleshooting with the central station. A printer shall be provided for the enrollment station which meets the requirements of paragraph Report Printer.

2.3.20 Enrollment Center Accessories

A steel desk-type console, a swivel chair on casters and equipment racks shall be provided. The console shall be as specified in EIA ANSI/EIA-310-D and as shown. Equipment racks shall be as specified in EIA ANSI/EIA-310-D and as shown. All equipment, with the exception of the printers, shall be rack mounted in the console and equipment racks or as shown. The console and equipment racks and cabinets shall be color coordinated. A locking cabinet approximately 1.8 m high, 900 mm wide, and 600 mm deep with 3 adjustable shelves, and 2 storage racks for storage of disks, tapes, printouts, printer paper, ribbons, manuals, and other documentation shall be provided.
Secondary alarm annunciation console shall be located as shown. Hardware and software needed for the secondary alarm annunciation console shall be provided. The secondary alarm annunciation console shall allow the operator to duplicate all functions of the main operator interface, and shall show system status changes.

2.4 CENTRAL STATION SOFTWARE

The access control system software shall operate on Windows 98 and be manufactured by the Advantor Corporation or approved equal.

2.5 FIELD PROCESSING HARDWARE

2.5.1 Alarm Annunciation Local Processor

The alarm annunciation and entry control local processor shall be the Advantor Access Host Communicator or approved equal.

2.6.1 Balanced Magnetic Switch (BMS)

The BMS shall detect a 6 mm of separating relative movement between the magnet and the switch housing. Upon detecting such movement, the BMS shall transmit an alarm signal to the alarm annunciation system. BMS shall be manufactured by Sentrol, series 2700 or approved equal.

2.6.1.1 BMS Subassemblies

The BMS shall consist of a switch assembly and an actuating magnet assembly. The switch mechanism shall be of the balanced magnetic type. Each switch shall be provided with an overcurrent protective device, rated to limit current to 80 percent of the switch capacity. Switches shall be rated for a minimum lifetime of 1,000,000 operations. The magnet assembly shall house the actuating magnet.

2.6.1.2 Housing

The housings of surface mounted switches and magnets shall be made of nonferrous metal and shall be weatherproof. The housings of recess mounted switches and magnets shall be made of nonferrous metal or plastic.

2.6.1.3 Remote Test

A remote test capability shall be provided. The remote test shall be initiated when commanded by the alarm annunciation system. The remote test shall activate the sensor's switch mechanism causing an alarm signal to be transmitted to the alarm annunciation system. The remote test shall simulate the movement of the actuating magnet relative to the switch subassembly.

Duress alarm switches shall provide the means for an individual to covertly notify the alarm annunciation system that a duress situation exists.

2.6.2.1 Footrail

Footrail duress alarms shall be designed to be foot activated and floor mounted. No visible or audible alarm or noise shall emanate from the switch when activated. The switch housing shall shroud the activating lever to
prevent accidental activation. Switches shall be rated for a minimum lifetime of 50,000 operations.

2.6.2.2 Push-button

Latch push-button duress alarm switches shall be designed to be activated by depressing a push-button located on the duress switch housing. No visible or audible alarm or noise shall emanate from the switch. The switch housing shall shroud the activating button to prevent accidental activation. Switches shall be rated for a minimum lifetime of 50,000 operations.

2.6.3 Passive Infrared Motion Sensor

The passive infrared motion sensor shall detect changes in the ambient level of infrared emissions caused by the movement of a standard intruder within the sensor's field of view. Upon detecting such changes, the sensor shall transmit an alarm signal to the alarm annunciation system. The sensor shall detect a change in temperature of no more than 1.1 degrees C, and shall detect a standard intruder traveling within the sensor's detection pattern at a speed of 0.09 to 2.3 m/s across 2 adjacent segments of the field of view. Emissions monitored by the sensor shall be in the 8 to 14 micron range. The sensor shall be adjustable to obtain the coverage pattern shown. The sensor shall be equipped with a temperature compensation circuit.

2.6.3.1 Test Indicator, Passive Infrared

The passive infrared motion sensor shall be equipped with an LED walk test indicator. The walk test indicator shall not be visible during normal operations. When visible, the walk test indicator shall light when the sensor detects an intruder. The sensor shall either be equipped with a manual control, located within the sensor's housing, to enable/disable the test indicator or the test indicator shall be located within the sensor housing so that it can only be seen when the housing is open or removed.

2.6.3.2 Remote Test, Passive Infrared

A remote test capability shall be provided. The remote test hardware may be integral to the sensor or a separate piece of equipment. The remote test shall be initiated when commanded by the alarm annunciation system. The remote test shall excite the sensing element and associated electronics causing an alarm signal to be transmitted to the alarm annunciation system. The sensor stimulation generated by the remote test hardware shall simulate a standard intruder moving within the sensor's detection pattern.

The video motion sensor shall detect changes in the video signal within a user defined detection zone. The system shall detect changes in the video signal corresponding to a standard intruder moving within the defined detection zone and wearing clothing with a reflectivity that differs from that of the background scene by a factor of 2. All other changes in the video signal shall be rejected by the sensor. Upon detecting such changes, the sensor shall transmit an alarm signal to the alarm annunciation system. The sensor shall include the controls and method needed by the operator to define and adjust the sensor detection zone within the video picture. The number of detection zones, the size of the detection zones, and the sensitivity of the detection zones shall be user definable. The sensor shall be a modular system that allows for expansion or modification of the number of inputs. The video inputs shall accept composite video as defined in EIA 170. Sensor controls
shall be mounted on the front panel or in an adjacent rack panel. The sensor shall not require external sync for operation. One alarm output shall be provided for each video input. The number of video inputs and alarm outputs shall be as shown. All components, cables, power supplies, and other items needed for a complete video motion sensor shall be provided. Sensor equipment shall be rack mounted in a standard 19 inch rack as described in EIA ANSI/EIA-310-D. The rack shall include hardware required to mount the sensor components.

The access secure switch shall be used to arm and disarm the system and shall be manufactured by the Advantor Corporation or approved equal.

2.7 ENTRY CONTROL DEVICES

2.7.1 Card Readers and Credential Cards

Entry control card readers shall use unique coded data stored in or on a compatible credential card as an identifier. The card readers shall be proximity type, and shall incorporate built-in heaters or other cold weather equipment to extend the operating temperature range as needed for operation at the site. Communications protocol shall be compatible with the local processor. The Contractor shall furnish card readers to read [magnetic stripe passive proximity detection entry cards, and the matching credential cards. The cards shall contain coded data arranged as a unique identification code stored on or within the card, and of the type readable by the card readers. The Contractor shall include within the card's encoded data, a non-duplicated unique facility identification code common to all credential cards provided at the site. Enrollment equipment to support local encoding of badges including cryptographic and other internal security checks shall be supplied. Entry control card readers and cards shall be by HID corporation, ProxPro reader 5355 or approved equal.

Credential cards shall be dimensionally stable so that an undamaged card with deformations resulting from normal use shall be readable by the card reader.

2.7.1.2 Card Materials and Physical Characteristics

The credential card shall be abrasion resistant, non-flammable, and present no toxic hazard to humans when used in accordance with manufacturer's instructions. The credential card shall be impervious to solar radiation and the effects of ultra-violet light.

The credential card shall be of core and laminate or monolithic construction. Lettering, logos and other markings shall be hot stamped into the credential material or direct printed. The Contractor shall provide a means to allow onsite assembly and lamination of credential cards by Government personnel.

2.7.1.4 Card Durability and Maintainability

The credential cards shall be designed and constructed to yield a useful lifetime of at least 5000 insertions or swipes or 5 years whichever results in a longer period of time. The credential card shall be able to be cleaned by wiping the credential card with a sponge or cloth wet with a soap and water solution.

2.8 ENTRY CONTROL SOFTWARE
2.8.1 Electronic Entry Control System Capacities

The system shall be designed and configured to provide the following capacities.

The system shall be configured for 500 enrollees. The system shall provide a facility-tailorable reference file database containing personal, access authorization, identifier and verification data for each enrollee as required.

2.8.1.2 Transaction History File Size

The system capacity shall be at least the amount of transactions for the system during 1 year without any loss of transaction data.

2.8.2 Entry Control System Alarms

The system shall annunciate an alarm when the following conditions occur. Alarms shall be annunciated at the console both audibly and visually. An alarm report shall also be printed on the system printer. The alarm annunciation shall continue until acknowledged by the system operator. Only 1 control key shall be needed to acknowledge an alarm. The system shall control, monitor, differentiate, rank, annunciate, and allow operators to acknowledge, in real time, alarm signals generated by system equipment. The system shall also provide a means to define and customize the annunciation of each alarm type. The system shall use audio and visual information to differentiate the various types of alarms. Each alarm type shall be assigned an audio and a unique visual identifier.

2.8.2.1 Duress

The system shall annunciate a duress alarm when a duress code is entered at a keypad or a duress switch is activated. Duress alarms shall be annunciated in a manner that distinguishes them from all other system alarms. Duress alarms shall not be annunciated or otherwise indicated locally nor shall a duress alarm cause any special or unusual indications at the portal or area initiating the duress alarm. Individual privileges shall be carried out the same as an authorized entry to the protected area. Duress alarms shall only be annunciated at the central station and remote displays. Alarms shall be annunciated on the monitor and shall be logged on the printer.

2.8.2.2 Guard Tour

The system shall annunciate an alarm when a security guard does not arrive at a guard tour check point during the defined time window or if check points are passed out of the prescribed order.

2.8.2.3 Entry Denial

The system shall annunciate an alarm when an attempt has been made to pass through a controlled portal and entry has been denied.

2.8.2.4 Portal Open

The system shall annunciate an alarm when a controlled door has been open longer than a predefined time delay. The time delay shall be adjustable,
under operator control, over a range of at least 1 second to 1 minute with a maximum resolution of 1 second.

2.8.2.5 Bolt Not Engaged

The system shall annunciate an alarm when the bolt at a controlled door has been open longer than a predefined time delay and generate an entry control alarm. The time delay shall be adjustable, under operator control, over a range of at least 1 second to 1 minute with a maximum resolution of 1 second.

2.8.2.6 Strike Not Secured

The system shall annunciate an alarm when the strike at a controlled door has been left unsecured longer than a predefined time delay and generate an entry control alarm. The time delay shall be adjustable, under operator control, over a range of at least 1 second to 1 minute with a maximum resolution of 1 second.

2.8.2.7 Alarm Shunting/System Bypass

The system shall provide a means to ignore operator selected alarm types at operator selected doors in order to allow standard entry control procedures to be bypassed (shunted). Predefined alarm shunting shall only be available to system operators with the proper password. The system shall also provide for predefined alarm shunting based upon time zones. This capability shall only apply to the entry control alarm type.

2.9 WIRE AND CABLE

The Contractor shall provide all wire and cable not indicated as Government furnished equipment. Wiring shall meet NFPA 70 standards.

2.9.1 Communication Sensor Wiring

Sensor wiring shall be 20 AWG minimum, twisted and shielded, 2, 3, 4, or 6 pairs to match hardware or as recommended by the manufacturer. Multiconductor wire shall have an outer jacket of PVC.

2.9.2 Local Area Network (LAN) Cabling

LAN cabling shall be in accordance with EIA ANSI/TIA/EIA-568-A, category 6.

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

The Contractor shall install all system components, including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, IEEE C2 and as shown. The contractor shall furnish necessary interconnections, services, and adjustments required for a complete and operable system as specified and shown. Control signal, communications, and data transmission line grounding shall be installed as necessary to preclude ground loops, noise, and surges from adversely affecting system operation.

The contractor shall install the system in accordance with the standards for safety, NFPA 70, UL 681, UL 1037 and UL 1076, and the appropriate installation manual for each equipment type. Components within the system
shall be configured with appropriate service points to pinpoint system trouble in less than 20 minutes. Minimum size of conduit shall be 15 mm. DTS shall not be pulled into conduits or placed in raceways, compartments, outlet boxes, junction boxes, or similar fittings with other building wiring. Flexible cords or cord connections shall not be used to supply power to any components of the system, except where specifically noted. All other electrical work shall be as specified in Section 16415 and as shown. All system wiring shall be in a complete conduit system. Conduit shall be in a suitable trade size not smaller than 13 mm.

3.1.2 Enclosure Penetrations

Enclosure penetrations shall be from the bottom unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer, and in a manner that does not damage the cable.

3.1.3 Cold Galvanizing

Field welds and/or brazing on factory galvanized boxes, enclosures, conduits, etc., shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.

3.1.4 Site Conditions

The Contractor shall verify that site conditions are in agreement with the design package. The Contractor shall report any changes in the site, or conditions that will affect performance of the system to the Government in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Government.

3.1.5 Installation Software

The Contractor shall load software as specified and required for an operational system, including data bases and specified programs. Upon successful completion of the endurance test, the Contractor shall provide original and backup copies on CD-ROM of all accepted software, including diagnostics.

3.2 SYSTEM STARTUP

Satisfaction of the requirements below does not relieve the Contractor of responsibility for incorrect installations, defective equipment items, or collateral damage as a result of Contractor work/equipment. The Contractor shall not apply power to the system until after:

a. System equipment items and DTS have been set up in accordance with manufacturer's instructions.

b. A visual inspection of the system has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
c. System wiring has been tested and verified as correctly connected.

d. System grounding and transient protection systems have been verified as properly installed.

e. Power supplies to be connected to the system have been verified as the correct voltage, phasing, and frequency.

3.3 TESTING

3.3.1 General Requirements for Testing

The Contractor shall provide personnel, equipment, instrumentation, and supplies necessary to perform site testing. The Government will witness all performance verification and endurance testing. Written permission shall be obtained from the Government before proceeding with the next phase of testing. Original copies of all data produced during predelivery, performance verification and endurance testing, shall be turned over to the Government at the conclusion of each phase of testing, prior to Government approval of the test.

3.3.2 Contractor's Field Testing

The Contractor shall calibrate and test all equipment, verify DTS operation, place the integrated system in service, and test the integrated system. Ground rods installed by the Contractor shall be tested as specified in IEEE Std 142. The Contractor shall deliver a report describing results of functional tests, diagnostics, and calibrations, including written certification to the Government that the installed complete system has been calibrated, tested, and is ready to begin performance verification testing. The report shall also include a copy of the approved performance verification test procedure.

3.3.3 Performance Verification Test

The Contractor shall demonstrate that the completed system complies with the contract requirements. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The performance verification test, as specified, shall not be started until after receipt by the Contractor of written permission from the Government, based on the Contractor's written report. The report shall include certification of successful completion of testing as specified in paragraph Contractor's Field Testing, and upon successful completion of training as specified. The Government may terminate testing at any time when the system fails to perform as specified. Upon termination of testing by the Government or by the Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II. Upon successful completion of the performance verification test, the Contractor shall deliver test reports and other documentation as specified to the Government prior to commencing the endurance test.

3.3.4 Endurance Test

a. General: The Contractor shall demonstrate system reliability and operability at the specified throughput rates for each portal, and the Type I and Type II error rates specified for the completed system. The contractor
shall calculate false alarm rates and the system shall yield false alarm rates within the specified maximums at the specified probability of detection. The endurance test shall be conducted in phases as specified. The endurance test shall not be started until the Government notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. The Contractor shall provide 1 operator to operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing, in addition to any Government personnel that may be made available. The Government may terminate testing at any time the system fails to perform as specified. Upon termination of testing by the Government or by the Contractor, the Contractor shall commence an assessment period as described for Phase II. The Contractor shall verify the operation of each terminal device during the last day of the test. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Government prior to acceptance of the system.

b. Phase I Testing: The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized by the Government in writing. If the system experiences no failures during Phase I testing, the Contractor may proceed directly to Phase III testing after receipt by the Contractor of written permission from the Government.

c. Phase II Assessment: After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the Government. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and shall recommend the point at which testing should be resumed. After delivering the written report, the Contractor shall convene a test review meeting at the jobsite to present the results and recommendations to the Government. The meeting shall not be scheduled earlier than 5 business days after receipt of the report by the Government. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Government will determine the restart date, or may require that Phase I be repeated. If the retest is completed without any failures, the Contractor may proceed directly to Phase III testing after receipt by the Contractor of written permission from the Government.

d. Phase III Testing: The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized by the Government in writing.

e. Phase IV Assessment: After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of failures, repair failures, and deliver a written report to the Government. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and shall recommend the point at which testing should be resumed. After delivering the written report, the Contractor shall convene a test review meeting at the jobsite to present the results and recommendations to the Government. The meeting shall not be scheduled earlier than 5 business days after receipt of the report by the Government. As a part of this test
review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Government will determine the restart date, and may require that Phase III be repeated. The Contractor shall not commence any required retesting until after receipt of written notification by Government. After the conclusion of any retesting which the Government may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

f. Exclusions: The Contractor will not be held responsible for failures in system performance resulting from the following:

 (1) An outage of the main power in excess of the capability of any backup power source, provided that the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the ESS performed as specified.

 (2) Failure of a Government furnished communications circuit, provided that the failure was not due to Contractor furnished equipment, installation, or software.

 (3) Failure of existing Government owned equipment, provided that the failure was not due to Contractor furnished equipment, installation, or software.

-- End of Section --
Solicitation No. DACA03-02-B-0009

U.S. Army Corps of Engineers
Little Rock District

Volume No. 3 Specifications

C-130 J FLIGHT SIMULATOR FACILITY

LITTLE ROCK AIR FORCE BASE
PULASKI COUNTY, ARKANSAS

November 2001
INDEX OF TECHNICAL PROVISIONS

DIVISION 01 - GENERAL REQUIREMENTS
SECTION 01015 CONDITIONS
SECTION 01090 SOURCES FOR REFERENCE PUBLICATIONS
SECTION 01100 SPECIAL PROJECT PROCEDURES
SECTION 01270 MEASUREMENT AND PAYMENT
SECTION 01312 RESIDENT MANAGEMENT SYSTEM (RMS)
SECTION 01320 PROJECT SCHEDULE
SECTION 01330 SUBMITTAL PROCEDURES
SECTION 01410 ENVIRONMENT PROTECTION
SECTION 01415 METRIC MEASUREMENTS
SECTION 01451 CONTRACTOR QUALITY CONTROL
SECTION 01500 TEMPORARY CONSTRUCTION FACILITIES
SECTION 01510 GENERAL REQUIREMENTS
SECTION 01720 AS-BUILT DRAWINGS

DIVISION 02 - SITE WORK
SECTION 02220 DEMOLITION
SECTION 02230 CLEARING AND GRUBBING
SECTION 02300 EARTHWORK
SECTION 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS
SECTION 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS
SECTION 02364 TERMITICIDE TREATMENT MEASURES FOR SUBTERRANEAN TERMITE CONTROL
SECTION 02466 DRILLED FOUNDATION PIERS
SECTION 02510 WATER DISTRIBUTION SYSTEM
SECTION 02531 SANITARY SEwers
SECTION 02555 PREFABRICATED UNDERGROUND COOLING DISTRIBUTION SYSTEM
SECTION 02556 GAS DISTRIBUTION SYSTEM
SECTION 02621 FOUNDATION DRAINAGE SYSTEM
SECTION 02630 STORM-DRAINAGE SYSTEM
SECTION 02722 AGGREGATE BASE COURSE (ARKANSAS)
SECTION 02741 HOT-MIX ASPHALT (HMA) FOR ROADS
SECTION 02748 BITUMINOUS TACK AND PRIME COATS
SECTION 02754 CONCRETE PAVEMENTS FOR SMALL PROJECTS
SECTION 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS
SECTION 02763 PAVEMENT MARKINGS
SECTION 02770 CONCRETE SIDEWALKS AND CURBS AND GUTTERS
SECTION 02811 UNDERGROUND SPRINKLER SYSTEMS
SECTION 02821 FENCING
SECTION 02922 SODDING
SECTION 02930 EXTERIOR PLANTING

DIVISION 03 - CONCRETE
SECTION 03100 STRUCTURAL CONCRETE FORMWORK
SECTION 03150 EXPANSION JOINTS, CONTRACTION JOINTS, AND WATERSTOPS
SECTION 03200 CONCRETE REINFORCEMENT
SECTION 03300 CAST-IN-PLACE STRUCTURAL CONCRETE

DIVISION 04 - MASONRY
SECTION 04200 MASONRY
DIVISION 05 - METALS
 SECTION 05120 STRUCTURAL STEEL
 SECTION 05210 STEEL JOISTS
 SECTION 05300 STEEL DECKING
 SECTION 05400 COLD-FORMED STEEL FRAMING
 SECTION 05500 MISCELLANEOUS METAL

DIVISION 06 - WOODS & PLASTICS
 SECTION 06100 ROUGH CARPENTRY
 SECTION 06200 FINISH CARPENTRY

DIVISION 07 - THERMAL & MOISTURE PROTECTION
 SECTION 07110 BITUMINOUS DAMPROOFING
 SECTION 07132 BITUMINOUS WATERPROOFING
 SECTION 07212 MINERAL FIBER BLANKET THERMAL INSULATION
 SECTION 07214 BOARD AND BLOCK INSULATION
 SECTION 07416 STRUCTURAL STANDING SEAM METAL ROOF (SSSMR) SYSTEM
 SECTION 07600 SHEET METALWORK, GENERAL
 SECTION 07840 FIRESTOPPING
 SECTION 07900 JOINT SEALING

DIVISION 08 - DOORS & WINDOWS
 SECTION 08110 STEEL DOORS AND FRAMES
 SECTION 08120 ALUMINUM DOORS AND FRAMES
 SECTION 08162 HORIZONTAL SLIDING, ACCORDIAN TYPE FIRE DOORS
 SECTION 08210 WOOD DOORS
 SECTION 08360 SECTIONAL OVERHEAD DOORS
 SECTION 08700 BUILDERS' HARDWARE
 SECTION 08810 GLASS AND GLAZING

DIVISION 09 - FINISHES
 SECTION 09250 GYPSUM WALLBOARD
 SECTION 09310 CERAMIC TILE
 SECTION 09510 ACOUSTICAL CEILINGS
 SECTION 09650 RESILIENT FLOORING
 SECTION 09680 CARPET
 SECTION 09720 WALLCOVERINGS
 SECTION 09900 PAINTING, GENERAL

DIVISION 10 - SPECIALTIES
 SECTION 10101 MISCELLANEOUS ITEMS
 SECTION 10160 TOILET PARTITIONS
 SECTION 10260 WALL AND CORNER PROTECTION
 SECTION 10270 RAISED FLOOR SYSTEM
 SECTION 10430 EXTERIOR SIGNAGE
 SECTION 10440 INTERIOR SIGNAGE
 SECTION 10800 TOILET ACCESSORIES

DIVISION 12 - FURNISHINGS
 SECTION 12490 WINDOW TREATMENT

DIVISION 13 - SPECIAL CONSTRUCTION
 SECTION 13080 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT
 SECTION 13100 LIGHTNING PROTECTION SYSTEM
 SECTION 13120 STANDARD METAL BUILDING SYSTEMS
 SECTION 13720 ELECTRONIC SECURITY SYSTEM
SECTION 13851 FIRE DETECTION AND ALARM SYSTEM
SECTION 13920 FIRE PUMPS
SECTION 13930 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

DIVISION 14 - CONVEYING SYSTEMS
SECTION 14240 ELEVATORS, HYDRAULIC
SECTION 14602 CRANES, SINGLE-GIRDER BRIDGE, MONORAIL AND JIB

DIVISION 15 - MECHANICAL
SECTION 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT
SECTION 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS
SECTION 15190 GAS PIPING SYSTEMS
SECTION 15400 PLUMBING, GENERAL PURPOSE
SECTION 15569 WATER AND STEAM HEATING; OIL, GAS OR BOTH; UP TO 20 MBTUH
SECTION 15650 CENTRAL REFRIGERATED AIR-CONDITIONING SYSTEM
SECTION 15653 AIR-CONDITIONING SYSTEM (UNITARY TYPE)
SECTION 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM
SECTION 15951 DIRECT DIGITAL CONTROL FOR HVAC
SECTION 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS
SECTION 15995 COMMISSIONING OF HVAC SYSTEMS

DIVISION 16 - ELECTRICAL
SECTION 16070 SEISMIC PROTECTION FOR ELECTRICAL EQUIPMENT
SECTION 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL
SECTION 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND
SECTION 16403 MOTOR CONTROL CENTERS, SWITCHBOARDS AND PANELBOARDS
SECTION 16415 ELECTRICAL WORK, INTERIOR
SECTION 16445 TRANSIENT VOLTAGE SURGE SUPPRESSOR (TVSS)
SECTION 16710 PREMISES DISTRIBUTION SYSTEM
SECTION 16775 CABLE TV SYSTEMS

-- End of Table of Contents --
SECTION 13851

FIRE DETECTION AND ALARM SYSTEM

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 72 (1996; Errata) National Fire Alarm Code

1.2 DESCRIPTION

a. This section of the specification includes the furnishing, installation, connection and testing of the microprocessor controlled, intelligent reporting fire alarm equipment required to form a complete, operative, coordinated system. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, Fire Alarm Control Panel (FACP), auxiliary control devices, annunciators, and wiring as shown on the drawings and specified herein.

b. The fire alarm system shall comply with requirements of 1993 NFPA Standard 72 for Protected Premises Signaling Systems except as modified and supplemented by this specification. The system shall be electrically supervised and monitor the integrity of all conductors.

c. The FACP and peripheral devices shall be manufactured 100% by a single U.S. manufacturer (or division thereof).

d. The system and its components shall be Underwriters Laboratories, Inc. listed under the appropriate UL testing standard as listed herein for fire alarm applications and the installation shall be in compliance with the UL listing.

e. The installing company shall employ a licensed Fire Protection Engineer on site to guide the final check-out and to ensure the systems integrity.

1.3 SCOPE

A new intelligent reporting, microprocessor controlled fire detection system shall be installed in accordance to the project specifications and drawings.

1.3.1 Basic Performance

a. Alarm, trouble and supervisory signals from all intelligent reporting devices shall be encoded on NFPA Style 7 (Class A) Signaling Line Circuits (SLC).
b. Initiation Device Circuits (IDC) shall be wired Class A (NFPA Style D) as part of an addressable device connected by the SLC Circuit.

c. Notification Appliance Circuits (NAC) shall be wired Class A (NFPA Style Z) as part of an addressable device connected by the SLC Circuit.

d. Digitized electronic signals shall employ check digits or multiple polling.

e. A single ground fault or open circuit on the system Signaling Line Circuit shall not cause system malfunction, loss of operating power or the ability to report an alarm.

f. Alarm signals arriving at the main FACP shall not be lost following a primary power failure (or outage) until the alarm signal is processed and recorded.

1.3.2 BASIC SYSTEM FUNCTIONAL OPERATION

When a fire alarm condition is detected and reported by one of the system initiating devices, the following functions shall immediately occur:

a. The system alarm LED on the FACP shall flash.

b. A local piezo electric signal in the control panel shall sound.

c. A backlit 80 character LCD display on the FACP shall indicate all information associated with the fire alarm condition, including the type of alarm point and its location within the protected premises.

d. Printing on the FACP and history storage equipment shall log the information associated each new fire alarm control panel condition, along with time and date of occurrence.

e. All system output programs assigned via control-by-event interlock programming to be activated by the particular point in alarm shall be executed, and the associated system outputs (alarm notification appliances and/or relays) shall be activated.

1.4 SUBMITTALS

1.4.1 General

a. Two copies of all submittals shall be submitted for review. Data shall including all system components, wiring, battery calculations, and battery voltage drop calculations.

b. All references to manufacturer's model numbers and other pertinent information herein is intended to establish minimum standards of performance, function and quality. Equivalent compatible UL-listed equipment from other manufacturers may be substituted for the specified equipment as long as the minimum standards are met.

c. For equipment other than that specified, the contractor shall supply proof that such substitute equipment equals or exceeds the
features, functions, performance, and quality of the specified equipment.

1.4.2 Shop Drawings

a. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.

b. Include manufacturer's name(s), model numbers, ratings, power requirements, equipment layout, device arrangement, complete wiring point-to-point diagrams, and conduit layouts.

1.4.3 Manuals

a. Submit simultaneously with the shop drawings, complete operating and maintenance manuals listing the manufacturer's name(s), including technical data sheets.

b. Wiring diagrams shall indicate internal wiring for each device and the interconnections between the items of equipment.

c. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate the equipment and system.

1.4.4 Software Modifications

a. Provide the services of a factory trained and authorized technician to perform all system software modifications, upgrades or changes. Response time of the technician to the site shall not exceed 4 hours.

b. Provide all hardware, software, programming tools and documentation necessary to modify the fire alarm system on site. Modification includes addition and deletion of devices, circuits, zones and changes to system operation and custom label changes for devices or zones. The system structure and software shall place no limit on the type or extent of software modifications on-site. Modification of software shall not require power-down of the system or loss of system fire protection while modifications are being made.

1.4.5 Certifications

Together with the shop drawing submittal, submit a certification from the major equipment manufacturer indicating that the proposed supervisor of the installation and the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include names and addresses in the certification.

1.5 GUARANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of at least one (1) year from the date of acceptance. The full cost of maintenance, labor and materials required to correct any defect during this one year period shall be included in the submittal bid.
1.6 POST CONTRACT MAINTENANCE

a. Complete maintenance and repair service for the fire alarm system shall be available from a factory trained authorized representative of the manufacturer of the major equipment for a period of five (5) years after expiration of the guaranty.

b. As part of the bid/proposal, include a quote for a maintenance contract to provide all maintenance, tests, and repairs described below. Include also a quote for unscheduled maintenance/repairs, including hourly rates for technicians trained on this equipment, and response travel costs for each year of the maintenance period. Submittals that do not identify all post contract maintenance costs will not be accepted. Rates and costs shall be valid for the period of five (5) years after expiration of the guaranty.

c. Maintenance and testing shall be on a semiannual basis or as required by the AHJ. A preventive maintenance schedule shall be provided by the contractor describing the protocol for preventive maintenance. The schedule shall include:

1. Systematic examination, adjustment and cleaning of all detectors, manual fire alarm stations, control panels, power supplies, relays, water flow switches and all accessories of the fire alarm system.

2. Each circuit in the fire alarm system shall be tested semiannually.

3. Each smoke detector shall be tested in accordance with the requirements of NFPA 72 Chapter 7.

1.7 POST CONTRACT EXPANSIONS

a. The contractor shall have the ability to provide parts and labor to expand the system specified, if so requested, for a period of five (5) years from the date of acceptance.

b. As part of the submittal, include a quotation for all parts and material, and all installation and test labor as needed to increase the number of intelligent or addressable devices by ten percent (10%). This quotation shall include intelligent smoke detectors, intelligent heat detectors, addressable manual stations, addressable monitor modules and addressable control modules equal in number to one tenth of the number required to meet this specification (list actual quantity of each type).

c. The quotation shall include installation, test labor, and labor to reprogram the system for this 10% expansion. If additional FACP hardware is required, include the material and labor necessary to install this hardware.

d. Do not include cost of conduit or wire or the cost to install conduit or wire except for labor to make final connections at the FACP and at each intelligent addressable device. Do not include the cost of conventional peripherals or the cost of initiating devices.
or notification appliances connected to the addressable monitor/control modules.

e. Submittals that do not include this estimate of post contract expansion cost will not be accepted.

1.8 APPLICABLE STANDARDS AND SPECIFICATIONS

The specifications and standards listed below form a part of this specification. The system shall fully comply with the latest issue of these standards, if applicable.

a. National Fire Protection Association (NFPA) - USA:

No. 13 Sprinkler Systems
No. 72-1993 National Fire Alarm Code
No. 101 Life Safety Code

b. Underwriters Laboratories Inc. (UL) - USA:

No. 268 Smoke Detectors for Fire Protective Signaling Systems
No. 864 Control Units for Fire Protective Signaling Systems
No. 268A Smoke Detectors for Duct Applications
No. 521 Heat Detectors for Fire Protective Signaling Systems
No. 464 Audible Signaling Appliances
No. 38 Manually Actuated Signaling Boxes
No. 346 Waterflow Indicators for Fire Protective Signaling Systems
No. 1971 Visual Notification Appliances

c. Local and State Building Codes.

d. All requirements of the Authority Having Jurisdiction (AHJ).

1.9 APPROVALS

a. The system shall have proper listing and/or approval from the following nationally recognized agencies:

UL Underwriters Laboratories Inc
FM Factory Mutual

b. The fire alarm control panel shall meet UL Standard 864 (Control Units).

c. The system shall be listed by the national agencies as suitable for extinguishing release applications.

PART 2 PRODUCTS

2.1 EQUIPMENT AND MATERIAL, GENERAL
a. All equipment and components shall be new, and the manufacturer's current model. The materials, appliances, equipment and devices shall be tested and listed by a nationally recognized approvals agency for use as part of a protective signaling system, meeting the National Fire Alarm Code.

b. All equipment and components shall be installed in strict compliance with manufacturers' recommendations. Consult the manufacturer's installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation.

c. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., detectors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

2.2 CONDUIT AND WIRE

2.2.1 Conduit

a. Conduit shall be in accordance with The National Electrical Code (NEC), local and state requirements.

b. Where required, all wiring shall be installed in conduit or raceway. Conduit fill shall not exceed 40 percent of interior cross sectional area where three or more cables are contained within a single conduit.

c. Cable must be separated from any open conductors of power, or Class 1 circuits, and shall not be placed in any conduit, junction box or raceway containing these conductors, per NEC Article 760-29.

d. Wiring for 24 volt DC control, alarm notification, emergency communication and similar power-limited auxiliary functions may be run in the same conduit as initiating and signaling line circuits. All circuits shall be provided with transient suppression devices and the system shall be designed to permit simultaneous operation of all circuits without interference or loss of signals.

e. Conduit shall not enter the fire alarm control panel, or any other remotely mounted control panel equipment or backboxes, except where conduit entry is specified by the FACP manufacturer.

f. Conduit shall be 19.1 mm minimum.

2.2.2 Wire

a. All fire alarm system wiring shall be new.

b. Wiring shall be in accordance with local, state and national codes (e.g., NEC Article 760) and as recommended by the manufacturer of the fire alarm system. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 2 mm for Initiating Device Circuits and Signaling Line Circuits, and 1.63 mm for Notification Appliance Circuits.
c. All wire and cable shall be listed and/or approved by a recognized testing agency for use with a protective signaling system.

d. Wire and cable not installed in conduit shall have a fire resistance rating suitable for the installation as indicated in NFPA 70 (e.g., FPLR).

e. Wiring used for the multiplex communication circuit (SLC) shall be twisted and support a minimum wiring distance of 3048 m. In certain applications, the system shall support up to SLCs with up to 305 m of untwisted, unshielded wire. The design of the system shall permit use of IDC and NAC wiring in the same conduit with the SLC communication circuit.

f. All field wiring shall be electrically supervised for open circuit and ground fault.

2.2.3 Terminal Boxes, Junction Boxes and Cabinets

All boxes and cabinets shall be UL listed for their use and purpose.

2.2.4 Circuits

a. Initiating circuits shall be arranged to serve like categories (manual, smoke, workflow). Mixed category circuitry shall not be permitted except on signaling line circuits connected to intelligent reporting devices.

b. The fire alarm control panel shall be connected to a separate dedicated branch circuit, maximum 20 amperes. This circuit shall be labeled at the main power distribution panel as FIRE ALARM. Fire alarm control panel primary power wiring shall be 4 mm. The control panel cabinet shall be grounded securely to grounding rod.

2.3 MAIN FIRE ALARM CONTROL PANEL

The FACP shall contain a microprocessor based Central Processing Unit (CPU). The CPU shall communicate with and control the following types of equipment used to make up the system: intelligent addressable smoke and thermal (heat) detectors, addressable modules, printer, annunciators, and other system controlled devices.

2.3.1 Operator Control

2.3.1.1 Acknowledge Switch

a. Activation of the control panel acknowledge switch in response to new alarms and/or troubles shall silence the local panel piezo electric signal and change the alarm and trouble LEDs from flashing mode to steady-ON mode. If multiple alarm or trouble conditions exist, depression of this switch shall advance the 80-character LCD display to the next alarm or trouble condition.

b. Depression of the Acknowledge switch shall also silence all remote annunciator piezo sounders.
2.3.1.2 Alarm Silence Switch

Activation of the alarm silence switch shall cause all programmed alarm notification appliances and relays to return to the normal condition after an alarm condition. The selection of notification circuits and relays that are silenceable by this switch shall be fully field programmable within the confines of all applicable standards. The FACP software shall include silence inhibit and auto-silence timers.

2.3.1.3 Alarm Activate (Drill) Switch

The Alarm Activate switch shall activate all notification appliance circuits. The drill function shall latch until the panel is silenced or reset.

2.3.1.4 System Reset Switch

Activation of the System Reset switch shall cause all electronically-latched initiating devices, appliances or software zones, as well as all associated output devices and circuits, to return to their normal condition.

2.3.1.5 Lamp Test

The Lamp Test switch shall activate all system LEDs and light each segment of the liquid crystal display.

2.3.2 System Capacity and General Operation

a. The control panel shall provide, or be capable of expansion to 396 intelligent/addressable devices.

b. The control panel shall include Form-C alarm, trouble, supervisory, and security relays rated at a minimum of 3.0 amps @ 30 VDC. It shall also include four Class A (NFPA Style Z) programmable Notification Appliance Circuits.

c. The system shall support up to 8 additional output modules (signal, speaker, telephone, or relay), each with 8 circuits for an additional 64 circuits. These circuits shall be Class A (NFPA Style D) per the project drawings. At least four modules will be installed to communicate with the 32 zone Monaco Transceiver in addition to any others required for complete system operation.

d. The fire alarm control panel shall include a full featured operator interface control and annunciation panel that shall include a backlit Liquid Crystal Display (LCD), individual color coded system status LEDs, and an alphanumeric keypad for the field programming and control of the fire alarm system.

e. All programming or editing of the existing program in the system shall be achieved without special equipment and without interrupting the alarm monitoring functions of the fire alarm control panel. The system shall be fully programmable, configurable, and expandable in the field without the need for special tools, PROM programmers or PC based programmers. It shall not require replacement of memory ICs to facilitate programming changes.
f. The system shall allow the programming of any input to activate any output or group of outputs. Systems which have limited programming (such as general alarm), have complicated programming (such as a diode matrix), or require a laptop personal computer are not considered suitable substitutes.

g. The FACP shall provide the following features:

1. Drift compensation to extend detector accuracy over life. Drift compensation shall also include a smoothing feature, allowing transient noise signals to be filtered out.

2. Detector sensitivity test, meeting requirements of NFPA 72, Chapter 7.

3. Maintenance alert, with two levels (maintenance alert/maintenance urgent), to warn of excessive smoke detector dirt or dust accumulation.

4. Nine sensitivity levels for alarm, selected by detector. The alarm level range shall be 1 to 2.35 percent per foot for photoelectric detectors and 0.5 to 2.5 percent per foot for ionization detectors. The system shall also include up to nine levels of prealarm, selected by detector, to indicate to maintenance personnel of impending alarms.

5. The ability to display or print system reports.

6. Alarm verification, with counters and a trouble indication to alert maintenance personnel when a detector enters verification 20 times.

7. PAS presignal, meeting NFPA 72 3-8.3 requirements.

8. Rapid manual station reporting (under 3 seconds).

9. Non-alarm points for general (non-fire) control.

10. Periodic detector test, conducted automatically by the software.

11. Self optimizing pre-alarm for advanced fire warning, which allows each detector to learn its particular environment and set its prealarm level to just above normal peaks.

12. Cross zoning with the capability of counting: two detectors in alarm, two software zones in alarm, or one smoke detector and one thermal detector.

13. Walk test, with a check for two detectors set to same address.

14. Control-by-time for non-fire operations, with holiday schedules.

15. Day/night automatic adjustment of detector sensitivity.
16. UL-1076 security monitor points.

17. Releasing options including: 10 independent hazards, a sophisticated cross zone, delay and discharge timers, and an abort function.

18. The FACP shall be capable of coding notification circuits in march time (120 PPM), temporal (NFPA 72 A-2-2.2.2), and california code. Main panel notification circuits (NAC 1,2,3 and 4) shall also support special two and three stage operations. The two stage feature allows 20 Pulses Per Minute (PPM) on alarm and 120 PPM after 5 minutes or when a second device activates. The three stage option provides 20 PPM with one detector in alarm, 120 PPM with two detectors in alarm, and steady on with release.

2.3.3 Central Microprocessor

a. The microprocessor shall be a state-of-the-art, high speed, 16 bit RISC device and it shall communicate with, monitor and control all external interfaces. It shall include an EPROM for system program storage, non-volatile memory for building-specific program storage, and a "watch dog" timer circuit to detect and report microprocessor failure.

b. The microprocessor shall contain and execute all control-by-event programs for specific action to be taken if an alarm condition is detected by the system. Control-by-event equations shall be held in non-volatile programmable memory, and shall not be lost even if system primary and secondary power failure occurs.

c. The microprocessor shall also provide a real-time clock for time annotation of system displays, printer, and history file and shall comply with year 2000 requirements. The time-of-day and date shall not be lost if system primary and secondary power supplies fail. The real time clock may also be used to control non-fire functions at programmed time-of-day, day-of-week, and day-of-year.

d. A special program check function shall be provided to detect common operator errors.

e. An auto-program (self-learn) function shall be provided to quickly install initial functions and make the system operational.

f. For flexibility and to ensure program validity, an optional Windows(TM) based program utility shall be available. This program shall be used to off-line program the system with batch upload/download. This program shall also have a verification utility which scans the program files, identifying possible errors. It shall also have the ability to compare old program files to new ones, identifying differences in the two files to allow complete testing of any system operating changes. This shall be in compliance with the NFPA 72 requirements for testing after system modification.

2.3.4 Display
a. The display shall provide all the controls and indicators used by the system operator and may also be used to program all system operational parameters.

b. The display shall include status information and custom alphanumeric labels for all intelligent detectors, addressable modules, internal panel circuits, and software zones.

c. The display shall include an 80-character back-lit alphanumeric Liquid Crystal Display (LCD). It shall also provide 8 Light-Emitting-Diodes (LEDs), that indicate the status of the following system parameters: AC POWER, FIRE ALARM, PREALARM WARNING, SECURITY ALARM, SUPERVISORY SIGNAL, SYSTEM TROUBLE, DISABLED POINTS, and ALARM SILENCED.

d. The display keypad shall be an easy to use QWERTY type keypad, similar to a PC keyboard. This shall be part of the standard system and have the capability to command all system functions, entry of any alphabetic or numeric information, and field programming. Two different password levels shall be provided to prevent unauthorized system control or programming.

e. The display shall include the following operator control switches: ACKNOWLEDGE, ALARM SILENCE, ALARM ACTIVATE (drill), SYSTEM RESET, and LAMP TEST.

f. The system shall support an optional battery ammeter/voltmeter display.

2.3.5 Signaling Line Circuits (SLC)

a. The system shall include two SLCs. Each SLC interface shall provide power to and communicate with up to 99 intelligent detectors (ionization, photoelectric or thermal) and 99 intelligent modules (monitor or control) for a system capacity of 396 devices. Each SLC shall be capable of NFPA 72 Style 4, Style 6, or Style 7 (Class A) wiring.

b. The Loop Interface Board (LIB) shall receive analog information from all intelligent detectors to be processed to determine whether normal, alarm, prealarm, or trouble conditions exist for each detector. The software shall automatically maintain the detector's desired sensitivity level by adjusting for the effects of environmental factors, including the accumulation of dust in each detector. The analog information shall also be used for automatic detector testing and for the automatic determination of detector maintenance requirements.

c. The detector software shall meet NFPA 72, Chapter 7 requirements and be certified by UL as a calibrated sensitivity test instrument.

d. The detector software shall allow manual or automatic sensitivity adjustment.

2.3.6 Serial Interfaces
a. The system shall include two serial EIA-232 interfaces. Each interface shall be a means of connecting UL Listed Electronic Data Processing (EDP) peripherals.

b. One EIA-232 interface shall be used to connect an UL-Listed 40 or 80 column printer. Printers which are not UL-Listed are not considered acceptable substitutes.

c. The second EIA-232 interface shall be used to connect a UL-listed CRT terminal. This interface shall include special protocol methods that allow off-site monitoring of the FACP over standard dial-up phone lines. This ancillary capability shall allow remote readout of all status information, including analog values, and shall not interfere with or degrade FACP operations when used. It shall allow remote FACP Acknowledge, Reset, or Signal Silence in this mode. It shall also allow adjustment of detector sensitivity and readout of the history file.

2.3.7 Notification Appliance Circuit (NAC) Module

a. The Notification Appliance Circuit module shall provide four fully supervised Class A (NFPA Style Z) notification circuits. An expansion circuit board shall allow expansion to eight circuits per module.

b. The notification circuit capacity shall be 3.0 amperes maximum per circuit and 6.0 amperes maximum per module.

c. The module shall not affect other module circuits in any way during a short circuit condition.

e. The module shall provide eight green ON/OFF LEDs and eight yellow TROUBLE LEDs.

f. The module shall also provide a momentary switch per circuit that may be used to manually turn the particular circuit on or off or to disable the circuit.

g. Each notification circuit shall include a custom label inserted to identify each circuits location. Labels shall be created using a standard typewriter or wordprocessor.

h. The notification circuit module shall be provided with removable wiring terminal blocks for ease of installation and service. The terminal strips shall be UL listed for use with up to 4 mm wire.

i. Each circuit shall be capable of, through system programming, deactivating upon depression of the signal silence switch.

2.3.8 Control Relay Module

a. The control relay module shall provide four Form-C auxiliary relay circuits rated at 5 amperes, 28 VDC. An expansion circuit board shall allow expansion to eight Form-C relays per module.
b. Each relay circuit shall be capable of being activated (change in state) by any initiating device or from any combination of initiating devices.

c. The expansion module shall provide 8 green ON/OFF LEDs and 8 yellow LEDs (indicates disabled status of the relay).

d. The module shall provide a momentary switch per relay circuit that may be used to manually turn the relay ON/OFF or to disable the relay.

e. Each relay circuit shall include a custom label inserted to identify its location. Labels shall be created using a standard typewriter or wordprocessor.

f. The control relay module shall be provided with removable wiring terminal blocks for ease of installation and service. The terminal blocks shall be UL listed for use with up to 4 mm wire.

2.3.9 Enclosures

a. The control panel shall be housed in a UL-listed cabinet suitable for surface or recessed mounting. The cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.

b. The back box and door shall be constructed of 0.060 steel with provisions for electrical conduit connections into the sides and top.

c. The door shall provide a key lock and shall include a glass or other transparent opening for viewing of all indicators. For convenience, the door may be selected for either right or left hand hinging.

2.3.10 Power Supply

a. The main power supply for the fire alarm control panel shall provide 6.0 amps of available power for the control panel and peripheral devices.

b. Provisions will be made to allow the audio-visual power to be increased as required by adding modular expansion audio-visual power supplies.

c. Positive-Temperature-Coefficient (PTC) thermistors, circuit breakers, or other over-current protection shall be provided on all power outputs. The power supply shall provide an integral battery charger for use with batteries up to 55 AH or may be used with an external battery and charger systems. Battery arrangement may be configured in the field.

d. The main power supply shall continuously monitor all field wires for earth ground conditions, and shall have the following LED indicators:

 Ground Fault LED
Battery Fail LED
AC Power Fail LED

e. The main power supply shall operate on 120 VAC, 60 Hz, and shall provide all necessary power for the FACP.
f. The main power supply shall provide a battery charger for 24 hours of standby using dual-rate charging techniques for fast battery recharge.
g. The main power supply shall provide a very low frequency sweep earth detect circuit, capable of detecting earth faults.
h. The main power supply shall provide meters to indicate battery voltage and charging current.
i. All circuits shall be power-limited, per 1995 UL864 requirements.

2.3.11 Field Charging Power Supply

 a. The FCPS is a device designed for use as either a remote 24 volt power supply or used to power Notification Appliances.

 1. The FCPS shall offer up to 6.0 amps (4.0 amps continuous) of regulated 24 volt power. It shall include an integral charger designed to charge 7.0 amp hour batteries and to support 60 hour standby.

 2. The Field Charging Power Supply shall have two input triggers. The input trigger shall be a Notification Appliance Circuit (from the fire alarm control panel) or a relay. Four outputs (two Style Y or Z and two style Y) shall be available for connection to the Notification devices.

 3. The FCPS shall include an attractive surface mount backbox.

 4. The Field Charging Power Supply shall include the ability to delay the AC fail delay per 1993 NFPA requirements.

 5. The FCPS include power limited circuitry, per 1995 UL standards.

2.3.12 Specific System Operations

2.3.12.1 Smoke Detector Sensitivity Adjust

 A means shall be provided for adjusting the sensitivity of any or all addressable intelligent detectors in the system from the system keypad. Sensitivity range shall be within the allowed UL window and have a minimum of 9 levels.

2.3.12.2 Alarm Verification

 Each of the intelligent addressable smoke detectors in the system may be independently selected and enabled to be an alarm verified detector. The alarm verification delay shall be programmable from 5 to 30 seconds and each detector shall be able to be selected for verification. The FACP shall keep
a count of the number of times that each detector has entered the verification cycle. These counters may be displayed and reset by the proper operator commands.

2.3.12.3 Point Disable

Any addressable device or conventional circuit in the system may be enabled or disabled through the system keypad.

2.3.12.4 Point Read

The system shall be able to display or print the following point status diagnostic functions:

a. Device status
b. Device type
c. Custom device label
d. View analog detector values
e. Device zone assignments
f. All program parameters

2.3.12.5 System Status Reports

Upon command from an operator of the system, a status report will be generated and printed, listing all system status.

2.3.12.6 System History Recording and Reporting

The fire alarm control panel shall contain a history buffer that will be capable of storing up to 1000 events. Up to 200 events shall be dedicated to alarm and the remaining events are general purpose. Each of these activations will be stored and time and date stamped with the actual time of the activation. The contents of the history buffer may be manually reviewed, one event at a time, or printed in its entirety.

The history buffer shall use non-volatile memory. Systems that use volatile memory for history storage are not acceptable substitutes.

2.3.12.7 Automatic Detector Maintenance Alert

The fire alarm control panel shall automatically interrogate each intelligent detector and shall analyze the detector responses over a period of time. If any intelligent detector in the system responds with a reading that is above or below normal limits, then the system will enter the trouble mode, and the particular detector will be annunciated on the system display, and printed on the optional printer. This feature shall in no way inhibit the receipt of alarm conditions in the system, nor shall it require any special hardware, special tools or computer expertise to perform.

2.3.12.8 Pre-Alarm Function

The system shall provide two levels of pre-alarm warning to give advance notice of a possible fire situation. Both pre-alarm levels shall be fully field adjustable. The first level shall give an audible indication at the panel. The second level shall give an audible indication and may also activate control relays. The system shall also have the ability to activate
local detector sounder bases at the pre-alarm level, to assist in avoiding nuisance alarms.

2.3.12.9 Software Zones

The FACP shall provide 99 software zones and 10 additional special function zones.

2.3.12.10 Alarm Test

The fire alarm control panel shall include a walk test feature. It shall include the ability to test initiating device circuits and notification appliance circuits from the field without returning to the panel to reset the system. Operation shall be as follows:

a. Alarming an initiating device shall activate programmed outputs, which are selected to participate in walk test, for 3 seconds.

b. Introducing a trouble into the initiating device shall activate the programmed outputs for 8 seconds.

c. Walk test shall be selectable on a per device/circuit basis. All devices and circuits which are not selected for walk test shall continue to provide fire protection and if an alarm is detected, will exit walk test and activate all programmed alarm functions.

d. All devices tested in walk test shall be recorded in the history buffer.

2.3.13 Waterflow Operation

An alarm from a waterflow detection device shall activate the appropriate alarm message on the 80 character display, turn on all programmed notification appliance circuits and shall not be affected by the signal silence switch.

2.3.14 Supervisory Operation

An alarm from a supervisory device shall cause the appropriate indication on the 80 character display, light a common supervisory LED, but will not cause the system to enter the trouble mode.

2.3.15 Signal Silence Operation

The FACP shall have the ability to program each output circuit (notification, relay, speaker etc) to deactivate upon depression of the signal silence switch.

2.3.16 Non-Alarm Input Operation

Any addressable initiating device in the system may be used as a non-alarm input to monitor normally-open contact type devices. Non-alarm functions are a lower priority than fire alarm initiating devices.

2.3.17 Combo Zone
A special type code shall be available to allow waterflow and supervisory devices to share a common addressable module. Waterflow devices shall be wired in parallel, supervisory devices in series.

2.4 GRAPHIC ANNUNCIATOR

2.4.1 Annunciator Panel

Indicate the building floor plan with a "You Are Here" designation. Provide an LED-indicating light on the floor plan in each zone. Mark zone boundaries on the annunciator floor plan. Provide lights that indicate the floor on which a signal was actuated if this differs from the zone. Engrave zone and floor designations on the face of the annunciator.

2.4.2 LED Indicators

Indicating lights include individual LED indicators for each type of alarm and supervisory signal causes the illumination of a zone light, floor light, and device light. System trouble causes the illumination of all of these lights and also the trouble light. Additional LEDs indicate normal and emergency power modes for the system. A toggle or push-button switch tests the LEDs mounted on the panel. The test switch does not require key operation.

2.4.3 Faceplate

Satin-finished stainless steel or brushed aluminum. Floor plan and zone boundary lines are engraved in the faceplate and filled with colored paint. Floor plan lines are 6 mm wide black, and zone boundaries are 3 mm wide red. Engraved legends for the LEDs and switches are 6 mm high minimum, in letter filled with red paint.

2.5 SYSTEM COMPONENTS

2.5.1 Programmable Electronic Sounders

a. Electronic sounders shall operate on 24 VDC nominal.

b. Electronic sounders shall be field programmable without the use of special tools, to provide slow whoop, continuous, or interrupted tones with an output sound level of at least 90 dBA measured at 3.05 m from the device.

c. Shall be surface mounted.

2.5.2 Strobe Lighting

Strobe lights shall meet the requirements of the ADA, UL Standard 1971 and shall meet the following criteria:

a. The maximum pulse duration shall be 2/10 of one second.

b. Strobe intensity shall meet the requirements of UL 1971.

c. The flash rate shall meet the requirements of UL 1971.
2.5.3 Interfaces and Equipment

All interfaces and associated equipment are to be protected so that they will not be affected by voltage surges or line transients consistent with UL standard 864.

2.5.4 Facilities for Transmission of Signals

a. Transceiver shall be Monaco BT2-4 with 32 zones, or approved equal, and shall be able to transmit all zone trouble and alarms individually to receiving equipment. Signal identification for both fire and line-trouble conditions shall be transmitted over radio signals at M163.4625. Transmissions shall be over a 'narrow band' conforming to the "Manual of Regulations and Procedures for Federal Radio Frequency Management" (latest edition). The transceiver may be an integral part of the Control unit/main panel.

b. Antenna: Contractor shall provide a 21 mm (3/4 inch) conduit run from the transmitter to exterior eye mounted OMNI directional antenna (Monaco BSA-1) and a lightning arrestor (Monaco Part Number 198-001-01) in a rain tight NEMA 3R enclosure. All connections are to use Type 2 coaxial cable and proper PL259 and BNC connectors. Southeast corner of ramped roof.

c. Grounding A new 21 mm (3/4 inch) 0.3 m ten foot ground rod shall be installed directly under the lightning arrestor. Lightning arrestor shall be grounded at new rod with rod connected to the building's grounding system.

d. Headquarters Equipment: The headquarters equipment is a Monaco D-500 located in Building 110, Base Fire Station. Contractor shall make final hook-up and transmit a coded signal to the Base Fire Station. Coordinate testing with Contracting Officer.

2.5.5 Field Wiring Terminal Blocks

For ease of service all panel I/O wiring terminal blocks shall be removable, plug-in types and have sufficient capacity for #18 to #12 AWG wire. Terminal blocks which are permanently fixed are not acceptable.

2.5.6 Printer

The system shall have a strip printer capable of being mounted directly in the main FACP enclosure. Alarms shall be printed in easy-to-read RED, other messages, such as a trouble, shall be printed in BLACK. This printer shall receive power from the system power supply and shall operate via battery back-up if AC mains are lost. The strip printer shall be UL 864 listed.

2.6 SYSTEM COMPONENTS - ADDRESSABLE DEVICES

2.6.1 Addressable Devices - General

a. Addressable devices shall use simple to install and maintain decade (numbered 1 to 10) type address switches.

b. Addressable devices which use a binary-coded address setting method, such as a DIP switch, are not an allowable substitute.
c. Detectors shall be intelligent (analog) and addressable, and shall connect with two wires to the fire alarm control panel signaling line circuits.

d. Addressable smoke and thermal detectors shall provide dual alarm and power/polling LEDs. Both LEDs shall flash under normal conditions, indicating that the detector is operational and in regular communication with the control panel, and both LEDs shall be placed into steady illumination by the control panel, indicating that an alarm condition has been detected. If required, the LED flash shall have the ability to be removed from the system program. An output connection shall also be provided in the base to connect an external remote alarm LED.

e. The fire alarm control panel shall permit detector sensitivity adjustment through field programming of the system. Sensitivity shall be automatically adjusted by the panel on a time-of-day basis.

f. Using software in the FACP, detectors shall automatically compensate for dust accumulation and other slow environmental changes that may affect their performance. The detectors shall be listed by UL as meeting the calibrated sensitivity test requirements of NFPA Standard 72, Chapter 7.

g. The detectors shall be ceiling-mount and shall include a separate twist-lock base with tamper proof feature. Base shall include a sounder base with a built-in (local) sounder rated at 85 DBA minimum, a relay base and an isolator base designed for Style 7 applications.

h. The detectors shall provide a test means whereby they will simulate an alarm condition and report that condition to the control panel. Such a test may be initiated at the detector itself (by activating a magnetic switch) or initiated remotely on command from the control panel.

i. Detectors shall also store an internal identifying type code that the control panel shall use to identify the type of device (ION, PHOTO, THERMAL).

j. Detectors will operate in an analog fashion, where the detector simply measures its designed environment variable and transmits an analog value to the FACP based on real-time measured values. The FACP software, not the detector, shall make the alarm/normal decision, thereby allowing the sensitivity of each detector to be set in the FACP program and allowing the system operator to view the current analog value of each detector.

j. Detectors shall provide address-setting means using decimal switches and shall also store an internal identifying code that the control panel shall use to identify the type of device. LEDs shall be provided that shall flash under normal conditions, indicating that the device is operational and is in regular communication with the control panel.
l. Addressable devices shall provide address-setting means using decimal switches and shall also store an internal identifying code that the control panel shall use to identify the type of device. LED(s) shall be provided that shall flash under normal conditions, indicating that the device is operational and is in regular communication with the control panel.

m. A magnetic test switch shall be provided to test detectors and modules. Detectors shall report an indication of an analog value reaching 100% of the alarm threshold.

2.6.2 Addressable Pull Box (manual station)

a. Addressable pull boxes shall, on command from the control panel, send data to the panel representing the state of the manual switch and the addressable communication module status. They shall use a key operated test-reset lock, and shall be designed so that after actual emergency operation, they cannot be restored to normal use except by the use of a key.

b. All operated stations shall have a positive, visual indication of operation and utilize a key type reset.

c. Manual stations shall be notifier Type BNG-1R.

2.6.3 Intelligent Photoelectric Smoke Detector

The detectors shall use the photoelectric (light-scattering) principal to measure smoke density and shall, on command from the control panel, send data to the panel representing the analog level of smoke density.

2.6.4 Intelligent Laser Photo Smoke Detector

a. The intelligent laser photo smoke detector shall be a spot type detector which incorporates an extremely bright laser diode and an integral lens that focuses the light beam to a very small volume near a receiving photo sensor. The photo sensor shall be activated by the scattering of smoke particles.

b. The laser detector shall have conductive plastic so that dust accumulation is reduced significantly.

c. The intelligent laser photo detector shall have nine sensitivity levels and be sensitive to a minimum obscuration of 0.03 percent per foot.

d. The laser detector shall not require expensive conduit, special fittings or PVC pipe.

e. The intelligent laser photo detector shall support standard, relay, isolator and sounder detector bases.

f. The laser photo detector shall not require other cleaning requirements than those listed in NFPA 72. Replacement, refurbishment or specialized cleaning of the detector head shall not be required.
g. The laser photo detector shall include two bicolor LEDs which flash green in normal operation and turn on steady red in alarm.

2.6.5 Intelligent Ionization Smoke Detector

The detectors shall use the dual-chamber ionization principal to measure products of combustion and shall, on command from the control panel, send data to the panel representing the analog level of products of combustion.

2.6.6 Intelligent Thermal Detectors

Thermal detectors shall be intelligent addressable devices rated at 58 degrees Celsius and have a rate-of-rise element rated at 9.4 degrees C per minute. It shall connect via two wires to the fire alarm control panel signaling line circuit.

2.6.7 Intelligent Duct Smoke Detector

a. Duct detectors are provided under Section 15951A DIRECT DIGITAL CONTROL FOR HVAC. (All devices shall be provided by the same manufacturer as the selected control panel).

b. Smoke detectors listed for use in air distribution systems shall be installed and shall provide facility fire alarm indication.

c. Air handling systems which exclusively serve the electronic equipment space need not be deactivated upon a fire alarm indication except for conditions originating in the electronic equipment space.

2.6.8 Addressable Dry Contact Monitor Module

a. Addressable monitor modules shall be provided to connect one supervised IDC zone of conventional alarm initiating devices (any N.O. dry contact device) to one of the fire alarm control panel SLCs.

b. The monitor module shall mount in a 103 mm square, 58 mm deep electrical box.

c. The IDC zone shall be suitable for Style D or Style B operation. An LED shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel.

e. For difficult to reach areas, the monitor module shall be available in a miniature package and shall be no larger than 70 mm x 25 mm x 16 mm. This version need not include Style D or an LED.

2.6.9 Two Wire Detector Monitor Module

a. Addressable monitor modules shall be provided to connect one supervised IDC zone of conventional 2-wire smoke detectors or alarm initiating devices (any N.O. dry contact device).

b. The two-wire monitor module shall mount in a 103 mm square, 58 mm deep electrical box or with an optional surface backbox.
c. The IDC zone may be wired for Class A (Style D) operation. An LED shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel.

2.6.10 Addressable Control Module

a. Addressable control modules shall be provided to supervise and control the operation of one conventional NACs of compatible, 24 VDC powered, polarized audio/visual notification appliances. For fan shutdown and other auxiliary control functions, the control module may be set to operate as a dry contract relay.

b. The control module shall mount in a standard 103 mm square, 58 mm deep electrical box, or to a surface mounted backbox.

c. The control module NAC may be wired for Style Z (Class A) with up to 1 amp of inductive A/V signal, or 2 amps of resistive A/V signal operation, or as a dry contact (Form-C) relay. The relay coil shall be magnetically latched to reduce wiring connection requirements, and to insure that 100% of all auxiliary relay or NACs may be energized at the same time on the same pair of wires.

d. Audio/visual power shall be provided by a separate supervised power circuit from the main fire alarm control panel or from a supervised, UL listed remote power supply.

e. The control module shall be suitable for pilot duty applications and rated for a minimum of 0.6 amps at 30 VDC.

2.6.11 Isolator Module

a. Isolator modules shall be provided to automatically isolate wire-to-wire short circuits on an SLC Class A or Class B branch. The isolator module shall limit the number of modules or detectors that may be rendered inoperative by a short circuit fault on the SLC loop segment or branch. At least one isolator module shall be provided for each floor or protected zone of the building.

b. If a wire-to-wire short occurs, the isolator module shall automatically open-circuit (disconnect) the SLC. When the short circuit condition is corrected, the isolator module shall automatically reconnect the isolated section.

c. The isolator module shall not require any address-setting, and its operations shall be totally automatic. It shall not be necessary to replace or reset an isolator module after its normal operation.

d. The isolator module shall mount in a standard 103 mm deep electrical box or in a surface mounted backbox. It shall provide a single LED that shall flash to indicate that the isolator is operational and shall illuminate steadily to indicate that a short circuit condition has been detected and isolated.

2.7 BATTERIES
a. The batteries shall be 25 amp-hour sealed Gel Cell type, 12 volt nominal (two required).

b. The battery shall have sufficient capacity to power the fire alarm system for not less than twenty-four hours plus 5 minutes of alarm upon a normal AC power failure.

c. The batteries are to be completely maintenance free. No liquids are required. Fluid level checks for refilling, spills, and leakage shall not be required.

d. If necessary to meet standby requirements, external battery and charger systems may be used.

PART 3 EXECUTION

3.1 INSTALLATION

a. Installation shall be in accordance with the NEC, NFPA 72, local and state codes, as shown on the drawings, and as recommended by the major equipment manufacturer.

b. All conduit, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas. Smoke detectors shall not be installed prior to the system programming and test period. If construction is ongoing during this period, measures shall be taken to protect smoke detectors from contamination and physical damage.

c. All fire detection and alarm system devices, control panels and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas.

d. Manual pull stations shall be suitable for semiflush mounting, and shall be installed not less than 1050 mm, nor more than 1200 mm above the finished floor.

3.2 TEST

The service of a competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment shall be provided to technically supervise and participate during all of the adjustments and tests for the system. All testing shall be in accordance with NFPA 72, Chapter 7.

a. Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.

b. Close each sprinkler system flow valve and verify proper supervisory alarm at the FACP.

c. Verify activation of all waterflow switches.

d. Open initiating device circuits and verify that the trouble signal actuates.
e. Open and short signaling line circuits and verify that the trouble signal actuates.

f. Open and short notification appliance circuits and verify that trouble signal actuates.

g. Ground all circuits and verify response of trouble signals.

h. Check presence and audibility of tone at all alarm notification devices.

i. Check installation, supervision, and operation of all intelligent smoke detectors using the walk test.

j. Each of the alarm conditions that the system is required to detect should be introduced on the system. Verify the proper receipt and the proper processing of the signal at the FACP and the correct activation of the control points.

k. When the system is equipped with optional features, the manufacturer’s manual shall be consulted to determine the proper testing procedures. This is intended to address such items as verifying controls performed by individually addressed or grouped devices, sensitivity monitoring, verification functionality and similar.

3.2.1 Preliminary Tests

Upon completion of the installation, the system shall be subjected to functional and operational performance tests including tests of each installed initiating and notification appliance. Tests shall include the meggering of all system conductors to determine that the system is free from grounded, shorted, or open circuits. The megger test shall be conducted prior to the installation of fire alarm equipment. If deficiencies are found, corrections shall be made and the system shall be retested to assure that it is functional.

3.2.2 Acceptance Test

Testing shall be in accordance with NFPA 72. The recommended tests in NFPA 72 shall be considered mandatory and shall verify that all previous deficiencies have been corrected. The test shall include the following:

a. Test of each function of the control panel.

b. Test of each circuit in both trouble and normal modes.

c. Tests of alarm initiating devices in both normal and trouble conditions.

d. Tests of each control circuit and device.

e. Tests of each alarm notification appliance.

f. Tests of the battery charger and batteries.

g. Complete operational tests under emergency power supply.
h. Visual inspection of all wiring connections.

i. Opening the circuit at each alarm initiating device and notification appliance to test the wiring supervisory feature.

j. Ground fault

k. Short circuit faults

l. Stray voltage

m. Loop resistance

3.3 TRAINING

Training course shall be provided for the operations and maintenance staff. The course shall be conducted in the building where the system is installed or as designated by the Contracting Officer. The training period shall consist of 3 training days (8 hours per day) and shall start after the system is functionally completed but prior to final acceptance tests. The instructions shall cover all of the items contained in the operating and maintenance instructions.

3.4 FINAL INSPECTION

At the final inspection, a factory trained representative of the manufacturer of the major equipment shall demonstrate that the system functions properly in every respect.

3.5 INSTRUCTION

a. Instruction shall be provided as required for operating the system. Hands-on demonstrations of the operation of all system components and the entire system including program changes and functions shall be provided.

b. The contractor and/or the systems manufacturer's representatives shall provide a typewritten "Sequence of Operation."

-- End Of Section --
SECTION 13920

FIRE PUMPS

11/99

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 183 (1983; R 1998) Carbon Steel Track Bolts and Nuts
ASTM A 194/A 194M (1998b) Carbon and Alloy Steel Nuts for Bolts for High-Pressure and High-Temperature Service
ASTM A 536 (1999e1) Ductile Iron Castings
ASTM A 795 (1997) Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use
ASTM B 42 (1998) Seamless Copper Pipe, Standard Sizes
ASTM B 88M (1996) Seamless Cooper Water Tube (Metric)
ASTM B 135M (1996) Seamless Brass Tube (Metric)
ASTM D 3308 (1997) PTFE Resin Skived Tape
ASTM F 436M (1993) Hardened Steel Washers (Metric)

ASME INTERNATIONAL (ASME)

ASME B16.5 (1996; B16.5a) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24
AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA EWW (1995) Standard Methods for the Examination of Water and Wastewater

AWWA B300 (1992) Hypochlorites

AWWA B301 (1992) Liquid Chlorine

AWWA C110 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids

AWWA C151 (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids

AWWA C500 (1993; C500a) Metal-Sealed Gates Valves for Water Supply Service

FACTORY MUTUAL ENGINEERING AND RESEARCH (FM)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (1998) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 20 (1996; Errata Oct 1996; TIA 96-1) Installation of Centrifugal Fire Pumps

NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET)

1.2 GENERAL REQUIREMENTS

Except as modified in this Section or on the drawings, fire pumps shall be installed in conformance with NFPA 20, including all recommendations and advisory portions, which shall be considered mandatory. All reference to the authority having jurisdiction shall be interpreted to mean the Contracting Officer.

1.3 SEQUENCE OF OPERATION

1.3.1 Primary Fire Pump

Primary fire pump shall automatically operate when the pressure drops to 758 kPa. The fire pump shall automatically stop operating when the system pressure reaches 862 kPa and after the fire pump has operated for the minimum pump run time specified herein.

1.3.1.1 Pressure Maintenance Pump

Pressure maintenance pump shall operate when the system pressure drops to 793 kPa. Pump shall automatically stop when the system pressure reaches 862 kPa and after the pump has operated for the minimum pump run time specified herein.

1.3.2 Safety Requirements

Coupling, rotating parts, gears, projecting equipment, etc. shall be fully enclosed or properly guarded so as to prevent possible injury to persons that come in close proximity of the equipment. The Contractor shall conduct testing of the fire pumps in a safe manner and ensure that all equipment is safely secured. Hoses and nozzles used to conduct flow tests shall be in excellent condition and shall be safely anchored and secured to prevent any misdirection of the hose streams.

1.4 COORDINATION OF TRADES
Tank supports, piping offsets, fittings, and any other accessories required shall be furnished as specified to provide a complete installation and to eliminate interference with other construction.

1.5 DELIVERY AND STORAGE

All equipment delivered and placed in storage shall be housed with protection from the weather, excessive humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall be either capped or plugged until installed.

1.6 FIELD MEASUREMENTS

After becoming familiar with all details of the work, the Contractor shall verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work.

1.7 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. Submittals related to fire pumps, auxiliary equipment, including manufacturer's catalog data, working drawings, connection drawings, control diagrams and certificates shall be submitted concurrently as a complete package. The Fire Protection Specialist shall review and approve all submittals. All submittals shall be accompanied by a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government. The package will be reviewed by the U.S. Army Engineer District Fire Protection Engineer. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data
Fire Pump Installation Related Submittals; FIO.

A list of the Fire Pump Installation Related Submittals, no later than 7 days after the approval of the Fire Protection Specialist and the Manufacturer's Representative.

Components and Equipment; GA.

Manufacturer's catalog data included with the Fire Pump Installation Drawings for each separate piece of equipment proposed for use in the system. Catalog data shall indicate the name of the manufacturer of each item of equipment, with data annotated to indicate model to be provided. In addition, a complete equipment list that includes equipment description, model number and quantity shall be provided. Catalog data for material and equipment shall include, but not be limited to, the following:

a. Fire pump, driver and controller including manufacturer's certified shop test characteristic curve for each pump. Shop test curve may be submitted after approval of catalog data but shall be submitted prior to the final tests.

b. Pressure maintenance pump and controller.

c. Piping components.
d. Valves, including gate, check, globe and relief valves.
e. Gauges.
f. Hose valve manifold test header and hose valves.
g. Flow meter.
h. Restrictive orifice union.
i. Associated devices and equipment.

Spare Parts; FIO.

Spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. A list of special tools and test equipment required for maintenance and testing of the products supplied by the Contractor shall be included.

SD-04 Drawings

Fire Pump Installation Drawings; GA.

Three copies of the Fire Pump Installation Drawings consisting of a detailed plan view, detailed elevations and sections of the pump room, equipment and piping, drawn to a scale of not less than 1:20. Drawings shall indicate equipment, piping, and associated pump equipment to scale. All clearance, such as those between piping and equipment; between equipment and walls, ceiling and floors; and for electrical working distance clearance around all electrical equipment shall be indicated. Drawings shall include a legend identifying all symbols, nomenclatures, and abbreviations. Drawings shall indicate a complete piping and equipment layout including elevations and/or section views of the following:

a. Fire pumps, controllers, piping, valves, and associated equipment.
b. Sensing line for each pump including the pressure maintenance pump.
c. Engine fuel system for diesel driven pumps.
d. Engine cooling system for diesel driven pumps.
e. Pipe hangers and sway bracing including support for diesel muffler and exhaust piping.
f. Restraint of underground water main at entry-point entry-and exit-points to the building including details of pipe clamps, tie rods, mechanical retainer glands, and thrust blocks.
g. A one-line schematic diagram indicating layout and sizes of all piping, devices, valves and fittings.
h. A complete point-to-point connection drawing of the pump power, control and alarm systems, as well as interior wiring schematics of each controller.

As-Built Drawings; FIO.

As-built drawings, no later than 14 days after completion of the Final Tests. The Fire Pump Installation Drawings shall be updated to reflect as-built conditions after all related work is completed and shall be on reproducible full-size mylar film.

SD-06 Instructions

Preliminary Test Procedures; FIO.

Proposed procedures for Preliminary Tests, at least 14 days prior to the proposed start of the tests.

Final Test Instructions; FIO.

Proposed procedures for Final Acceptance Test, no later than 14 days prior to the proposed start of the tests.

System Diagrams; GA.

Proposed diagrams, at least 2 weeks prior to start of related testing. System diagrams that show the layout of equipment, piping, and storage units, and typed condensed sequence of operation, wiring and control diagrams, and operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system shall be framed under glass or laminated plastic. After approval, these items shall be posted where directed.

SD-07 Schedules

Field Training Schedule; GA.

Proposed schedule for field training submitted at least 14 days prior to the start of related training.

Preliminary Tests; GA.

Proposed date and time to begin Preliminary Tests, submitted with the Preliminary Tests Procedures.

Final Acceptance Test; GA.

Proposed date and time to begin Final Acceptance Test, submitted with the Final Acceptance Test Procedures. Notification shall be provided at least 14 days prior to the proposed start of the test. Notification shall include a copy of the Contractor's Material & Test Certificates.

SD-08 Statements

Fire Protection Specialist Qualifications; GA.
The name and documentation of certification of the proposed Fire Protection Specialists, no later than 14 days after the Notice to Proceed and prior to the submittal of the fire pump installation drawings.

Manufacturer's Representative Qualifications; GA.

The name and documentation of certification of the proposed Manufacturer's Representative, concurrent with submittal of the Fire Protection Specialist Qualifications.

SD-09 Reports

Preliminary Test Report; GA.

Three copies of the completed Preliminary Tests Reports, no later that 7 days after the completion of the Preliminary Tests. The Preliminary Tests Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Specialist and the Manufacturer's Representative.

Final Acceptance Test Report; GA.

Three copies of the completed Final Acceptance Tests Reports, no later that 7 days after the completion of the Final Acceptance Tests. All items in the Final Acceptance Report shall be signed by the Fire Protection Specialist and the Manufacturer's Representative. Test reports in booklet form (each copy furnished in a properly labeled three ring binder) showing all field tests and measurements taken during the preliminary and final testing, and documentation that proves compliance with the specified performance criteria, upon completion of the installation and final testing of the installed system. Each test report shall indicate the final position of the controls and pressure switches. The test reports shall include the description of the hydrostatic test conducted on the piping and flushing of the suction and discharge piping. A copy of the manufacturer's certified pump curve for each fire pump shall be included in the report.

SD-13 Certificates

Fire Protection Specialist Inspection; GA.;

Concurrent with the Final Acceptance Test Report, certification by the Fire Protection Specialist that the fire pump installation is in accordance with the contract requirements, including signed approval of the Preliminary and Final Acceptance Test Reports.

SD-19 Operation and Maintenance Manuals

Fire Pumps; FIO.

Six manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 14 days prior to field training. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and
recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4 hour onsite response to a service call on an emergency basis.

1.8 FIRE PROTECTION SPECIALIST

Work specified in this section shall be performed under the supervision of and certified by the Fire Protection Specialist. The Fire Protection Specialist shall be an individual who is a registered professional engineer and a Full Member of the Society of Fire Protection Engineers or who is certified as a Level IV Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014-7. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.9 MANUFACTURER'S REPRESENTATIVE

Work specified in this section shall be performed under the supervision of and certified by a representative of the fire pump manufacturer. The Manufacturer's Representative shall be regularly engaged in the installation of the type and complexity of fire pump(s) specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.10 REGULATORY REQUIREMENTS

Compliance with referenced NFPA standards is mandatory. This includes advisory provisions listed in the appendices of such standards, as though the word "shall" had been substituted for the word "should" wherever it appears. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification shall govern. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

2.2 NAMEPLATES

All equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number. Pumps and motors shall have standard nameplates securely affixed in a conspicuous place and easy to read. Fire pump shall have nameplates and markings in accordance with UL 448. Diesel driver shall have nameplate and
markings in accordance with UL 1247. Electric motor nameplates shall provide the minimum information required by NFPA 70, Section 430-7.

2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE

Materials and Equipment shall have been tested by Underwriters Laboratories, Inc. and listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM P7825a and FM P7825b. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM P7825a and FM P7825b.

2.4 UNDERGROUND PIPING COMPONENTS

2.4.1 Pipe and Fittings

Underground piping and piping under the building slab shall be ductile iron with a rated working pressure of 1034 kPa (150 psi) conforming to AWWA C151, with cement mortar lining conforming to AWWA C104. Piping more than 1500 mm (5 feet) outside the building walls shall comply with Section 02510 WATER DISTRIBUTION SYSTEM.

2.4.2 Fittings and Gaskets

Fittings shall be ductile iron conforming to AWWA C110. Gaskets shall be suitable in design and size for the pipe with which such gaskets are to be used. Gaskets for ductile iron pipe joints shall conform to AWWA C111.

2.4.3 Valves and Valve Boxes

Valves shall be gate valves conforming to AWWA C500 or UL 262. Valves shall have cast-iron body and bronze trim. Valve shall open by counterclockwise rotation. Except for post indicator valves, all underground valves shall be provided with an adjustable cast-iron or ductile iron valve box of a size suitable for the valve on which the box is to be used, but not less than 133 mm (5.25 inches) in diameter. The box shall be coated with bituminous coating. A cast-iron or ductile-iron cover with the word "WATER" cast on the cover shall be provided for each box.

2.4.4 Buried Utility Warning and Identification Tape

Detectable aluminum foil plastic-backed tape or detectable magnetic plastic tape manufactured specifically for warning and identification of buried piping shall be provided for all buried piping. Tape shall be detectable by an electronic detection instrument. Tape shall be color-coded for the utility involved and imprinted in bold black letters continuously and repeatedly over the entire tape length. Warning and identification shall be "CAUTION BURIED WATER PIPING BELOW" or similar wording. Code and lettering shall be permanent and unaffected by moisture and other substances contained in the trench backfill material. Tape shall be buried at a depth of 300 mm (12 inches) below the top surface of earth or the top surface of the subgrade under pavement.

2.5 ABOVEGROUND PIPING COMPONENTS

2.5.1 Pipe Sizes 65 mm (2.5 inches) and Larger
2.5.1.1 Pipe

Piping shall be ASTM A 795, Weight Class STD (Standard), Schedule 40 (except for Schedule 30 for pipe sizes 200 mm (8 inches) and greater in diameter), Type E or Type S, Grade A; black steel pipe. Steel pipe shall be joined by means of flanges welded to the pipe or mechanical grooved joints only. Piping shall not be jointed by welding or weld fittings. Suction piping shall be galvanized on the inside per NFPA 20.

2.5.1.2 Grooved Mechanical Joints and Fittings

Joints and fittings shall be designed for not less than 1200 kPa (175 psi) service and shall be the product of the same manufacturer. Fitting and coupling houses shall be malleable iron conforming to ASTM A 47M, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A 183 and shall be cadmium plated or zinc electroplated.

2.5.1.3 Flanges

Flanges shall be ASME B16.5, Class 150 flanges. Flanges shall be provided at valves, connections to equipment, and where indicated.

2.5.1.4 Gaskets

Gaskets shall be AWWA C111, cloth inserted red rubber gaskets.

2.5.1.5 Bolts

Bolts shall be ASTM A 193/A 193M, Grade B8. Bolts shall extend no less than three full threads beyond the nut with bolts tightened to the required torque.

2.5.1.6 Nuts

Nuts shall be ASTM A 194/A 194M, Grade 8.

2.5.1.7 Washers

Washers shall meet the requirements of ASTM F 436M. Flat circular washers shall be provide under all bolt heads and nuts.

2.5.2 Piping Sizes 50 mm and Smaller

2.5.2.1 Steel Pipe

Steel piping shall be ASTM A 795, Weight Class STD (Standard), Schedule 40, Type E or Type S, Grade A, zinc-coated steel pipe with threaded end connections. Fittings shall be ASME B16.39, Class 150, zinc-coated threaded fittings. Unions shall be ASME B16.39, Class 150, zinc-coated unions.

2.5.2.2 Copper Tubing

Copper tubing shall be ASTM B 88M, Type L or K, soft annealed. Fittings shall be ASME B16.26, flared joint fittings. Pipe nipples shall be ASTM B 42 copper pipe with threaded end connections.
2.5.3 Pipe Hangers and Supports

Pipe hangers and support shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b and shall be the adjustable type. Finish of rods, nuts, washers, hangers, and supports shall be zinc-plated after fabrication.

2.5.4 Valves

Valves shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b for fire protection service. Valves shall have flange or threaded end connections.

2.5.4.1 Gate Valves and Control Valves

Gate valves and control valves shall be outside screw and yoke (O.S.&Y.) type which open by counterclockwise rotation. Butterfly-type control valves are not permitted.

2.5.4.2 Tamper Switch

The suction control valves, the discharge control valves, valves to test header and flow meter, and the by-pass control valves shall be equipped with valve tamper switches for monitoring by the fire alarm system.

2.5.4.3 Check Valve

Check valve shall be clear open, swing type check valve with flange or threaded inspection plate.

2.5.4.4 Relief Valve

Relief valve shall be spring operated type conforming to NFPA 20. A means of detecting water motion in the relief lines shall be provided where the discharge is not visible within the pump house.

2.5.4.5 Circulating Relief Valve

An adjustable circulating relief valve shall be provided for each fire pump in accordance with NFPA 20.

2.6 FIRE PUMP

Fire pump shall be electric motor driven. Each pump capacity shall be rated at 38 liters per second with a rated net pressure of 508 kPa. Fire pump shall furnish not less than 150 percent of rated flow capacity at not less than 65 percent of rated net pressure. Pump shall be centrifugal horizontal split case fire pump. Horizontal pump shall be equipped with automatic air release devices. The maximum rated pump speed shall be 2100 rpm when driving the pump at rated capacity. Pump shall conform to the requirements of UL 448. Fire pump discharge and suction gauges shall be oil-filled type.

2.7 ELECTRIC MOTOR DRIVER

Motor shall conform to NEMA MG 1 and be marked as complying with NEMA Design B standards. Motor wattage shall be of sufficient size so that the nameplate wattage rating will not be exceeded throughout the entire
published pump characteristic curve. The motor and fire pump controller shall be fully compatible.

2.8 FIRE PUMP CONTROLLER

Controller shall be the automatic type and UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b for fire pump service. Pump shall be arranged for automatic start and stop, and manual push-button stop. Automatic stopping shall be accomplished only after all starting causes have returned to normal and after a minimum pump run time has elapsed. Controllers shall be completely terminally wired, ready for field connections, and mounted in a NEMA Type 2 drip-proof enclosure arranged so that controller current carrying parts will not be less than 300 mm above the floor. Controller shall be provided with voltage surge arresters installed per NFPA 20. Controller shall be equipped with a bourdon tube pressure switch or a solid state pressure switch with independent high and low adjustments, automatic starting relay actuated from normally closed contacts, visual alarm lamps and supervisory power light. Controller shall be equipped with a thermostat switch with adjustable setting to monitor the pump room temperature and to provide an alarm when temperatures falls below 5 degrees C.

2.8.1 Controller for Electric Motor Driven Fire Pump

Controller shall be across the line starting type. Controller shall be designed as indicated. Controller shall have a short circuit rating as indicated. Controller shall monitor pump running, loss of a phase or line power, phase reversal, and pump room temperature. Alarms shall be individually displayed in front of panel by lighting of visual lamps. Each lamp shall be labeled with rigid etched plastic labels. Controller shall be equipped with terminals for remote monitoring of pump running, pump power supply trouble (loss of power or phase and phase reversal), and pump room trouble (pump room temperature and low reservoir level), and for remote start. Limited service fire pump controllers are not permitted, except for fire pumps driven by electric motors rated less than 11 kW. Controller shall be equipped with a 7-day electric pressure recorder with 24-hour spring wound back-up. The pressure recorder shall provide a readout of the system pressure from 0 to 207 Pa, time, and date. Controller shall require the pumps to run for ten minutes for pumps with driver motors under 149 kW and for 15 minutes for pumps with motors 149 kW and greater, prior to automatic shutdown. The controller shall be equipped with an externally operable isolating switch which manually operates the motor circuit. Means shall be provided in the controller for measuring current for all motor circuit conductors.

2.9 PRESSURE SENSING LINE

A completely separate pressure sensing line shall be provided for each fire pump and for the jockey pump. The sensing line shall be arranged in accordance with Figure A-7-5.2.1. of NFPA 20. The sensing line shall be 15 mm H58 brass tubing complying with ASTM B 135M. The sensing line shall be equipped with two restrictive orifice unions each. Restricted orifice unions shall be ground-face unions with brass restricted diaphragms drilled for a 2.4 mm. Restricted orifice unions shall be mounted in the horizontal position, not less than 1.5 m apart on the sensing line. Two test connections shall be provided for each sensing line. Test connections shall consist of two brass 15 mm globe valves and 8 mm gauge connection tee.
arranged per NFPA 20. One of the test connections shall be equipped with a 0 to 1380 kPa water oil-filled gauge. Sensing line shall be connected to the pump discharge piping between the discharge piping control valve and the check valve.

2.10 PRESSURE MAINTENANCE PUMP

Pressure maintenance pump shall be electric motor driven, in-line vertical shaft, centrifugal type with a rated discharge of 0.63 liters per second at 862 kPa. Pump shall draft from the suction supply side of the suction pipe gate valve of the fire pump and shall discharge into the system at the downstream side of the pump discharge gate valve. An approved indicating gate valve of the outside screw and yoke (O.S.&Y.) type shall be provided in the maintenance pump discharge and suction piping. Oil-filled water pressure gauge and approved check valve in the maintenance pump discharge piping shall be provided. Check valve shall be swing type with removable inspection plate.

2.10.1 Pressure Maintenance Pump Controller

Pressure maintenance pump controller shall be arranged for automatic and manual starting and stopping and equipped with a "manual-off-automatic" switch. The controller shall be completely prewired, ready for field connections, and wall-mounted in a NEMA Type 2 drip-proof enclosure. The controller shall be equipped with a bourdon tube pressure switch or a solid state pressure switch with independent high and low adjustments for automatic starting and stopping. A sensing line shall be provided connected to the pressure maintenance pump discharge piping between the control valve and the check valve. The sensing line shall conform to paragraph, PRESSURE SENSING LINE. The sensing line shall be completely separate from the fire pump sensing lines. An adjustable run timer shall be provided to prevent frequent starting and stopping of the pump motor. The run timer shall be set for 2 minutes.

2.11 PUMP BASE PLATE AND PAD

A common base plate shall be provided for each horizontal-shaft fire pump for mounting pump and driver unit. The base plate shall be constructed of cast iron with raised lip tapped for drainage or welded steel shapes with suitable drainage. Each base plate for the horizontal fire pumps shall be provided with a 25 mm galvanized steel drain line piped to the nearest floor drain. For vertical shaft pumps, pump head shall be provided with a cast-iron base plate and shall serve as the sole plate for mounting the discharge head assembly. Pump units and bases shall be mounted on a raised 100 mm reinforced concrete pad that is an integral part of the reinforced concrete floor.

2.12 HOSE VALVE MANIFOLD TEST HEADER

Hose valve test header shall be connected by ASME B16.5, Class 150 flange inlet connection. Hose valves shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825b bronze hose gate valves with 65 mm American National Fire Hose Connection Screw Standard Threads (NH) per NFPA 1963. The number of valves shall be per NFPA 20. Each hose valve shall be equipped with a cap and chain, and located no more than 900 mm and no less than 600 mm above grade.
2.13 FLOW METER

Meter shall be UL listed UL Fire Prot Dir or FM approved FM P7825a and FM P7825bas flow meters for fire pump installation with direct flow readout device. Flow meter shall be capable of metering any water flow quantities between 50 percent and 150 percent of the rated flow of the pumps. The flow meter shall be arranged in accordance with Figure A-2-14.2.1 of NFPA 20. The meter throttle valve and the meter control valves shall be O.S.&Y. valves. Automatic air release shall be provided if flow meter test discharge is piped to the pump suction and forms a closed-loop meter arrangement as defined in Figure A-2-14.2.1 of NFPA 20.

2.14 PIPE SLEEVE

A pipe sleeve shall be provided at each location where piping passes through walls, ceilings, roofs, and floors, including pipe entering buildings from the exterior. Sleeves shall be grouted in position during construction. Sleeve shall be of sufficient length to pass through the entire thickness of the wall, ceilings, roofs and floors. The space between the exterior surface of the pipe and the interior surface of the sleeve shall be firmly packed with mineral wool insulation and caulk at both ends with plastic waterproof cement which will dry to a firm but pliable mass, or with a segmented elastomeric seal. Where pipes pass through fire walls or fire floors, a fire seal shall be provided between the pipe and the sleeve in accordance with Section 07840 FIRESTOPPING. Sleeves in masonry and concrete walls, ceiling, roofs and floors shall be hot-dip galvanized steel, ductile-iron, or cast-iron. Other sleeves shall be galvanized steel sheet pipe not less than 4.4 kg per square meter.

2.15 ESCUTCHEON (WALL) PLATES

Escutcheon plates shall be one-piece or split-hinge type metal plates and shall be provided for piping passing through floors, walls, and ceiling in exposed areas. In finished areas, plates shall be polished stainless steel or chromium-plated finish on copper alloy. In unfinished areas, plates shall have painted finish. Plates shall be secured in position.

2.16 DISINFECTING MATERIALS

2.16.1 Liquid Chlorine

Liquid chlorine shall conform to AWWA B301.

2.16.2 Hypochlorites

Calcium hypochlorite and sodium hypochlorite shall conform to AWWA B300.

PART 3 EXECUTION

3.1 FIRE PUMP INSTALLATION RELATED SUBMITTALS

The Fire Protection Specialist shall prepare a list of the submittals from the Contract Submittal Register that relate to the successful installation of the fire pump(s). The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government.
3.2 INSPECTION BY FIRE PROTECTION SPECIALIST

The Fire Protection Specialist shall inspect the fire pump installation periodically to assure that the installation conforms to the contract requirements. The Fire Protection Specialist shall perform a thorough inspection of the fire pump installation, including visual observation of the pump while running. There shall be no excessive vibration, leaks (oil or water), unusual noises, overheating, or other potential problems. Inspection shall include piping and equipment clearance, access, supports, and guards. Any discrepancy shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered. The Fire Protection Specialist shall witness the preliminary and final acceptance tests and, after completion of the inspections and a successful final acceptance test, shall sign test results and certify in writing that the installation of the fire pump installation is in accordance with the contract requirements.

3.3 INSTALLATION REQUIREMENTS

Installation, workmanship, fabrication, assembly, erection, examination, inspection and testing shall be in accordance NFPA 20, except as modified herein. In addition, the fire pump and engine shall be installed in accordance with the written instructions of the manufacturer.

3.4 PIPE AND FITTINGS

Piping shall be inspected, tested and approved before burying, covering, or concealing. Fittings shall be provided for changes in direction of piping and for all connections. Changes in piping sizes shall be made using tapered reducing pipe fittings. Bushings shall not be used.

3.4.1 Cleaning of Piping

Interior and ends of piping shall be clean and free of any water or foreign material. Piping shall be kept clean during installation by means of plugs or other approved methods. When work is not in progress, open ends of the piping shall be securely closed so that no water or foreign matter will enter the pipes or fittings. Piping shall be inspected before placing in position.

3.4.2 Threaded Connections

Jointing compound for pipe threads shall be polytetrafluoroethylene (PTFE) pipe thread tape conforming to ASTM D 3308 and shall be applied to male threads only. Exposed ferrous pipe threads shall be provided with one coat of zinc molybdate primer applied to a minimum of dry film thickness of 0.025 mm.

3.4.3 Pipe Hangers and Supports

Additional hangers and supports shall be provided for concentrated loads in aboveground piping, such as for valves and risers.

3.4.3.1 Vertical Piping

Piping shall be supported at each floor, at not more than 3 meters intervals.
3.4.3.2 Horizontal Piping

Horizontal piping supports shall be spaced as follows:

<table>
<thead>
<tr>
<th>Nominal Pipe Size (mm)</th>
<th>25 and Under</th>
<th>32</th>
<th>40</th>
<th>50</th>
<th>65</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>125</th>
<th>150+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Tube</td>
<td>1.8</td>
<td>2</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Pipe</td>
<td>2</td>
<td>2.4</td>
<td>2.7</td>
<td>3</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
<td>4.2</td>
<td>4.8</td>
<td>5.0</td>
</tr>
</tbody>
</table>

3.4.4 Underground Piping

Installation of underground piping and fittings shall conform to NFPA 24. Joints shall be anchored in accordance with NFPA 24. Concrete thrust block shall be provided at elbow where pipe turns up towards floor, and the pipe riser shall be restrained with steel rods from the elbow to the flange above the floor. After installation per NFPA 24, rods and nuts shall be thoroughly cleaned and coated with asphalt or other corrosion-retard material approved by the Contracting Officer. Minimum depth of cover shall be 900 mm.

3.5 ELECTRICAL WORK

Electric motor and controls shall be in accordance with NFPA 20 and NFPA 70, unless more stringent requirements are specified herein or are indicated on the drawings. Electrical wiring and associated equipment shall be provided in accordance with NFPA 20 and Section 16415 ELECTRICAL WORK, INTERIOR.

3.6 FLUSHING

The fire pump suction and discharge piping shall be flushed at 120 percent of rated capacity of each pump. Where the pump installation consists of more than one pump, the flushing shall be the total quantity of water flowing when all pumps are discharging at 120 percent of their rated capacities. The new pumps may be used to attain the required flushing volume. Flushing operations shall continue until water is clear, but not less than 10 minutes. The Contractor shall submit a signed and dated flushing certificate before requesting field testing.

3.7 FIELD TESTS

3.7.1 Hydrostatic Test

Piping shall be hydrostatically tested at 1551 kPa for a period of 2-hours, or at least 345 kPa in excess of the maximum pressure, when the maximum pressure in the system is in excess of 1207 kPa.
3.7.2 Preliminary Test

The Fire Protection Specialist shall take all readings and measurements. The Manufacturer's Representative, a representative of the fire pump controller manufacturer, and a representative of the diesel engine manufacturer (when supplied) shall witness the complete operational testing of the fire pump and drivers. The fire pump controller manufacturer's representative and the diesel engine manufacturer's representative shall each be an experienced technician employed by the respective manufacturers and capable of demonstrating operation of all features of respective components including trouble alarms and operating features. Fire pumps, drivers and equipment shall be thoroughly inspected and tested to insure that the system is correct, complete, and ready for operation. Tests shall ensure that pumps are operating at rated capacity, pressure and speed. Tests shall include manual starting and running to ensure proper operation and to detect leakage or other abnormal conditions, flow testing, automatic start testing, testing of automatic settings, sequence of operation check, test of required accessories; test of pump alarms devices and supervisory signals, test of pump cooling, operational test of relief valves, and test of automatic power transfer, if provided. Pumps shall run without abnormal noise, vibration or heating. If any component or system was found to be defective, inoperative, or not in compliance with the contract requirements during the tests and inspection, the corrections shall be made and the entire preliminary test shall be repeated.

3.7.3 Final Acceptance Test

The Fire Protection Specialist shall take all readings and measurements. The Manufacturer's Representative, the fire pump controller manufacturer's representative, and the diesel engine manufacturer's representative (when supplied) shall also witness for the final tests. The Contractor shall be responsible for repairing any damage caused by hose streams or other aspects of the test. The final acceptance test shall include the following:

3.7.3.1 Flow Tests

Flow tests using the test header, hoses and playpipe nozzles shall be conducted. Flow tests shall be performed at churn (no flow), 75, 100, 125 and 150 percent capacity for each pump and at full capacity of the pump installation. Flow readings shall be taken from each nozzle by means of a calibrated pitot tube with gauge or other approved measuring equipment. Rpm, suction pressure and discharge pressure reading shall be taken as part of each flow test. Voltage and ampere readings shall be taken on each phase as part of each flow test for electric-motor driven pumps.

3.7.3.2 Starting Tests

Pumps shall be tested for automatic starting. Setting of the pressure switches shall be tested when pumps are operated by pressure drop. Tests may be performed by operating the test connection on the pressure sensing lines. As a minimum, each pump shall be started automatically 10 times and manually 10 times, in accordance with NFPA 20. The fire pumps shall be operated for a period of at least 10 minutes for each of the starts; except that electric motors over 149 kW shall be operated for at least 15 minutes and shall not be started more than 2 times in 10 hours. Pressure settings that include automatic starting and stopping of the fire pump(s) shall be
indicated on an etched plastic placard, attached to the corresponding pump controller.

3.7.3.3 Alarms

All pump alarms, both local and remote, shall be tested.

3.7.3.4 Miscellaneous

Valve tamper switches shall be tested. Pressure recorder operation relief valve settings, valve operations, operation and accuracy of meters and gauges, and other accessory devices shall be verified.

3.7.4 Correction of Deficiencies

If equipment was found to be defective or non-compliant with contract requirements, the Contractor shall perform corrective actions and repeat the tests. Tests shall be conducted and repeated if necessary until the system has been demonstrated to comply with all contract requirements.

3.7.5 Test Equipment

The Contractor shall provide all equipment and instruments necessary to conduct a complete final test, including 65 mm diameter hoses, playpipe nozzles, pitot tube gauges, portable digital tachometer, voltage and ampere meters, and calibrated oil-filled water pressure gauges. The Contractor shall provide all necessary supports to safely secure hoses and nozzles during the test. The Government will furnish water for the tests.

3.7.6 Test Documentation

The Manufacturer's Representative shall supply a copy of the manufacturer's certified curve for each fire pump at the time of the test. The Fire Protection Specialist shall record all test results and plot curve of each pump performance during the test. Complete pump acceptance test data of each fire pump shall be recorded. The pump acceptance test data shall be on forms that give the detail pump information such as that which is indicated in Figure A-11-2.6.3(f) of NFPA 20. All test data records shall be submitted in a three ring binder.

3.8 DISINFECTION

After all system components are installed including pumps, piping, and other associated work, and all hydrostatic test(s) are successfully completed, thoroughly flush the pumps and all piping to be disinfected with potable water until there is no visible sign of dirt or other residue. The hydrostatic test are successfully completed, each portion of the piping specified in this Section system to be disinfected shall be thoroughly flushed with potable water until all entrained dirt and other foreign materials have been removed before introducing chlorinating material. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the sprinkler piping at a constant rate of 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or liquid chlorine injected into the system through a solution-fed chlorinator and booster pump shall be used. Chlorination application shall continue until the entire system has been demonstrated to comply with all contract requirements.
system if filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system shall be opened and closed several times to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. The system shall then be flushed with clean water until the residual chlorine is reduced to less than one part per million. Samples of water in disinfected containers for bacterial examination will be taken from several system locations which are approved by the Contracting Officer. Samples shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA EWW. The testing method shall be either the multiple-tube fermentation technique or the membrane-filter technique. The disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained.

3.9 FIELD TRAINING

The Fire Protection Specialist and the Manufacturer's Representative shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 8 hours of normal working time and shall start after the fire pump installation is functionally complete but prior to the start tests specified herein. The field instruction shall cover all of the items contained in the approved Operating and Maintenance Instructions.

-- End Of Section --
SECTION 13930
WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53 (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
ASTM A 135 (1997c) Electric-Resistance-Welded Steel Pipe
ASTM A 183 (1983; R 1998) Carbon Steel Track Bolts and Nuts
ASTM A 536 (1999el) Ductile Iron Castings
ASTM A 795 (1997) Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use

ASTM B 88M (1996) Seamless Copper Water Tube (Metric)

ASME INTERNATIONAL (ASME)

ASME B16.3 (1992) Malleable Iron Threaded Fittings
ASME B16.18 (1984; R 1994) Cast Copper Alloy Solder Joint Pressure Fittings
ASME B16.21 (1992) Nonmetallic Flat Gaskets for Pipe Flanges
ASME B18.2.1 (1996) Square and Hex Bolts and Screws (Inch Series)

ASME B18.2.2 (1987; R 1993) Square and Hex Nuts (Inch Series)

AMERICAN SOCIETY OF SANITARY ENGINEERING FOR PLUMBING AND SANITARY RESEARCH (ASSE)

ASSE 1015 (1993) Double Check Backflow Prevention Assembly

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA EWW (1995) Standard Methods for the Examination of Water and Wastewater

AWWA B300 (1992) Hypochlorites

AWWA B301 (1992) Liquid Chlorine

AWWA C110 (1993) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids

AWWA C151 (1996) Ductile-Iron Pipe, Centrifugally Cast, for Water or Other Liquids

FACTORY MUTUAL ENGINEERING AND RESEARCH (FM)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-71 (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
1.2 GENERAL REQUIREMENTS

Wet pipe sprinkler system shall be provided in all areas of the building. The sprinkler system shall provide fire sprinkler protection for the entire area. Except as modified herein, the system shall be designed and installed in accordance with NFPA 13 NFPA 13R. Rack sprinklers shall be in accordance with NFPA 231C. Pipe sizes which are not indicated on drawings shall be determined by hydraulic calculation. The Contractor shall design any portions of the sprinkler system that are not indicated on the drawings including locating sprinklers, piping and equipment, and size piping and equipment when this information is not indicated on the drawings or is not specified herein. The design of the sprinkler system shall be based on hydraulic calculations, and the other provisions specified herein.

1.2.1 Hydraulic Design

The system shall be hydraulically designed to discharge a minimum density of 12.22 L/min per square meter over the hydraulically most demanding 280 square meters of floor area. The minimum pipe size for branch lines in
gridded systems shall be 32 mm. Hydraulic calculations shall be in accordance with the Area/Density Method of NFPA 13.

1.2.1.1 Hose Demand

An allowance for exterior hose streams of 2838 L/min shall be added to the sprinkler system demand at the fire hydrant shown on the drawings closest to the point where the water service enters the building at the point of connection to the existing system.

1.2.1.2 Basis for Calculations

The design of the system shall be based upon a water supply with a static pressure of 380 kPa, and a flow of 252.6 L/s at a residual pressure of 138 kPa. Water supply shall be presumed available at the point of connection to existing. Hydraulic calculations shall be based upon the Hazen-Williams formula with a "C" value of 120 for steel piping, 150 for copper tubing, 140 for new cement-lined ductile-iron piping, and 100 for existing underground piping. Hydraulic calculations shall be based on operation of the fire pump(s) provided in Section 13920 FIRE PUMPS.

1.2.2 Sprinkler Spacing

Sprinklers shall be uniformly spaced on branch lines. Maximum spacing per sprinkler shall not exceed limits specified in NFPA 13 for the hazard occupancies shown the drawings.

1.3 COORDINATION OF TRADES

Piping offsets, fittings, and any other accessories required shall be furnished as required to provide a complete installation and to eliminate interference with other construction. Sprinkler shall be installed over and under ducts, piping and platforms when such equipment can negatively effect or disrupt the sprinkler discharge pattern and coverage.

1.4 DELIVERY AND STORAGE

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

1.5 FIELD MEASUREMENTS

After becoming familiar with all details of the work, the Contractor shall verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work.

1.6 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. Submittals related to system configuration, hydraulic calculations, and equipment selection, including manufacturer's catalog data, working drawings, connection drawings, control diagrams and certificates shall be submitted concurrently as a complete package. The package will be reviewed by the
U.S. Army Engineer District Fire Protection Engineer. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Fire Protection Related Submittals; FIO.

A list of the Fire Protection Related Submittals, no later than 7 days after the approval of the Fire Protection Specialist.

Load Calculations for Sizing Sway Bracing; GA.

For systems that are required to be protected against damage from earthquakes, load calculations shall be provided for sizing of sway bracing.

Components and Equipment Data; GA.

Manufacturer's catalog data included with the Sprinkler System Drawings for all items specified herein. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with all contract requirements. In addition, a complete equipment list that includes equipment description, model number and quantity shall be provided.

Hydraulic Calculations; GA.

Hydraulic calculations, including a drawing showing hydraulic reference points and pipe segments.

Spare Parts; FIO.

Spare parts data shall be included for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. A list of special tools and test equipment required for maintenance and testing of the products supplied by the Contractor shall be included.

SD-04 Drawings

Sprinkler System Drawings; GA.

Three copies of the Sprinkler System Drawings, no later than 21 days prior to the start of sprinkler system installation. The Sprinkler System Drawings shall conform to the requirements established for working plans as prescribed in NFPA 13. Drawings shall include plan and elevation views demonstrating that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following:

a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used.

b. Floor plans drawn to a scale not less than 1:100 which clearly show locations of sprinklers, risers, pipe hangers, seismic
separation assemblies, sway bracing, inspector's test connections, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be indicated.

c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas.

d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor.

e. Details of each type of riser assembly; pipe hanger; sway bracing for earthquake protection, and restraint of underground water main at point-of-entry into the building, and electrical devices and interconnecting wiring.

As-Built Drawings; FIO.

As-built drawings, at least 14 days after completion of the Final Tests. The Sprinkler System Drawings shall be updated to reflect as-built conditions after all related work is completed and shall be on reproducible full-size mylar film.

SD-06 Instructions

Preliminary Tests Procedures; GA.

Proposed procedures for Preliminary Tests, no later than 14 days prior to the proposed start of the tests.

Final Acceptance Test Procedures; GA.

Proposed procedures for Final Acceptance Test, no later than 14 days prior to the proposed start of the tests.

SD-07 Schedules

On-site Training Schedule; GA.

Proposed On-site Training schedule, at least 14 days prior to the start of related training.

Preliminary Tests; GA.

Proposed date and time to begin Preliminary Tests, submitted with the Preliminary Tests Procedures.

Final Acceptance Test; GA.

Proposed date and time to begin Final Acceptance Test, submitted with the Final Acceptance Test Procedures. Notification shall be provided at least
14 days prior to the proposed start of the test. Notification shall include a copy of the Contractor's Material & Test Certificates.

SD-08 Statements

Fire Protection Specialist Qualifications; GA.

The name and documentation of certification of the proposed Fire Protection Specialists, no later than 14 days after the Notice to Proceed and prior to the submittal of the sprinkler system drawings and hydraulic calculations.

Sprinkler System Installer Qualifications; GA.

The name and documentation of certification of the proposed Sprinkler System Installer, concurrent with submittal of the Fire Protection Specialist Qualifications.

SD-09 Reports

Preliminary Tests Report; GA.

Three copies of the completed Preliminary Tests Reports, no later that 7 days after the completion of the Preliminary Tests. The Preliminary Tests Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Specialist.

Final Acceptance Test Report; GA.

Three copies of the completed Final Acceptance Tests Reports, no later that 7 days after the completion of the Final Acceptance Tests. All items in the Final Acceptance Report shall be signed by the Fire Protection Specialist.

SD-13 Certificates

Fire Protection Specialist Inspection; GA.;

Concurrent with the Final Acceptance Test Report, certification by the Fire Protection Specialist that the sprinkler system is installed in accordance with the contract requirements, including signed approval of the Preliminary and Final Acceptance Test Reports.

SD-19 Operation and Maintenance Manuals

Wet Pipe Sprinkler System; FIO.

Six manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 14 days prior to field training. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4 hour on-site response to a service call on an emergency basis.
1.7 HYDRAULIC CALCULATIONS

Hydraulic calculations shall be as outlined in NFPA 13 except that calculations shall be performed by computer using software intended specifically for fire protection system design using the design data shown on the drawings. Software that uses k-factors for typical branch lines is not acceptable. Calculations shall be based on the water supply data shown on the drawings. Calculations shall substantiate that the design area used in the calculations is the most demanding hydraulically. Water supply curves and system requirements shall be plotted on semi-logarithmic graph paper so as to present a summary of the complete hydraulic calculation. A summary sheet listing sprinklers in the design area and their respective hydraulic reference points, elevations, actual discharge pressures and actual flows shall be provided. Elevations of hydraulic reference points (nodes) shall be indicated. Documentation shall identify each pipe individually and the nodes connected thereto. The diameter, length, flow, velocity, friction loss, number and type fittings, total friction loss in the pipe, equivalent pipe length and Hazen-Williams coefficient shall be indicated for each pipe. For gridded systems, calculations shall show peaking of demand area friction loss to verify that the hydraulically most demanding area is being used. Also for gridded systems, a flow diagram indicating the quantity and direction of flows shall be included. A drawing showing hydraulic reference points (nodes) and pipe designations used in the calculations shall be included and shall be independent of shop drawings.

1.8 FIRE PROTECTION SPECIALIST

Work specified in this section shall be performed under the supervision of and certified by the Fire Protection Specialist. The Fire Protection Specialist shall be an individual who is a registered professional engineer and a Full Member of the Society of Fire Protection Engineers or who is certified as a Level III Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014-7. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.9 SPRINKLER SYSTEM INSTALLER QUALIFICATIONS

Work specified in this section shall be performed by the Sprinkler System Installer. The Sprinkler System Installer shall be regularly engaged in the installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.10 REGULATORY REQUIREMENTS

Compliance with referenced NFPA standards is mandatory. This includes advisory provisions listed in the appendices of such standards, as though the word "shall" had been substituted for the word "should" wherever it appears. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification shall
govern. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

2.2 NAMEPLATES

All equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number.

2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE

Materials and Equipment shall have been tested by Underwriters Laboratories, Inc. and listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM P7825a and FM P7825b. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM P7825a and FM P7825b.

2.4 UNDERGROUND PIPING COMPONENTS

2.4.1 Pipe

Piping from a point 150 mm above the floor to the point of connection to the existing water mains shall be ductile iron with a rated working pressure of 1034 kPa conforming to AWWA C151, with cement mortar lining conforming to AWWA C104. Piping more than 1500 mm outside the building walls shall comply with Section 02510 WATER DISTRIBUTION SYSTEM.

2.4.2 Fittings and Gaskets

Fittings shall be ductile iron conforming to AWWA C110. Gaskets shall be suitable in design and size for the pipe with which such gaskets are to be used. Gaskets for ductile iron pipe joints shall conform to AWWA C111.

2.5 ABOVEGROUND PIPING COMPONENTS

Aboveground piping shall be steel or copper, copper, or plastic.

2.5.1 Steel Piping Components

2.5.1.1 Steel Pipe

Except as modified herein, steel pipe shall be black as permitted by NFPA 13 and shall conform to applicable provisions of ASTM A 795, ASTM A 53, or ASTM A 135. Pipe in which threads or grooves are cut shall be Schedule 40 or shall be listed by Underwriters' Laboratories to have a corrosion resistance ratio (CRR) of 1.0 or greater after threads or grooves are cut. Pipe shall be marked with the name of the manufacturer, kind of pipe, and ASTM designation.
2.5.1.2 Fittings for Non-Grooved Steel Pipe

Fittings shall be cast iron conforming to ASME B16.4, steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Steel press fittings shall be approved for fire protection systems. Galvanized fittings shall be used for piping systems or portions of piping systems utilizing galvanized piping. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used.

2.5.1.3 Grooved Mechanical Joints and Fittings

Joints and fittings shall be designed for not less than 1200 kPa service and shall be the product of the same manufacturer. Fitting and coupling houses shall be malleable iron conforming to ASTM A 47M, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A 183 and shall be cadmium plated or zinc electroplated.

2.5.1.4 Flanges

Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1.6 mm thick, and full face or self-centering flat ring type. Bolts shall conform to ASME B18.2.1 and nuts shall be hexagon type conforming to ASME B18.2.2.

2.5.2 Copper Tube Components

2.5.2.1 Copper Tube

Copper tube shall conform to ASTM B 88M, Types L and M.

2.5.2.2 Copper Fittings

Cast copper alloy pressure fittings shall conform to ASME B16.18 and wrought copper and bronze pressure fittings shall conform to ASME B16.22.

2.5.3 Pipe Hangers

Hangers shall be listed in UL Fire Prot Dir or FM P7825a and FM P7825b and of the type suitable for the application, construction, and pipe type and sized involved.

2.5.4 Valves

2.5.4.1 Control Valve and Gate Valve

Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) type and shall be listed in UL Bld Mat Dir or FM P7825a and FM P7825b.

2.5.4.2 Check Valve

Check valve 50 mm and larger shall be listed in UL Bld Mat Dir or FM P7825a and FM P7825b. Check valves 100 mm and larger shall be of the swing type.
with flanged cast iron body and flanged inspection plate, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4.

2.5.4.3 Hose Valve

Valve shall comply with UL 668 and shall have a minimum rating of 2070 kPa. Valve shall be non-rising stem, all bronze, 90 degree angle type, with 65 mm American National Standard Fire Hose Screw Thread (NH) male outlet in accordance with NFPA 1963. Hose valve shall be provided with 65 to 40 mm reducer. Hose valves shall be equipped with lugged cap with drip drain, cap gasket and chain. Valve finish shall be polished chrome plated.

2.6 ALARM CHECK VALVE ASSEMBLY

Assembly shall include an double check backflow preventer standard trim piping, pressure gauges, bypass, retarding chamber, testing valves, main drain, and other components as required for a fully operational system.

2.7 WATERFLOW ALARM

Mechanically operated, exterior-mounted, water motor alarm assembly shall be provided and installed in accordance with NFPA 13. Water motor alarm assembly shall include a body housing, impeller or pelton wheel, drive shaft, striker assembly, gong, wall plate and related components necessary for complete operation. Minimum 20 mm galvanized piping shall be provided between the housing and the alarm check valve. Drain piping from the body housing shall be minimum 25 mm galvanized and shall be arranged to drain to the outside of the building. Piping shall be galvanized both on the inside and outside surfaces.

2.8 ALARM INITIATING AND SUPERVISORY DEVICES

2.8.1 Sprinkler Waterflow Indicator Switch, Vane Type

Switch shall be vane type with a pipe saddle and cast aluminum housing. The electro-mechanical device shall include a flexible, low-density polyethylene paddle conforming to the inside diameter of the fire protection pipe. The device shall sense water movements and be capable of detecting a sustained flow of 38 L/min or greater. The device shall contain a retard device adjustable from 0 to 90 seconds to reduce the possibility of false alarms caused by transient flow surges. The switch shall be tamper resistant and contain two SPDT (Form C) contacts arranged to transfer upon removal of the housing cover, and shall be equipped with a silicone rubber gasket to assure positive water seal and a dustproof cover and gasket to seal the mechanism from dirt and moisture.

2.8.2 Sprinkler Pressure (Waterflow) Alarm Switch

Pressure switch shall include a metal housing with a neoprene diaphragm, SPDT snap action switches and a 15 mm NPT male pipe thread. The switch shall have a maximum service pressure rating of 1207 kPa. There shall be two SPDT (Form C) contacts factory adjusted to operate at 28 to 55 kPa. The switch shall be capable of being mounted in any position in the alarm line trim piping of the alarm check valve.

2.8.3 Valve Supervisory (Tamper) Switch
Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem.

2.9 FIRE DEPARTMENT CONNECTION

Fire department connection shall be projecting type with cast brass body, matching wall escutcheon lettered "Auto Spkr" with a chromium plated finish. The connection shall have two inlets with individual self-closing clappers, caps with drip drains and chains. Female inlets shall have 65 mm diameter American National Fire Hose Connection Screw Threads (NH) per NFPA 1963.

2.10 SPRINKLERS

Sprinklers with internal O-rings shall not be used. Sprinklers shall be used in accordance with their listed spacing limitations. Temperature classification shall be ordinary. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Orifice of extended coverage sprinklers shall not exceed 13.5 mm.

2.10.1 Concealed Sprinkler

Concealed sprinkler shall be white polyester quick-response type and shall have a nominal 12.7 mm or 13.5 mm orifice.

2.10.2 Upright Sprinkler

Upright sprinkler shall be brass chrome-plated quick-response type and shall have a nominal 12.7 mm or 13.5 mm orifice.

2.10.3 Sidewall Sprinkler

Sidewall sprinkler shall have a nominal 12.7 mm orifice. Sidewall sprinkler shall have a polished chrome finish. Sidewall sprinkler shall be the quick-response type.

2.11 DISINFECTING MATERIALS

2.11.1 Liquid Chlorine

Liquid chlorine shall conform to AWWA B301.

2.11.2 Hypochlorites

Calcium hypochlorite and sodium hypochlorite shall conform to AWWA B300.

2.12 ACCESSORIES

2.12.1 Sprinkler Cabinet

Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required shall be provided.
2.12.2 Pendent Sprinkler Escutcheon

Escutcheon shall be one-piece metallic type with a depth of less than 20 mm and suitable for installation on pendent sprinklers. The escutcheon shall have a factory finish that matches the pendent sprinkler heads.

2.12.3 Pipe Escutcheon

Escutcheon shall be polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or set screw.

2.12.4 Identification Sign

Valve identification sign shall be minimum 150 mm wide x 50 mm high with enamel baked finish on minimum 1.214 mm steel or 0.6 mm aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components.

2.13 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY

Double-check backflow prevention assembly shall comply with ASSE 1015. The assembly shall have a bronze, cast-iron or stainless steel body with flanged ends. The assembly shall include OS&Y shutoff valves on the inlet and outlet, 2-positive-seating check valve for continuous pressure application, and four test cocks. Assemblies shall be rated for working pressure of 1034 kPa. The maximum pressure loss shall be 40 kPa at a flow rate equal to the sprinkler water demand, at the location of the assembly.

PART 3 EXECUTION

3.1 FIRE PROTECTION RELATED SUBMITTALS

The Fire Protection Specialist shall prepare a list of the submittals from the Contract Submittal Register that relate to the successful installation of the sprinkler systems(s). The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government.

3.2 INSTALLATION REQUIREMENTS

The installation shall be in accordance with the applicable provisions of NFPA 13, NFPA 24 and publications referenced therein. Installation of in-rack sprinklers shall comply with applicable provisions of NFPA 231C.

3.3 INSPECTION BY FIRE PROTECTION SPECIALIST

The Fire Protection Specialist shall inspect the sprinkler system periodically during the installation to assure that the sprinkler system is being provided and installed in accordance with the contract requirements. The Fire Protection Specialist shall witness the preliminary and final tests, and shall sign the test results. The Fire Protection Specialist, after completion of the system inspections and a successful final test, shall certify in writing that the system has been installed in accordance
with the contract requirements. Any discrepancy shall be brought to the
attention of the Contracting Officer in writing, no later than three working
days after the discrepancy is discovered.

3.4 ABOVEGROUND PIPING INSTALLATION

3.4.1 Protection of Piping Against Earthquake Damage

The system piping shall be protected against damage from earthquakes.
Seismic protection shall include flexible and rigid couplings, sway bracing,
seismic separation assemblies where piping crosses building seismic
separation joints, and other features as required by TI 809-04 for protection
of piping against damage from earthquakes.

3.4.2 Piping in Exposed Areas

Exposed piping shall be installed so as not to diminish exit access widths,
corridors or equipment access. Exposed horizontal piping, including drain
piping, shall be installed to provide maximum headroom.

3.4.3 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed
spaces above the ceiling, piping shall be concealed above ceilings. Piping
shall be inspected, tested and approved before being concealed. Risers and
similar vertical runs of piping in finished areas shall be concealed.

3.4.4 Pendent Sprinklers

Drop nipples to pendent sprinklers shall consist of minimum 25 mm pipe with
a reducing coupling into which the sprinkler shall be threaded. Hangers
shall be provided on arm-overs to drop nipples supplying pendent sprinklers
when the arm-over exceeds 300 mm. Where sprinklers are installed below
suspended or dropped ceilings, drop nipples shall be cut such that sprinkler
ceiling plates or escutcheons are of a uniform depth throughout the finished
space. The outlet of the reducing coupling shall not extend more than 25 mm
below the underside of the ceiling. On pendent sprinklers installed below
suspended or dropped ceilings, the distance from the sprinkler deflector to
the underside of the ceiling shall not exceed 100 mm. Recessed pendent
sprinklers shall be installed such that the distance from the sprinkler
deflector to the underside of the ceiling shall not exceed the
manufacturer's listed range and shall be of uniform depth throughout the
finished area.

3.4.4.1 Pendent Sprinkler Locations

Pendent sprinklers in suspended ceilings shall be a minimum of 150 mm from
ceiling grid.

3.4.5 Upright Sprinklers

Riser nipples or "sprigs" to upright sprinklers shall contain no fittings
between the branch line tee and the reducing coupling at the sprinkler.
Riser nipples exceeding 750 mm in length shall be individually supported.

3.4.6 Pipe Joints
Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings and fittings shall be from the same manufacturer.

3.4.7 Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 15 mm.

3.4.8 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes pass through fire walls, fire partitions, or floors, a fire seal shall be placed between the pipe and sleeve in accordance with Section 07840 FIRESTOPPING. In penetrations which are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement which will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.4.9 Escutcheons

Escutcheons shall be provided for pipe penetration of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes.

3.4.10 Inspector's Test Connection

Unless otherwise indicated, test connection shall consist of 25 mm pipe connected to the remote branch line; a test valve located approximately 2 meters above the floor; a smooth bore brass outlet equivalent to the smallest orifice sprinkler used in the system; and a painted metal identification sign affixed to the valve with the words "Inspector's Test." The discharge orifice shall be located outside the building wall directed so as not to cause damage to adjacent construction or landscaping during full flow discharge.

3.4.11 Drains
Main drain piping shall be provided to discharge at the location indicated and shall be installed in a manner such that no damage will not cause damage to adjacent construction or landscaping during full flow discharge. Auxiliary drains shall be provided as required by NFPA 13 except that drain valves shall be used where drain plugs are otherwise permitted. Where branch lines terminate at low points and form trapped sections, such branch lines shall be manifolded to a common drain line.

3.4.12 Installation of Fire Department Connection

Connection shall be mounted on the exterior wall approximately 900 mm above finished grade. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 and arranged to drain to the outside.

3.4.13 Identification Signs

Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13.

3.5 UNDERGROUND PIPING INSTALLATION

The fire protection water main shall be laid, and joints anchored, in accordance with NFPA 24. Minimum depth of cover shall be 900 mm. The supply line shall terminate inside the building with a flanged piece, the bottom of which shall be set not less than 150 mm above the finished floor. A blind flange shall be installed temporarily on top of the flanged piece to prevent the entrance of foreign matter into the supply line. A concrete thrust block shall be provided at the elbow where the pipe turns up toward the floor. In addition, joints shall be anchored in accordance with NFPA 24 using pipe clamps and steel rods from the elbow to the flange above the floor and from the elbow to a pipe clamp in the horizontal run of pipe. Buried steel components shall be provided with a corrosion protective coating in accordance with AWWA C203. Piping more than 1500 mm outside the building walls shall meet the requirements of Section 02510 WATER DISTRIBUTION SYSTEM.

3.6 EARTHWORK

Earthwork shall be performed in accordance with applicable provisions of Section 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS.

3.7 ELECTRICAL WORK

Alarm signal wiring connected to the building fire alarm control system shall be in accordance with Section 13851 FIRE DETECTION AND ALARM SYSTEM. Wiring color code shall remain uniform throughout the system.

3.8 DISINFECTION

After all system components are installed and hydrostatic test(s) are successfully completed, each portion of the sprinkler system to be disinfected shall be thoroughly flushed with potable water until all entrained dirt and other foreign materials have been removed before introducing chlorinating material. Flushing shall be conducted by removing
the flushing fitting of the cross mains and of the grid branch lines, and then back-flushing through the sprinkler main drains. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the sprinkler piping at a constant rate of 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or liquid chlorine injected into the system through a solution-fed chlorinator and booster pump shall be used. Chlorination application shall continue until the entire system is filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system shall be opened and closed several times to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. The system shall then be flushed with clean water until the residual chlorine is reduced to less than one part per million. Samples of water in disinfected containers for bacterial examination will be taken from several system locations which are approved by the Contracting Officer. Samples shall be tested for total coliform organisms (coli-form bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA EWW. The testing method shall be either the multiple-tube fermentation technique or the membrane-filter technique. The disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained. After the successful completion, all sprinklers or plugs and gravity flush all drops or trapped piping.

3.9 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Upon completion of specified tests, the Contractor shall complete certificates as specified in paragraph SUBMITTALS.

3.9.1 Underground Piping

3.9.1.1 Flushing

Underground piping shall be flushed in accordance with NFPA 24. This includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less that the calculated maximum water demand rate of the system.

3.9.1.2 Hydrostatic Testing

New underground piping shall be hydrostatically tested in accordance with NFPA 24. The allowable leakage shall be measured at the specified test pressure by pumping from a calibrated container. The amount of leakage at the joints shall not exceed 1.89 liters per hour per 100 gaskets or joints, regardless of pipe diameter.
3.9.2.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 1400 kPa or 350 kPa in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested.

3.9.3 Testing of Alarm Devices

Each alarm switch shall be tested by flowing water through the inspector's test connection. Each water-operated alarm device shall be tested to verify proper operation.

3.9.4 Main Drain Flow Test

Following flushing of the underground piping, a main drain test shall be made to verify the adequacy of the water supply. Static and residual pressures shall be recorded on the certificate specified in paragraph SUBMITTALS. In addition, a main drain test shall be conducted each time after a main control valve is shut and opened.

3.10 FINAL ACCEPTANCE TEST

Final Acceptance Test shall begin only when the Preliminary Test Report has been approved. The Fire Protection Specialist shall conduct the Final Acceptance Test and shall provide a complete demonstration of the operation of the system. This shall include operation of control valves and flowing of inspector's test connections to verify operation of associated waterflow alarm switches. After operation of control valves has been completed, the main drain test shall be repeated to assure that control valves are in the open position. In addition, the representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation shall not be considered accepted until identified discrepancies have been corrected and test documentation is properly completed and received.

3.11 ON-SITE TRAINING

The Fire Protection Specialist shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 4 hours of normal working time and shall start after the system is functionally complete but prior to the Preliminary Tests and Final Acceptance Test. The On-Site Training shall cover all of the items contained in the approved Operating and Maintenance Instructions.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53/A 53M (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 106 (1999el) Seamless Carbon Steel Pipe for High-Temperature Service

ASTM A 176 (1999) Stainless and Heat-Resisting Chromium Steel Plate, Sheet, and Strip

ASTM A 366/A 366M (1997el) Steel, Sheet, Carbon, Cold-Rolled, Commercial Quality

ASTM A 568/A 568M (1998el) Steel, Sheet, Carbon, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled

ASTM A 569/A 569M (1998) Commercial Steel (CS) Sheet and Strip, Carbon (0.15 Maximum Percent), Hot-Rolled

ASTM D 92 (1998a) Flash and Fire Points by Cleveland Open Cup (IP36/84(89)

ASME INTERNATIONAL (ASME)

ASME A17.2.2 (1998) Inspectors' Manual for Hydraulic Elevators

CODE OF FEDERAL REGULATIONS (CFR)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities
ENGINEERING TECHNICAL INSTRUCTIONS AND ENERGY SAVINGS ANALYSIS

TI 809-04 (1998) Seismic Design for Buildings

FEDERAL STANDARDS (FED-STD)

FED-STD 795 (Basic) Uniform Federal Accessibility Standards

INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS (ICBO)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (1998) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 252 (1999) Fire Tests of Door Assemblies

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Training Data; G.

Information describing the training course for operating personnel, training aids and samples of materials to be used, training schedules, and notification of training.

Elevator System; G.

A complete list of equipment and material, including illustrations, schedules, manufacturer's descriptive data and technical literature, performance charts, catalog cuts, installation instructions, brochures, diagrams, and other information required for fabrication and installation of the equipment. Data shall include calculations for reaction loads imposed on building by elevator systems and to demonstrate that the proposed elevator system conforms to paragraph SEISMIC REQUIREMENTS. Certified copies of list reports may be submitted in lieu of calculations. Calculations to demonstrate compliance with ASME A17.1, Rule XXIV shall be included. Spare parts data for each different item of material and equipment specified, after approval of detail drawings and not later than two (2) weeks prior to date of beneficial occupancy. Data shall include a complete list of parts and supplies, with current unit prices and source of
supply, and a list of parts recommended to be replaced and replacement interval required. Data shall include appropriate sizing of electrical protective devices.

SD-04 Drawings

Elevator System; G.

Detail drawings including dimensioned layouts in plan and elevation showing the arrangement of elevator equipment, anchorage of equipment, clearances for maintenance and operation; and details on hoistway, doors and frames, operation and signal stations, controllers, motors, guide rails and brackets, cylinder and plunge unit, and points of interface with normal power, and fire alarm system. Drawings shall show any revised building electrical system required to make supplied elevator system function as specified. Drawings shall contain complete wiring diagrams showing electrical connections and other details required to demonstrate sequence of operation and functions of system devices. Drawings shall include the appropriate sizing of electrical protective devices which are frequently different from National Electrical Code standard sizes.

SD-06 Instructions

Framed Instructions; G.

Diagrams, instructions, and other sheets proposed for posting.

SD-08 Statements

Qualification Certificates; G.

Certificates of experience of elevator mechanics employed to install, supervise and test the elevator shall certify mechanics to have not less than 5 years experience installing, supervising and testing elevators of the type and rating specified. Certificate shall certify that elevator system installer is acceptable to elevator manufacturer prior to installation of elevators.

SD-09 Reports

Testing; G.

Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, upon completion and testing of installed system.

SD-14 Samples

Finishes.

Samples of materials and products requiring color or finish selection.

SD-18 Records

Test Procedures; G
A plan detailing the testing procedures shall be submitted 60 days prior to performing the elevator tests.

SD-19 Operation and Maintenance Manuals

Elevator System; G.

Six copies of operation manual outlining the step-by-step procedures for system startup, operation and shutdown. Manuals shall include manufacturer's name, model number, service manual, parts list and brief description of all equipment, including basic operating features. Six copies of maintenance manual listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides. Manuals shall include equipment layout and complete wiring and control diagrams of the system as installed. Operation and maintenance manuals shall be approved prior to training course.

1.3 QUALIFICATIONS

Hydraulic elevators shall be pre-engineered elevator systems, and provided by a company regularly engaged in the manufacture of elevator systems. The manufacturer shall either install the elevator system or provide letter of endorsement certifying that the elevator-system installer is acceptable to the manufacturer.

1.4 REGULATORY REQUIREMENTS

Design and fabrication shall be in accordance with ASME A17.1. Each car shall have the capacity to lift a live load, exclusive of the car, at a speed as specified in the following schedule. The approximate travel, terminal floors, number of stops and openings, and the car sizes shall be as shown in the schedule. The elevators shall serve the floors with stops and openings in accordance with the requirements indicated. Elevators shall provide accessibility and usability for physically handicapped in accordance with the requirements for the handicapped in FED-STD 795 and 36 CFR 1191.

1.4.1 Elevator Schedule (Freight)

Number of Elevators Required:	1	
Service:	Passenger	
Capacity:	2045 kg (4500 pounds)	
Speed:	0.5 m/s (fpm) (full load up)	
		0.75 m/s (150 fpm) (downspeed)
Clear Car Inside:	1727 wide by 2566 deep	
Net Travel:	4267 mm	
Landings:	2	
Openings: Front	2	
Entrance Type:	Single-speed Horizontal-sliding	
1.5 DESIGNATED LANDING

For the purposes of firefighter's service and emergency operations, as required by Section 211, ASME A17.1, the designated landing or level shall be the first floor.

1.6 DELIVERY AND STORAGE

All equipment delivered and placed in storage shall be stored with protection from the weather, excessive humidity and excessive temperature variations; and dirt, or other contaminants.

1.7 FIELD MEASUREMENTS

The Contractor shall become familiar with all details of the work, verify all dimensions in the field and advise the Contracting Officer of any discrepancy before performing any work.

1.8 WARRANTY

Warranty service shall be provided for each elevator for a period of 12 months after date of acceptance by Contracting Officer. Warranty service shall be performed only by trained elevator mechanics during regular working hours and shall include manufacturer's warranty requirements including but not limited to adjusting, lubricating and cleaning of equipment and furnishing supplies and parts to keep elevator in operation, except such parts made necessary by misuse, accident or negligence not caused by the Contractor. Testing and adjustments shall be in accordance with the applicable provisions of ASME A17.1 and ASME A17.2.2. Emergency callback service shall be included and available 24 hours a day, 7 days per week, with an initial telephone response time of 1 hour and a response time of 4 hours for a mechanic to the site. Inspection and service for fire service operation shall be performed every 6 months. Documentation of inspection and testing, and certification of successful operation shall be provided with each unit.

PART 2 PRODUCTS

2.1 GENERAL EQUIPMENT REQUIREMENTS

2.1.1 Standard Products

Material and equipment shall be the standard products of manufacturers regularly engaged in the fabrication of elevators and/or elevator parts, and shall essentially duplicate items which have been in satisfactory use for at least 2 years prior to bid opening. Equipment shall be supported by a service organization that is available 24 hours a day, 7 days per week, with a response time of 4 hours.

2.1.2 Nameplates

Each major item of equipment shall have the manufacturer's name, address, type or style, model or serial number, catalog number, and electrical and mechanical characteristics on a plate secured to the item of equipment.
2.1.3 Special Tools

One set of special tools, calibration devices, and instruments required for operation, calibration, and maintenance of the equipment shall be provided.

2.1.4 Electrical Work

Changes to the electrical distribution system required for coordination with elevator equipment shall be performed and coordinated by Contractor, at Contractor's expense. Electrical service for elevator machines shall be 480 volt, 60-Hertz, 3-phase. Electric service for elevator car lighting shall be 120-volt, single-phase, 60-Hertz grounded service. Electrical work shall conform to requirements in Section 16415 ELECTRICAL WORK, INTERIOR. A disconnect switch that will shut off power to the elevator car lighting shall be provided in the elevator machine room adjacent to the elevator control panel. A telephone junction box and an elevator car lighting junction box shall be provided adjacent to each controller.

2.1.5 Use of Asbestos Products

Materials and products required for manufacturing and installing elevators shall not contain asbestos.

2.2 MISCELLANEOUS MATERIALS

2.2.1 Materials for Car Enclosures

Materials for car enclosures shall meet flame spread rating 0 to 75 and smoke development 0 to 450 as tested in accordance with requirements of ASTM E 84 as established by ASME A17.1, Rule 204.2.

2.2.2 Structural Steel

Structural steel shall be hot-rolled commercial quality carbon steel, pickled, oiled, complying with ASTM A 569/A 569M and ASTM A 568/A 568M.

2.2.3 Cold-Rolled Sheet Steel

Sheet steel shall be cold-rolled commercial quality low carbon steel, Class 1, exposed matte finish, oiled, complying with ASTM A 366/A 366M and ASTM A 568/A 568M.

2.2.4 Stainless Steel

Stainless steel shall be ASTM A 176 Type 302/304, austenitic, corrosion-resistant, with grain of belting in the direction of longest dimension. Surfaces shall be smooth and without waves and shall be in compliance with ASTM A 366/A 366M.

2.3 FREIGHT ELEVATOR CAR

2.3.1 Car Fronts

Fronts for elevators shall be combination door post and return panels manufactured of 1.9837 mm thick (14 gauge) stainless steel provided with necessary cutouts for operating devices. Car operating panel shall be
recessed into front return panel with surface-applied operating panel cover. Position indicator in front return shall be recessed with a surface-applied cover plate. Exposed stainless steel shall be finished with No. 4 Satin Finish, unless otherwise specified.

2.3.2 Car Doors

Car doors for elevators shall be constructed from 1.519 mm thick (16 gauge) sheet steel and stainless steel cladding. Each door shall be sound-deadened and reinforced to receive required operating mechanism and hardware, and have two removable door guides per panel. Seams, screws or binding strips shall not be visible from within the car. Threshold shall be extruded aluminum with grooves for door guides. Exposed stainless steel shall be finished with No. 4 Satin Finish, unless otherwise specified. Car doors shall be equipped with a proximity-type infrared protective device having the following operation:

a. When doors are in full-open position, doors shall be unable to initiate closing if a person comes within detection zone. Detection zone moves with doors, so that if a passenger or object enters the zone after doors have begun to close, doors shall stop, then reverse to reopen. Doors shall reclose after a brief time. A passenger entering or leaving cars shall not cause doors to reopen unless doors reach a predetermined proximity to passenger.

b. After a stop is made, doors shall remain open for a time to permit passenger transfer, after which doors shall close automatically. This time interval shall be less for a car call than for a hall call or a coincident car/hall call.

c. If there is either a hall call anywhere in the group or a car call in the car in question and doors are prevented from closing for a fixed time period, door protective device shall be rendered inoperative, a buzzer shall sound in car and doors shall close at approximately half speed. Normal door operation shall resume at next landing reached by car.

2.3.3 Car Platform

Car platform for elevators shall be fabricated from steel plates secured to a steel frame or plywood secured to a steel frame. Steel car platforms shall be assembled into a one-piece platform with top and bottom steel plates welded to structural steel frame and covered with felt and sound-isolation. Plywood car platform shall be 18 mm (3/4 inch) thick Exposure 1 plywood secured to underside of structural steel frame with metal fire protection secured to underside of structural steel frame.

2.3.4 Sling

Sling for elevators shall be constructed of heavy steel stiles properly affixed to a steel crosshead and bolster with adequate bracing members to remove all strain from car enclosure. Steel bumpers shall be furnished for fastening sling to plunger.

2.3.5 Walls
Walls for elevators shall be 2426 mm (7 feet 11-1/2 inches) high from floor to the underside of lighting fixtures. Side and rear panels shall be 1.519 mm thick (16 gauge) sheet steel panels. Vent around base shall be provided.

2.3.6 Car Top, Ceiling and Light Fixtures

Car top for elevators shall be manufactured from 2.657 mm thick (12 gauge) sheet steel and shall be not less than 140 mm high with drop-ceiling and light fixtures. Ceiling shall be egg crate white plastic fire-retardant light diffuser supported by baked-enamel perimeter frame and dividers to form drop-ceiling light fixture. Light fixtures shall be fluorescent type flush with car ceiling, manufactured of sheet steel with flange and enclosed sides and top, baked-enamel reflector, mounted directly to outlet box. Bottom of fixtures shall be flush with car ceiling. Fluorescent light fixtures shall be dual lamp with quick-starting high-power factor, Class P ballasts with safety lamp guard clamps on fluorescent tubes. Light level shall average at least 108 lx (10 footcandles) measured at the car threshold, with the door closed. A part of car light fixture shall be removable to permit use of the emergency exit panel in top of car.

2.3.7 Floor Finish

Floor finish for elevators shall be finished with resilient tile flooring as specified in Section 09650 RESILIENT FLOORING. Tile shall be laid flush with the extruded aluminum platform threshold.

2.3.8 Base

Base for elevators shall be rubber cove as specified in Section 09650 RESILIENT FLOORING.

2.3.9 Handrails

Handrails for elevators shall be mounted on each wall and shall comply with ASME A17.1, FED-STD 795 and 36 CFR 1191.

2.3.10 Exhaust Fan

Exhaust fan for elevators shall be two-speed exhaust type ventilating unit mounted in car ceiling and shall be provided with a stainless steel grille. Units shall be suitably isolated from car ceiling and shall provide at top speed of a minimum of 6 air changes per hour for car volume and car occupancy. Switches for the operation of the exhaust unit shall be located in car station locked cabinet or key-switched.

2.3.11 Car Emergency Lighting System

Emergency car lighting system for elevator shall consist of an emergency power pack on top of the elevator and a remote lighting fixture inside elevator car located in or above car operating panel.

2.3.11.1 Power Pack

Power pack for emergency lighting system shall be a sealed lead-cadmium or nickel-cadmium 6-volt rechargeable batteries with solid-state controls and an integral regulating charger connected to normal power supply. Power pack unit shall contain the following:
a. Minimum 150 mm (6 inch) diameter alarm bell connected to the elevator alarm and emergency push-button.

b. Top of car light fixture with protective wire guard.

c. Testing circuit and pilot light.

d. Low-wattage pilot light indicator.

e. Battery low-voltage disconnect.

2.3.11.2 Emergency Light Fixture

Emergency light fixture shall be located in car station inside elevator car, with flush-mounted lens and shall consist of the following:

a. A minimum of two lamps capable of providing a minimum level of illumination of 10.8 lx (1.0 footcandle) at a point 1220 mm (4 feet) above the floor, 300 mm (1 foot) in front of car station.

b. Steel fixture frame with chrome finish.

c. Frosted acrylic lens, 6 mm (1/4 inch).

2.3.12 Protection Pads

Car shall be provided with wall protection pads with inconspicuous stainless steel pad hooks spaced not over 460 mm apart near the ceiling. Pads shall be heavy-quality fire-retardant treated canvas with two layers of sewn cotton batting with metal eyelets for each pad hook. Pads shall cover entire wall surface except operating devices. Pads shall be flame retardant in accordance with ASME A17.1, Rule 204.2.

2.3.13 Certificate Frame

A stainless steel certificate frame with translucent plexiglass lens of the appropriate size to receive certificate issued by inspecting agency shall be provided. Frame shall be engraved to show name of manufacturer, carrying capacity in kilograms (pounds) and maximum number of persons allowed.

2.3.14 Car Guide Shoes

Guide shoes for elevator shall be the adjustable mounting type on each side of car. Shoes shall be rigidly secured in accurate alignment at top and bottom of car frame. Flexible type sliding guide shoes shall consist of a swivel-type shoe, assembled on a metal base with provisions for self-alignment. Each shoe shall be provided with renewable gibbs. Car guide shoes shall be adjustable for side play between guide rails. Renewable wearing gibbs shall be fabricated from a durable plastic compound material having a low coefficient of friction and long wearing qualities. Gibs shall be the type requiring minimum rail lubrication.

2.3.15 Bumper Guards

Bumper guards for freight elevators shall be fabricated of 150 x 50 mm (6 x 2 inch) thick oak mounted on rear and sides of elevator car, beveled back
to side walls at entrance columns. Bottom edges of bumper guards shall be 150 mm and 760 mm above floor.

2.3.16 Communications

A telephone system in stainless steel cabinet shall be provided for freight elevators. A vandal-resistant speaker type intercom with push-button to activate shall be installed in car station behind a stainless steel perforated grille and connected to a programmable auto-dialer located in machine room. Auto-dialer shall be provided with a solid-state charger unit which will automatically provide emergency power with an immediate transfer in the event of failure of the normal power supply. The telephone located in car station or in separate cabinet shall be located at the prescribed handicapped height and shall be identified as "EMERGENCY PHONE PUSH-TO-ACTIVATE". The entire communication assembly shall be approved for an elevator installation. The telephone communication shall not be terminated until one of the communicating parties hangs up the receiver or manually disconnects the communications link.

2.3.17 Car Guide Rails

Guide rails for freight elevators shall be planed steel tee or omega shaped sections with structural channel rail backing as required and tongue-and-groove matched joints reinforced with fitted splice plates. Guide rails shall extend from bottom of pit to underside of roof over the hoistway.

2.4 FREIGHT ELEVATOR ENTRANCES

2.4.1 Hoistway Frames

Hoistway frames for freight elevators shall be designed and fabricated as part of a Class B 1-1/2-hour fire-rated door/frame assembly to meet requirements of NFPA 252 and shall bear the label of an approved testing laboratory. For installation in gypsum board walls, hoistway frames shall be fabricated from 1.897 mm thick (14 gauge) carbon sheet-steel with stainless steel cladding. Head and jamb section shall be bolted assembly with bolts, washers and locking nut or lock washers. Frame assembly shall be securely fastened to structure. Frames shall return to wall. For installation in concrete walls knock-down type hoistway frames may be used. Exposed stainless steel shall be finished with No. 4 Satin Finish, unless otherwise specified.

2.4.2 Hoistway Doors

Hoistway doors for freight elevators shall be designed and fabricated as part of a Class B 1-1/2 Hour fire-rated door/frame assembly to meet requirements of NFPA 252 and shall bear the label of an approved testing laboratory. Door panels shall be pass-type counterbalanced, power operated which shall consist of 2 sections designed to balance each other and to move simultaneously. Door panel construction shall be 2.657 mm thick (12 gauge) sheet steel with formed edges and vertical reinforcing back ribs spaced 450 mm (18 inches) on center. Each door shall be reinforced on the periphery with a frame of built-up steel angles or other suitable sections not less than 5 mm (3/16 inch) thick for mounting the necessary guide shoes and chain-suspension system. Door panels shall be securely bolted, riveted or welded into the door panel frames. Exposed stainless steel shall be finished with No. 4 Satin Finish, unless otherwise specified.
2.4.2.1 Door Guide Rails

Guide rails for freight elevator hoistway doors shall consist of suitable structural shapes for each door section securely fastened to door frame and hoistway construction. Guide rails shall be designed and fabricated in accurate alignment so that door guide shoes will operate freely upon rails. Each door frame shall be equipped with four fixed or adjustable steel or malleable-iron grooved shoes of proper depth and vertical side contact on each side of rail. Shoes shall be attached to vertical structural door frame members and shall be spaced the maximum possible distance apart. Shoes shall be constructed to relieve door and guide shoe supporting members of all frictional contact with guide rails.

2.4.2.2 Door Interlocks

Hoistway doors for freight elevators shall be equipped with a tamper-proof interlock which shall prevent operation of car until doors are locked in the closed position as defined by ASME A17.1. Interlocks shall lock the two-door sections together to prevent doors from opening at corridor side unless car is at rest at landing or is traveling through leveling zone or the hoistway access switch is used. Retiring cams for hoistway door interlocks shall be provided and securely fastened to supports on car enclosure.

2.4.2.3 Door Unlocking Devices

Hoistway doors for freight elevators shall be equipped with unlocking devices as described in ASME A17.1 and shall be provided at all floors. Parking device shall be located at a floor selected by Contracting Officer.

2.5 FREIGHT ELEVATOR DOOR OPERATION

Each hoistway door for freight elevators shall be equipped with an individual electric operator. Operators shall open and close car gate and hoistway doors at a panel speed of not less than 0.3 m/s (1 foot per second) without slamming. Limit switches shall be provided to stop the motors as doors approach their limit of travel. Provisions shall be made for manual operation of the doors from inside the car in the event of power failure. Door operators shall be arranged to open doors automatically after the car enters the automatic leveling zone at the designated landing. "Open" and "close" operating buttons and any additional devices required shall be provided in car and at each hoistway entrance. Constant pressure on the "close button" shall close the door. Momentary pressure on the "open button" shall reopen the door provided the car is at a landing. Electric operators shall be of the highest quality and quiet in operation and shall be provided with all parts designed and constructed to meet the severe requirements of electrical service. Gates shall be provided with reversing edge and passenger sequence operation. Car doors shall be equipped with an infrared proximity-type protective device having the following operation:

a. When doors are in full-open position doors shall be unable to initiate closing if a passenger comes within the detection zone. The detection zone moves with doors, so that if a passenger or object enters the zone after doors have begun to close, doors shall stop and then reverse to reopen. Doors shall reclose after a brief time. A passenger entering or leaving car shall not cause doors to reopen unless doors reach a predetermined proximity to passenger.
b. After a stop is made, doors shall remain open for a time to permit passenger transfer after which the doors shall close automatically. The time interval shall be less for a car call than for a hall call or a coincident car/hall call.

c. If there is either a hall call anywhere in the group or a car call in the car in question and doors are prevented from closing for a fixed time period, door protective device shall be rendered inoperative, a buzzer shall sound in the car and the doors shall close at approximately half speed. Normal door operation shall resume at the next landing reached by car.

2.6 FREIGHT ELEVATOR OPERATING AND SIGNAL FIXTURES

Operating and signal fixtures for freight elevators shall conform to general requirements for passenger elevator operating and signal fixtures, with exception that compliance with FED-STD 795 and 36 CFR 1191 is not required.

2.6.1 Car Operating Panel

Operating panel in freight elevators shall consist of a recess-mounted panel near car gate containing the following operating devices:

a. Emergency stop switch key-operated, when operated, will stop the car independently of the normal operating devices and sounds the emergency signal bell.

b. Key-operated car light/fan switch.

c. Emergency signal button connected to a 150 mm (6 inch) diameter signal bell outside elevator hoistway at first floor located as shown or directed.

d. Communication telephone.

e. Key-operated inspection switch which will render normal operating devices inoperative for purpose of using hoistway access switch.

f. Key-operated fire-service switch and light jewel.

g. Continuous pressure "DOOR CLOSE" button and momentary pressure "DOOR OPEN" button for power-operated doors.

2.6.2 In-Car Position Indicator

In-car position indicator in freight elevators shall consist of engraved black-filled numerals not less than 25 mm high and 10 mm (3/8 inch) diameter vandal-resistant light jewels directly beneath each number. As car travels through hoistway the car position shall be indicated by illumination of light jewel corresponding to landing at which the car is stopped or passing. Necessary light baffles shall be provided.

2.6.3 Car Push-Buttons

Car push-buttons in freight elevators shall be numbered to correspond to landings served. Faceplates shall be provided with raised indicators to the
right of floor buttons. Buttons shall be encased with metal and embossed to permit illumination when a call is registered. Buttons for car and hall operating stations shall be designed to seat on faceplate in lieu of button mechanism with 0.8 mm (1/32 inch) operating clearance. Buttons shall have maximum protrusion of 5 mm beyond faceplate with beveled edges to prevent damage from side blows.

2.6.4 Hall-Call Station

Operating devices for freight elevators at each landing shall consist of a recess-mounted momentary pressure car call-button and momentary pressure "DOOR OPEN" and continuous pressure "DOOR CLOSE" button.

2.6.4.1 "IN-USE" Light

A red jewel "IN-USE" light shall be illuminated when freight elevator is in motion and also when elevator is standing at any floor with hoistway door opened or car gate opened.

2.6.4.2 Fire Recall Key

Fire recall key-switch for freight elevators shall be located at the designated landing faceplate.

2.6.4.3 Hoistway Access Switches

Hoistway access switches for freight elevators shall be located in lower and upper terminal floor hall stations.

2.7 FREIGHT ELEVATOR OPERATION

2.7.1 General

When freight elevators are not in use and the door-locking circuit is established, the momentary pressing of a landing call-button shall bring the car to that landing. Momentary pressing of a car dispatching button in car panel shall send car to the designated landing if car gate and hoistway doors are closed and the door-locking circuit is established.

2.7.2 Car Operation

Freight elevators shall operate as an automatic two-stop collective as described for passenger elevator. A nonstop button in car station shall be provided.

2.7.3 Service-Demand Bell

A service-demand bell shall be provided in freight elevator which will sound when a landing button is pressed while a door is in the open position.

2.7.4 Inspection and Maintenance Switch

An inspection and maintenance switch for freight elevator shall be mounted in car-control panel to disconnect the landing buttons. When the switch is closed the car may be operated by continuous-pressure on UP and DOWN buttons on top of car which will operate the car at a reduced speed.
2.8 AUTOMATIC ELEVATOR OPERATION

2.8.1 General

The operating device shall consist of a series of push-buttons in the car numbered to correspond to various landings, "UP" and "DOWN" buttons at intermediate landings and a single button at terminal landing. To meet the elevator operation requirements specified in this section all buttons shall be connected electrically to the control system which governs the floor selection, car selection, direction of travel and governs the accelerator and retardation.

2.8.2 Operation

Car calls shall be registered within the car by pressing the button corresponding to the designated floors. Hall calls shall be registered by pressing buttons in the corridor push-button fixture. Once the demand for elevator service has been established and the car has received a start signal the car operation shall be as follows.

2.8.2.1 Door Closing

Doors shall close automatically. When doors are fully closed and the interlock circuit established, the car shall start to move in the direction established by control system. Car shall accelerate and decelerate automatically and stop at first floor for which a car button has been registered or at first floor for a corridor demand which has been assigned to car. Car shall stop at all floors for which car calls are registered in the order in which the floors are reached and shall stop for any corridor demands assigned to the cars in the order in which the floors are reached.

2.8.2.2 Door Opening

Doors shall open automatically as car reaches the landing. After a predetermined time the doors shall close and the car shall proceed to answer the remaining car or assigned corridor calls. A protective device such as a safety edge and light beam device shall be provided on car door and when activated will prevent closing of doors. Cars shall become available for assignment at whatever floor the last car demand has been satisfied in the direction in which the car is traveling.

2.8.2.3 Car Dispatch

When car does not receive a demand dispatch at dispatching floor for an adjustable time period up to 10 minutes set initially at 5 minutes, the motor drive unit shall be switched-off. If the car's switched-off motor drive unit receives a demand dispatch the motor drive unit shall automatically restart.

2.8.2.4 Door Dwell-Time

Door open dwell-times shall be adjustable so that the open time for a car call is shorter than the open time for corridor calls and second passengers. If a longer time is needed for passenger entry, doors can be prevented from closing or reversing by the light beam door control, the protective leading edge on car door, or by pressing "DOOR OPEN" button in car. Door dwell-times shall comply with FED-STD 795 and 36 CFR 1191.
2.8.3 Door Operation

Double-door operation are not acceptable for passenger elevators. If an UP traveling car has a passenger for an intermediate floor and a DOWN call is registered at that floor with no-calls above car, the car shall travel to floor, open the door and let passenger out, then light the DOWN direction arrow in hall lantern and accept the waiting passenger who registered the DOWN call. Doors shall not perform the open-close cycle before elevator proceeds to next call.

2.8.4 Automatic Power Shutdown

Automatic power shutdown of the elevators will be initiated by a waterflow switch supervising sprinklers located in the elevator machine room or in the elevator hoistway. Provide heat detectors which are fixed-temperature-rate-of-rise type, rated at 57 to 60 degrees C adjacent to each sprinkler head in the hoistway(s) and in the machine room. Heat detectors shall be connected to the elevator control system which shall cause the following to the affected elevators), upon activation of the heat detector.

a. Elevators which are in motion will proceed to the nearest available landing away from fire floor, and shall cause power-operated doors to open and remain open until manually reset. The fire floor is considered the floor where the actuated heat detector is located.

b. Elevators which are standing at a landing with open doors will remain open at the floor. If power-operated doors are closed, the elevator system will cause doors to open.

2.9 FIREFIGHTERS SERVICE

Firefighter service shall be in accordance with ASME A17.1 for automatic elevators. Elevator lobby and machine room smoke detectors shall be ionization spot-type smoke detectors. Smoke detectors shall be powered from the building fire alarm control panel. Elevator lobby and machine room smoke detectors shall be in accordance with Section 13851 FIRE DETECTION AND ALARM SYSTEM, ADDRESSABLE.

2.10 ELEVATOR POWER UNIT

2.10.1 Pumping and Control Mechanism

Hydraulic fluid shall be provided in the reservoir, pump and control valve. Hydraulic fluid shall have a minimum fire point of 190 degrees C (375 degrees F) as established by ASTM D 92. If oil temperature drops below pre-set minimum, elevator shall be dispatched automatically to lowest terminal floor at which point the pump will bypass oil in system without car motion until pre-set temperature is reached. Normal response to passenger demand shall not be affected by this control. Resistance type heating elements do not meet the intent of this specification.

2.10.1.1 Oil Temperature Device
An oil temperature device shall be provided that will maintain oil temperature between 21 degrees C (70 degrees F) and 38 degrees C (100 degrees F) regardless of ambient temperatures.

2.10.1.2 Pump

Pump shall be a rotary-positive displacement type for oil-hydraulic elevator service designed for steady discharge with minimum pulsation to give smooth and quiet operation, with an output which will not vary more than 10 percent between no-load and full-load on the elevator. Operating pressure shall not exceed 2760 kPa (400 psi).

2.10.1.3 Piping

Piping shall be ASTM A 53/A 53M Grade E or S, ASTM A 106 Grade B, or grooved piping system of minimum schedule 40 seamless steel conforming to ASME A17.1 and ASME B16.11. Pipes shall conform to the cleanliness requirements of ASME B31.1.

2.10.1.4 Motor

Motor shall be especially designed for oil-hydraulic elevator service and shall be of standard manufacture duty rating and provided with specified speeds and loads.

2.10.1.5 Oil-Control Unit

Oil-control unit shall contain the following valve assemblies:

a. Automatic shut-off valve shall be provided in the oil-supply line as close to the cylinder inlet as possible. When there is a 10 percent drop in NO-LOAD operating pressure, the automatic shut-off valve shall be activated. When activated, the device shall immediately stop the descent of elevator and hold the elevator until it is lowered by use of the maximum lowering feature of the valve. Manual lowering feature of automatic shut-off valve shall be arranged to limit the maximum descending speed of elevator to 0.08 m/s (15 feet per minute). Exposed adjustments of automatic shut-off shall have the means of adjustment sealed after being set to the correct position.

b. Relief-valve for hydraulic shall be externally adjustable and shall bypass the total oil flow without increasing back pressure by more than 56 percent above working pressure.

c. Safety check-valve shall close quietly without permitting any perceptible reverse flow and shall be designed to support the elevator on a positively locked column of oil when car is at rest.

d. Up-start and stop valve shall be externally adjustable and shall bypass oil flow during the start-and-stop of motor-pump assembly. Valve shall close slowly, gradually diverting oil to the jack unit to insure smooth up-start and up-step.

e. Lowering and leveling valve shall be externally adjustable for drop-away speed, lowering speed, leveling speed and stopping speed to insure smooth down-starts and stops. Leveling valve shall be
designed to level the car to floor in the direction the car is traveling when slowdown is initiated.

f. Manual lowering valve shall be capable of lowering the elevator car in event of power failure. Manual-lowering valve shall be arranged to limit the maximum descending speed under manual operation to 0.08 m/s (15 fpm).

g. A service check-valve shall be installed in oil supply line between power unit and jack.

2.10.1.6 Storage Tank

Storage tank shall be single-wall construction of steel with a steel cover. Manufacturer's recommendation for the type of oil to be used shall be included in written instructions for the care, adjustment and maintenance of equipment.

2.10.1.7 Controller

Electric controller shall be of the microprocessor based logic type with battery backup provided with reduced voltage starting. Components required for proper elevator performance shall be neatly mounted and wired and completely enclosed in a cabinet with a mechanically-latched door. Control cabinet shall be designed for mounting on power unit, wall or floor stand. Electric control apparatus shall be completely isolated from oil reservoir. A feature shall be incorporated in electrical control circuit which will cause elevator car to descent automatically to the lowest terminal landing, if the system runs low on oil during ascending of the car. If power-operated doors are used, the car and hoistway doors shall automatically open when car reaches landing to allow passengers to exit. Parked car shall have doors in closed position and all control buttons shall be made inoperative.

2.10.2 Sound Reduction

Sound-insulating panels shall isolate airborne noise from motor pump assembly. Openings shall be provided to adequately ventilate the power unit motor. A minimum of two sound-isolating couplings shall be installed in oil line in machine room between pump and jack. Couplings shall be designed and manufactured to be blowout proof. Oil-hydraulic silencer shall be installed in oil line near power unit and shall contain pulsation absorbing material surrounded by a blowout-proof housing. Power unit assembly shall be mounted on vibration pads to isolate the unit from building structure.

2.11 LEVELING DEVICE

Elevators shall be equipped with a 2-way leveling device to automatically bring the car to floor landings. Car shall automatically re-level at each landing to correct the overtravel and undertravel, and maintain the level regardless of load on car. Electric stopping system shall be arranged so that the car will stop level with the floor before brake is set. Stopping accuracy shall not exceed a plus or minus 6 mm.

2.12 JACK UNIT

Jack unit shall be designed and constructed of sufficient size to lift the gross load to the height specified and shall be free from oil leakage.
Brittle material such as grey cast iron shall not be used in jack construction. Jack unit shall consist of the following:

a. Telescoping plunger fabricated of heavy seamless steel tubing accurately turned and polished.

b. Stop-ring welded or screwed to the plunger to positively prevent plunger from leaving the cylinder.

c. Internal guide bearing.

d. Packing or seal.

e. Drip ring around cylinder top.

f. Outer cylinder made of steel tubing.

g. Air bleeder.

h. Brackets welded to jack cylinder for supporting the elevator on pit channels.

i. Scavenger pump with copper tubing connected to the tank.

2.13 ELEVATOR SUPPORTS

Structural steel beams, inserts, brackets, bolts and fastening devices shall be provided for proper installation of elevator equipment. Wood plugs are not acceptable.

2.14 BUFFERS

Buffers shall be of design suitable for depth of pit. Buffer anchorage at pit floors shall be provided for each car and counterweight and arranged to avoid puncturing the pit waterproofing. Type of buffer used shall be tested and approved for compliance with elevator service requirements before installation. Pipe struts and steadiers shall be provided as required for pit conditions. A metal plate with information concerning stroke and load-rating shall be permanently fastened to each buffer. Pit-mounted buffers shall have an adequate stroke designed to bring the fully-loaded car and counterweight to rest from governor tripping speed at an average rate of retardation not exceeding gravity. Moving portion of buffer shall be designed to be accelerated by the car without noticeable peak retardation. Spring buffers shall be in accordance with ASME A17.1A17.1.

2.15 LUBRICATION POINTS

Every part subject to movement friction shall be provided with provisions for oil or grease lubrication. All points of lubrication shall be readily accessible.

2.16 SEISMIC REQUIREMENTS

Seismic protection shall be provided in conformance with TI 809-04 for general guidance and computation of forces (1.0 G horizontal and 1.0 G vertical minimum), ASME A17.1, Rule XXIV, and ICBO Bldg Code.
PART 3 EXECUTION

3.1 INSTALLATION

Elevators and equipment shall be installed in accordance with ASME A17.1 and manufacturer's recommendation. Guide rails shall be set plumb and parallel and attached to guide rail brackets secured to building structure as indicated and at intervals not exceeding 1 m. Steel shim plates shall be used for aligning equipment. Guide rail sections shall be joined together in accordance with ASME A17.1. Guide rails shall be thoroughly cleaned and made smooth before elevator is put into operation. During installation all stainless steel shall be protected.

3.2 FIELD WELDING

When structural or load-bearing members are to be field welded, welding and qualification of welders shall be as specified in Section 05120 STRUCTURAL STEEL.

3.3 CASING, CYLINDER AND PLUNGER UNIT

A steel casing minimum 200 mm larger in diameter than the cylinder sealed at bottom with steel plate or concrete plug shall be complete with provisions to accommodate a single wall or double wall cylinder. Casing shall be accurately positioned, plumbed and set to accept the cylinder. The cylinder shall be protected from corrosion by totally enclosing the cylinder with a separate schedule 80, polyvinyl chloride jacket or with a high density, fused polyethylene coating, recommended by the manufacturer. Area between casing and cylinder wall shall be filled with washed dry sand after cylinder has been accurately located. Top of casing shall be sealed. The work of boring the well and setting the cylinder shall be coordinated with construction of concrete pit.

3.4 ELEVATOR WIRING

Wiring shall be provided for electrically-operated items of elevator equipment to comply with requirements of NFPA 70 and Section 16415 ELECTRICAL WORK, INTERIOR. For control and signal circuits wire shall be minimum No. 18 AWG. For power and lighting circuits wire shall be minimum No. 12 AWG. Work light fixtures equipped with 150 watt incandescent lamps and ground duplex receptacles shall be provided at top and bottom of car. Work light fixtures and traveling cable junction boxes shall be located to provide illumination at junction boxes. Wiring shall terminate in junction boxes. Wires shall be identified and shall match symbols shown on wiring diagrams. Control and signal wires shall be brought to accessible numbered terminal blocks on the controller. Intra-panel wiring shall be flame-resistant type.

3.4.1 Traveling Cables

Cables shall terminate at numbered terminal blocks in car and machine room. Traveling cable shall be provided with a separate shielded circuit for communication system and hang to obtain proper size of loop. Traveling cable shall be provided with 10 percent spare conductors for each car.

3.5 PAINTING AND PIPE COLOR CODE MARKING
Except for factory-finished items and corrosion-resistant items, machined surfaces shall be painted as specified in Section 09900 PAINTING, GENERAL. Color Code marking of piping shall be as specified in Section 09900 PAINTING, GENERAL.

3.6 TESTING

Testing shall be in accordance with requirements of ASME A17.1 and ASME A17.2.2; and as specified below. The Contractor shall conduct a complete test of the system. After the system has passed all tests, the Contractor shall notify the Contracting Officer in writing, seven (7) days prior to the time of performing the acceptance test, that the system is complete and is ready for final acceptance testing. The Contractor after receiving written approval from the Contracting Officer will conduct a complete acceptance test of the system. The Contractor shall provide the services of an elevator inspector, employed by an independent testing company to inspect the elevators, witness the final testing and certify the elevators. The inspector shall meet all qualification requirements of ASME QEI-1 and shall be certified in accordance with ASME QEI-1. The Contractor shall provide an elevator certificate signed by the inspector for each elevator. The certificate shall be provided to the Contracting Officer within 30 days after the completion of all testing.

3.6.1 Testing Period

Each elevator shall be tested with the specified rated-load in car continuously for a period of 35 percent of the duty time. During the test run the car shall be stopped at all floors in both directions of travel for a standing period of 10 seconds per floor. A manual test of the final limits (UP and DOWN overtravel) shall also be performed.

3.6.2 Speed Load Testing

The actual speed of elevator car in both directions of travel shall be determined with the rated-load and with no-load in the elevator car. Actual measured speed of car with the rated-load in the UP direction shall be within 5 percent of rated speed. The maximum difference in actual measured speeds obtained under the various conditions outlined shall not exceed 10 percent of the total difference between the UP and DOWN speeds.

3.6.3 Car Leveling Testing

Elevator car-leveling devices shall be tested for accuracy of landing at all floors with no-load in car, with symmetrical load in car and with the rated-load in car in both directions of travel.

3.6.4 Temperature Rise Testing

Temperature rise of hydraulic pump motor, motor drive, exciter and booster shall be conducted during the full-load test run for minimum one hour. Under these conditions, temperature rise of equipment shall not exceed the requirements established in NEMA MG 1 Chapter 12. Test shall be started when all parts of equipment are within the temperature required by NEMA at time of starting tests.

3.6.5 Insulation-Resistance Testing
Insulation-resistance testing shall be performed to ensure that the complete elevator wiring systems will be free from short circuits and grounds. Electrical conductors shall have an insulation-resistance of not less than 1 megohm between each conductor and ground, and not less than 1 megohm between each conductor and all other conductors. Prior to testing, provisions shall be made to prevent damage to electronic devices.

3.7 FRAMED INSTRUCTIONS

Two sets of instructions shall be typed and framed under glass or in laminated plastic, and posted side-by-side in the elevator room where directed before acceptance of elevator systems. First set of instructions shall include wiring and control diagrams showing the complete layout of elevator system. Second set of instructions shall include the condensed operating instructions describing preventive maintenance procedures, the methods for checking the elevator system for normal safe operation, and the procedures for safely starting and stopping the elevator system.

3.8 OPERATOR TRAINING

Contractor shall conduct a formal training course for operating Government personnel which shall include care, lubrication, adjustment and maintenance of elevator equipment. Training period shall consist of a total of four (4) hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. Field instructions shall cover all of the items contained in the operating and maintenance instructions, including demonstrations of routine maintenance operations. Contracting Officer shall be notified at least 14 days prior to date of starting the training course.

-- End Of Section --
SECTION 14602
CRANES, SINGLE-GIRDER BRIDGE, MONORAIL AND JIB

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN BEARING MANUFACTURERS ASSOCIATION (AFBMA)

AFBMA Std 9 (1990) Load Ratings and Fatigue Life for Ball Bearings

AFBMA Std 11 (1990) Load Ratings and Fatigue Life for Roller Bearings

AMERICAN GEAR MANUFACTURERS ASSOCIATION (AGMA)

AGMA 9005-D (1994) Industrial Gear Lubrication

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI C80.1 (1995) Rigid Steel Conduit - Zinc Coated

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 325 (1997) Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

ASTM A 490 (1997) Heat-Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength

ASTM E 10 (1998) Brinell Hardness of Metallic Materials

ASME INTERNATIONAL (ASME)

ASME B30.16 (1999) Overhead Hoists (Underhung)

1.2 SYSTEM DESCRIPTION

1.2.1 General Requirements

1.2.1.1 Standard Products

Materials and equipment shall be standard products of manufacturers regularly engaged in the fabrication of cranes and hoists and shall essentially duplicate items which have been in satisfactory use for at least
2 years prior to bid opening. Any company licensed by a crane and hoist manufacturer to manufacture cranes and hoists bearing their name shall have the design and components approved by the licensor prior to submission to the Government for approval.

1.2.1.2 Nameplates

Each major component of equipment shall have the manufacturer's name, address, type or style, model or catalog number, and serial number on a metal plate secured to the equipment.

1.2.1.3 Verification of Dimensions

The Contractor shall verify all dimensions in the field and shall advise the Contracting Officer of any discrepancy before performing any work.

1.2.1.4 Welding

Welding shall be in accordance with qualified procedures using AWS D14.1 as modified herein. Written welding procedures shall specify the Contractor's standard dimensional tolerances for deviation from camber and sweep and such tolerances shall not exceed those specified in AWS D14.1. All welding shall be performed indoors. Welders and welding operators shall be qualified in accordance with AWS D1.1 or AWS D14.1. Allowable stress values shall be in accordance with MHI CMAA 74.

1.2.2 Design Criteria

The crane(s) shall be designed to operate in the spaces and match the runway dimensions and rails indicated. The hook coverage and hook vertical travel shall not be less than that indicated.

1.2.2.1 Classification

ELECTRIC-WIRE-ROPE HOISTS:

- Class H1
- Class H2
- Class H3
- Class H4
- Class H5

ELECTRIC-CHAIN HOISTS:

- Class H2
- Class H3
- Class H4

AIR-WIRE-ROPE HOISTS:

- Class A4
- Class A5

AIR-CHAIN HOISTS:

- Class A4
Class A5

The crane shall be designed and constructed to MHI CMAA 74 Class H1, service requirements for operation in indoor environment.

The hoist shall be designed and constructed to ASME HST-4M, Class H1, service requirements for operation in nonhazardous environment.

1.2.2.2 Hoist Characteristics

Hoist shall be an electric-chain hoist of type, class, control, suspension, lift, and operating characteristics specified. Each hoist shall have the capacity, lift-height, suspension, power source, and operating characteristics indicated and as follows:

a. Hoist capacity shall be 2.24 metric tons.

b. Hoist shall be a standard lift of 10,668mm.

c. The hoist shall be the hook-suspension type. The hoist shall be tractor mounted with a motor-driven tractor-trolley unit.

d. The hoist and suspension shall be the standard headroom type.

e. Components of the hoist shall be designed and constructed for safety of operation and durability of components. Replacement parts shall be interchangeable and readily accessible.

1.2.2.3 Bridge Crane Characteristics

The bridge crane shall be underrunning single-girder overhead traveling crane utilizing an underrunning trolley hoist. Bridge crane travel speed shall be 0.0051 m/s.

1.2.2.4 Capacity Plates

Two capacity plates shall be provided, one for each side of the bridge. Each plate shall be lettered to indicate the total rated hoisting capacity of the crane. All lettering shall be of sufficient size to be easily read from the floor. Each lower load block shall be marked with the hoist rated capacity. Rated load of the hoist on the monorail shall be marked in accordance with ASME B30.16.

1.2.3 Definitions

1.2.3.1 Capacity

Capacity shall mean the rated load in pounds, or tons of 2,000 pounds each, specified by the manufacturer for the hoist and marked plainly on the hoist and loadblock so as to be clearly legible. In determining the applied load, the weight of the handling devices shall be included.

1.2.3.2 Hoisting Speed
Hoisting speed shall mean the velocity in mm/s at which the hoist will lift the rated load. Actual lifting speed shall be within plus or minus 10 percent of the manufacturer's rating.

1.2.3.3 Bridge Crane Travel Speed

Bridge crane travel speed shall mean the velocity in mm/s at which the bridge crane will travel carrying with the rated load. Actual travel speed shall be within plus or minus 10 percent of the manufacturer's rating.

1.2.3.4 Rated Lift

Rated lift shall mean the distance between the upper and lower elevations of travel of the load block.

1.2.3.5 Headroom

Headroom shall be measured with the load hook in the highest position with full load which is the distance between the saddle of the load hook and the following points:

a. The bottom of the beam when S-shape runways are used.

b. The top of the bottom flange for all flat, wheel-bearing flange surfaces.

1.2.3.6 Minimum Radius

Minimum radius shall mean the smallest radius to the centerline of the beam or track on which the trolley will operate properly.

1.2.3.7 Trolley Speed

Trolley speed shall mean the velocity in mm/s at which a motor-driven trolley with hoist will travel carrying the rated load on level track; actual speed shall be within plus or minus 10 percent of the manufacturer's rating.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Wiring and Schematic diagrams; G, AE

Detailed drawings shall be submitted containing complete wiring and schematic diagrams and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout, anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearances for maintenance and operation.
SD-03 Product Data

Hoist Hook Assembly; G, AE
Heat Treatment; G, AE

Record of hook material and any heat treatment performed shall be submitted and shall be stamped on the hook shank or documented in certification papers furnished with the hooks.

Bridge Crane System; G, AE

A complete list of equipment and materials, including manufacturer's descriptive data and technical literature, performance charts and curves, catalog cuts, and installation instructions shall be submitted.

Hoist; G, AE

Manufacturer's catalog data shall be submitted showing the equipment and accessories to be provided. Diagrams, instructions, and other sheets proposed for posting shall be submitted.

Spare Parts; G

Spare parts data shall be submitted and shall include a complete list of parts and supplies, with current unit prices and source of supply.

Bridge Crane System; G, RE

Diagrams, instructions, and other sheets proposed for posting shall be submitted.

SD-06 Test Reports

Electrification System Tests; G, RE

Results of electrification system tests shall be submitted.

Acceptance Testing; G, RE

Test reports in booklet form shall be submitted showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. The report shall include the information as required by paragraph ACCEPTANCE TESTING.

SD-07 Certificates

Hoist; G, RE
Track Design; G, RE

Certification shall be submitted attesting that each hoist, hoist trolley and track, jib framework, and hoist control has been
factory tested for rated load capacity and operation, and that each hoist complies with the requirements specified.

Certification shall be submitted attesting that a sample hoist of each type specified has been factory tested for the tests specified.

Motor Controller; G, RE

Certified results of thermal monitoring of motor components during tests shall be submitted.

Electric Hoists; G, RE
Trolleys; G, RE
Wiring; G, RE
Contact Conductors; G, RE
Hoist Controls; G, RE
Overcurrent Protection; G, RE
Grounding; G, RE

Certification shall be submitted attesting that electric hoists, trolleys, wiring, contact conductors, controls, overcurrent protection, and grounding conform to NFPA 70 and to UL standards. The label or listing with reexamination by the UL will be accepted as evidence that the materials conform to this requirement and to NFPA 70. Certification shall be submitted attesting that each hoist, hoist trolley and track, jib framework, and hoist control has been factory tested for rated load capacity and operation, and that each hoist complies with the requirements specified.

SD-10 Operation and Maintenance Data

Operation Manuals; G, RE

Six copies of operation manuals shall be furnished for the equipment furnished. Operation manuals shall detail the step-by-step procedures required for system startup, operation, and shutdown. Operation manuals shall include the manufacturer's name, model number, parts list, and brief description of all equipment and their operating features. Operation manuals shall include a copy of the acceptance test report for information and future reference.

Maintenance Manuals; G, RE

Six copies of maintenance manuals shall be furnished for the equipment furnished. Maintenance manuals shall list routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides. Maintenance manuals shall include piping, layout diagrams, equipment layout diagrams, and wiring and control diagrams of the system as installed. Maintenance manuals shall include a spare parts list of manufacturers recommended spare parts that should be maintained onsite and any long lead time items should be clearly identified. Maintenance manuals shall contain replacement part numbers for the entire assembly.
1.4 DELIVERY AND STORAGE

Equipment delivered shall be placed in indoor storage, protected from the weather, humidity and temperature variations, dirt and dust, or other contaminants.

PART 2 PRODUCTS

2.1 ELECTRIC HOIST

2.1.1 General

Electric hoist shall be of capacity, lift, type, suspension, headroom, and materials specified. Each unit shall be factory wired and ready for operation. Load-carrying parts of the hoist shall be designed so that the calculated static stress of the material, based on the rated capacity, will not exceed 20 percent of the average theoretical strength of the material. Each hoist shall be factory lubricated and shall be complete and ready for operation with the specified hoist controls and accessories.

2.1.2 Types of Electric Hoists

2.1.2.1 Electric Wire-Rope Hoists

Electric wire-rope hoists shall be equipped with a noncorroding, nonsparking wire-rope and hook assembly.

2.1.3 Hoist Speed

Each electric wire-rope hoist speed shall be approximately 0.255 m/s.

2.1.4 Load and Motor Brakes

Load brake shall be a totally enclosed, automatic, mechanical-type brake with a hardened-steel, Weston-type ratchet and pawl mechanism that will hold the capacity load of the hoist at any point when the motor is stopped. Motor brakes are specified in paragraph MOTOR BRAKE.

2.2 HOIST MECHANICAL EQUIPMENT

2.2.1 Wire-Rope Hoist

2.2.1.1 Hoist Wire Rope

Wire rope for noncorroding, nonsparking hoist application shall be preformed AISC Type 304, 18-8 corrosion-resistant steel, 6 by 19, bright finish, conforming to FS RR-W-410, Type I, Class 2.

Wire rope shall be anchored to drum or dead end. Anchoring shall be of captive type, easily detached for changing and repair. Wire rope shall have a factor of safety of not less than 5, based on the minimum ultimate tensile strength of the material.

2.2.1.2 Hoist-Rope Drum
Wire-rope drum shall be hardened steel or special grade alloy ductile iron. Minimum diameter of the drum shall be 20 times the diameter of the hoisting rope for hoists with a capacity of 900 kg or less and 24 times the diameter of the hoisting rope for hoists over 2,000-pound capacity. Drum shall have accurate, machine-cut grooves, cut to full depth of wire-rope diameter, with rounded corners of dimension as required for the specified lift. In addition, the drum shall have not less than two complete turns of rope around it when the hook is in its lowest position. Groove diameter and pitch centers shall be 0.78 mm greater than diameter of rope. Drum shall be flanged at each end and shall have enclosed tops and sides to preclude cable binding and jamming. Cable reeving shall be arranged for double reeving. Hook shall remain centered under the drum at all times.

2.2.1.3 Hoist Load Block and Sheaves

The cable load block shall be an enclosed, safety type that will shroud the sheave and protect the operator. The sheave assembly shall be mounted on a steel axle and carried on sealed, prelubricated antifriction bearings. Wire-rope sheaves shall be machine-grooved, hardened steel, or cast iron with chilled groove surfaces. The pitch diameter for running sheaves shall be not less than 18 times the diameter of the wire rope, and the diameter of the idler and equalizer sheaves shall be not less than 16 times the diameter of the rope used.

2.2.2 Hoist Hook Assembly

Hooks and hook swivels shall be heat-treated alloy steel forgings. Yokes, crossheads, and bars shall be of suitable strength steel or cast iron.

Hook assembly for electric- or air-operated hoists shall be carried on antifriction bearings to permit free swivel under rated capacity load without twisting load chain or wire. Each hook shall have a spring-loaded safety latch. Each hook assembly shall include a machined and threaded shaft and swivel locknut with an effective locking device to prevent nut from backing off.

2.2.3 Hoist Gear Assembly

2.2.3.1 Gears

Gears shall be spur, helical, spiral, or bevel-type, accurately machined, and conforming to AGMA standards for this type of service.

2.2.3.2 Gear Shafts

Gear shafts shall be manufactured from high-carbon steel or alloy steel, machined and ground for accurate fit, and splined for fitting to the mating gear.

2.2.3.3 Gear Train Assembly

Gear train assembly shall be totally enclosed in the hoist frame casting and shall operate in a sealed oil bath. Frame casting shall be provided with lubrication fittings and inspection ports.
2.2.4 Hoist Bearings

2.2.4.1 Antifriction Bearings

Bearings in the hoist mechanism of electric- or air-powered hoists shall be antifriction bearings.

2.2.4.2 Factory Sealed Bearings

Sprocket bearings, motor bearings, and load-block bearings shall be prelubricated factory sealed bearings.

2.2.5 Hoist Lubrication

Adequate lubrication shall be provided for moving parts of the hoist and trolley and for filling, draining, and checking the level of the lubricant. Lubricant shall be designed for use in an ambient temperature of 12 to 43 degrees C. Hoist reduction gearing, load brake, and trolley wheel gears with electric motor drive shall operate in an oil bath. Lubrication and mechanism housing shall prevent leaking and shall prevent lubricant from coming into contact with electric motors and equipment. Lubricant shall conform to AGMA 9005-D.

2.2.6 Hoist Frame and Housing

Operating parts of the hoist shall be mounted and enclosed in a sealed, factory-painted metal frame of malleable iron, cast steel, welded steel, or aluminum. Welded or bolted frames shall carry loads on the fabricated pieces. Welds or bolts shall be used only to hold the fabricated parts in position.

2.2.7 Hoist Paint Finish

Each hoist and accessory shall receive a factory-applied paint finish. Hooks shall not be painted.

2.3 TROLLEYS

2.3.1 Paint

Each trolley assembly shall be factory-painted, designed specifically for use with the specified hoist, and shall be furnished by the hoist manufacturer. Paint finish shall be the same type and quality specified for the hoist.

2.3.2 Wheels

2.3.2.1 Load Distribution

Each trolley assembly shall have not less than four wheels. Sufficient wheels shall be provided to properly distribute the load. The load on a wheel shall not exceed where D equals the diameter of the wheel in and W equals the width of the rail head or the nominal length of bearing on the tread.

2.3.2.2 Design and Type
Wheels shall be single-flange type manufactured from forged alloy steel with machined, hardened treads and flanges, or high-strength cast or nodular iron with machined flanges and treads, chill-hardened not less than 1.5 mm deep. Flanged wheels for motor-driven trolleys shall have treads and flanges hardened to not less than No. 320 Brinell hardness. Manually driven, trolley-wheel treads shall be hardened to not less than Brinell hardness No. 245 as defined in ASTM E 10. Wheels shall be designed to operate on sloped or flat flange I-beams.

2.3.2.3 Bearings

Trolley wheels shall be carried on sealed, permanently lubricated, antifriction bearings designed for axial and thrust loading. Bearings shall conform to the applicable requirements of AFBMA Std 9 and AFBMA Std 11. Bearings shall have an L-10 life of 3,000 hours or more, as defined by AFBMA Std 9 or AFBMA Std 11 as applicable.

2.3.3 Side Plates, Pins, and Axles

2.3.3.1 Side Plates

Side plates shall be fabricated from structural-quality rolled-steel plate milled to the required profile with integral bosses where necessary to support equalizing pins; side plates shall be fitted with steel end bumpers.

2.3.3.2 Pins and Axles

Equalizing pins and axles shall be heat-treated alloy steel, machined and finish ground to the required size.

2.3.4 Gearing

2.3.4.1 Gears

Gears shall be cut from heat-treated alloy steel accurately machined into spur, helical, and pinion gears, conforming to AGMA requirements.

2.3.4.2 Drive Pinions

Drive pinions shall be carburized alloy steel, malleable iron, or bronze, with cut or cast teeth, conforming to AGMA requirements.

2.3.4.3 Clamps

Plain trolleys and geared, manual-drive trolleys shall have suitable, quick-acting, steel track clamps. Clamps shall be adjustable for wear and shall not injure track flanges. They shall function satisfactorily on curved and straight track and shall be capable of withstanding a pull equivalent to one-third the rated capacity of the hoist when executed parallel to the track.

2.3.5 Safety Hangers or Lugs

Safety hangers or lugs shall be steel and shall be integral with, or fastened to, each hoist frame or to trolley frame. They shall ride free above the bottom flange of the beam. Hanger shall be of sufficient capacity to hold the hoist, fully loaded, in the I-beam in case of wheel or axle.

SECTION 14602 Page 11
failure. Safety factor of each part of trolley assembly shall be not less than 5, based on the ultimate strength of the material used.

2.4 TROLLEY TYPE

2.4.1 Plain Trolley

Plain trolley assembly shall comply with ASME HST-2M and the requirements specified.

2.4.2 Electric-Motor-Driven Trolleys

Trolley shall be an electric-motor-driven geared type conforming to NFPA 70, the specified general trolley requirements, and the requirements specified. Trolley speed shall be not more than 750 mm/s.

2.5 BRIDGE STRUCTURAL ITEMS

2.5.1 Bolts, Nuts, and Washers

Bolts, nuts, and washers shall conform to ASTM A 325 bolts. High-strength bolted connections shall conform to the requirements of AISC Pub No. S329, except that ASTM A 490 bolts shall not be used. No galvanized bolts shall be used.

2.5.2 Bridge Girders

Bridge girders shall be welded structural steel box sections, wide-flange beams, standard I-Beams, reinforced beams or sections fabricated from rolled plates and shapes.

2.5.3 End Ties and Bridge Girder End Connections

Horizontal gusset plates shall be provided at the elevation of the top and bottom end tie flanges for connection to girder ends. End connections shall be made using high-strength bolts. Body-bound bolts fitted in drilled and reamed holes shall be used to maintain the crane square.

2.5.4 Bridge End Trucks

End trucks shall be fabricated from structural steel providing a rigid structure and shall be of the rotating or fixed-axle type. A means shall be provided to prevent the crane from dropping more than 25 mm in case of axle failure.

2.5.5 Runway Rails

The runway rails for the bridge travel shall be of the size recommended by the crane manufacturer and shall be in accordance with MHI CMAA 74.
Bridge drives shall consist of motor or motors driving through a suitable reduction unit or units to the wheels located at each end of the bridge.

2.6.2 Bridge Crane Gear Assembly

2.6.2.1 Gears

Gears shall be spur, helical, spiral, or bevel type, accurately machined, and conforming to AGMA standards for this type of service.

2.6.2.2 Gear Shafts

Gear shafts shall be manufactured from high-carbon steel or alloy steel, machined and ground for accurate fit, and splined for fitting to the mating gear.

2.6.2.3 Gear Train Assembly

Gear train assembly shall be totally enclosed in the drive housing and shall operate in a sealed oil bath. The drive housing shall be provided with lubrication fittings and inspection ports.

2.6.3 Bridge Brakes

Bridge brakes are specified in paragraph BRAKES.

2.6.4 Bridge Wheels

2.6.4.1 Wheels

The bridge assembly shall have not less than four wheels. Sufficient wheels shall be provided to properly distribute the load. The load on a wheel shall not exceed $13,600 \text{ DW kg}$ where D equals the diameter of the wheel in mm and W equals the width of the rail head or the nominal length of bearing on the tread. Wheels shall be single-flange type manufactured from forged alloy steel with machined, hardened treads and flanges, or high-strength cast or nodular iron with machined flanges and treads, chill-hardened not less than 1.5 mm deep. Wheels shall be designed to operate on sloped or flat flange I-beams.

2.6.4.2 Bearings

Wheels shall be carried on sealed, permanently lubricated, antifriction bearings designed for axial and thrust loading. Bearings shall conform to the applicable requirements of the AFBMA Std 9 or AFBMA Std 11. Bearings shall have an L-10 life of 3,000 hours or more, as defined by AFBMA Std 9 or AFBMA Std 11 as applicable.

2.7 ELECTRICAL

Materials and installation, including electrical wiring, contact conductors, controls, overcurrent protection, and grounding shall meet the requirements of NFPA 70 and applicable UL and NEMA standards and specified requirements.

2.7.1 Power Supply
Electrical power for operation of the crane will be supplied from the nominal 408 volt, 3 phase, 60-Hz alternating-current (a-c) power distribution system.

2.7.1.1 Bridge Incoming Power Supply

a. Incoming power shall be brought into the crane by means of a Type G, three-conductor, 600-volt rubber or rubber-like insulated and extra-heavy-duty neoprene-jacketed portable power cable. The power plug shall be installed on the free end of the cable, and an anchorage shall be provided to relieve the power plug and receptacle from the strain of reeling and unreeling the cable. The grounding conductors shall make electrical connection to the crane structure through the fourth collector ring and brush of the cable reel and shall be connected to the ground terminal of the power plug.

b. The cable reel shall be rated for continuous duty, 600-volt alternating current (AC), shall be provided with collector rings and brushes, shall be of weather-proof construction, shall maintain approximately uniform tension in the cable, and shall automatically "payout" and "takeup" the cable as required by the crane travel. The cable reel shall be provided with a positive driven or actuated limit switch that will prevent excess "takeup." The reel shall be mounted on the crane in a location, as approved by the Contracting Officer, that will allow ready maintenance and inspection as well as satisfactory operation.

2.7.1.2 Trolley Power Supply

Power may be brought to the trolley by a cable reel or a festoon system.

a. Cable reel shall be an automatic rewind assembly with four-conductor type G cables sized for the current-carrying capacity of the hoist and trolley. Reel shall have a replaceable spring or electric motor with adjustable tension and sufficient takeup for the entire cable length. Main shaft shall be carried on permanently lubricated antifriction bearings. Unit shall include a bronze brush and collector ring assembly, wired into a safety terminal block. Unit shall be listed in the UL 355. Each reel shall include a guide roller cable outlet and cable length as required. Cable reel assembly shall include a swivel-mount base that will permit the indicated turn in either direction.

b. Festoon system shall consist of flexible power cable supported by cable trolleys running on a steel messenger cable, an I-beam rail, or a channel. The power cable shall be type G, 75-degree C, 600-volt insulation and heavy-duty neoprene or chlorosulfonated polyethylene jacket. The cable shall be sized as required by NFPA 70. The cable shall conform to the applicable requirements of NEMA WC 3, Part 7, and shall have class H or class K stranding. Cable conductors shall be terminated at both ends with terminal lugs on terminal blocks in terminal boxes. Cable ends shall have strain relief devices to protect the cable terminations.
2.7.2 Motor Controller

Motor controller shall be a reversing-type magnetic starter with thermal-overload protection, molded case circuit breaker, and control transformer operated by a pushbutton control station. Controller and control station shall be mechanically or electrically interlocked to preclude possibility of operating opposing control circuits simultaneously.

2.7.2.1 Contactor Fingers

Contactor fingers shall be adjustable and shall have renewable tips.

2.7.2.2 Transformer

Transformer shall reduce the control-circuit voltage to 120 volts AC, to 48 volts AC, or to 24 volts AC.

2.7.2.3 Enclosure for Mounting

Motor controller shall be mounted in either a gasketed cast metal or sheet metal enclosure, as required or noted, with hinged door conforming to the requirements of UL 50. Motor controller enclosures, complying with NEMA ICS 6, shall be NEMA, Type 4.

2.7.3 Pendant Control Station

Each hoist shall have a pendant-mounted conductor cable and pushbutton station with a strain-reliever chain or cable permanently attached to the hoist frame and integral with the pendant conductor cable. The control station shall be a full-guarded, momentary-contact, pushbutton type with each button clearly marked to indicate its function. A separate button or a single button providing steps for each speed of multispeed hoists or bridge shall be provided. The pushbuttons shall return to the off (normally open contacts) position when pressure is released by operator. The pushbutton station shall be grounded to the hoist. The strain reliever chain or cable shall not be used as a grounding circuit.

2.7.4 Mainline Disconnect Switch

A mainline disconnect switch shall be provided and shall be a surface-mounted, heavy-duty, single-throw, air-break, enclosed type conforming to NEMA KS 1 as indicated. Disconnect switch shall be fused. Enclosure shall be NEMA Type 3.

2.7.5 Hoist Limit Switches

Adjustable upper-limit switch shall be provided to prevent overtravel of the hook or load block in the hoisting direction. Limit switch shall be arranged to stop the hoist motor and apply the motor brake before reaching the uppermost safe limit of travel. In case of hook overtravel, the motor shall automatically and momentarily be reversed. Adjustable lower-limit switch shall be provided to stop the hoist motor and apply the motor brake when the load hook reaches a predetermined lower limit.

2.7.6 Bridge and Trolley Travel Limit Switches
Limit switches shall be mounted to the bridge and trolley, respectively, to interrupt current to the bridge and trolley controls. Adjustable limit switch actuators shall be installed on both ends to actuate the limit switches and stop the crane bridge or trolley prior to contacting the bumpers.

2.7.7 Hoist Motors

Hoist motor shall be a high-starting torque, high-slip, 30-minute time rated, reversible electric motor specifically designed for hoist duty and capable of operating at the specified duty class, capacity, and speed. The motor shall be 408-volts, 3-phase, 60-hertz and horsepower as recommended by manufacturer for capacity and lift speed of hoist. The hoist motors shall be provided with Class B insulation, and motor enclosures shall be totally enclosed, nonventilated (TENV). Enclosure shall be fitted with a UL-approved drain and breather and shall be certified and labeled in accordance with UL 674, Class 1, Groups C and D.

2.7.8 Bridge and Trolley Motors

Bridge and Trolley motors shall be single-speed, single-winding conforming to the requirements for hoist motors except they may be NEMA design B (high torque and slip not required).

2.7.9 Motor Brake

Motor brake shall be an externally adjustable, electrically operated single- or multiple-friction disk brake that shall apply automatically when the power is off. The brake shall be capable of holding 125 percent of the rated load from any operating speed. The brake shall hold a static load equal to 150 percent of the rated capacity of the hoist.

Bridge unit shall have an automatic, adjustable, solenoid-operated, electric brake designed for trolley application. Brake shall apply and release smoothly during starts and stops to minimize pendulum action of the load. Braking torque shall be not less than 100 percent of motor torque and shall match motor torque characteristics.

2.7.10 Conduit and Wire

2.7.10.1 Conduit

Conduit between feeder enclosure and disconnect switches and fixed control stations shall be zinc-coated rigid-steel conduit, couplings, elbows, bends, and nipples conforming to ANSI C80.1. Zinc coating shall be an electrodeposited coating conforming to ASTM B 633.

2.7.10.2 Wire

Building wire for use in conduits, raceways, and wireways in wet or dry locations shall be single-conductor, 600-volt, heat- and moisture-resistant Type RHW or THW with a maximum temperature rating of 75 degrees C, or cross-linked thermosetting, polyethylene insulation with a temperature rating of 90 degrees C.
3.1 ERECTION

Erection shall be in accordance with the manufacturer's instructions.

3.2 ACCEPTANCE TESTING

Acceptance testing shall comply with the following paragraphs.

3.2.1 Acceptance Test

The Contractor shall provide all personnel necessary to conduct the tests including but not limited to operators, riggers, rigging gear, and test weights. Testing shall be performed in the presence of Contracting Officer. The Contractor shall notify the Contracting Officer 5 days prior to testing operations.

3.2.1.1 Test Sequence

The equipment shall be tested according to the applicable paragraphs of this procedure in the sequence provided.

3.2.1.2 Test Data

Operating and startup current measurements shall be recorded for electrical equipment (motors and coils) using appropriate instrumentation. Speed measurements shall be recorded as required by the facility evaluation tests (normally at 100-percent load). Recorded values shall be compared with design specifications or manufacturer's recommended values; abnormal differences shall be explained in the remarks and submitted for approval or appropriate adjustments performed. In addition, high temperatures or abnormal operation of any equipment or machinery shall be noted, investigated, and corrected. Hoist and trolley speeds should be recorded during each test cycle.

3.2.1.3 Equipment Monitoring

During the load test, improper operation or poor condition of safety devices, electrical components, mechanical equipment, and structural assemblies shall be monitored. Observed defects critical to continued testing shall be reported immediately to the Contracting Officer and testing shall be suspended until the deficiency is corrected. During and immediately following each load test, the following inspections shall be made:

a. Inspect for evidence of bending, warping, permanent deformation, cracking, or malfunction of structural components.

b. Inspect for evidence of slippage in wire-rope sockets and fittings.

c. Check for overheating in brake operation; check for proper stopping. All safety devices, including emergency stop switches and POWER OFF pushbuttons, shall be tested and inspected separately to verify proper operation of the brakes.

d. Check for abnormal noise or vibration and overheating in machinery drive components.
e. Check wire rope sheaves and drum spooling for proper operation, freedom of movement, abnormal noise, or vibration.

f. Check electrical drive components for proper operation, freedom from chatter, noise, or overheating.

g. Inspect external gears for abnormal wear patterns, damage, or inadequate lubrication.

3.2.1.4 Hooks

Hooks shall be measured for hook-throat spread before and after load test. A throat dimension base measurement shall be established by installing two tram points and measuring the distance between these tram points (to within 0.4 mm). This base dimension shall be recorded. The distance between tram points shall be measured before and after load test. An increase in the throat opening by more than 1 percent from the base measurement shall be cause for rejection.

3.2.2 No-Load Testing

3.2.2.1 Hoist Operating and Limit Switch Test

The load hook shall be raised and lowered through the full range of normal travel at rated speed and other speeds of the crane. The load hook shall be stopped below the geared limit switch upper setting. In slow speed only, proper operation of upper and lower limit switches shall be verified. The test shall be repeated a sufficient number of times (minimum of three) to demonstrate proper operation. Brake action shall be tested in each direction.

3.2.2.2 Trolley Travel

The trolley shall be operated the full distance of the monorail rails using geared manual drive.

3.2.2.3 Hoist Loss of Power No-Load Test

The hooks shall be raised to a height of approximately 2 m or less. While slowly lowering the hook, the main power source shall be disconnected verifying that the hook will not lower and that the brake will set.

3.2.2.4 Travel Loss of Power No-Load Test

With the hook raised to clear obstructions and the trolley traveling in slow speed, the main power source shall be disconnected, verifying that the trolley will stop and that the brake will set.

3.2.3 Load Test

3.2.3.1 Hoist

Unless otherwise indicated, the following tests shall be performed using a test load of 125 percent of rated load.
a. Dynamic Load Test: The test load shall be raised and lowered through the full-range while operating in each speed. The machinery shall be completely stopped at least once in each direction to ensure proper brake operation.

b. Hoist Loss of Power Test: After raising the test load to approximately 2 m above ground level and while slowly lowering the test load, the main power source and the control pushbutton shall be released verifying that the brake will set and that the test load will stop lowering.

c. Trolley Dynamic Load Test: While operating the trolley the full distance of the monorail rails in each direction with test load on the hook (one cycle), the proper functioning of drive speed control points and proper brake action shall be tested.

3.2.4 Jib Hoist Framework

The boom shall have no tendency to drift, without assistance, toward any point of the circumference of rotation under loaded or unloaded conditions. When rotated manually, the boom shall start moving easily and shall move steadily without evidence of bearing binding. The suspended load shall not rise or fall unduly at any point of rotation. Trolleys shall move smoothly along the boom and shall have no tendency to drift when stopped. The jib crane shall perform properly over the full area the crane is designed to service and shall do so when supporting any load within the rated capacity. An overload of 125 percent of the rated load shall cause no bearing damage as a result of the various motions.

3.3 MANUFACTURER'S SERVICES

Services of a manufacturer's representative who is experienced in the installation, adjustment, erection, and operation of the equipment specified shall be provided. The representative shall supervise the installation, adjustment, and testing of the equipment.

3.4 FIELD TRAINING

A field training course shall be provided for designated operating staff members. Training shall be provided for a total period of 4 hours of normal working time and shall start after the system is functionally complete but prior to final acceptance tests. Field training shall cover all of the items contained in the operating and maintenance instructions. The Contracting Officer shall be given at least 2 weeks advance notice of such training.

-- End Of Section --
SECTION 15070
SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT
04/99

PART 1 GENERAL

1.1 REFERENCES
The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

CORPS OF ENGINEERS, HUNTSVILLE ENGINEERING AND SUPPORT CENTER (CEHNC)
TI 809-04 (1998) Seismic Design for Buildings

SHEET METAL & AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 SYSTEM DESCRIPTION

1.2.1 General Requirements
The requirements for seismic protection measures described in this section shall be applied to the mechanical equipment and systems listed below.

1.2.2 Mechanical Equipment
Mechanical equipment to be seismically protected shall include the following items to the extent required on the drawings or in other sections of these specifications:

- Boilers
- Water Heaters
- Water and Gas Piping
- Expansion Air Separator Tanks
- Valves and Fittings for Piping
- Water Chiller Units
- Air Compressors
- Air Handling Units
- Pumps with Motors
- Ducts
- Unit Heaters
- Exhaust and Return Fans

1.2.3 Mechanical Systems
The following mechanical systems shall be installed as required on the drawings and other sections of these specifications and shall be seismically protected in accordance with this specification:

- All Piping Inside the Building Except as Specifically Stated Below Under "Items Not Covered By This Section".
- All Water Supply Systems
Storm and Sanitary Sewer Systems

Water Storage Tanks

1.2.4 Contractor Designed Bracing

The Contractor shall design the bracing in accordance with TI 809-04 and additional data furnished by the Contracting Officer. Resistance to lateral forces induced by earthquakes shall be accomplished without consideration of friction resulting from gravity loads. TI 809-04 uses parameters for the building, not for the equipment in the building; therefore, corresponding adjustments to the formulas shall be required. Loadings determined using TI 809-04 are based on strength design; therefore, the AISC LRFD Specifications shall be used for the design.

1.2.5 Items Not Covered By This Section

1.2.5.1 Fire Protection Systems

Seismic protection of piping for fire protection systems shall be installed as specified in Sections 13920 FIRE PUMPS, 13930 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION.

1.2.5.2 Items Requiring No Seismic Restraints

Seismic restraints are not required for the following items:

a. Gas piping less than 25 mm inside diameter.

b. Piping in boiler and mechanical equipment rooms less than 32 mm inside diameter.

c. All other piping less than 64 mm inside diameter.

d. Rectangular air handling ducts less than 0.56 square meters in cross sectional area.

e. Round air handling ducts less than 711 mm in diameter.

f. Piping suspended by individual hangers 300 mm or less in length from the top of pipe to the bottom of the supporting structural member where the hanger is attached, except as noted below.

g. Ducts suspended by hangers 300 mm or less in length from the top of the duct to the bottom of the supporting structural member, except as noted below.

In exemptions f. and g. all hangers shall meet the length requirements. If the length requirement is exceeded by one hanger in the run, the entire run shall be braced. Interior piping and ducts not listed above shall be seismically protected in accordance with the provisions of this specification.

1.3 EQUIPMENT REQUIREMENTS

1.3.1 Rigidly Mounted Equipment
The following specific items of equipment to be furnished under this contract shall be constructed and assembled to withstand the seismic forces specified in TI 809-04, Chapter 10. Each item of rigid equipment shall be entirely located and rigidly attached on one side only of a building expansion joint. Piping, duct, electrical conduit, etc., which cross the expansion joint shall be provided with flexible joints that are capable of accommodating displacements equal to the full width of the joint in both orthogonal directions.

- Boilers
- Chillers
- Air-Handling Units

1.4 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data
Coupling and Bracing; GA. Equipment Requirements; GA.

Copies of the design calculations with the detail drawings. Calculations shall be stamped by a registered engineer and shall verify the capability of structural members to which bracing is attached for carrying the load from the brace.

Contractor Designed Bracing; GA.

Copies of the design calculations with the drawings. Calculations shall be approved, certified, stamped and signed by a registered Professional Engineer. Calculations shall verify the capability of structural members to which bracing is attached for carrying the load from the brace.

SD-04 Drawings
Coupling and Bracing; FIO. Flexible Couplings or Joints; FIO. Equipment Requirements; FIO. Contractor Designed Bracing; GA.

Detail drawings along with catalog cuts, templates, and erection and installation details, as appropriate, for the items listed. Submittals shall be complete in detail; shall indicate thickness, type, grade, class of metal, and dimensions; and shall show construction details, reinforcement, anchorage, and installation with relation to the building construction.

SD-13 Certificates
Flexible Ball Joints; FIO.

Flexible ball joints shall be certified to be suitable for the service intended by the manufacturer. Information verifying experience at not less than 3 locations of 2 years' satisfactory operation in a similar application shall be submitted.
PART 2 PRODUCTS

2.1 FLEXIBLE COUPLINGS

Flexible couplings shall have same pressure and temperature ratings as adjoining pipe.

2.2 FLEXIBLE BALL JOINTS

Flexible ball joints shall have cast or wrought steel casing and ball parts capable of 360-degree rotation with not less than 15-degree angular movement.

2.3 FLEXIBLE MECHANICAL JOINTS

a. Mechanical couplings for steel or cast iron pipe shall be of the sleeve type and shall provide a tight flexible joint under all reasonable conditions, such as pipe movement caused by expansion, contraction, slight settling or shifting of the ground, minor variations in trench gradients, and traffic vibrations. Where permitted in other sections of these specifications, joints utilizing split-half couplings with grooved or shouldered pipe ends may be used.

b. Sleeve-type couplings shall be used for joining plain-end pipe sections. The coupling shall consist of one steel middle ring, two steel followers, two gaskets, and necessary steel bolts and nuts to compress the gaskets.

2.4 MANUFACTURED BALL JOINTS

Manufactured ball joints shall be as recommended by the manufacturer for the intended use, and shall be approved by the Contracting Officer before installation.

2.5 SWAY BRACING MATERIALS

Sway bracing materials (e.g. rods, plates, rope, angles, etc.) shall be as specified.

PART 3 EXECUTION

3.1 COUPLING AND BRACING

Coupling installation shall conform to the details shown on the drawings. Provisions of this paragraph apply to all piping within a 1.5 m line around outside of building unless buried in the ground. Piping grouped for support on trapeze-type hangers shall be braced at the same intervals as determined by the smallest diameter pipe of the group. Bracing rigidly attached to pipe flanges, or similar, shall not be used where it would interfere with thermal expansion of piping.

3.2 BUILDING DRIFT

Joints capable of accommodating seismic displacements shall be provided for vertical piping between floors of the building, where pipes pass through a building seismic or expansion joint, or where rigidly supported pipes
connect to equipment with vibration isolators. Horizontal piping across expansion joints shall accommodate the resultant of the drifts of each building unit in each orthogonal direction. For threaded piping, swing joints made of the same piping material shall be provided. For piping with manufactured ball joints the seismic drift shall be 0.015 meters per meter of height above the base where the seismic separation occurs; this drift value shall be used in place of the expansion given in the manufacturer's selection table.

3.3 FLEXIBLE COUPLINGS OR JOINTS

3.3.1 Building Piping

Flexible couplings or joints in building piping shall be provided at bottom of all pipe risers for pipe larger than 90 mm in diameter. Flexible couplings or joints shall be braced laterally without interfering with the action of the flexible coupling or joint. Cast iron waste and vent piping need only comply with these provisions when caulked joints are used. Flexible bell and spigot pipe joints using rubber gaskets or no-hub fittings may be used at each branch adjacent to tees and elbows for underground waste piping inside of building to satisfy these requirements.

3.4 PIPE SLEEVES

Pipe sleeves in interior non-fire rated walls shall be sized as indicated on the drawings to provide clearances that will permit differential movement of piping without the piping striking the pipe sleeve. Pipe sleeves in fire rated walls shall conform to the requirements in Section 07840 FIRESTOPPING.

3.5 SPREADERS

Spreaders shall be provided between adjacent piping runs to prevent contact during seismic activity whenever pipe or insulated pipe surfaces are less than 100 mm apart. Spreaders shall be applied at same interval as sway braces at an equal distance between the sway braces. If rack type hangers are used where the pipes are restrained from contact by mounting to the rack, spreaders are not required for pipes mounted in the rack. Spreaders shall be applied to surface of bare pipe and over insulation on insulated pipes utilizing high-density inserts and pipe protection shields in accordance with the requirements of Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.6 SWAY BRACES FOR PIPING

Sway braces shall be provided to prevent movement of the pipes under seismic loading. Braces shall be provided in both the longitudinal and transverse directions, relative to the axis of the pipe. The bracing shall not interfere with thermal expansion requirements for the pipes as described in other sections of these specifications.

3.6.1 Transverse Sway Bracing

Transverse sway bracing for steel and copper pipe shall be provided as specified. All runs (length of pipe between end joints) shall have a minimum of two transverse braces. Transverse sway bracing for pipes of materials other than steel and copper shall be provided at intervals not to
exceed the hanger spacing as specified in Section 15400 PLUMBING, GENERAL PURPOSE.

3.6.2 Longitudinal Sway Bracing

Longitudinal sway bracing shall be provided at 12 m intervals unless otherwise indicated. All runs (length of pipe between end joints) shall have one longitudinal brace minimum. Sway braces shall be constructed in accordance with the drawings. Branch lines, walls, or floors shall not be used as sway braces.

3.6.3 Vertical Runs

Run is defined as length of pipe between end joints. Vertical runs of piping shall be braced at not more than 3 m vertical intervals. Braces for vertical runs shall be above the center of gravity of the segment being braced. All sway braces shall be constructed in accordance with the drawings. Sway branches shall not be connected to branch lines, walls, or floors.

3.6.4 Clamps and Hangers

Clamps or hangers on uninsulated pipes shall be applied directly to pipe. Insulated piping shall have clamps or hangers applied over insulation in accordance with Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.7 SWAY BRACES FOR DUCTS

3.7.1 Braced Ducts

Bracing details and spacing for rectangular and round ducts shall be in accordance with SMACNA Seismic Restraint Mnl, including Appendix E. However, the design seismic loadings for these items shall not be less than loadings obtained using the procedures in TI 809-04.

3.7.2 Unbraced Ducts

Hangers for unbraced ducts shall be attached to the duct within 50 mm of the top of the duct in accordance with SMACNA Seismic Restraint Mnl. Unbraced ducts shall be installed with a 150 mm minimum clearance to vertical ceiling hanger wires.

-- End Of Section --
SECTION 15080

THERMAL INSULATION FOR MECHANICAL SYSTEMS

11/99

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. At the discretion of the Government, the manufacturer of any material supplied will be required to furnish test reports pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 209 (1996) Aluminum and Aluminum-Alloy Sheet and Plate

1.2 SYSTEM DESCRIPTION

Field-applied insulation and accessories on mechanical systems shall be as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated. Insulation of heat distribution systems and chilled water systems outside of buildings shall be as specified in Section 02552 PRE-ENGINEERED UNDERGROUND HEAT DISTRIBUTION SYSTEM, Section 02553 HEAT DISTRIBUTION SYSTEMS IN CONCRETE TRENCHES, Section 02554 ABOVEGROUND HEAT DISTRIBUTION SYSTEM, and Section 02555 PREFABRICATED UNDERGROUND HEATING/COOLING DISTRIBUTION SYSTEM. Field applied insulation materials required for use on Government-furnished items as listed in the SPECIAL CONTRACT REQUIREMENTS shall be furnished and installed by the Contractor.
1.3 GENERAL QUALITY CONTROL

1.3.1 Standard Products

Materials shall be the standard products of manufacturers regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

1.3.2 Installer's Qualifications

Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years.

1.3.3 Surface Burning Characteristics

Unless otherwise specified, insulation not covered with a jacket shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Insulation systems which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Insulation materials located exterior to the building perimeter are not required to be fire-rated. Flame spread and smoke developed indexes shall be determined by ASTM E 84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E 84.

1.3.4 Identification of Materials

Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material.

1.4 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-14 Samples

Thermal Insulation Materials; GA

A complete list of materials, including manufacturer's descriptive technical literature, performance data, catalog cuts, and installation instructions. The product number, k-value, thickness and furnished accessories for each mechanical system requiring insulation shall be included. Materials furnished under this section of the specification shall be submitted at one time.

After approval of materials and prior to applying insulation a booklet shall be prepared and submitted for approval. The booklet shall contain marked-up
MICA Insulation Stds plates (or detail drawings showing the insulation material and insulating system) for each pipe, duct, or piece of equipment required to be insulated per this specification. The MICA plates shall be marked up showing the materials to be installed in accordance with the requirements of this specification for the specific insulation application. The Contractor shall submit all MICA Plates required to show the entire insulating system, including Plates required to show insulation penetrations, vessel bottom and top heads, legs, and skirt insulation as applicable. If the Contractor elects to submit detailed drawings instead of marked-up MICA Plates, the detail drawings shall show cut-away, section views, and details indicating each component of the insulation system and showing provisions for insulating jacketing, and sealing portions of the equipment. For each type of insulation installation on the drawings, provide a label which identifies each component in the installation (i.e., the duct, insulation, adhesive, vapor retarder, jacketing, tape, mechanical fasteners, etc.) Indicate insulation by type and manufacturer. Three copies of the booklet shall be submitted at the jobsite to the Contracting Officer. One copy of the approved booklet shall remain with the insulation Contractor's display sample and two copies shall be provided for Government use.

After approval of materials actual sections of installed systems properly insulated in accordance with the specification requirements shall be displayed. Such actual sections must remain accessible to inspection throughout the job and will be reviewed from time to time for controlling the quality of the work throughout the construction site. Each material used shall be identified, by indicating on an attached sheet the specification requirement for the material and the material by each manufacturer intended to meet the requirement. Display sample sections will be inspected at the jobsite by the Contracting Officer. Approved display sample sections shall remain on display at the jobsite during the construction period. Upon completion of construction, the display sample sections will be closed and sealed.

Pipe Insulation Display Sections: Display sample sections shall include as a minimum an elbow or tee, a valve, dielectric unions and flanges, a hanger with protection shield and insulation insert, or dowel as required, at support point, method of fastening and sealing insulation at longitudinal lap, circumferential lap, butt joints at fittings and on pipe runs, and terminating points for each type of pipe insulation used on the job, and for hot pipelines and cold pipelines, both interior and exterior, even when the same type of insulation is used for these services.

Duct Insulation Display Sections: Display sample sections for rigid and flexible duct insulation used on the job. A display section for duct insulation exposed to weather shall be protected by enclosing with a temporary covering.

1.5 STORAGE

Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. Insulation material and supplies that become dirty, dusty, wet, or otherwise contaminated may be rejected by the Contracting Officer.
PART 2 PRODUCTS

2.1 GENERAL MATERIALS

Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either the wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C 795 requirements. Materials shall be asbestos free and conform to the following:

2.1.1 Adhesives

2.1.1.1 Acoustical Lining Insulation Adhesive

Adhesive shall be a nonflammable, fire-resistant adhesive conforming to ASTM C 916, Type I.

2.1.1.2 Mineral Fiber Insulation Cement

Cement shall be in accordance with ASTM C 195.

2.1.1.3 Lagging Adhesive

Lagging is the material used for thermal insulation, especially around a cylindrical object. This may include the insulation as well as the cloth/material covering the insulation. Lagging adhesives shall be nonflammable and fire-resistant and shall have a flame spread rating no higher than 25 and a smoke developed rating no higher than 50 when tested in accordance with ASTM E 84. Adhesive shall be pigmented white red and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bounding fibrous glass tape to joints of fibrous glass board; for bonding lagging cloth to thermal insulation; or for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations.

2.1.2 Contact Adhesive

Adhesive may be dispersed in a nonhalogenated organic solvent or, dispersed in a nonflammable organic solvent which shall not have a fire point below 94 degrees C. The adhesive shall not adversely affect, initially or in service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is applied. Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 100 degrees C. The adhesive shall be nonflammable and fire resistant.

2.1.3 Caulking

ASTM C 920, Type S, Grade NS, Class 25, Use A.

2.1.4 Corner Angles
Nominal 0.4060 mm (0.016 inch) aluminum 25 x 25 mm with factory applied kraft backing. Aluminum shall be ASTM B 209, Alloy 3003, 3105, or 5005.

2.1.5 Finishing Cement

Mineral fiber hydraulic-setting thermal insulating cement ASTM C 449/C 449M. All cements that may come in contact with Austenitic stainless steel must include testing per ASTM C 795.

2.1.6 Fibrous Glass Cloth and Glass Tape

Fibrous glass cloth and glass tape shall have flame spread and smoke developed ratings of no greater than 25/50 when measured in accordance with ASTM E 84. Tape shall be 100 mm wide rolls.

2.1.7 Staples

Outward clinching type monel ASTM A 167, Type 304 or 316 stainless steel. Monel is a nickel rich alloy which has high strength, high ductility, and excellent resistance to corrosion.

2.1.8 Jackets

ASTM C 921, Type I, maximum moisture vapor transmission 0.02 perms, (measured before factory application or installation), minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 6.1 N/mm (35 pounds/inch) width. ASTM C 921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 3.5 N/mm width. Jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. Based on the application, insulation materials which require factory applied jackets are mineral fiber, cellular glass, and phenolic foam. All non-metallic jackets shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E 84.

2.1.8.1 White Vapor Retarder All Service Jacket (ASJ)

For use on hot/cold pipes, ducts, or equipment vapor retarder jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing.

2.1.8.2 Aluminum Jackets

Aluminum jackets shall be corrugated, embossed or smooth sheet, 0.4060 mm nominal thickness; ASTM B 209, Temper H14, Temper H16, Alloy 3003, 5005, or 3105 with factory applied moisture retarder. Corrugated aluminum jacket shall not be used outdoors. Aluminum jacket securing bands shall be Type 304 stainless steel, 0.3960 mm thick, 12.7 mm wide for pipe under 300 mm diameter and 19.1 mm (3/4 inch) wide for pipe over 300 mm and larger diameter. Aluminum jacket circumferential seam bands shall be 50.8 x 0.4060 mm aluminum matching jacket material. Bands for insulation below ground shall be 19.1 x 0.5080 mm thick stainless steel, or fiberglass reinforced tape. The jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburg or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place.
2.1.8.3 Polyvinyl Chloride (PVC) Jackets

Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, UV resistant rating or treatment and moderate chemical resistance with minimum thickness 0.7620 mm.

2.1.9 Vapor Retarder Coating

The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall be determined according to procedure B of ASTM E 96 utilizing apparatus described in ASTM E 96. The coating shall be a nonflammable, fire resistant type. All other application and service properties shall be in accordance with ASTM C 647.

2.1.9.1 Vapor Retarder Required

ASTM C 1136, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where Type II, maximum moisture vapor transmission 0.02 perms, a minimum puncture resistance of 25 Beach units is acceptable.

2.1.9.2 Vapor Retarder Not Required

ASTM C 1136, Type III, maximum moisture vapor transmission 0.10 perms, minimum puncture resistance 50 Beach units on all surfaces except ductwork, where Type IV, maximum moisture vapor transmission 0.10, a minimum puncture resistance of 25 Beach units is acceptable.

2.1.10 Wire

Soft annealed ASTM A 580/A 580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge.

2.2 PIPE INSULATION MATERIALS

Pipe insulation materials shall be limited to those listed herein and shall meet the following requirements:

2.2.1 Aboveground Cold Pipeline

Insulation for minus 34 degrees to plus 16 degrees C for outdoor, indoor, exposed or concealed applications, shall be as follows:

a. Cellular Glass: ASTM C 552, Type II, and Type III. Supply the insulation with manufacturers recommended factory applied jacket.

b. Flexible Cellular Insulation: ASTM C 534, Type I or II. Type II shall have vapor retarder skin on both sides of the insulation.

c. Phenolic Insulation: ASTM C 1126, Type III. Phenolic insulations shall comply with ASTM C 795 and with the ASTM C 665 paragraph Corrosiveness. Supply the insulation with manufacturers recommended factor applied jacket.

d. Mineral Fiber: ASTM C 547
2.2.2 Aboveground Hot Pipeline

Insulation for above 16 degrees C, for outdoor, indoor, exposed or concealed applications shall meet the following requirements. Supply the insulation with manufacturers recommended factory applied jacket.

a. Mineral Fiber: ASTM C 547, Types I, II or III, supply the insulation with manufacturers recommended factory applied jacket.

b. Calcium Silicate: ASTM C 533, Type I indoor only, or outdoors above 121 degrees C pipe temperature.

cb. Cellular Glass: ASTM C 552, Type II and Type III. Supply the insulation with manufacturers recommended factory applied jacket.

d. Flexible Cellular Insulation: ASTM C 534, Type I or II to 93 degrees C service.

e. Phenolic Insulation: ASTM C 1126 Type III to 121 C service shall comply with ASTM C 795. Supply the insulation with manufacturers recommended factory applied jacket.

fc. Perlite Insulation: ASTM C 610

2.2.3 Above Ground Dual Temperature Pipeline - Outdoor, Indoor - Exposed or Concealed

Selection of insulation for use over a dual temperature pipeline system shall be in accordance with the most limiting/restrictive case. Find an allowable material from paragraph PIPE INSULATION MATERIALS and determine the required thickness from the most restrictive case. Use the thickness listed in paragraphs INSULATION THICKNESS for cold & hot pipe applications.

2.2.3 Below ground Pipeline Insulation

For below ground pipeline insulation the following requirements shall be met.

2.2.3.1 Cellular Glass

ASTM C 552, type II.

2.3 DUCT INSULATION MATERIALS

Duct insulation materials shall be limited to those listed herein and shall meet the following requirements:

2.3.1 Rigid Mineral Fiber

ASTM C 612, Type IA, IB, II, III, & IV.

2.3.2 Flexible Mineral Fiber

ASTM C 553, Type I, or Type II up to 121 C. ASTM C 1290 Type III.
2.3.3 Cellular Glass

ASTM C 552, Type I.

2.3.4 Phenolic Foam

ASTM C 1126 Type II, shall comply with ASTM C 795.

2.3.5 Flexible Cellular

ASTM C 534 Type II.

2.4 EQUIPMENT INSULATION MATERIALS

Equipment insulation materials shall be limited to those listed herein and shall meet the following requirements:

2.4.1 Cold Equipment Insulation

For temperatures below 16 degrees C.

2.4.1.1 Cellular Glass

ASTM C 552, Type I, Type III, or Type IV as required.

2.4.1.2 Flexible Cellular Insulation

ASTM C 534, Type II.

2.4.1.3 Phenolic Foam

ASTM C 1126 Type II shall comply with ASTM C 795.

2.4.2 Hot Equipment Insulation

For temperatures above 16 degrees C.

2.4.2.1 Rigid Mineral Fiber

ASTM C 612, Type IA, IB, II, III, IV, or V as required for temperature encountered to 982 degrees C.

2.4.2.2 Flexible Mineral Fiber

ASTM C 553, Type I, II, III, IV, V, VI or VII as required for temperature encountered to 649 degrees C.

2.4.2.3 Calcium Silicate

ASTM C 533, Type I, indoors only, or outdoors above 121 degrees C. Pipe shape may be used on diesel engine exhaust piping and mufflers to 649 degrees C.

2.4.2.3 Cellular Glass

ASTM C 552, Type I, Type III, or Type IV as required.
2.4.2.5 Flexible Cellular Insulation

ASTM C 534, Type II, to 93 degrees C.

2.4.2.6 Phenolic Foam

ASTM C 1126, Type II, to 121 degrees C. shall comply with ASTM C 795.

2.4.2.7 Molded Expanded Perlite

ASTM C 610.

PART 3 EXECUTION

3.1 APPLICATION - GENERAL

3.1.1 Installation

Except as otherwise specified, material shall be installed in accordance with the manufacturer's written instructions. Insulation materials shall not be applied until tests and heat tracing specified in other sections of this specification are completed. Material such as rust, scale, dirt and moisture shall be removed from surfaces to receive insulation. Insulation shall be kept clean and dry. Insulation shall not be removed from its shipping containers until the day it is ready to use and shall be returned to like containers or equally protected from dirt and moisture at the end of each workday. Insulation that becomes dirty shall be thoroughly cleaned prior to use. If insulation becomes wet or if cleaning does not restore the surfaces to like new condition, the insulation will be rejected, and shall be immediately removed from the jobsite. Joints shall be staggered on multi layer insulation. Mineral fiber thermal insulating cement shall be mixed with demineralized water when used on stainless steel surfaces. Insulation, jacketing and accessories shall be installed in accordance with MICA Insulation Stds standard plates except where modified herein or on the drawings.

3.1.2 Firestopping

Where pipes and ducts pass through fire walls, fire partitions, above grade floors, and fire rated chase walls, the penetration shall be sealed with fire stopping materials as specified in Section 07840 FIRESTOPPING.

3.1.3 Painting and Finishing

Painting shall be as specified in Section 09900 PAINTING, GENERAL.

3.1.4 Installation of Flexible Cellular Insulation

Flexible cellular insulation shall be installed with seams and joints sealed with a contact adhesive. Flexible cellular insulation shall not be used on surfaces greater than 93 degrees C. Seams shall be staggered when applying multiple layers of insulation. Insulation exposed to weather and not shown to have jacketing shall be protected with two coats of UV resistant finish as recommended by the manufacturer after the adhesive is dry.

3.1.5 Welding
No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct.

3.1.6 Pipes/Ducts/Equipment which Require Insulation

Insulation is required on all pipes, ducts, or equipment, except for omitted items, as specified.

3.2 PIPE INSULATION INSTALLATION

3.2.1 Pipe Insulation

3.2.1.1 General

Pipe insulation shall be installed on aboveground hot and cold pipeline systems as specified below to form a continuous thermal retarder, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following:

a. Pipe used solely for fire protection.

b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed.

c. Sanitary drain lines.

d. Air chambers.

3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors

a. Pipe insulation shall be continuous through the sleeve.

b. An aluminum jacket with factory applied moisture retarder shall be provided over the insulation wherever penetrations require sealing.

c. Where penetrating interior walls, the aluminum jacket shall extend 50 mm beyond either side of the wall and shall be secured on each end with a band.

d. Where penetrating floors, the aluminum jacket shall extend from a point below the backup material to a point 250 mm above the floor with one band at the floor and one not more than 25 mm from the end of the aluminum jacket.

e. Where penetrating waterproofed floors, the aluminum jacket shall extend from below the backup material to a point 50 mm above the flashing with a band 25 mm from the end of the aluminum jacket.

f. Where penetrating exterior walls, the aluminum jacket required for pipe exposed to weather shall continue through the sleeve to a point 50 mm beyond the interior surface of the wall.
g. Where penetrating roofs, pipe shall be insulated as required for interior service to a point flush with the top of the flashing and sealed with vapor retarder coating. The insulation for exterior application shall butt tightly to the top of flashing and interior insulation. The exterior aluminum jacket shall extend 50 mm down beyond the end of the insulation to form a counter flashing. The flashing and counter flashing shall be sealed underneath with caulking.

h. For hot water pipes supplying lavatories or other similar heated service which requires insulation, the insulation shall be terminated on the backside of the finished wall. The insulation termination shall be protected with two coats of vapor barrier coating with a minimum total thickness of 2.0 mm applied with glass tape embedded between coats (if applicable). The coating shall extend out onto the insulation 50.0 mm and shall seal the end of the insulation. Glass tape seams shall overlap 25 mm. Caulk the annular space between the pipe and wall penetration with approved fire stop material. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration at least 10 mm.

i. For domestic cold water pipes supplying lavatories or other similar cooling service which requires insulation, the insulation shall be terminated on the finished side of the wall (i.e., insulation must cover the pipe throughout the wall penetration). The insulation shall be protected with two coats of vapor barrier coating with a minimum total thickness of 2.0 mm. The coating shall extend out onto the insulation 50.0 mm and shall seal the end of the insulation. Caulk the annular space between the outer surface of the pipe insulation and the wall penetration with an approved fire stop material having vapor retarder properties. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration by at least 10 mm.

3.2.1.3 Pipes Passing Through Hangers

a. Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 50 mm and smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-69. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 50 mm shall be installed.

b. Horizontal pipes larger than 50 mm at 16 degrees C and above shall be supported on hangers in accordance with MSS SP-69, and Section 15400 PLUMBING, GENERAL PURPOSE.

c. Horizontal pipes larger than 50 mm and below 16 degrees C shall be supported on hangers with the addition of a Type 40 protection shield in accordance with MSS SP-69. An insulation insert of cellular glass or calcium silicate or perlite (above 27 C shall be installed above each shield. The insert shall cover not less than

SECTION 15080 Page 12
the bottom 180 degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 50 mm on each end beyond the protection shield. When insulation inserts are required per the above, and the insulation thickness is less than 25 mm, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the weight of the pipe from crushing the insulation, as an option to installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert.

d. Vertical pipes shall be supported with either Type 8 or Type 42 riser clamps with the addition of two Type 40 protection shields in accordance with MSS SP-69 covering the 360 degree arc of the insulation. An insulation insert of cellular glass or calcium silicate shall be installed between each shield and the pipe. The insert shall cover the 360 degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 50 mm on each end beyond the protection shield. When insulation inserts are required per the above, and the insulation thickness is less than 25 mm, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the weight of the pipe from crushing the insulation, as an option instead of installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert. The vertical weight of the pipe shall be supported with hangers located in a horizontal section of the pipe. When the pipe riser is longer than 9 m, the weight of the pipe shall be additionally supported with hangers in the vertical run of the pipe which are directly clamped to the pipe, penetrating the pipe insulation. These hangers shall be insulated and the insulation jacket sealed as indicated herein for anchors in a similar service.

e. Inserts shall be covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, shall overlap the adjoining pipe jacket 38 mm, and shall be sealed as required for the pipe jacket. The jacket material used to cover inserts in flexible cellular insulation shall conform to ASTM C 1136, Type 1, and is allowed to be of a different material than the adjoining insulation material.

3.2.1.4 Flexible Cellular Pipe Insulation

Flexible cellular pipe insulation shall be tubular form for pipe sizes 150 mm and less. Type II sheet insulation used on pipes larger than 150 mm shall not be stretched around the pipe. On pipes larger than 300 mm, adhere insulation directly to the pipe on the lower 1/3 of the pipe. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation.

3.2.1.5 Pipes in high abuse areas.

In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, stainless steel jackets shall be utilized. Pipe insulation to the 1.8 m level
shall be protected. [Other areas which specifically require protection to the 1.8 level are (______).]

3.2.2 Aboveground Cold Pipelines

The following cold pipelines shall be insulated per Table I minus 34 degrees C to plus 16 degrees C:

a. Domestic cold and chilled drinking water.

b. Make-up water.

c. Horizontal and vertical portions of interior roof drains.

d. Refrigerant suction lines.

e. Chilled water.

f. Dual temperature water, i.e. HVAC hot/chilled water.

g. Air conditioner condensate drains.

h. Brine system cryogenics

If. Exposed lavatory drains, exposed domestic water piping and drains to areas for handicap personnel.

3.2.2.1 Insulation Thickness

<table>
<thead>
<tr>
<th>Service or Range of Temperature (degrees C)</th>
<th>Run-outs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 4.4</td>
<td>15</td>
</tr>
<tr>
<td>up to 25 mm & less</td>
<td>25</td>
</tr>
<tr>
<td>15 mm & larger</td>
<td>25</td>
</tr>
<tr>
<td>25 mm & larger</td>
<td>25</td>
</tr>
<tr>
<td>30 to 40</td>
<td>25</td>
</tr>
<tr>
<td>65 to 100</td>
<td>25</td>
</tr>
<tr>
<td>125 to 150</td>
<td>25</td>
</tr>
<tr>
<td>205 mm & larger</td>
<td>40</td>
</tr>
<tr>
<td>150 mm & larger</td>
<td>40</td>
</tr>
</tbody>
</table>

Thicknesses are based on insulation having thermal conductivity in the range of 0.033 to 0.035 Watts/(meter degree C) when measured at 24 C.

* When runouts to terminal units exceed 3.66 m the entire length of runout shall be insulated like the main feed pipe.

** The required minimum thicknesses do not consider water vapor transmission and condensation. Additional insulation, vapor retarders, or both, may be required to limit water vapor transmission and condensation.

Insulation thickness for cold pipelines shall be determined using Table I.

<table>
<thead>
<tr>
<th>Pipe Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mm & larger</td>
</tr>
<tr>
<td>100 mm & larger</td>
</tr>
<tr>
<td>150 mm & larger</td>
</tr>
<tr>
<td>200 mm & larger</td>
</tr>
</tbody>
</table>

SECTION 15080 Page 14
<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Material</th>
<th>25 mm</th>
<th>30 mm</th>
<th>65 mm</th>
<th>125 mm</th>
<th>205 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine System</td>
<td>CG</td>
<td>65</td>
<td>65</td>
<td>75</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>Cryogenics</td>
<td>FC</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>(−34.4 to −17.8 deg C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brine System</td>
<td>CG</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>Cryogenics</td>
<td>FC</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>(−17.8 to −1.1 deg C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerant</td>
<td>CG</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>suction piping</td>
<td>FC</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Chilled water</td>
<td>CG</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>supply & return</td>
<td>FC</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>dual temp piping</td>
<td>PF</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Cold domestic water, above and below ceilings, & make up water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed lavatory drains exposed domestic water piping & drains to areas for handicap personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal & vertical roof drain leaders (including underside of roof drain fitting)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning condensate drain located inside building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*When runouts to terminal units exceed 3.66 m the entire length of runout shall be insulated like the main feed pipe.
LEGEND:
PF - Phenolic Foam
CG - Cellular Glass
MF - Mineral Fiber
FC - Flexible Cellular

3.2.2.2 Jacket for Mineral Fiber, Cellular Glass, and Phenolic Foam Insulated Pipe

Insulation shall be covered with a factory applied vapor retarder jacket or field applied seal welded PVC jacket. Insulation inside the building shown to be protected with an aluminum jacket shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets shall be utilized. Pipe insulation to the 1.8 m level will be protected. Other areas which specifically require protection to the 1.8 m level are ______.

3.2.2.3 Insulation for Straight Runs (Mineral Fiber, Cellular Glass and Phenolic Foam)

a. Insulation shall be applied to the pipe with joints tightly butted. All butted joints and ends shall be sealed with a vapor retarder coating.

b. Longitudinal laps of the jacket material shall overlap not less than 38 mm. Butt strips 75 mm wide shall be provided for circumferential joints.

c. Laps and butt strips shall be secured with adhesive and stapled on 100 mm centers if not factory self-sealing. If staples are used, they shall be sealed per paragraph 3.2.2.3 e.

d. Factory self-sealing lap systems may be used when the ambient temperature is between 4 degrees and 50 degrees C during installation. The lap system shall be installed in accordance with manufacturer's recommendations. Stapler shall be used only if specifically recommended by the manufacturer. Where gaps occur, the section shall be replaced or the gap repaired by applying adhesive under the lap and then stapling.

e. All Staples, including those used to repair factory self-seal lap systems, shall be coated with a vapor retarder coating. All seams, except those on factory self-seal systems shall be coated with vapor retarder coating.

f. Breaks and punctures in the jacket material shall be patched by wrapping a strip of jacket material around the pipe and securing it with adhesive, stapling, and coating with vapor retarder coating. The patch shall extend not less than 38 mm past the break.

g. At penetrations such as thermometers, the voids in the insulation shall be filled and sealed with vapor retarder coating.
3.2.2.4 Insulation for Fittings and Accessories

a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be coated with vapor retarder coating.

b. Precut or preformed insulation shall be placed around all fittings and accessories and shall conform to MICA plates except as modified herein: 5 for anchors; 10, 11, and 13 for fittings; 14 for valves; and 17 for flanges and unions. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 50 mm or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow'.

c. Upon completion of insulation installation on flanges, unions, valves, anchors, fittings and accessories, terminations, seams, joints and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with two coats of vapor retarder coating with a minimum total thickness of 2.0 mm, applied with glass tape embedded between coats. Tape seams shall overlap 25 mm. The coating shall extend out onto the adjoining pipe insulation 50 mm. Fabricated insulation with a factory vapor retarder jacket shall be protected with two coats of vapor retarder coating with a minimum thickness of 2 mm and with a 50 mm wide glass tape embedded between coats. Where fitting insulation butts to pipe insulation, the joints shall be sealed with a vapor retarder coating and a 100 mm wide ASJ tape which matches the jacket of the pipe insulation.

d. Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 150 mm from the insulation surface.

e. Insulation shall be marked showing the location of unions, strainers, and check valves.

3.2.2.5 Optional PVC Fitting Covers

At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape. Factory precut or premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same insulation as the pipe insulation including same density, thickness, and thermal conductivity. The covers shall be secured by PVC vapor retarder tape, adhesive, seal-welding or with tacks made for securing PVC covers. Seams in the cover, and tacks and laps to adjoining pipe insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal.
3.2.3 Aboveground Hot Pipelines

The following hot pipelines above 16 degrees C shall be insulated per Table II:

a. Domestic hot water supply & recirculating system.

b. Steam.

c. Condensate & compressed air discharge.

d. Hot water heating.

e. Heated oil.

f. Water defrost lines in refrigerated rooms.

3.2.3.1 Insulation Thickness

Table B
Thickness of Pipe Insulation for Pipes Handling Steam and Fluids Other Than Domestic Hot Water (mm)

<table>
<thead>
<tr>
<th>Fluid Temperature Range (C)</th>
<th>Insulation Conductivity Range</th>
<th>Conductivity (W/mK)</th>
<th>Mean Rating Temperature (°C) up to 50 & to to to to &</th>
<th>Runouts* 25 32 65 125 205</th>
</tr>
</thead>
<tbody>
<tr>
<td>above 177</td>
<td>0.046 - 0.049</td>
<td>121</td>
<td>40 65 65 80 90 90</td>
<td></td>
</tr>
<tr>
<td>122 - 177</td>
<td>0.042 - 0.045</td>
<td>93</td>
<td>40 50 65 65 90 90</td>
<td></td>
</tr>
<tr>
<td>94 - 121</td>
<td>0.039 - 0.043</td>
<td>66</td>
<td>25 40 40 50 50 90</td>
<td></td>
</tr>
<tr>
<td>61 - 93</td>
<td>0.036 - 0.042</td>
<td>52</td>
<td>15 40 40 40 40 40</td>
<td></td>
</tr>
<tr>
<td>41 - 60</td>
<td>0.035 - 0.040</td>
<td>38</td>
<td>15 25 25 25 40 40</td>
<td></td>
</tr>
</tbody>
</table>

Domestic and Service Hot Water Systems**

| > 41 | 0.035 - 0.040 | 38 | 15 25 25 40 40 40 |

* When runouts to terminal units exceed 3.66 m, the entire length of runout shall be insulated like the main feed pipe.

** Applies to recirculating sections of service or domestic hot water systems and first 2.4 meters from storage tank for non-recirculating systems.

Insulation thickness for hot pipelines shall be determined using Table II.

LEGEND:

PF - Phenolic Foam
CG - Cellular Glass
CS - Calcium Silicate
Table II - Hot Piping Insulation Thickness

<table>
<thead>
<tr>
<th>Pipe Size (mm)</th>
<th>Type of Service</th>
<th>Material</th>
<th>25 mm</th>
<th>32 - 50 mm</th>
<th>65 - 100 mm</th>
<th>125 - 150 mm</th>
<th>205 mm & larger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot domestic water supply & recirculating</td>
<td>CG</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>& defrost lines</td>
<td>FC</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>PF</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>15</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>(93°C max)**</td>
<td>[Compressed Air Discharge]</td>
<td>CG</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>PF</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>& condensate return (94°C - 121°C)</td>
<td>CS/PL</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Heating hot water, supply & return, & heated oil</td>
<td>CG</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>& return, & heated oil (121°C Max)</td>
<td>MF</td>
<td>15</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>[Medium Temp]</td>
<td>CG</td>
<td>40</td>
<td>65</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>65</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>[CS/PL]</td>
<td>40</td>
<td>65</td>
<td>65</td>
<td>90</td>
<td>90</td>
<td>115</td>
</tr>
<tr>
<td>[High Temp Hot water & steam, & heated oil] (122°C - 177°C)</td>
<td>CG</td>
<td>50</td>
<td>90</td>
<td>100</td>
<td>115</td>
<td>125</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>40</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>[CS/PL]</td>
<td>50</td>
<td>90</td>
<td>100</td>
<td>115</td>
<td>125</td>
<td>140</td>
</tr>
<tr>
<td>(177°C - 260°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* When runouts to terminal units exceed 3.66 m, the entire length of runout shall be insulated like the main feed pipe.

** Applied to recirculating sections of service or domestic hot water systems and first 2.4 meters from storage tank for non-recirculating systems.

3.2.3.2 Jacket for Insulated Hot Pipe, Except Pipe Insulated with Flexible Cellular
Insulation shall be covered, in accordance with manufacturer's recommendations, with a factory applied Type II jacket or field applied aluminum where required or seal welded PVC.

3.2.3.3 Insulation for Straight Runs

a. Insulation shall be applied to the pipe with joints tightly butted.

b. Longitudinal laps of the jacket material shall overlap not less than 38 mm, and butt strips 75 mm wide shall be provided for circumferential joints.

c. Laps and butt strips shall be secured with adhesive and stapled on 100 mm centers if not factory self-sealing. Adhesive may be omitted where pipe is concealed.

d. Factory self-sealing lap systems may be used when the ambient temperature is between 4 degrees and 49 degrees C and shall be installed in accordance with manufacturer's instructions. Laps and butt strips shall be stapled whenever there is nonadhesion of the system. Where gaps occur, the section shall be replaced or the gap repaired by applying adhesive under the lap and then stapling.

e. Breaks and punctures in the jacket material shall be patched by either wrapping a strip of jacket material around the pipe and securing with adhesive and staple on 100 mm centers (if not factory self-sealing), or patching with tape and sealing with a brush coat of vapor retarder coating. Adhesive may be omitted where pipe is concealed. Patch shall extend not less than 38 mm past the break.

f. Flexible cellular pipe insulation shall be installed by slitting tubular sections and applying onto piping or tubing. Alternately, whenever possible, slide unslit sections over the open ends of piping or tubing. All seams and butt joints shall be secured and sealed with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Insulation shall be pushed on the pipe, never pulled. Stretching of insulation may result in open seams and joints. All edges shall be clean cut. Rough or jagged edges of the insulation shall not be permitted. Proper tools such as sharp knives shall be used. Type II sheet insulation when used on pipe larger than 150 mm shall not be stretched around the pipe. On pipes larger than 300 mm, adhere sheet insulation directly to the pipe on the lower 1/3 of the pipe.

3.2.3.4 Insulation for Fittings and Accessories

a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories.

b. Precut or preformed insulation shall be placed around all fittings and accessories and shall conform to MICA plates, except as modified herein: 5 for anchors; 10, 11, 12, and 13 for fittings; 14, 15 and 16 for valves; 17 for flanges and unions; and 18 for couplings. Insulation shall be the same as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation
sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 50 mm or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow".

c. Upon completion of installation of insulation on flanges, unions, valves, anchors, fittings and accessories, terminations and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with two coats of adhesive applied with glass tape embedded between coats. Tape seams shall overlap 25 mm. Adhesive shall extend onto the adjoining insulation not less than 50 mm. The total dry film thickness shall be not less than 2.0 mm.

d. Insulation terminations shall be tapered to unions at a 45-degree angle.

e. At the option of the Contractor, factory premolded one- or two-piece PVC fitting covers may be used in lieu of the adhesive and embedded glass tape. Factory premolded segments or factory or field cut blanket insert insulation segments shall be used under the cover and shall be the same thickness as adjoining pipe insulation. The covers shall be secured by PVC vapor retarder tape, adhesive, seal-welding or with tacks made for securing PVC covers.

3.2.4 Piping Exposed to Weather

Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, an aluminum jacket or PVC jacket shall be applied. PVC jacketing requires no factory applied jacket beneath it, however an all service jacket shall be applied if factory applied jacketing is not furnished. Flexible cellular insulation exposed to weather shall be treated in accordance with paragraph INSTALLATION OF FLEXIBLE CELLULAR INSULATION.

3.2.4.1 Aluminum Jacket

The jacket for hot piping may be factory applied. The jacket shall overlap not less than 50 mm at longitudinal and circumferential joints and shall be secured with bands at not more than 300 mm centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o'clock positions. Joints on piping 16 degrees C and below shall be sealed with caulking while overlapping to prevent moisture penetration. Where jacketing on piping 16 degrees C and below abuts an uninsulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 16 degrees C shall be sealed with a moisture retarder.

3.2.4.2 Insulation for Fittings

Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of breather emulsion type weatherproof mastic (impermeable to water, permeable to air) recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 25 mm and the
adjoining aluminum jacket not less than 50 mm. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be provided when PVC jackets are used for straight runs of pipe. PVC fitting covers shall have adhesive welded joints and shall be weatherproof.

3.2.4.3 PVC Jacket

PVC jacket shall be ultraviolet resistant and adhesive welded weather tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion.

3.2.5 Below ground Pipe Insulation

The following shall be included:

a. Heated oil.

b. Domestic hot water.

c. Heating hot water.

d. Dual temperature water.

e. Steam.

f. Condensate.

3.2.5.1 Type of Insulation

Below ground pipe shall be insulated with 75 mm cellular glass insulation set in a coat of bedding compound as recommended by the manufacturer.

3.2.5.2 Installation of Below ground Pipe Insulation

a. Bore surfaces of the insulation shall be coated with a thin coat of gypsum cement of a type recommended by the insulation manufacturer. Coating thickness shall be sufficient to fill surface cells of insulation. Mastic type materials shall not be used for this coating.

b. Stainless steel bands, 19 mm wide by 0.5080 mm thick shall be used to secure insulation in place. A minimum of two bands per section of insulation shall be applied. As an alternate, fiberglass reinforced tape may be used to secure insulation on piping up to 300 mm in diameter. A minimum of two bands per section of insulation shall be applied.

c. Insulation shall terminate at anchor blocks but shall be continuous through sleeves and manholes.

d. At point of entry to buildings, underground insulation shall be terminated 50 mm inside the wall or floor, shall butt tightly against the aboveground insulation and the butt joint shall be sealed with high temperature silicone sealant.

e. Provision for expansion and contraction shall be made in accordance with the insulation manufacturer's recommendations.
f. Flanges, couplings, valves, and fittings shall be insulated with factory premolded, prefabricated, or field-fabricated sections of insulation of the same material and thickness as the adjoining pipe insulation. Insulation sections shall be secured in place with wire, bore surfaces coated, and joints sealed as specified.

g. Insulation, including fittings, shall be finished with three coats of asphaltic mastic, with 6 by 5.5 mesh synthetic reinforcing fabric embedded between coats. Fabric shall be overlapped a minimum of 50 mm at joints. Total film thickness shall be a minimum of 4.7 mm. As an alternate, a prefabricated bituminous laminated jacket, reinforced with internal reinforcement mesh, shall be applied to the insulation. Jacketing material and application procedures shall match manufacturer’s written instructions.

h. At termination points, other than building entrances, the mastic and cloth or tape shall cover the ends of insulation and extend 50 mm along the bare pipe.

3.3 DUCT INSULATION INSTALLATION

Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket. Duct insulation shall be omitted on exposed supply and return ducts in air conditioned spaces where the difference between supply air temperature and room air temperature is less than 9 degrees C unless otherwise shown. Air conditioned spaces shall be defined as those spaces directly supplied with cooled conditioned air (or provided with a cooling device such as a fan-coil unit) and heated conditioned air (or provided with a heating device such as a unit heater, radiator or convvector).

3.3.1 Duct Insulation Thickness

Minimum Duct Insulation (mm)

<table>
<thead>
<tr>
<th>Duct Location</th>
<th>Annual Cooling Degree Days</th>
<th>Insulation R-Value</th>
<th>Annual Heating Degree Days</th>
<th>Insulation R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior</td>
<td><260</td>
<td>0.58</td>
<td><816</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>260 - 621</td>
<td>0.88</td>
<td>816 - 2482</td>
<td>0.88</td>
</tr>
<tr>
<td>Building</td>
<td>622 - 1093</td>
<td>1.14</td>
<td>2483 - 4149</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>>1093</td>
<td>1.41</td>
<td>>4149</td>
<td>1.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inside building or reqd</th>
<th>Temperature Difference R-Value</th>
<th>Insulation R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>reqd</td>
<td>None reqd</td>
<td>None</td>
</tr>
</tbody>
</table>

Outside building or <=-9.4

SECTION 15080 Page 23
These R values do not include the film resistances. The required minimum thicknesses do not consider water vapor transmission and condensation. Additional insulation, vapor retarders, or both, may be required to limit vapor transmission and condensation. Where ducts are designed to convey both heated and cooled air, duct insulation shall be as required by the most restrictive condition. Where exterior walls are used as plenum walls, wall insulation shall be a required by the most restrictive condition of this section or the insulation for the building envelope. Cooling ducts are those designed to convey mechanically cooled air or return ducts in such systems. Heating ducts are those designed to convey mechanically heated air or return ducts in such systems. Thermal resistance shall be measured in accordance with ASTM C 518 at a mean temperature of 24 degrees C. The Temperature difference is at design conditions between the space within which the duct is located and the design air temperature in the duct. Resistance for runouts to terminal devices less than 3.048 m in length need not exceed 0.58 (sm K)/W. Unconditioned spaces include crawlspaces and attics.

Duct insulation thickness shall be in accordance with Table III.

Table III - Minimum Duct Insulation (mm)

<table>
<thead>
<tr>
<th>Type of Duct</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Air Ducts</td>
<td>50</td>
</tr>
<tr>
<td>Relief Ducts</td>
<td>40</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
<td>40</td>
</tr>
<tr>
<td>Warm Air Ducts</td>
<td>50</td>
</tr>
<tr>
<td>Relief Ducts</td>
<td>40</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
<td>40</td>
</tr>
</tbody>
</table>

Maximum thickness for flexible cellular insulation shall not exceed 25 mm, to comply with ASTM E 84 flame spread/smoke developed ratings of 25/50.

Maximum thickness for flexible cellular insulation shall not exceed 1 inch, to comply with ASTM E 84 flame spread/smoke developed ratings of 25/50.

3.3.2 Insulation and Vapor Retarder for Cold Air Duct

Insulation and vapor retarder shall be provided for the following cold air ducts and associated equipment.

a. Supply ducts.

b. Return air ducts.

c. Relief ducts.

d. Flexible runouts (field-insulated).

e. Plenums.

f. Duct-mounted coil casings.
gf. Coil headers and return bends.

hg. Coil casings.

ih. Fresh air intake ducts.

ji. Filter boxes.

kj. Mixing boxes (field-insulated).

lk. Supply fans (field-insulated).

ml. Site-erected air conditioner casings.

nm. Ducts exposed to weather.

on. Combustion air intake ducts.

Insulation for rectangular ducts shall be flexible type where concealed, minimum density 12 kg per cubic meter and rigid type where exposed, minimum density 48 kg per cubic meter. Insulation for round/oval ducts shall be flexible type, minimum density 12 kg per cubic meter with a factory Type I or II jacket; or, a semi rigid board, minimum density 48 kg per cubic meter, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered, with a factory applied Type I or II all service jacket. Insulation for exposed ducts shall be provided with either a white, paintable, factory-applied Type I jacket or a vapor retarder jacket coating finish as specified. Insulation on concealed duct shall be provided with a factory-applied Type I or II vapor retarder jacket. The total dry film thickness shall be approximately 2.0 mm. Duct insulation shall be continuous through sleeves and prepared openings except fire wall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder shall cover the collar, neck, and any uninsulated surfaces of diffusers, registers and grills. Vapor retarder materials shall be applied to form a complete unbroken vapor seal over the insulation. Sheet Metal Duct shall be sealed in accordance with CEGS 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.3.2.1 Installation on Concealed Duct

a. For rectangular, oval or round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 150 mm wide strips on 300 mm centers.

b. For rectangular and oval ducts, 600 mm (24 inches) and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 400 mm centers and not more than 400 mm from duct corners.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 400 mm centers and not more than 400 mm from duct corners.
d. Insulation shall be impaled on the mechanical fasteners (self stick pins) where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder jacket joints overlap 50 mm. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers.

e. Self-locking washers shall be installed where mechanical fasteners are used. The pin shall be trimmed back and bent over.

f. Jacket overlaps shall be secured with staples and tape as necessary to ensure a secure seal. Staples, tape and seams shall be coated with a brush coat of vapor retarder coating.

g. Breaks in the jacket material shall be covered with patches of the same material as the vapor retarder jacket. The patches shall extend not less than 50 mm beyond the break or penetration in all directions and shall be secured with tape and staples. Staples and tape joints shall be sealed with a brush coat of vapor retarder coating.

h. At jacket penetrations such as hangers, thermometers, and damper operating rods, voids in the insulation shall be filled and the penetration sealed with a brush coat of vapor retarder coating.

i. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish or tape with a brush coat of vapor retarder coating. The coating shall overlap the adjoining insulation and uninsulated surface 50 mm. Pin puncture coatings shall extend 50 mm from the puncture in all directions.

j. Where insulation standoff brackets occur, insulation shall be extended under the bracket and the jacket terminated at the bracket.

3.3.2.2 Installation on Exposed Duct Work

a. For rectangular ducts, rigid insulation shall be secured to the duct by mechanical fasteners on all four sides of the duct, spaced not more than 300 mm apart and not more than 75 mm from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 300 mm and larger. One row shall be provided for each side of duct less than 300 mm.

b. Duct insulation shall be formed with minimum jacket seams. Each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projections is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over. Vapor retarder jacket shall be continuous across seams, reinforcing, and projections. When height of projections is greater than the insulation thickness, insulation and jacket shall be carried over.

c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and the pin trimmed or bent over.
d. Joints in the insulation jacket shall be sealed with a 100 mm wide strip of tape. Tape seams shall be sealed with a brush coat of vapor retarder coating.

e. Breaks and ribs or standing seam penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 50 mm beyond the break or penetration and shall be secured with tape and stapled. Staples and joints shall be sealed with a brush coat of vapor retarder coating.

f. At jacket penetrations such as hangers, thermometers, and damper operating rods, the voids in the insulation shall be filled and the penetrations sealed with a brush coat of vapor retarder coating.

g. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. The coating shall overlap the adjoining insulation and uninsulated surface 50 mm. Pin puncture coatings shall extend 50 mm from the puncture in all directions.

h. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation with minimum density of 12 kg per cubic meter, attached as per MICA standards.

3.3.3 Insulation for Warm Air Duct

Insulation and vapor barrier shall be provided for the following warm air ducts and associated equipment:

- a. Supply ducts.
- b. Return air ducts
- c. Relief air ducts
- d. Flexible runouts (field insulated)
- e. Plenums
 - f. Duct-mounted coil casings
 - g. Coil-headers and return bends
 - h. Coil casings.
 - i. Fresh air intake ducts
 - j. Filter boxes
 - k. Mixing boxes
 - l. Supply fans
 - m. Site-erected air conditioner casings
Insulation for rectangular ducts shall be flexible type where concealed, minimum density 12 kg per cubic meter; and rigid type where exposed, minimum density 48 kg per cubic meter. Insulation on exposed ducts shall be provided with a white, paintable, factory-applied Type II jacket, or finished with adhesive finish. Flexible type insulation shall be used for round ducts, minimum density 12 kg per cubic meter with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factory-applied Type II jacket. Adhesive finish where indicated to be used shall be accomplished by applying two coats of adhesive with a layer of glass cloth embedded between the coats. The total dry film thickness shall be approximately 2.0 mm. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections.

3.3.3.1 Installation on Concealed Duct

a. For rectangular, oval and round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 150 mm wide strips on 300 mm centers.

b. For rectangular and oval ducts 600 mm and larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 450 mm centers and not more than 450 mm from duct corner.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 450 mm centers and not more than 450 mm from duct corners.

d. The insulation shall be impaled on the mechanical fasteners where used. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers.

e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over.

f. Insulation jacket shall overlap not less than 50 mm at joints and the lap shall be secured and stapled on 100 mm centers.

3.3.3.2 Installation on Exposed Duct

a. For rectangular ducts, the rigid insulation shall be secured to the duct by the use of mechanical fasteners on all four sides of the duct, spaced not more than 400 mm apart and not more than 150 mm from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 300 mm and larger and a minimum of one row for each side of duct less than 300 mm.

b. Duct insulation with factory-applied jacket shall be formed with minimum jacket seams, and each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projection is less than the insulation thickness, insulation
shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over the projection. Jacket shall be continuous across seams, reinforcing, and projections. Where the height of projections is greater than the insulation thickness, insulation and jacket shall be carried over the projection.

c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and pin excess clipped and bent over.

d. Joints on jacketed insulation shall be sealed with a 100 mm wide strip of tape and brushed with vapor retarder coating.

e. Breaks and penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 50 mm beyond the break or penetration and shall be secured with adhesive and stapled.

f. Insulation terminations and pin punctures shall be sealed with tape and brushed with vapor retarder coating.

g. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation, minimum density of 12 kg per cubic meter attached by staples spaced not more than 400 mm and not more than 150 mm from the degrees of joints. Joints shall be sealed in accordance with paragraph 3.3.3.2 d.

3.3.4 Ducts Handling Air for Dual Purpose

For air handling ducts for dual purpose below and above 16 degrees C, ducts shall be insulated as specified for cold air duct.

3.3.5 Insulation for Evaporative Cooling Duct

Evaporative cooling supply duct located in spaces not evaporatively cooled, shall be insulated. Material and installation requirements shall be as specified for duct insulation for warm air duct.

3.3.6 Duct Test Holes

After duct systems have been tested, adjusted, and balanced, breaks in the insulation and jacket shall be repaired in accordance with the applicable section of this specification for the type of duct insulation to be repaired.

3.3.7 Duct Exposed to Weather

3.3.7.1 Installation

Ducts exposed to weather shall be insulated and finished as specified for the applicable service for exposed duct inside the building. After the above is accomplished, the insulation shall then be further finished as detailed in the following subparagraphs.

3.3.7.2 Round Duct
Aluminum jacket with factory applied moisture retarder shall be applied with the joints lapped not less than 75 mm and secured with bands located at circumferential laps and at not more than 300 mm intervals throughout. Horizontal joints shall lap down to shed water and located at 4 or 8 o'clock position. Joints shall be sealed with caulking to prevent moisture penetration. Where jacketing abuts an uninsulated surface, joints shall be sealed with caulking.

3.3.7.3 Fittings

Fittings and other irregular shapes shall be finished as specified for rectangular ducts.

3.3.7.4 Rectangular Ducts

Two coats of weather barrier mastic reinforced with fabric or mesh for outdoor application shall be applied to the entire surface. Each coat of weatherproof mastic shall be 2.0 mm minimum thickness. The exterior shall be a metal jacketing applied for mechanical abuse and weather protection, and secured with screws.

3.4 EQUIPMENT INSULATION INSTALLATION

3.4.1 General

Removable insulation sections shall be provided to cover parts of equipment which must be opened periodically for maintenance including vessel covers, fasteners, flanges and accessories. Equipment insulation shall be omitted on the following:

a. Handholes.

b. Boiler manholes.

c. Cleanouts.

d. ASME stamps.

e. Manufacturer's nameplates.

3.4.2 Insulation for Cold Equipment

Cold equipment below 16 degrees C: Insulation shall be furnished on equipment handling media below 16 degrees C including the following:

a. Pumps.

b. Refrigeration equipment parts that are not factory insulated.

c. Drip pans under chilled equipment.

d. Cold water storage tanks.

e. Water softeners.

f. Duct-mounted coils.
Cold and chilled water pumps.

Pneumatic water tanks.

Roof drain bodies.

Air handling equipment parts that are not factory insulated.

Expansion and air separation tanks.

3.4.2.1 Insulation Type

Insulation shall be suitable for the temperature encountered. Thicknesses shall be as follows:

a. Equipment handling media between 2 and 16 degrees C: 40 mm <ENG>1.5 inch</ENG> thick cellular glass, 25 mm thick flexible cellular, or 25 mm thick phenolic foam.

b. Equipment handling media between minus 18 degrees C and plus 1 degrees C: 75 mm <ENG>3 inch</ENG> thick cellular glass, 40 mm flexible cellular, or 40 mm thick phenolic foam.

c. Equipment handling media between minus 34 degrees C and minus 18 degrees C: 90mm <ENG>3 1/2 inch</ENG> thick cellular glass 45 mm thick flexible cellular, or 40 mm thick phenolic foam.

3.4.2.2 Pump Insulation

a. Pumps shall be insulated by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints which do not leave raw ends of insulation exposed. Joints between sides and between sides and bottom shall be joined by adhesive with lap strips for rigid mineral fiber and contact adhesive for flexible cellular insulation. The box shall conform to the requirements of MICA Insulation Stds plate No. 49 when using flexible cellular insulation. Joints between top cover and sides shall fit tightly forming a female shiplap joint on the side pieces and a male joint on the top cover, thus making the top cover removable.

b. Exposed insulation corners shall be protected with corner angles.

c. Upon completion of installation of the insulation, including removable sections, two coats of vapor retarder coating shall be applied with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 2.0 mm. A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. Caulking shall be applied to parting line, between equipment and removable section insulation, and at all penetrations.

3.4.2.3 Other Equipment
a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not more than 300 mm centers except flexible cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles.

c. Cellular glass and phenolic foam insulation shall be set in a coating of bedding compound, and joints shall be sealed with bedding compound as recommended by the manufacturer.

d. Insulation on heads of heat exchangers shall be removable. Removable section joints shall be fabricated using a male-female shiplap type joint. The entire surface of the removable section shall be finished by applying two coats of vapor retarder coating with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 2.0 mm.

e. Exposed insulation corners shall be protected with corner angles.

f. Insulation on equipment with ribs shall be applied over 150 x 150 mm by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 50 x 50 mm washers or shall be securely banded or wired in place on 300 mm centers.

3.4.2.4 Vapor Retarder

Upon completion of installation of insulation, penetrations shall be caulked. Two coats of vapor retarder coating shall be applied over insulation, including removable sections, with a layer of open mesh synthetic fabric embedded between the coats. The total dry thickness of the finish shall be 2.0 mm. Caulking shall be applied to parting line between equipment and removable section insulation.

3.4.3 Insulation for Hot Equipment

Insulation shall be furnished on equipment handling media above 16 degrees C including the following:

a. Converters.

b. Heat exchangers.

c. Hot water generators.

da. Water heaters.

eb. Pumps handling media above 54 degrees C.

f. Fuel oil heaters.
gc. Hot water storage tanks.
hd. Air separation tanks.
i. Surge tanks.
j. Flash tanks.
k. Feedwater heaters.
le. Unjacketed boilers or parts of boilers.
mf. Boiler flue gas connection from boiler to stack (if inside).
n. Induced draft fans.
o. Fly ash and soot collectors.
p. Condensate receivers.

3.4.3.1 Insulation

Insulation shall be suitable for the temperature encountered. Shell and tube-type heat exchangers shall be insulated for the temperature of the shell medium.

Insulation thickness for hot equipment shall be determined using Table IV:

Legend

RMF: Rigid Mineral Fiber
FMF: Flexible Mineral Fiber
CS: Calcium Silicate
PL: Perlite
CG: Cellular Glass
FC: Flexible Cellular
PF: Phenolic Foam

<table>
<thead>
<tr>
<th>TABLE IV</th>
<th>Insulation Thickness for Hot Equipment (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment handling steam or other media to indicated pressure or temperature limit</td>
<td>Material</td>
</tr>
<tr>
<td>103.4 kPa or</td>
<td>RMF</td>
</tr>
<tr>
<td>121 C</td>
<td>FMF</td>
</tr>
<tr>
<td>CS/PL</td>
<td>100 mm</td>
</tr>
<tr>
<td>CG</td>
<td>75 mm</td>
</tr>
<tr>
<td>PF</td>
<td>40 mm</td>
</tr>
<tr>
<td>FC(<93 C)</td>
<td>25 mm</td>
</tr>
<tr>
<td>1379.0 kPa</td>
<td>RMF</td>
</tr>
<tr>
<td>Equipment handling steam or media to indicated pressure or temperature limit:</td>
<td>Material</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>15 psig</td>
<td>RMF</td>
</tr>
<tr>
<td>or</td>
<td>FMF</td>
</tr>
<tr>
<td>250F</td>
<td>CS/PL</td>
</tr>
<tr>
<td>CG</td>
<td>3.0 inches</td>
</tr>
<tr>
<td>PF</td>
<td>1.5 inches</td>
</tr>
<tr>
<td>FC (<200F)</td>
<td>1.0 inches</td>
</tr>
<tr>
<td>>600 F: Thickness necessary to limit the external temperature of the insulation to 120F, except that diesel engine exhaust piping and mufflers shall be covered with 6.0 inch thick material suitable for 1200 degrees F service. Heat transfer calculations shall be submitted to substantiate insulation and thickness selection.</td>
<td>RMF</td>
</tr>
<tr>
<td></td>
<td>FMF</td>
</tr>
<tr>
<td></td>
<td>CS/PL</td>
</tr>
<tr>
<td></td>
<td>CG</td>
</tr>
</tbody>
</table>

3.4.3.2 Insulation of Pumps

Pumps shall be insulated by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints which do not leave raw ends of insulation exposed. Bottom and sides shall be banded to form a rigid housing which does not rest on the pump. Joints between top cover and sides shall fit tightly. The top cover shall have a joint forming a female shiplap joint on the side pieces and a male joint on the top cover, making the top cover removable. Two coats of Class I adhesive shall be
applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. The total dry thickness of the finish shall be 2.0 mm. Caulking shall be applied to parting line of the removable sections and penetrations.

3.4.3.3 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not greater than 300 mm centers except flexible cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles.

c. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

d. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not greater than 300 mm centers except flexible cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles.

e. Exposed insulation corners shall be protected with corner angles.

f. Insulation on heads of heat exchangers shall be removable. The removable section joint shall be fabricated using a male-female shiplap type joint. Entire surface of the removable section shall be finished as specified.

g. On high vibration equipment, cellular glass insulation shall be set in a coating of bedding compound as recommended by the manufacturer, and joints shall be sealed with bedding compound. Mineral fiber joints shall be filled with finishing cement.

h. Insulation on heads of heat exchangers shall be removable. The removable section joint shall be fabricated using a male-female shiplap type joint. Entire surface of the removable section shall be finished as specified.

e. Exposed insulation corners shall be protected with corner angles.

3.4.4 Equipment Handling Dual Temperature Media

Below and above 16 degrees C: equipment handling dual temperature media shall be insulated as specified for cold equipment.

3.4.4 Equipment Exposed to Weather
3.4.4.1 Installation

 Equipment exposed to weather shall be insulated and finished in accordance with the requirements for ducts exposed to weather in paragraph DUCT INSULATION INSTALLATION.

3.4.4.2 Optional Panels

 At the option of the Contractor, prefabricated metal insulation panels may be used in lieu of the insulation and finish previously specified. Thermal performance shall be equal to or better than that specified for field applied insulation. Panels shall be the standard catalog product of a manufacturer of metal insulation panels. Fastenings, flashing, and support system shall conform to published recommendations of the manufacturer for weatherproof installation and shall prevent moisture from entering the insulation. Panels shall be designed to accommodate thermal expansion and to support a 1112 N walking load without permanent deformation or permanent damage to the insulation. Exterior metal cover sheet shall be aluminum and exposed fastenings shall be stainless steel or aluminum.

 -- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN GAS ASSOCIATION (AGA)

AMERICAN NATIONAL STANDARDS INSTITUTE

ANSI Z21.45 (1995) Flexible Connectors of Other Than All-Metal Construction for Gas Appliances

AMERICAN PETROLEUM INSTITUTE (API)

API Spec 6D (1994; Supple 1 Jun 1996; Supple 2 Dec 1997) Pipeline Valves (Gate, Plug, Ball, and Check Valves)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 88 (1996) Seamless Copper Water Tube

ASTM B 280 (1995a) Seamless Copper Tube for Air Conditioning and Refrigeration Field Service

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B1.20.1 (1983; R 1992) Pipe Threads, General Purpose (Inch)

ASME B16.3 (1992) Malleable Iron Threaded Fittings

ASME B16.5 (1996; B16.5a) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24

1.2 GENERAL REQUIREMENTS

1.2.1 Welding

Piping shall be welded in accordance with qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified at least 24 hours in advance of tests and the tests shall be performed at the work site if practicable. The Contracting

ASME B16.21 (1992) Nonmetallic Flat Gaskets for Pipe Flanges
ASME B16.33 (1990) Manually Operated Metallic Gas Valves for Use in Gas Piping Systems Up to 125 psig (Sizes 1/2 through 2)
ASME B31.1 (1995; B31.1a; B31.1b; B31.1c) Power Piping
ASME B31.2 (1968) Fuel Gas Piping
ASME B36.10M (1996) Welded and Seamless Wrought Steel Pipe
ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)
MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

THE SOCIETY FOR PROTECTIVE COATING (SSPC)
SSPC SP 6/NACE 3 (1994) Commercial Blast Cleaning

UNDERWRITERS LABORATORIES (UL)
UL Gas & Oil Dir (1996; Supple) Gas and Oil Equipment Directory
Officer shall be furnished with a copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record.

1.2.2 Jointing Thermoplastic and Fiberglass Piping

Piping shall be jointed by performance qualified joiners using qualified procedures in accordance with AGA Mnl. Plastic Pipe Manual for Gas Service. The Contracting Officer shall be furnished with a copy of qualified procedures and list of and identification symbols of qualified joiners.

1.2.3 Standard Products

Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Asbestos or products containing asbestos shall not be used. Manufacturer's descriptive data and installation instructions shall be submitted for approval for compression-type mechanical joints used in joining dissimilar materials and for insulating joints. Valves, flanges and fittings shall be marked in accordance with MSS SP-25.

1.2.4 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work.

1.3 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data
Qualifications; FIO.

Qualified procedures and a list of names and identification symbols of qualified welders and welding operators.

SD-04 Drawings
Gas Piping System; FIO.

Drawings showing location, size and all branches of pipeline; location of all required shutoff valves; and instructions necessary for the installation of connectors and supports.

SD-9 Reports
Testing; FIO.

Pressure Tests; FIO.
Test With Gas; FIO.

Test reports in booklet form tabulating test and measurements performed. The reports shall be dated after award of this contract, shall state the contractor's name and address, shall name the project and location, and shall list the specific requirements which are being certified.

PART 2 PRODUCTS

2.1 PIPE AND FITTINGS

2.1.1 Steel Pipe, Joints, and Fittings

Steel pipe shall conform to ASME B36.10M. Malleable-iron threaded fittings shall conform to ASME B16.3. Steel pipe flanges and flanged fittings including bolts, nuts, and bolt pattern shall be in accordance with ASME B16.5. Wrought steel buttwelding fittings shall conform to ASME B16.9. Socket welding and threaded forged steel fittings shall conform to ASME B16.11.

2.1.2 Copper Tubing, Joints and Fittings

Copper tubing shall conform to ASTM B 88, Type K or L, or ASTM B 280. Tubing joints shall be made up with tubing fittings recommended by the tubing manufacturer.

2.1.3 Steel Tubing, Joints and Fittings

Steel tubing shall conform to ASTM A 539. Tubing joints shall be made up with gas tubing fittings recommended by the tubing manufacturer.

2.1.4 Sealants for Steel Pipe Threaded Joints

Joint sealing compound shall be listed in UL Gas&Oil Dir, Class 20 or less. Tetrafluoroethylene tape shall conform to UL Gas&Oil Dir.

2.1.5 Identification

Pipe flow markings and metal tags shall be provided as required.

2.1.6 Flange Gaskets

Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1.6 mm (1/16 inch) thickness, full face or self-centering flat ring type. The gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR) suitable for a maximum 316 degrees C (600 degrees F) service. NBR binder shall be used for hydrocarbon service.

2.1.7 Pipe Threads

Pipe threads shall conform to ASME B1.20.1.

2.1.8 Escutcheons
Escutcheons shall be chromium-plated steel or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or set screw.

2.1.9 Gas Transition Fittings

Gas transition fittings shall be manufactured steel fittings approved for jointing metallic and thermoplastic or fiberglass pipe. Approved transition fittings are those that conform to AGA Mn1 requirements for transitions fittings.

2.1.10 Insulating Pipe Joints

2.1.10.1 Insulating Joint Material

Insulating joint material shall be provided between flanged or threaded metallic pipe systems where shown to control galvanic or electrical action.

2.1.10.2 Threaded Pipe Joints

Joints for threaded pipe shall be steel body nut type dielectric unions with insulating gaskets.

2.1.10.3 Flanged Pipe Joints

Joints for flanged pipe shall consist of full face sandwich-type flange insulating gasket of the dielectric type, insulating sleeves for flange bolts, and insulating washers for flange nuts.

2.1.11 Flexible Connectors

Flexible connectors for connecting gas utilization equipment to building gas piping shall conform to ANSI Z21.45. Flexible connectors for movable food service equipment shall conform to ANSI Z21.69.

2.2 VALVES

Valves shall be suitable for shutoff or isolation service and shall conform to the following:

2.2.1 Valves 50 mm and Smaller

Valves 50 mm and smaller shall conform to ASME B16.33 and shall be of materials and manufacture compatible with system materials used.

2.2.2 Valves 65 mm and Larger

Valves 65 mm and larger shall be carbon steel conforming to API Spec 6D, Class 150.

2.3 PIPE HANGERS AND SUPPORTS

Pipe hangers and supports shall conform to MSS SP-58 and MSS SP-69.

2.4 METERS, REGULATORS AND SHUTOFF VALVES
Meters, regulators and shutoff valves shall be as specified in Section 02556 GAS DISTRIBUTION SYSTEM.

PART 3 EXECUTION

3.1 EXCAVATION AND BACKFILLING

Earthwork shall be as specified in Section 02316 EXCAVATION, TRENCHING AND BACKFILLING FOR UTILITIES SYSTEMS.

3.2 GAS PIPING SYSTEM

Gas piping system shall be from the point of delivery, defined as the outlet of the shutoff valve at the building, specified in Section 02556 GAS DISTRIBUTION SYSTEM, to the connections to each gas utilization device.

3.2.1 Protection of Materials and Components

Pipe and tube openings shall be closed with caps or plugs during installation. Equipment shall be protected from dirt, water, and chemical or mechanical damage. At the completion of all work, the entire system shall be thoroughly cleaned.

3.2.2 Workmanship and Defects

Piping, tubing and fittings shall be clear and free of cutting burrs and defects in structure or threading and shall be thoroughly brushed and chip-and scale-blown. Defects in piping, tubing or fittings shall not be repaired. When defective piping, tubing, or fittings are located in a system, the defective material shall be replaced.

3.3 PROTECTIVE COVERING

3.3.1 Aboveground Metallic Piping Systems

3.3.1.1 Ferrous Surfaces

Shop primed surfaces shall be touched up with ferrous metal primer. Surfaces that have not been shop primed shall be solvent cleaned. Surfaces that contain loose rust, loose mill scale and other foreign substances shall be mechanically cleaned by power wire brushing or commercial sand blasted conforming to SSPC SP 6/NACE 3 and primed with ferrous metal primer or vinyl type wash coat. Primed surface shall be finished with two coats of exterior oil paint or vinyl paint.

3.3.1.2 Nonferrous Surfaces

Except for aluminum alloy pipe, nonferrous surfaces shall not be painted. Surfaces of aluminum alloy pipe and fittings shall be painted to protect against external corrosion where they contact masonry, plaster, insulation, or are subject to repeated wettings by such liquids as water, detergents or sewage. The surfaces shall be solvent-cleaned and treated with vinyl type wash coat. A first coat of aluminum paint and a second coat of alkyd gloss enamel or silicone alkyd copolymer enamel shall be applied.

3.4 INSTALLATION
Installation of the gas system shall be in conformance with the manufacturer's recommendations and applicable provisions of NFPA 54/ANSI Z223.1, AGA Mnl, and as indicated. Pipe cutting shall be done without damage to the pipe. Unless otherwise authorized, cutting shall be done by an approved type of mechanical cutter. Wheel cutters shall be used where practicable. On steel pipe 150 mm and larger, an approved gas cutting and beveling machine may be used. Cutting of thermoplastic and fiberglass pipe shall be in accordance with AGA Mnl.

3.4.1 Metallic Piping Installation

Changes in direction of piping shall be made with fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connection may be made with either tees or forged branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Aluminum alloy pipe shall not be used.

3.4.2 Connections Between Metallic and Plastic Piping

Connections shall be made only outside, underground, and with approved transition fittings.

3.4.3 Concealed Piping in Buildings

When installing piping which is to be concealed, unions, tubing fittings, running threads, right- and left-hand couplings, bushings, and swing joints made by combinations of fittings shall not be used.

3.4.3.1 Piping in Partitions

Concealed piping shall be located in hollow rather than solid partitions. Tubing passing through walls or partitions shall be protected against physical damage.

3.4.4 Aboveground Piping

Aboveground piping shall be run as straight as practicable along the alignment indicated and with a minimum of joints. Piping shall be separately supported. Exposed horizontal piping shall not be installed farther than 150 mm from nearest parallel wall in laundry areas where clothes hanging could be attempted.

3.4.5 Final Gas Connections

Unless otherwise specified, final connections shall be made with rigid metallic pipe and fittings. Final connections to kitchen ranges shall be made using flexible connectors not less than 1.02 m long. Flexible connectors may be used for final connections to residential dryers. Flexible connectors may be used for final connections to gas utilization equipment. In addition to cautions listed in instructions required by ANSI standards for flexible connectors, insure that flexible connectors do not pass through equipment cabinet. Provide accessible gas shutoff valve and coupling for each gas equipment item.

3.5 PIPE JOINTS
Pipe joints shall be designed and installed to effectively sustain the longitudinal pull-out forces caused by contraction of the piping or superimposed loads.

3.5.1 Threaded Metallic Joints

Threaded joints in metallic pipe shall have tapered threads evenly cut and shall be made with UL approved graphite joint sealing compound for gas service or tetrafluoroethylene tape applied to the male threads only. Threaded joints up to 40 mm in diameter may be made with approved tetrafluoroethylene tape. Threaded joints up to 50 mm in diameter may be made with approved joint sealing compound. After cutting and before threading, pipe shall be reamed and burrs shall be removed. Caulking of threaded joints to stop or prevent leaks shall not be permitted.

3.5.2 Welded Metallic Joints

Beveling, alignment, heat treatment, and inspection of welds shall conform to ASME B31.2. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. After filler metal has been removed from its original package, it shall be protected or stored so that its characteristics or welding properties are not affected adversely. Electrodes that have been wetted or have lost any of their coating shall not be used.

3.5.3 Flared Metallic Tubing Joints

Flared joints in metallic tubing shall be made with special tools recommended by the tubing manufacturer. Flared joints shall be used only in systems constructed from nonferrous pipe and tubing, when experience or tests have demonstrated that the joint is suitable for the conditions, and when adequate provisions are made in the design to prevent separation of the joints. Metallic ball sleeve compression-type tubing fittings shall not be used for tubing joints.

3.5.4 Solder or Brazed Joints

Joints in metallic tubing and fittings shall be made with materials and procedures recommended by the tubing supplier. Joints shall be brazed with material having a melting point above 538 degrees C (1000 degrees F). Brazing alloys shall not contain phosphorous.

3.5.5 Joining Thermoplastic or Fiberglass to Metallic Piping or Tubing

When compression type mechanical joints are used, the gasket material in the fittings shall be compatible with the plastic piping and with the gas in the system. An internal tubular rigid stiffener shall be used in conjunction with the fitting, and the stiffener shall be flush with end of the pipe or tubing and shall extend at least to the outside end of the compression fitting when installed. The stiffener shall be free of rough or sharp edges and shall not be a force fit in the plastic. A split tubular stiffener shall not be used.

3.6 PIPE SLEEVES

Pipes passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of
construction. Sleeves shall not be installed in structural members except where indicated or approved. All rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective wall, floor or roof, and shall be cut flush with each surface, except in mechanical room floors not located on grade where clamping flanges or riser pipe clamps are used. Sleeves in mechanical room floors above grade shall extend at least 100 mm above finish floor. Unless otherwise indicated, sleeves shall be large enough to provide a minimum clearance of 6.4 mm all around the pipe. Sleeves in bearing walls, waterproofing membrane floors, and wet areas shall be steel pipe. Sleeves in nonbearing walls, floors, or ceilings may be steel pipe, galvanized sheet metal with lock-type longitudinal seam, or moisture-resistant fiber or plastic. For penetrations of fire walls, fire partitions and floors which are not on grade, the annular space between the pipe and sleeve shall be sealed with firestopping material and sealant that meet the requirement of Section 07840 FIRESTOPPING.

3.7 PIPES PENETRATING WATERPROOFING MEMBRANES

Pipes penetrating waterproofing membranes shall be installed as specified in Section 15400 PLUMBING, GENERAL PURPOSE.

3.8 FIRE SEAL

Penetrations of fire rated partitions, walls and floors shall be in accordance with Section 07840 FIRESTOPPING.

3.9 ESCUTCHEONS

Escutcheons shall be provided for all finished surfaces where gas piping passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms.

3.10 SPECIAL REQUIREMENTS

Drips, grading of the lines, freeze protection, and branch outlet locations shall be as shown and shall conform to the requirements of NFPA NFPA 54/ANSI Z223.1.

3.11 BUILDING STRUCTURE

Building structure shall not be weakened by the installation of any gas piping. Beams or joists shall not be cut or notched.

3.12 PIPING SYSTEM SUPPORTS

Gas piping systems in buildings shall be supported with pipe hooks, metal pipe straps, bands or hangers suitable for the size of piping or tubing. Gas piping system shall not be supported by other piping. Spacing of supports in gas piping and tubing installations shall conform to the requirements of NFPA NFPA 54/ANSI Z223.1. The selection and application of supports in gas piping and tubing installations shall conform to the requirements of MSS SP-69. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for any of the individual pipes in the multiple pipe run. The clips or clamps shall be rigidly connected to the common base member. A clearance of 3.2 mm shall be provided between the
pipe and clip or clamp for all piping which may be subjected to thermal expansion.

3.13 ELECTRICAL BONDING AND GROUNDING

A gas piping system within a building shall be electrically continuous and bonded to a grounding electrode as required by NFPA 70.

3.14 SHUTOFF VALVE

Main gas shutoff valve controlling the gas piping system shall be easily accessible for operation and shall be installed as indicated, protected from physical damage, and marked with a metal tag to clearly identify the piping system controlled.

3.15 TESTING

Before any section of a gas piping system is put into service, it shall be carefully tested to assure that it is gastight. Prior to testing, the system shall be blown out, cleaned and cleared of all foreign material. Each joint shall be tested by means of an approved gas detector, soap and water, or an equivalent nonflammable solution. Testing shall be completed before any work is covered, enclosed, or concealed. All testing of piping systems shall be done with due regard for the safety of employees and the public during the test. Bulkheads, anchorage and bracing suitably designed to resist test pressures shall be installed if necessary. Oxygen shall not be used as a testing medium.

3.15.1 Pressure Tests

Before appliances are connected, piping systems shall be filled with air or an inert gas and shall withstand a minimum pressure of 21 kPa gauge for a period of not less than 10 minutes as specified in NFPA NFPA 54/ANSI Z223.1 without showing any drop in pressure. Oxygen shall not be used. Pressure shall be measured with a mercury manometer, slope gauge, or an equivalent device so calibrated as to be read in increments of not greater than 1 kPa. The source of pressure shall be isolated before the pressure tests are made.

3.15.2 Pressure Tests for Liquified Petroleum Gas

Systems shall withstand the pressure test described above. When appliances are connected to the piping system, fuel gas shall be used for testing and appliances shall withstand a pressure of not less than 2.5 kPa nor more than 3.5 kPa for a period of not less than 10 minutes without showing any drop in pressure. Pressure shall be measured with a water manometer or an equivalent device calibrated to be read in increments of not greater than 20 Pa. The source of pressure shall be isolated before the pressure tests are made.

3.15.3 Test With Gas

Before turning gas under pressure into any piping, all openings from which gas can escape shall be closed. Immediately after turning on the gas, the piping system shall be checked for leakage by using a laboratory-certified gas meter, an appliance orifice, a manometer, or equivalent device. All testing shall conform to the requirements of NFPA NFPA 54/ANSI Z223.1.
leakage is recorded, the gas supply shall be shut off, the leak shall be repaired, and the tests repeated until all leaks have been stopped.

3.15.4 Purging

After testing is completed, and before connecting any appliances, all gas piping shall be fully purged. LPG piping tested using fuel gas with appliances connected does not require purging. Piping shall not be purged into the combustion chamber of an appliance. The open end of piping systems being purged shall not discharge into confined spaces or areas where there are ignition sources unless the safety precautions recommended in NFPA NFPA 54/ANSI Z223.1 are followed.

3.15.5 Labor, Materials and Equipment

All labor, materials and equipment necessary for conducting the testing and purging shall be furnished by the Contractor.

3.16 PIPE COLOR CODE MARKING

Color code marking of piping shall be as specified in Section 09900 PAINTING, GENERAL.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI)

ARI 700 (1995; Apx C) Specifications for Fluorocarbon and Other Refrigerants

ARI 1010 (1994) Self-Contained, Mechanically-Refrigerated Drinking-Water Coolers

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 105/A 105M (1998) Carbon Steel Forgings for Piping Applications

ASTM A 516/A 516M (1990; R 1996) Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service
C130J FLIGHT SIMULATOR FACILITY, LRAFB

Solicitation No. DACAO3-02-B-0009

ASTM B 32 (1996) Solder Metal

ASTM B 88 (1996) Seamless Copper Water Tube

ASTM B 88M (1996) Seamless Copper Water Tube (Metric)

ASTM B 813 (1993) Liquid and Paste Fluxes for Soldering Applications of Copper and Copper Alloy Tube

ASTM D 2822 (1991; R 1997el) Asphalt Roof Cement

ASTM D 3308 (1997) PTFE Resin Skived Tape

ASTM E 1 (1998) ASTM Thermometers

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 34 (1992; Addenda a-j) Number Designation and Safety Classification of Refrigerants

ASME INTERNATIONAL (ASME)

ASME A112.6.1M (1997) Supports for Off-the-Floor Plumbing Fixtures for Public Use

ASME A112.19.2M 1998 Vitreous China Plumbing Fixtures

ASME A112.19.3M (1987; R 1996) Stainless Steel Plumbing Fixtures (Designed for Residential Use)

ASME A112.21.1M (1991; R 1998) Floor Drains

ASME A112.21.2M (1983) Roof Drains

ASME A112.36.2M (1991; R 1998) Cleanouts

ASME B1.20.1 (1983; R 1992) Pipe Threads, General Purpose (Inch)
ASME B16.5 (1996; B16.5a) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24

ASME B16.18 (1984; R 1994) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (1992) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B31.5 (1992; B31.5a) Refrigeration Piping

ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1001 (1990) Pipe Applied Atmospheric Type Vacuum Breakers

ASSE 1011 (1995) Hose Connection Vacuum Breakers

ASSE 1013 (1993) Reduced Pressure Principle Backflow Preventers

ASSE 1037 (1990; Rev thru Mar 1990) Pressurized Flushing Devices (Flushometers) for Plumbing Fixtures

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA EWW (1995) Standard Methods for the Examination of Water and Wastewater

AWWA B300 (1992) Hypochlorites

AWWA B301 (1992) Liquid Chlorine

AWWA C606 (1997) Grooved and Shouldered Joints

AWWA C700 (1995) Cold-Water Meters - Displacement Type, Bronze Main Case

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8 (1992) Filler Metals for Brazing and Braze Welding

CAST IRON SOIL PIPE INSTITUTE (CISPI)

COPPER DEVELOPMENT ASSOCIATION (CDA)

COUNCIL OF AMERICAN BUILDING OFFICIALS (CABO)

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCHR)

HYDRAULIC INSTITUTE (HI)

HI 1.1-1.5 (1994) Centrifugal Pumps

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application
MSS SP-73 (1991; R 1996) Brazing Joints for Copper and Copper Alloy Pressure Fittings
MSS SP-80 (1997) Bronze Gate, Globe, Angle and Check Valves
MSS SP-110 (1996) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

NATIONAL ASSOCIATION OF PLUMBING-HEATING-COOLING CONTRACTORS (NAPHCC)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
NEMA 250 (1991) Enclosures for Electrical Equipment (1000 Volts Maximum)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
NFPA 54 (1996; Errata) National Fuel Gas Code
NFPA 90A (1996) Installation of Air Conditioning and Ventilating Systems

PLUMBING AND DRAINAGE INSTITUTE (PDI)
PDI WH 201 (1992) Water Hammer Arresters

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE)
SAE J 1508 (1997) Hose Clamps

1.2 STANDARD PRODUCTS

Specified materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products. Specified equipment shall essentially duplicate equipment that has performed satisfactorily at least two years prior to bid opening.

1.3 ELECTRICAL WORK

Motors, motor controllers and motor efficiencies shall conform to the requirements of Section 16415 ELECTRICAL WORK, INTERIOR. Electrical motor-driven equipment specified herein shall be provided complete with motors. Equipment shall be rated at 60 Hz, single phase, ac unless otherwise indicated. Where a motor controller is not provided in a motor-control center on the electrical drawings, a motor controller shall be as indicated. Motor controllers shall be provided complete with properly sized thermal-overload protection in each ungrounded conductor, auxiliary contact, and
other equipment, at the specified capacity, and including an allowable service factor.

1.4 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

Vibration-Absorbing Features; GA.
Details of vibration-absorbing features, including arrangement, foundation plan, dimensions and specifications.

SD-04 Drawings

Plumbing System; GA.
Detail drawings consisting of illustrations, schedules, performance charts, instructions, brochures, diagrams, and other information to illustrate the requirements and operations of each system. Where piping and equipment are to be supported other than as indicated, details shall include loadings and proposed support methods.

Electrical Schematics; FIO.
Complete electrical schematic lineless or full line interconnection and connection diagram for each piece of mechanical equipment having more than one automatic or manual electrical control device.

SD-06 Instructions

Plumbing System; FIO.

Diagrams, instructions, and other sheets proposed for posting. Manufacturer's recommendations for the installation of bell and spigot and hubless joints for cast iron soil pipe.

SD-09 Reports

Tests, Flushing and Disinfection ; GA.
Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, completion and testing of the installed system. Each test report shall indicate the final position of controls.

Backflow Prevention Assembly Tests; FIO.
Certification of proper operation shall be as accomplished in accordance with state regulations by an individual certified by the state to perform such tests. If no state requirement exists, the Contractor shall have the manufacturer's representative test the device, to ensure the unit is properly installed and performing as intended. The Contractor shall provide written documentation of the tests performed and signed by the individual performing the tests.
SD-13 Certificates

Materials and Equipment; GA.

Where materials or equipment are specified to comply with requirements of AGA, or ASME, proof of such compliance. The label or listing of the specified agency will be acceptable evidence. In lieu of the label or listing, a written certificate may be submitted from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency. Where equipment is specified to conform to requirements of the ASME Boiler and Pressure Vessel Code, the design, fabrication, and installation shall conform to the code.

SD-19 Operation and Maintenance Manuals

Plumbing System; FIO.

Six copies of the operation manual outlining the step-by-step procedures required for system startup, operation and shutdown. The manual shall include the manufacturer’s name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Six copies of the maintenance manual listing routine maintenance procedures, possible breakdowns and repairs. The manual shall include piping and equipment layout and simplified wiring and control diagrams of the system as installed.

1.5 REGULATORY REQUIREMENTS

Plumbing work shall be in accordance with NAPHCC Plumbing Code.

1.6 PROJECT/SITE CONDITIONS

The Contractor shall become familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

PART 2 PRODUCTS

2.1 MATERIALS

Materials for various services shall be in accordance with TABLES I and II. Pipe schedules shall be selected based on service requirements. Pipe fittings shall be compatible with the applicable pipe materials. Pipe threads (except dry seal) shall conform to ASME B1.20.1. Material or equipment containing lead shall not be used in any potable water system. Hubless cast-iron soil pipe shall not be installed underground, under concrete floor slabs, or in crawl spaces below kitchen floors. Plastic pipe shall not be installed in air plenums.

2.1.1 Pipe Joint Materials

Grooved pipe and hubless cast-iron soil pipe shall not be used under ground. Joints and gasket materials shall conform to the following:
a. Coupling for Cast-Iron Pipe: for hub and spigot type ASTM A 74, AWWA C606. For hubless type: CISPI 310

b. Flange Gaskets: Gaskets shall be made of non-asbestos material in accordance with ASME B16.21. Gaskets shall be flat, 1.6 mm thick, and contain Aramid fibers bonded with Styrene Butadiene Rubber (SBR) or Nitro Butadiene Rubber (NBR). Gaskets shall be the full face or self centering flat ring type. Gaskets used for hydrocarbon service shall be bonded with NBR.

d. Brazing Material: Brazing material shall conform to AWS A5.8, BCuP-5.

e. Brazing Flux: Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides; and contain fluorides. Silver brazing materials shall be in accordance with AWS A5.8.

f. Solder Material: Solder metal shall conform to ASTM B 32 95-5 tin-antimony.

g. Solder Flux: Flux shall be liquid form, non-corrosive, and conform to ASTM B 813, Standard Test 1.

h. PTFE Tape: PTFE Tape, for use with Threaded Metal or Plastic Pipe, ASTM D 3308.

i. Rubber Gaskets for Cast-Iron Soil-Pipe and Fittings (hub and spigot type and hubless type): ASTM C 564.

j. Flanged fittings including flanges, bolts, nuts, bolt patterns, etc., shall be in accordance with ASME B16.5 class 150 and shall have the manufacturer's trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A 105/A 105M. Blind flange material shall conform to ASTM A 516/A 516M cold service and ASTM A 515/A 515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A 193/A 193M.

2.1.2 Miscellaneous Materials

Miscellaneous materials shall conform to the following:

d. Hose Clamps: SAE J 1508.

e. Supports for Off-The-Floor Plumbing Fixtures: ASME A112.6.1M.
f. Metallic Cleanouts: ASME A112.36.2M.

g. Plumbing Fixture Setting Compound: A preformed flexible ring seal molded from hydrocarbon wax material. The seal material shall be nonvolatile nonasphaltic and contain germicide and provide watertight, gastight, odorproof and verminproof properties.

h. Hypochlorites: AWWA B300.

i. Liquid Chlorine: AWWA B301.

m. Thermometers: ASTM E 1.

2.1.3 Pipe Insulation Material

Insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.2 PIPE HANGERS, INSERTS, AND SUPPORTS

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69.

2.3 VALVES

Valves shall be provided on supplies to equipment and fixtures. Valves 65 mm and smaller shall be bronze with threaded bodies for pipe and solder-type connections for tubing. Pressure ratings shall be based upon the application. Valves shall conform to the following standards:

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Valves Threaded, Solder Joint, and Flared Ends</td>
<td>MSS SP-110</td>
</tr>
<tr>
<td>Bronze GateCheck Valves</td>
<td>MSS SP-80</td>
</tr>
<tr>
<td>Water Pressure Reducing Valves</td>
<td>ASSE 1003</td>
</tr>
<tr>
<td>Water Heater Drain Valves</td>
<td>ASSE 1005</td>
</tr>
<tr>
<td>Temperature and Pressure Relief Valves</td>
<td>ANSI Z21.22</td>
</tr>
<tr>
<td>for Hot Water Supply Systems</td>
<td></td>
</tr>
</tbody>
</table>

2.3.1 Wall Faucets

Wall faucets with vacuum-breaker backflow preventer shall be brass with 20 mm male inlet threads, hexagon shoulder, and 20 mm hose connection. Faucet handle shall be securely attached to stem.

2.3.2 Wall Hydrants
Wall hydrants shall be freeze-proof with vacuum-breaker backflow preventer shall have a nickle-brass or nickel-bronze wall plate or flange with nozzle and detachable key handle. A brass or bronze operating rod shall be provided within a galvanized iron casing of sufficient length to extend through the wall so that the valve is inside the building, and the portion of the hydrant between the outlet and valve is self-draining. A brass or bronze valve with coupling and union elbow having metal-to-metal seat shall be provided. Valve rod and seat washer shall be removable through the face of the hydrant. The hydrant shall have 20 mm exposed hose thread on spout and 20 mm male pipe thread on inlet.

2.3.3 Relief Valves

Water heaters and hot water storage tanks shall have a combination pressure and temperature (P&T) relief valve. The pressure relief element of a P&T relief valve shall have adequate capacity to prevent excessive pressure buildup in the system when the system is operating at the maximum rate of heat input. The temperature element of a P&T relief valve shall have a relieving capacity which is at least equal to the total input of the heaters when operating at their maximum capacity. Relief valves shall be rated according to ANSI Z21.22. Relief valves for systems where the maximum rate of heat input is less than 59 kW shall have 20 mm minimum inlets, and 20 mm outlets. Relief valves for systems where the maximum rate of heat input is greater than 59 kW shall have 25 mm minimum inlets, and 25 mm outlets. The discharge pipe from the relief valve shall be the size of the valve outlet.

2.3.4 Thermostatic Mixing Valves

Mixing valves, thermostatic type, shall be line size and shall be constructed with rough or finish bodies either with or without plating. Each valve shall be constructed to control the mixing of hot and cold water and to deliver water at a desired temperature regardless of pressure or input temperature changes. The control element shall be of an approved type. The body shall be of heavy cast bronze, and interior parts shall be brass, bronze, or copper. The valve shall be equipped with necessary stops, check valves, unions, and sediment strainers on the inlets. Mixing valves shall maintain water temperature within 2 degrees C of any setting.

2.4 Fixtures

Fixtures shall be water conservation type, in accordance with NAPHCC Plumbing Code. Fixtures for use by the physically handicapped shall be in accordance with CABO A117.1. Vitreous china, nonabsorbent, hard-burned, and vitrified throughout the body shall be provided. No fixture will be accepted that shows cracks, crazes, blisters, thin spots, or other flaws. Fixtures shall be equipped with appurtenances such as traps, faucets, stop valves, and drain fittings. Each fixture and piece of equipment requiring connections to the drainage system shall be equipped with a trap. Brass expansion or toggle bolts capped with acorn nuts shall be provided for supports, and polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Fixtures with the supply discharge below the rim shall be equipped with backflow preventers. Internal parts of flush and/or flushometer valves may contain acetal resin, fluorocarbon, nylon, acrylonitrile-butadiene-styrene (ABS) or other plastic material, if the material has provided satisfactory service under actual commercial or industrial operating conditions for not less than 2 years. Plastic in
contact with hot water shall be suitable for 82 degrees C water temperature. Plumbing fixtures shall be as indicated in paragraph PLUMBING FIXTURE SCHEDULE.

2.4.1 Lavatories

Vitreous china lavatories shall be provided with two integral molded lugs on the back-underside of the fixture and drilled for bolting to the wall in a manner similar to the hanger plate.

2.4.2 Automatic Flushing System

Flushing system shall consist of solenoid-activated flush valve with electrical-operated light beam sensor to energize solenoid. Flushing devices shall be provided as described in paragraph FIXTURES AND FIXTURE TRIMMINGS.

2.5 BACKFLOW PREVENTERS

Backflow preventers shall be approved and listed by the Foundation For Cross-Connection Control & Hydraulic Research. Reduced pressure principle assemblies, double check valve assemblies, atmospheric (nonpressure) type vacuum breakers, and pressure type vacuum breakers shall be tested, approved, and listed in accordance with FCCCHR-01. Backflow preventers with intermediate atmospheric vent shall conform to ASSE 1012. Reduced pressure principle backflow preventers shall conform to ASSE 1013. Hose connection vacuum breakers shall conform to ASSE 1011. Pipe applied atmospheric type vacuum breakers shall conform to ASSE 1001. Air gaps in plumbing systems shall conform to ASME A112.1.2.

2.6 DRAINS

2.6.1 Floor Drains

Floor drains shall consist of a galvanized body, integral seepage pan, and adjustable slotted chromium-plated bronze, nickel-bronze, or nickel-brass strainer, consisting of grate and threaded collar. Floor drains shall be cast iron except where metallic waterproofing membrane is installed. Drains shall be of double drainage pattern for embedding in the floor construction. The seepage pan shall have weep holes or channels for drainage to the drainpipe. The strainer shall be adjustable to floor thickness. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or waterproofing membrane shall be provided when required. Drains shall be provided with threaded or caulked connection. In lieu of a caulked joint between the drain outlet and waste pipe, a neoprene rubber gasket conforming to ASTM C 564 may be installed, provided that the drain is specifically designed for the rubber gasket compression type joint. Floor drains shall conform to ASME A112.21.1M.

2.6.2 Equipment Drains

Equipment drains shall consist of body, integral seepage pan, and adjustable strainer with recessed slotted grate and extension. The strainer shall have a threaded collar to permit adjustment to floor thickness. Drains shall be of double drainage pattern suitable for embedding in the floor construction. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or membrane shall be provided for other than concrete construction. Drains shall have a galvanized heavy
cast-iron body and seepage pan and polished bronze strainer. Drains shall be provided with threaded or caulked connection and with a separate cast-iron "P" trap, unless otherwise indicated. Drains shall be circular, unless otherwise indicated. Minimum dimensions shall be as follows:

Area of strainer and collar 0.023 square meters

2.6.3 Roof Drains and Expansion Joints

Roof drains shall conform to ASME A112.21.2M, with dome and integral flange, and shall have a device for making a watertight connection between roofing and flashing. The whole assembly shall be galvanized heavy pattern cast iron. For aggregate surface roofing, the drain shall be provided with a gravel stop. On roofs other than concrete construction, roof drains shall be complete with underdeck clamp, sump receiver, and an extension for the insulation thickness where applicable. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or membrane shall be provided when required to suit the building construction. Strainer openings shall have a combined area equal to twice that of the drain outlet. The outlet shall be equipped to make a proper connection to threaded pipe of the same size as the downspout. An expansion joint of proper size to receive the conductor pipe shall be provided. The expansion joint shall consist of a heavy cast-iron housing, brass or bronze sleeve, brass or bronze fastening bolts and nuts, and gaskets or packing. The sleeve shall have a nominal thickness of not less than 3.416 mm. Gaskets and packing shall be close-cell neoprene, O-ring packing shall be close-cell neoprene of 70 durometer. Packing shall be held in place by a packing gland secured with bolts.

2.7 TRAPS

Unless otherwise specified, traps shall be copper-alloy adjustable tube type with slip joint inlet and swivel. Traps shall be without a cleanout. Tubes shall be copper alloy with walls not less than 0.813 mm thick within commercial tolerances, except on the outside of bends where the thickness may be reduced slightly in manufacture by usual commercial methods. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level. Swivel joints shall be below the discharge level and shall be of metal-to-metal type as required for the application. Nuts shall have flats for wrench grip. Outlets shall have internal pipe thread, except that when required for the application, the outlets shall have sockets for solder-joint connections. The depth of the water seal shall be not less than 50 mm. The interior diameter shall be not more than 3.2 mm over or under the nominal size, and interior surfaces shall be reasonably smooth throughout. A copper alloy "P" trap assembly consisting of an adjustable "P" trap and threaded trap wall nipple with cast brass wall flange shall be provided for lavatories. The assembly shall be a standard manufactured unit and may have a rubber-gasketed swivel joint.

2.8 WATER HEATERS

Water heater types and capacities shall be as indicated. Each gas-fired water heater shall have controls with an adjustable range that includes 49 to 82 degrees C. Hot water systems utilizing recirculation systems shall be tied into building off-hour controls. The thermal efficiencies and standby heat losses shall conform to TABLE III for each type of water heater.
specified. Plastic materials polyetherimide (PEI) and polyethersulfone (PES) are forbidden to be used for vent piping of combustion gases.

2.8.1 Automatic Storage Type

Heaters shall be complete with control system and shall have ASME rated combination pressure and temperature relief valve.

2.8.1.1 Gas-Fired Type

Gas-fired water heaters shall conform to ANSI Z21.10.3 for heaters with input greater than 22 KW.

2.9 PUMPS

2.9.1 Sump Pumps

Sump pumps shall be of capacities indicated. The pumps shall be of the automatic, electric motor-driven, submersible type, complete with necessary control equipment and with a cover plate. The pumps shall be direct-connected by an approved flexible coupling. The suction side of each pump shall have a strainer of ample capacity. A bulk type float switch assembly shall start and stop the pump. The discharge line from each pump shall be provided with a union or flange, a nonclog swing check valve, and a stop valve in an accessible location near the pump.

2.9.2 Circulating Pumps

Domestic hot water circulating pumps shall be electrically driven, single-stage, centrifugal, with mechanical seals, suitable for the intended service. Pump capacities, efficiencies, motor sizes, speeds, and impeller types shall be as shown. Pump and motor shall be supported by the piping on which it is installed. The shaft shall be one-piece, heat-treated, corrosion-resisting steel with impeller and smooth-surfaced housing of bronze. Motor shall be totally enclosed, fan-cooled and shall have sufficient wattage for the service required. Pump shall conform to HI 1.1-1.5. Each pump motor shall be equipped with an across-the-line magnetic controller in a NEMA 250, Type 1 enclosure with "START-STOP" switch in cover. Pump motors smaller than 746 W shall have integral thermal overload protection in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. Guards shall shield exposed moving parts.

2.10 DOMESTIC WATER SERVICE METER

Cold water meter shall be of the positive displacement type conforming to AWWA C700. Meter register may be round or straight reading type, indicating gallons. Meter shall be provided with a pulse generator, remote readout register and all necessary wiring and accessories.

2.11 PRESSURE REGULATORS

The air system shall be provided with the necessary regulator valves to maintain the desired pressure for the installed equipment. Regulators shall be designed for a maximum inlet pressure of 862 kPa and a maximum temperature of 93 degrees C. Regulators shall be single-seated, pilot-operated with valve plug, bronze body and trim, and threaded connections. The regulator valve shall include a pressure gauge and shall be provided
with an adjustment screw for adjusting the pressure differential from 0 to 862 kPa. Regulator shall be sized as indicated.

2.12 BREATHING AIR PIPING SYSTEM

Breathing air systems comprising compressed breathing air shall conform to NFPA 99. The systems shall not be used for the distribution of combustible anesthetic gases. Systems shall be of the cylinder primary system utilized type cylinders are furnished by others.

2.12.1 Valves

Valves shall be brass-bodied, packless, diaphragm type with renewable seats and discs, or ball type capable of being disassembled in line for servicing the O-ring and seating surface. The valves shall be suitable for cold nonshock gas working pressure of not less than 2757 kPa.

2.13 MANIFOLD

Manifolds shall conform to requirements of NFPA 99 as to design features and pressure requirements. For cylinder supply systems, manifold capacity shall be as indicated and control valve shall be contained within a cabinet designed to prevent tampering by unauthorized personnel. One bank of cylinders shall be in service while the other bank is in reserve. Each bank shall be equipped with a master manifold regulator and a gauge for 28 MPa or greater cylinder-contents pressure. The manifold shall be completely automatic in switching from the empty bank of cylinders to the reserve, or full bank of cylinders, and shall not require resetting of the regulators.

2.13.1 Couplers

Where quick-type couplers are furnished they shall be of the noninterchangeable type. Connector shall lock firmly into position and shall have a finger-type quick release.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Piping located in air plenums shall conform to NFPA 90A requirements. Plastic pipe shall not be installed in air plenums. Piping located in shafts that constitute air ducts or that enclose air ducts shall be noncombustible in accordance with NFPA 90A. The plumbing system shall be installed complete with necessary fixtures, fittings, traps, valves, and accessories. Water and drainage piping shall be extended 1.5 m outside the building, unless otherwise indicated. A full port ball valve and drain shall be installed on the water service line inside the building approximately 150 mm above the floor from point of entry. Piping shall be connected to the exterior service lines or capped or plugged if the exterior service is not in place. Sewer and water pipes shall be laid in separate trenches, except when otherwise shown. Exterior underground utilities shall be at least 300 mm below the average local frost depth or as indicated on the drawings. If trenches are closed or the pipes are otherwise covered before being connected to the service lines, the location of the end of each plumbing utility shall be marked with a stake or other acceptable means. Valves shall be installed with control no lower than the valve body.
3.1.1 Water Pipe, Fittings, and Connections

3.1.1.1 Utilities

The piping shall be extended to fixtures, outlets, and equipment. The hot-water and cold-water piping system shall be arranged and installed to permit draining. The supply line to each item of equipment or fixture, except faucets, flush valves, or other control valves which are supplied with integral stops, shall be equipped with a shutoff valve to enable isolation of the item for repair and maintenance without interfering with operation of other equipment or fixtures. Supply piping to fixtures, faucets, hydrants, shower heads, and flushing devices shall be anchored to prevent movement.

3.1.1.2 Cutting and Repairing

The work shall be carefully laid out in advance, and unnecessary cutting of construction shall be avoided. Damage to building, piping, wiring, or equipment as a result of cutting shall be repaired by mechanics skilled in the trade involved.

3.1.1.3 Protection of Fixtures, Materials, and Equipment

Pipe openings shall be closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water, chemicals, and mechanical injury. Upon completion of the work, the fixtures, materials, and equipment shall be thoroughly cleaned, adjusted, and operated. Safety guards shall be provided for exposed rotating equipment.

3.1.1.4 Mains, Branches, and Runouts

Piping shall be installed as indicated. Pipe shall be accurately cut and worked into place without springing or forcing. Structural portions of the building shall not be weakened. Aboveground piping shall run parallel with the lines of the building, unless otherwise indicated. Branch pipes from service lines may be taken from top, bottom, or side of main, using crossover fittings required by structural or installation conditions. Supply pipes, valves, and fittings shall be kept a sufficient distance from other work and other services to permit not less than 12 mm between finished covering on the different services. Bare and insulated water lines shall not bear directly against building structural elements so as to transmit sound to the structure or to prevent flexible movement of the lines. Water pipe shall not be buried in or under floors unless specifically indicated or approved. Changes in pipe sizes shall be made with reducing fittings. Use of bushings will not be permitted except for use in situations in which standard factory fabricated components are furnished to accommodate specific excepted installation practice. Change in direction shall be made with fittings, except that bending of pipe 100 mm and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center-line radius of bends shall be not less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be acceptable.

3.1.1.5 Pipe Drains

Pipe drains indicated shall consist of 20 mm hose bibb with renewable seat and ball valve ahead of hose bibb. At other low points, 20 mm brass plugs
or caps shall be provided. Disconnection of the supply piping at the fixture is an acceptable drain.

3.1.1.6 Expansion and Contraction of Piping

Allowance shall be made throughout for expansion and contraction of water pipe. Each hot-water and hot-water circulation riser shall have expansion loops or other provisions such as offsets, changes in direction, etc., where indicated and/or required. Risers shall be securely anchored as required or where indicated to force expansion to loops. Branch connections from risers shall be made with ample swing or offset to avoid undue strain on fittings or short pipe lengths. Horizontal runs of pipe over 15 m in length shall be anchored to the wall or the supporting construction about midway on the run to force expansion, evenly divided, toward the ends. Sufficient flexibility shall be provided on branch runouts from mains and risers to provide for expansion and contraction of piping. Flexibility shall be provided by installing one or more turns in the line so that piping will spring enough to allow for expansion without straining. If mechanical grooved pipe coupling systems are provided, the deviation from design requirements for expansion and contraction may be allowed pending approval of Contracting Officer.

3.1.1.7 Commercial-Type Water Hammer Arresters

Commercial-type water hammer arresters shall be provided on hot- and cold-water supplies and shall be located as generally indicated, with precise location and sizing to be in accordance with PDI WH 201. Water hammer arresters, where concealed, shall be accessible by means of access doors or removable panels. Commercial-type water hammer arresters shall conform to PDI WH 201. Vertical capped pipe columns will not be permitted.

3.1.2 Joints

Installation of pipe and fittings shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints shall be made up with fittings of compatible material and made for the specific purpose intended.

3.1.2.1 Threaded

Threaded joints shall have American Standard taper pipe threads conforming to ASME B1.20.1. Only male pipe threads shall be coated with graphite or with an approved graphite compound, or with an inert filler and oil, or shall have a polytetrafluoroethylene tape applied.

3.1.2.2 Unions and Flanges

Unions and flanges shall not be concealed in walls, ceilings, or partitions. Unions shall be used on pipe sizes 65 mm and smaller; flanges shall be used on pipe sizes 80 mm and larger.

3.1.2.3 Cast Iron Soil, Waste and Vent Pipe

Bell and spigot compression and hubless gasketed clamp joints for soil, waste and vent piping shall be installed per the manufacturer's recommendations.
3.1.2.4 Copper Tube and Pipe

The tube or fittings shall not be annealed when making connections. Connections shall be made with a multiflame torch.

a. Brazed. Brazed joints shall be made in conformance with AWS B2.2, MSS SP-73, and CDA Tube Handbook with flux and are acceptable for all pipe sizes. Copper to copper joints shall include the use of copper-phosphorus or copper-phosphorus-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorus, copper-phosphorus-silver or a silver brazing filler metal.

b. Soldered. Soldered joints shall be made with flux and are only acceptable for piping 50 mm and smaller. Soldered joints shall conform to ASME B31.5 and CDA Tube Handbook.

3.1.2.5 Other Joint Methods

3.1.3 Dissimilar Pipe Materials

Connections between ferrous and non-ferrous copper water pipe shall be made with dielectric unions or flange waterways. Connecting joints between plastic and metallic pipe shall be made with transition fitting for the specific purpose.

3.1.4 Corrosion Protection for Buried Pipe and Fittings

3.1.4.1 Cast Iron and Ductile Iron

Pressure pipe shall have protective coating, a cathodic protection system, and joint bonding. Pipe, fittings, and joints shall have a protective coating. The protective coating shall be completely encasing polyethylene tube or sheet in accordance with AWWA C105. Joints and fittings shall be cleaned, coated with primer, and wrapped with tape. The pipe shall be cleaned, coated, and wrapped prior to pipe tightness testing. Joints and fittings shall be cleaned, coated, and wrapped after pipe tightness testing. Tape shall conform to AWWA C203 and shall be applied with a 50 percent overlap. Primer shall be as recommended by the tape manufacturer.

3.1.5 Pipe Sleeves and Flashing

Pipe sleeves shall be furnished and set in their proper and permanent location.

3.1.5.1 Sleeve Requirements

Pipes passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves are not required for cast-iron soil pipe passing through concrete slab on grade, except where penetrating a membrane waterproof floor. A modular mechanical type sealing assembly may be installed in lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and sleeve with corrosion-protected carbon.
steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe and sleeve involved. Sleeves shall not be installed in structural members, except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective floor, or roof, and shall be cut flush with each surface, except for special circumstances. Pipe sleeves passing through floors in wet areas such as mechanical equipment rooms, lavatories, kitchens, and other plumbing fixture areas shall extend a minimum of 100 mm above the finished floor. Unless otherwise indicated, sleeves shall be of a size to provide a minimum of 6 mm clearance between bare pipe and inside of sleeve or between jacket over insulation and sleeves. Sleeves in bearing walls shall be steel pipe or cast-iron pipe. Sleeves for membrane waterproof floors shall be steel pipe, cast-iron pipe, or plastic pipe. Membrane clamping devices shall be provided on pipe sleeves for waterproof floors. Sleeves in non-bearing walls or ceilings may be steel pipe, cast-iron pipe, galvanized sheet metal with lock-type longitudinal seam, or moisture-resistant fiber or plastic. Plastic sleeves shall not be used in non-bearing fire walls, roofs, or floor/ceilings. Except as otherwise specified, the annular space between pipe and sleeve, or between jacket over insulation and sleeve, shall be sealed as indicated with sealants conforming to ASTM C 920 and with a primer, backstop material and surface preparation as specified in Section 07900 JOINT SEALING. Pipes passing through sleeves in concrete floors over crawl spaces shall be sealed as specified above. The annular space between pipe and sleeve or between jacket over insulation and sleeve shall not be sealed for interior walls which are not designated as fire rated. Sleeves through below-grade walls in contact with earth shall be recessed 12 mm from wall surfaces on both sides. Annular space between pipe and sleeve shall be filled with backing material and sealants in the joint between the pipe and concrete or masonry wall as specified above. Sealant selected for the earth side of the wall shall be compatible with dampproofing/waterproofing materials that are to be applied over the joint sealant.

3.1.5.2 Flashing Requirements

Pipes passing through roof or floor waterproofing membrane shall be installed through a 4.9 kg per square meter copper flashing, each within an integral skirt or flange. Flashing shall be suitably formed, and the skirt or flange shall extend not less than 200 mm from the pipe and shall be set over the roof or floor membrane in a solid coating of bituminous cement. The flashing shall extend up the pipe a minimum of 250 mm. For cleanouts, the flashing shall be turned down into the hub and caulked after placing the ferrule. Pipes passing through pitched roofs shall be flashed, using lead or copper flashing, with an adjustable integral flange of adequate size to extend not less than 200 mm from the pipe in all directions and lapped into the roofing to provide a watertight seal. The annular space between the flashing and the bare pipe or between the flashing and the metal-jacket-covered insulation shall be sealed as indicated. Flashing for dry vents shall be turned down into the pipe to form a waterproof joint. Pipes, up to and including 250 mm in diameter, passing through roof or floor waterproofing membrane may be installed through a cast-iron sleeve with caulking recess, anchor lugs, flashing-clamp device,
and pressure ring with brass bolts. Flashing shield shall be fitted into the sleeve clamping device. Pipes passing through wall waterproofing membrane shall be sleeved as described above. A waterproofing clamping flange shall be installed.

3.1.5.3 Waterproofing

Waterproofing at floor-mounted water closets shall be accomplished by forming a flashing guard from soft-tempered sheet copper. The center of the sheet shall be perforated and turned down approximately 40 mm to fit between the outside diameter of the drainpipe and the inside diameter of the cast-iron or steel pipe sleeve. The turned-down portion of the flashing guard shall be embedded in sealant to a depth of approximately 40 mm; then the sealant shall be finished off flush to floor level between the flashing guard and drainpipe. The flashing guard of sheet copper shall extend not less than 200 mm from the drainpipe and shall be lapped between the floor membrane in a solid coating of bituminous cement. If cast-iron water closet floor flanges are used, the space between the pipe sleeve and drainpipe shall be sealed with sealant and the flashing guard shall be upturned approximately 40 mm to fit the outside diameter of the drainpipe and the inside diameter of the water closet floor flange. The upturned portion of the sheet fitted into the floor flange shall be sealed.

3.1.5.4 Optional Counterflashing

Instead of turning the flashing down into a dry vent pipe, or caulking and sealing the annular space between the pipe and flashing or metal-jacket-covered insulation and flashing, counterflashing may be accomplished by utilizing the following:

a. A standard roof coupling for threaded pipe up to 150 mm in diameter.

b. A tack-welded or banded-metal rain shield around the pipe.

3.1.5.5 Pipe Penetrations of Slab on Grade Floors

Where pipes, fixture drains, floor drains, cleanouts or similar items penetrate slab on grade floors, except at penetrations of floors with waterproofing membrane as specified in paragraphs Flashing Requirements and Waterproofing, a groove 6 to 13 mm wide by 6 to 10 mm deep shall be formed around the pipe, fitting or drain. The groove shall be filled with a sealant as specified in Section 07900 JOINT SEALING.

3.1.6 Fire Seal

Where pipes pass through fire walls, fire-partitions, fire-rated pipe chase walls or floors above grade, a fire seal shall be provided as specified in Section 07840 FIRESTOPPING.

3.1.7 Supports

3.1.7.1 General

Hangers used to support piping 50 mm and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate
alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. Threaded sections of rods shall not be formed or bent.

3.1.7.2 Pipe Supports and Structural Bracing, Seismic Requirements

Piping and attached valves shall be supported and braced to resist seismic loads as specified in Sections 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT. Structural steel required for reinforcement to properly support piping, headers, and equipment, but not shown, shall be provided. Material used for supports shall be as specified in Section 05120 STRUCTURAL STEEL.

3.1.7.3 Pipe Hangers, Inserts, and Supports

Installation of pipe hangers, inserts and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein.

a. Types 5, 12, and 26 shall not be used.

b. Type 3 shall not be used on insulated pipe.

c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for type 18 inserts.

d. Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and shall have both locknuts and retaining devices furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

e. Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

f. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

g. Type 39 saddles shall be used on insulated pipe 100 mm and larger when the temperature of the medium is 15 degrees C or higher. Type 39 saddles shall be welded to the pipe.

h. Type 40 shields shall:

(1) Be used on insulated pipe less than 100 mm.

(2) Be used on insulated pipe 100 mm and larger when the temperature of the medium is 15 degrees C or less.

(3) Have a high density insert for pipe 50 mm and larger and for smaller pipe sizes when the insulation is suspected of being visibly compressed, or distorted at or near the shield/insulation
interface. High density inserts shall have a density of 128 kg per cubic meter or greater.

i. Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 300 mm from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 1.5 m apart at valves.

j. Vertical pipe shall be supported at each floor, except at slab-on-grade, at intervals of not more than 4.5 m nor more than 2 m from end of risers, and at vent terminations. Vertical pipe risers shall include allowances for expansion and contraction.

k. Type 40 shields used on insulated pipe shall have high density inserts with a density of 128 kg per cubic meter or greater.

l. Pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. The insulation shall be continuous through the hanger on all pipe sizes and applications.

3.1.8 Pipe Cleanouts

Pipe cleanouts shall be the same size as the pipe except that cleanout plugs larger than 100 mm will not be required. A cleanout installed in connection with cast-iron soil pipe shall consist of a long-sweep 1/4 bend or one or two 1/8 bends extended to the place shown. An extra-heavy cast-brass or cast-iron ferrule with countersunk cast-brass head screw plug shall be caulked into the hub of the fitting and shall be flush with the floor. Cleanouts in connection with other pipe, where indicated, shall be T-pattern, 90-degree branch drainage fittings with cast-brass screw plugs, except plastic plugs shall be installed in plastic pipe. Plugs shall be the same size as the pipe up to and including 100 mm. Cleanout tee branches with screw plug shall be installed at the foot of soil and waste stacks, at the foot of interior downspouts, on each connection to building storm drain where interior downspouts are indicated, and on each building drain outside the building. Cleanout tee branches may be omitted on stacks in single story buildings with slab-on-grade construction or where less than 450 mm of crawl space is provided under the floor. Cleanouts on pipe concealed in partitions shall be provided with chromium plated bronze, nickel bronze, nickel brass or stainless steel flush type access cover plates. Round access covers shall be provided and secured to plugs with securing screw. Square access covers may be provided with matching frames, anchoring lugs and cover screws. Cleanouts in finished walls shall have access covers and frames installed flush with the finished wall. Cleanouts installed in finished floors subject to foot traffic shall be provided with a chrome-plated cast brass, nickel brass, or nickel bronze cover secured to the plug or cover frame and set flush with the finished floor. Heads of fastening screws shall not project above the cover surface. Where cleanouts are provided with adjustable heads, the heads shall be cast iron.

3.2 WATER HEATERS

3.2.1 Relief Valves

No valves shall be installed between a relief valve and its water heater or storage tank. The P&T relief valve shall be installed where the valve actuator comes in contact with the hottest water in the heater. Whenever
possible, the relief valve shall be installed directly in a tapping in the
tank or heater; otherwise, the P&T valve shall be installed in the hot-water
outlet piping. A vacuum relief valve shall be provided on the cold water
supply line to the hot-water storage tank or water heater and mounted above
and within 150 mm above the top of the tank or water heater.

3.2.2 Installation of Gas-Fired Water Heater

Installation shall conform to NFPA 54 for gas fired. Storage water heaters
that are not equipped with integral heat traps and having vertical pipe
risers shall be installed with heat traps directly on both the inlet and
outlet. Circulating systems need not have heat traps installed on outlet.
An acceptable heat trap may be a piping arrangement such as elbows connected
so that the inlet and outlet piping make vertically upward runs of not less
than 600 mm just before turning downward or directly horizontal into the
water heater's inlet and outlet fittings. Commercially available heat
traps, specifically designed by the manufacturer for the purpose of
effectively restricting the natural tendency of hot water to rise through
vertical inlet and outlet piping during standby periods may also be
approved.

3.2.3 Connections to Water Heaters

Connections of metallic pipe to water heaters shall be made with dielectric
unions or flanges.

3.3 FIXTURES AND FIXTURE TRIMMINGS

Angle stops, straight stops, stops integral with the faucets, or concealed
type of lock-shield, and loose-key pattern stops for supplies with threaded
or sweat inlets shall be furnished and installed with fixtures. Where
connections between copper tubing and faucets are made by rubber compression
fittings, a beading tool shall be used to mechanically deform the tubing
above the compression fitting. Exposed traps and supply pipes for fixtures
and equipment shall be connected to the rough piping systems at the wall,
unless otherwise specified under the item. Floor and wall escutcheons shall
be as specified. Drain lines and hot water lines of fixtures for
handicapped personnel shall be insulated and do not require polished chrome
finish. Plumbing fixtures and accessories shall be installed within the
space shown.

3.3.1 Fixture Connections

Where space limitations prohibit standard fittings in conjunction with the
cast-iron floor flange, special short-radius fittings shall be provided.
Connections between earthenware fixtures and flanges on soil pipe shall be
made gastight and watertight with a closet-setting compound or neoprene
gasket and seal. Use of natural rubber gaskets or putty will not be
permitted. Fixtures with outlet flanges shall be set the proper distance
from floor or wall to make a first-class joint with the closet-setting
compound or gasket and fixture used.

3.3.2 Flushometer Valves

Flushometer valves shall be secured to prevent movement by anchoring the
long finished top spud connecting tube to wall adjacent to valve with
approved metal bracket. Flushometer valves for water closets shall be installed 1 m above the floor.

3.3.3 Height of Fixture Rims Above Floor

Lavatories shall be mounted with rim 775 mm above finished floor. Wall-hung drinking fountains and water coolers shall be installed with rim 1020 mm above floor. Wall-hung service sinks shall be mounted with rim 700 mm above the floor. Installation of fixtures for use by the physically handicapped shall be in accordance with CABO A117.1.

3.3.4 Fixture Supports

Fixture supports for off-the-floor lavatories, urinals, water closets, and other fixtures of similar size, design, and use, shall be of the chair-carrier type. The carrier shall provide the necessary means of mounting the fixture, with a foot or feet to anchor the assembly to the floor slab. Adjustability shall be provided to locate the fixture at the desired height and in proper relation to the wall. Support plates, in lieu of chair carrier, shall be fastened to the wall structure only where it is not possible to anchor a floor-mounted chair carrier to the floor slab.

3.3.4.1 Support for Cellular-Masonry Wall Construction

Chair carrier shall be anchored to floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be fastened to the cellular wall using through bolts and a back-up plate.

3.3.4.2 Support for Steel Stud Frame Partitions

Chair carrier shall be used. The anchor feet and tubular uprights shall be of the heavy duty design; and feet (bases) shall be steel and welded to a square or rectangular steel tube upright. Wall plates, in lieu of floor-anchored chair carriers, shall be used only if adjoining steel partition studs are suitably reinforced to support a wall plate bolted to these studs.

3.3.4.3 Wall-Mounted Water Closet Gaskets

Where wall-mounted water closets are provided, reinforced wax, treated felt, or neoprene gaskets shall be provided. The type of gasket furnished shall be as recommended by the chair-carrier manufacturer.

3.3.5 Backflow Prevention Devices

Plumbing fixtures, equipment, and pipe connections shall not cross connect or interconnect between a potable water supply and any source of nonpotable water. Backflow preventers shall be installed where indicated and in accordance with NAPHCC Plumbing Code at all other locations necessary to preclude a cross-connect or interconnect between a potable water supply and any nonpotable substance. In addition backflow preventers shall be installed at all locations where the potable water outlet is below the flood level of the equipment, or where the potable water outlet will be located below the level of the nonpotable substance. Backflow preventers shall be located so that no part of the device will be submerged. Backflow preventers shall be of sufficient size to allow unrestricted flow of water to the equipment, and preclude the backflow of any nonpotable substance into the potable water system. Bypass piping shall not be provided around
backflow preventers. Access shall be provided for maintenance and testing. Each device shall be a standard commercial unit.

3.3.6 Access Panels

Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced, maintained, or replaced. Access panels shall be as specified in Section 05500 MISCELLANEOUS METAL.

3.3.7 Sight Drains

Sight drains shall be installed so that the indirect waste will terminate 50 mm above the flood rim of the funnel to provide an acceptable air gap.

3.3.8 Traps

Each trap shall be placed as near the fixture as possible, and no fixture shall be double-trapped. Traps installed on cast-iron soil pipe shall be cast iron. Traps installed on steel pipe or copper tubing shall be recess-drainage pattern, or brass-tube type. Traps installed on plastic pipe may be plastic conforming to ASTM D 3311. Traps for acid-resisting waste shall be of the same material as the pipe.

3.4 IDENTIFICATION SYSTEMS

3.4.1 Identification Tags

Identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and valve number shall be installed on valves, except those valves installed on supplies at plumbing fixtures. Tags shall be 35 mm minimum diameter, and marking shall be stamped or engraved. Indentations shall be black, for reading clarity. Tags shall be attached to valves with No. 12 AWG, copper wire, chrome-plated beaded chain, or plastic straps designed for that purpose.

3.4.2 Pipe Color Code Marking

Color code marking of piping shall be as specified in Section 09900 PAINTING, GENERAL.

3.5 ESCUTCHEONS

Escutcheons shall be provided at finished surfaces where bare or insulated piping, exposed to view, passes through floors, walls, or ceilings, except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe or pipe covering and shall be satin-finish, corrosion-resisting steel, polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or setscrew.

3.6 PAINTING

Painting of pipes, hangers, supports, and other iron work, either in concealed spaces or exposed spaces, is specified in Section 09900 PAINTING, GENERAL.
3.7 TESTS, FLUSHING AND DISINFECTION

3.7.1 Plumbing System

The following tests shall be performed on the plumbing system in accordance with NAPCC Plumbing Code.

b. Building Sewers Tests.

3.7.1.1 Test of Backflow Prevention Assemblies

Backflow prevention assembly shall be tested using gauges specifically designed for the testing of backflow prevention assemblies. Gauges shall be tested annually for accuracy in accordance with the University of Southern California's Foundation of Cross Connection Control and Hydraulic Research or the American Water Works Association Manual of Cross Connection (Manual M-14). Report form for each assembly shall include, as a minimum, the following:

- Data on Device
- Type of Assembly
- Manufacturer
- Model Number
- Serial Number
- Size
- Location
- Test Pressure Readings

- Data on Testing Firm
- Name
- Address
- Certified Tester
- Certified Tester No.
- Date of Test
- Serial Number and Test Data of Gauges

If the unit fails to meet specified requirements, the unit shall be repaired and retested.

3.7.2 Defective Work

If inspection or test shows defects, such defective work or material shall be replaced or repaired as necessary and inspection and tests shall be repeated. Repairs to piping shall be made with new materials. Caulking of screwed joints or holes will not be acceptable.

3.7.3 System Flushing

Before operational tests or disinfection, potable water piping system shall be flushed with potable water. In general, sufficient water shall be used to produce a minimum water velocity of 0.762 meters per second through piping being flushed. Flushing shall be continued until entrained dirt and other foreign materials have been removed and until discharge water shows no discoloration. System shall be drained at low points. Strainer screens shall be removed, cleaned, and replaced. After flushing and cleaning, systems shall be prepared for testing by immediately filling water piping with clean, fresh potable water. Any stoppage, discoloration, or other damage to the finish, furnishings, or parts of the building due to the Contractor's failure to properly clean the piping system shall be repaired
by the Contractor. When the system flushing is complete, the hot-water system shall be adjusted for uniform circulation. Flushing devices and automatic control systems shall be adjusted for proper operation.

3.7.4 Operational Test

Upon completion of flushing and prior to disinfection procedures, the Contractor shall subject the plumbing system to operating tests to demonstrate satisfactory functional and operational efficiency. Such operating tests shall cover a period of not less than 8 hours for each system and shall include the following information in a report with conclusion as to the adequacy of the system:

a. Time, date, and duration of test.

b. Water pressures at the most remote and the highest fixtures.

c. Operation of each fixture and fixture trim.

d. Operation of each valve, hydrant, and faucet.

e. Temperature of each domestic hot-water supply.

f. Operation of each floor by flooding with water.

g. Operation of each vacuum breaker and backflow preventer.

3.7.5 Disinfection

After operational tests are complete, the entire domestic hot- and cold-water distribution system shall be disinfected. System shall be flushed as specified, before introducing chlorinating material. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the water piping system at a constant rate at a concentration of at least 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the main with a hypochlorinator, or liquid chlorine injected into the main through a solution-feed chlorinator and booster pump, shall be used. The chlorine residual shall be checked at intervals to ensure that the proper level is maintained. Chlorine application shall continue until the entire main is filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system being disinfected shall be opened and closed several times during the contact period to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. Water tanks shall be disinfected by the addition of chlorine directly to the filling water. Following a 6 hour period, no less than 50 ppm chlorine residual shall remain in the tank. If after the 24 hour and 6 hour holding periods, the residual solution contains less than 25 ppm and 50 ppm chlorine respectively, flush the piping and tank with potable water, and repeat the above procedures until the required residual chlorine levels are satisfied. The system including the tanks shall then be flushed with clean water until the residual chlorine level is reduced to less than one part per million. During the flushing period each valve and faucet shall be opened and closed several times. Samples of water in disinfected containers shall be obtained from several locations selected by the Contracting Officer. The samples of
water shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA EWW. The testing method used shall be either the multiple-tube fermentation technique or the membrane-filter technique. Disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained.

3.8 PLUMBING FIXTURE SCHEDULE

P-1 WATER CLOSET:

Siphon-jet, elongated bowl, top supply spud, ASME A112.19.2M, wall mounted. Floor flange shall be copper alloy, cast iron, or plastic.

Gasket shall be wax type.

Seat - IAPMO Z124.5, Type A, white plastic, elongated, open front.

Flushometer Valve - ASSE 1037, large diaphragm type electronic sensor with "courtesy flush" override button with non-hold-open feature, backcheck angle control stop, and vacuum breaker. Minimum upper chamber inside diameter of not less than 66.7 mm at the point where the diaphragm is sealed between the upper and lower chambers. The maximum water use shall be 6 liters per flush.

P-2 WATER CLOSET HANDICAPPED:

Height of top rim of bowl shall be in accordance with CABO A117.1; other features are the same as P-1.

P-3 URINAL:

Wall hanging, with integral trap and extended shields, ASME A112.19.2M washout. Top supply connection, back outlet.

Flushometer Valve - Similar to Flushometer Valve for P-1. The maximum water use shall be 3.8 liters per flush.

P-4 LAVATORY:

Manufacturer's standard sink depth, vitreous china ASME A112.19.2M, straight back.

Faucet - Faucets shall be center set electronic sensing type. Faucets shall have replaceable seats and washers. Flow shall be limited to 1 liter per cycle at a flowing water pressure of 549 kPa if a metering device or fitting is used that limits the period of water discharge such as a foot switch or fixture occupancy sensor. If a metering device is not used, the flow shall be limited to 0.16 liters per second at a flowing pressure of 549 kPa.

Drain - Strainer shall be copper alloy or stainless steel. See paragraph FIXTURES for optional plastic accessories.
Lavatory shall be suitable for ADA with an offset tail piece. Faucet shall be suitable for ADA use.

P-4A WHEELCHAIR LAVATORY:

Same as for "Lavatory," except with offset tail piece and insulated supplies and drains.

P-7 SINK:

Ledge back with holes for faucet and spout single bowl 609.6 x 533.4 mm stainless steel ASME A112.19.3M.

Faucet and Spout - Cast or wrought copper alloy. Aerators shall have internal threads. Flow shall be limited to 0.16 liters per second at a flowing water pressure of 549 kPa.

Handle - Cast copper alloy, wrought copper alloy, or stainless steel. Single lever type.

Drain Assembly - Plug, cup strainer, crossbars, jam nuts, washers, couplings, stopper, etc., shall be copper alloy or stainless steel.

P-6 MOP SERVICE BASIN:

Terrazzo corner, floor mounted 711.2 mm square, 171.5 mm deep.

Faucet and Spout - Cast or wrought copper alloy, with top brace, with backflow preventer. Faucets shall have replaceable seat and the washer shall rotate onto the seat. Handles shall be lever type. Strainers shall have internal threads.

Drain Assembly - Similar to floor drain.

P-7 WATER COOLER DRINKING FOUNTAINS:

Water cooler drinking fountains shall: be self contained, conform to ARI 1010, use one of the fluorocarbon gases conforming to ARI 700 and ASHRAE 34 which has an Ozone Depletion Potential of less than or equal to 0.05, have a capacity to deliver 30.2 liters per hour of water at 10 degrees C with an inlet water temperature of 27 degrees C while residing in a room environment of 32 degrees C, and have self-closing valves. Self-closing valves shall have automatic stream regulators, have a flow control capability, have a push button actuation or have a cross-shaped index metal turn handle without a hood. Exposed surfaces of stainless steel shall have No. 4 general polish finish. Spouts shall provide a flow of water at least 100 mm high so as to allow the insertion of a cup or glass under the flow of water.

Surface Wall-Mounted - Surface wall-mounted units shall be 336.6 mm wide, 330.2 mm deep, and have a back height of 152.4 to 203.2 mm. The bowl shall be made of stainless steel. The unit shall have concealed fasteners and be for interior installation.

Handicapped - Handicapped units shall be surface wall-mounted. The dimensions shall be 381.0 mm wide, 508.0 mm deep, with a back height of 152.4 to 203.2 mm. The unit shall clear the floor or ground by at least 200
mm. A clear knee space shall exist between the bottom of the bowl and the floor or ground of at least 685 mm and between the front edge of the bowl and the body of the unit of at least 200 mm. A 200 mm wide clear space shall exist on both sides of the unit. The spout height shall be no more than 1 m above the floor or ground to the outlet. The spout shall be at the front of the unit and direct the water flow in a trajectory that is parallel or nearly parallel to the front of the unit. The bowl shall be 165.1 mm high, made of stainless steel and be for interior installation.

P-8 EYE WASH:

Emergency eye wash, ANSI Z358.1 eye wash, Floor mounted, hand operation, 15 mm connection, ABS bowl, alarm beacon and bell.

3.9 POSTED INSTRUCTIONS

Framed instructions under glass or in laminated plastic, including wiring and control diagrams showing the complete layout of the entire system, shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal safe operation, and procedures for safely starting and stopping the system shall be prepared in typed form, framed as specified above for the wiring and control diagrams and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the systems.

3.10 PERFORMANCE OF WATER HEATING EQUIPMENT

Standard rating condition terms are as follows:

- **EF**: Energy factor, overall efficiency.
- **ET**: Thermal efficiency with 21 degrees C delta T.
- **EC**: Combustion efficiency, 100 percent - flue loss when smoke = 0 (trace is permitted).
- **SL**: Standby loss in W/0.093 sq. m. based on 27 degrees C delta T, or in percent per hour based on nominal 38 degrees C delta T.
- **HL**: Heat loss of tank surface area.
- **V**: Storage volume in liters

3.10.1 Storage Water Heaters

3.10.1.1 Gas

a. Storage capacity of more than 379 liters - or input rating more than 21980 W: Et shall be 77 percent; maximum SL shall be 1.3+38/V, per ANSI Z21.10.3.

3.11 BREATHING AIR PIPING

Medical gas and vacuum piping systems shall be cleaned, pressure tested, cross-connection tested, purged, and final tested in accordance with NFPA 99.
TABLE I
PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cast iron soil pipe and fittings, hub and spigot, ASTM A 74 with</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>compression gaskets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cast iron soil pipe and fittings hubless, CISPI 301 and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>ASTM A 888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE:

A - Underground Building Soil, Waste and Storm Drain
B - Aboveground Soil, Waste, Drain In Buildings
C - Underground Vent
D - Aboveground Vent
E - Interior Rainwater Conductors Aboveground

TABLE II
PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Pipe and Fitting Materials</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seamless copper water tube, ASTM B 88, ASTM B 88M</td>
<td>X**</td>
<td>X**</td>
<td>X**</td>
<td>X**</td>
<td>X**</td>
</tr>
<tr>
<td>2</td>
<td>Cast copper alloy solder-joint pressure fittings, ASME B16.18</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for use with Items 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE:

A - Cold Water Aboveground
B - Hot Water 82 degree C Maximum Aboveground
C - Compressed Air Lubricated
D - Cold Water Service Belowground
E - Breathing Air

Indicated types are minimum wall thicknesses.
** - Type L - Hard
*** - Type K - Hard temper with brazed joints only or type K-soft temper without joints in or under floors
**** - In or under slab floors only brazed joints
TABLE III
STANDARD RATING CONDITIONS AND MINIMUM PERFORMANCE RATINGS FOR WATER HEATING EQUIPMENT

A. STORAGE WATER HEATERS

B. The actual water heater input rating is higher on the equipment schedule.

<table>
<thead>
<tr>
<th>STORAGE CAPACITY</th>
<th>INPUT</th>
<th>TEST PROCEDURE</th>
<th>REQUIRED PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>LITERS</td>
<td>RATING</td>
<td>ET= 77 percent; SL = 1.3+38 °C max.</td>
</tr>
<tr>
<td>Gas</td>
<td>380 min. OR 22 kW min.</td>
<td>ANSI Z21.10.3</td>
<td></td>
</tr>
</tbody>
</table>

TERMS:

- **EF** = Energy factor, overall efficiency.
- **ET** = Thermal efficiency with 21 degrees C delta T.
- **EC** = Combustion efficiency, 100 percent – flue loss when smoke = 0 (trace is permitted).
- **SL** = Standby loss in W/0.09 sq. m. based on 27 degrees C delta T, or in percent per hour based on nominal 32 degrees C delta T.
- **HL** = Heat loss of tank surface area
- **V** = Storage volume in liters

End Of Section
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53 (1998) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 105/A 105M (1997) Carbon Steel Forgings, for Piping Applications

ASTM A 234/A 234M (1997) Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Services

ASTM A 516/A 516M (1990; R 1996) Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service

ASTM B 32 (1996) Solder Metal

ASTM B 62 (1993) Composition Bronze or Ounce Metal Castings

ASTM B 75 (1997) Seamless Copper Tube

ASTM B 88 (1996) Seamless Copper Water Tube

ASTM B 88M (1996) Seamless Copper Water Tube (Metric)
ASTM B 813 (1993) Liquid and Paste Fluxes for Soldering Applications of Copper and Copper Alloy Tube

ASTM D 596 (1991; R 1995) Reporting Results of Analysis of Water

ASTM F 872 (1984; R 1990) Filter Units, Air Conditioning: Viscous-Impingement Type, Cleanable

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (1983; R 1992) Pipe Threads, General Purpose (Inch)

ASME B16.3 (1992) Malleable Iron Threaded Fittings

ASME B16.5 (1996; B16.5a) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24

ASME B16.15 (1985; R 1994) Cast Bronze Threaded Fittings Classes 125 and 250

ASME B16.18 (1984; R 1994) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (1992) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.22 (1995; B16.22a) Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

ASME B16.34 (1997) Valves - Flanged, Threaded, and Welding End

ASME B31.5 (1992; B31.5a) Refrigeration Piping

ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element
ASME BPV IV (1998) Boiler and Pressure Vessel Code; Section IV, Heating Boilers

ASME BPV VIII Div 1 (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage

ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C606 (1997) Grooved and Shouldered Joints

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8 (1992) Filler Metals for Brazing and Braze Welding

COPPER DEVELOPMENT ASSOCIATION (CDA)

HYDRONICS INSTITUTE (HYI)

HYI-01 (1998) I=B=R Ratings for Boilers, Baseboard Radiation and Finned Tube (Commercial) Radiation

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application

MSS SP-71 (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends

MSS SP-72 (1992) Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-73 (1991; R 1996) Brazing Joints for Wrought and Cast Copper Alloy Solder Joint Pressure Fittings
1.2 GENERAL REQUIREMENTS

1.2.1 Standard Products

Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Equipment shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site.

1.2.2 Asbestos Prohibition

Asbestos and asbestos-containing products shall not be used.

1.2.3 Nameplates

Each major component of equipment shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the equipment. Each pressure vessel shall have an approved ASME stamp.

1.2.4 Equipment Guards

Belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact shall be fully enclosed or guarded in accordance with OSHA requirements. High temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard shall be properly guarded or covered with insulation of a type specified. Catwalks, operating platforms, ladders, and guardrails shall be
provided where shown and shall be constructed in accordance with Section 05500 MISCELLANEOUS METAL.

1.2.5 Verification of Dimensions

The Contractor shall become familiar with details of the work, verify dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work or ordering any materials.

1.2.6 Welding

Boilers and piping shall be welded and brazed in accordance with qualified procedures using performance-qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests, and the tests shall be performed at the work site if practical. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record.

1.3 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Manufacturer's Catalog Data; GA.

Manufacturer's catalog data shall be included with the detail drawings for the following items:

- Boilers
- Fuel Burning Equipment
- Combustion Control Equipment
- Pumps
- Fittings and Accessories
- Water Treatment System

The data shall show model, size, options, etc., that are intended for consideration. Data submitted shall be adequate to demonstrate compliance with contract requirements.

Spare Parts Data; FIO.

Spare parts data for each different item of material and equipment, after approval of the detail drawings and no later than 2 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of the parts recommended by the manufacturer to be replaced after 1 and 3 years of service.

Water Treatment Plan; FIO.

SECTION 15569 Page 5
Six complete copies of the proposed water treatment plan. The plan shall include a layout, control scheme, a list of the existing water conditions including the items listed in paragraph BOILER WATER TREATMENT, a list of all chemicals, the proportion of chemicals to be added, the final treated water conditions, and a description of environmental concerns for handling the chemicals.

Heating and Fuel Systems Test Procedures; FIO.

Proposed test procedures for the heating system tests and fuel system tests, at least 2 weeks prior to the start of related testing.

Welding Procedures; FIO.

A copy of qualified welding procedures, at least 2 weeks prior to the start of welding operations.

Qualification; FIO.

A statement from the firms proposed to prepare submittals and perform installation and testing, demonstrating successful completion of similar services of at least five projects of similar size or scope, at least 2 weeks prior to the submittal of any other item required by this section.

Welding Qualification; FIO.

A list of names and identification symbols of qualified welders and welding operators, at least 2 weeks prior to the start of welding operations.

SD-04 Drawings

Heating System; FIO.

Detail drawings consisting of equipment layout including installation details and electrical connection diagrams; combustion and safety control diagrams; ductwork layout showing the location of supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and static pressure and seal classifications; and piping layout showing the location of guides and anchors, the load imposed on each support or anchor (not required for radiant floor tubing), and typical support details. Drawings shall include any information required to demonstrate that the system has been coordinated and will properly function as a unit and shall show equipment relationship to other parts of the work, including clearances required for operation and maintenance.

SD-06 Instructions

Posted Instructions; FIO.

System layout diagrams that show the layout of equipment, piping, and ductwork and typed condensed operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system, framed under glass or laminated plastic, at least 2 weeks prior to the start of related testing. After approval, these items shall be posted where directed.
SD-07 Schedules

Tests; FIO.

Proposed test schedules for the heating system and fuel system tests, at least 2 weeks prior to the start of related testing.

SD-09 Reports

Heating System and Fuel System Tests; FIO.

Test reports for the heating system tests and the fuel system test, upon completion of testing complete with results.

Water Treatment Tests; FIO.

(1) The water quality test report shall identify the chemical composition of the boiler water. The report shall include a comparison of the condition of the boiler water with the manufacturer's recommended conditions. Any required corrective action shall be documented within the report.

(2) A test report shall identify the condition of the boiler at the completion of 1 year of service. The report shall include a comparison of the condition of the boiler with the manufacturer's recommended operating conditions.

SD-13 Certificates

Bolts; FIO.

Written certification by the bolt manufacturer that the bolts furnished comply with the requirements of this specification. The certification shall include illustrations of product markings, the date of manufacture, and the number of each type of bolt to be furnished based on this certification.

Boiler Emissions; FIO.

Written certification by the boiler manufacturer that each boiler furnished complies with Federal, state, and local regulations for emissions. The certification shall also include a description of applicable emission regulations. If any boiler is exempt from the emission regulations, the certification shall indicate the reason for the exemption.

SD-19 Operation and Maintenance Manuals

Heating System; FIO.

Six complete manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 2 weeks prior to field training. The manuals shall include the manufacturer's name, model number, parts list, simplified wiring and control diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization shall be capable of providing 4 hour onsite response to a service call on an emergency basis.
Water Treatment System; FIO.

Six complete copies of operating and maintenance manuals for the step-by-step water treatment procedures, including procedures for testing the water quality.

1.4 MANUFACTURER'S SERVICES

Services of a manufacturer's representative who is experienced in the installation, adjustment, and operation of the equipment specified shall be provided. The representative shall supervise the installing, adjusting, and testing of the equipment.

1.5 DELIVERY AND STORAGE

Equipment delivered and placed in storage shall be protected from the weather, humidity and temperature variations, dirt and dust, and other contaminants.

PART 2 PRODUCTS

2.1 BOILERS

Each boiler shall have the output capacity in kilowatts (kW) as indicated when fired with the specified fuels. The boiler shall be furnished complete with the gas burning equipment, boiler fittings and trim, automatic controls, forced draft fan, electrical wiring, insulation, piping connections, and protective jacket. The boiler shall be completely assembled and tested at the manufacturer's plant. Boiler auxiliaries including fans, motors, drives, and similar equipment shall be provided with at least 10 percent excess capacity to allow for field variations in settings and to compensate for any unforeseen increases in pressure losses in appurtenant piping and ductwork. However, the boiler safety devices shall not be sized for a 10 percent excess capacity. The boiler and its accessories shall be designed and installed to permit ready accessibility for operation, maintenance, and service. Boilers shall be designed, constructed, and equipped in accordance with ASME BPV IV. Each boiler shall be of the firetube type and designed for water service as specified herein. The boiler capacity shall be based on the ratings shown in HYI-01 or as certified by the American Boiler Manufacturers Association, or American Gas Association.

2.1.1 Firetube Boiler

Boiler shall be self-contained, multipass, packaged type, complete with all accessories, mounted on a structural steel base. When the boilers is operating at maximum output, the heat input rates shall not be greater than 21 Kw per square meter of fireside heating surface. The volume heat input rate shall not be less than 2.07 Kw per cubic meter of furnace volume.

2.1.2 Hot Water Heating Boilers

The hot water heating boiler shall be capable of operating at the specified maximum continuous capacity without damage or deterioration to the boiler, its setting, firing equipment, or auxiliaries. The rated capacity shall be the capacity at which the boiler will operate continuously while maintaining
at least the specified minimum efficiency. The boiler design conditions shall be as follows and as scheduled on the drawings.

a. Boiler design pressure 413 kPa.

b. Gas fired boilers with a capacity of greater than or equal to 90 kW shall have a combustion efficiency of at least 80 percent when fired at the maximum and minimum ratings allowed by the controls.

2.2 FUEL BURNING EQUIPMENT

Boiler shall be designed to burn gas. Each boiler shall comply with Federal, state, and local emission regulations.

2.2.1 Burners

2.2.1.1 Gas Fired Burners and Controls

Burners shall be UL approved mechanical draft burners with all air necessary for combustion supplied by a blower where the operation is coordinated with the burner. Burner shall be provided complete with fuel supply system in conformance with the following safety codes or standards:

a. Gas-fired units with inputs greater than 1.17 MW per combustion chamber shall conform to UL 795. Gas fired units less than 3.66 MW input shall conform to ANSI Z21.13. Single burner gas-fired units greater than or equal to 3.66 MW input shall conform to NFPA 8501. Multiple burner gas-fired units greater than or equal to 3.66 MW input shall conform to NFPA 8501.

2.3 COMBUSTION CONTROL EQUIPMENT

Combustion control equipment shall be provided as a system by a single manufacturer. Field installed automatic combustion control system shall be installed in accordance with the manufacturer's recommendations and under the direct supervision of a representative of the control manufacturer. The boiler water temperature shall be controlled by a water temperature controller. The equipment shall operate electrically. On multiple boiler installations, each boiler unit shall have a completely independent system of controls responding to the load and to a plant master controller. If recording instruments are provided, a 1 year supply of ink and 400 blank charts for each recorder shall be furnished.

2.3.1 Electrical controls

Electrical control devices shall be rated at 120 24 volts and shall be connected as specified in Section 16415 ELECTRICAL WORK, INTERIOR.

2.3.2 Water Temperature Controller

The controller shall be of sturdy construction and shall be protected against dust and dampness. The thermostatic element shall be inserted in a separable socket installed in the upper part of the boiler near the water outlet. Modulating controllers shall control the fuel burning equipment to maintain set boiler water temperature within 2 percent.
2.3.3 Boiler Combustion Controls and Positioners

a. Gas boiler units shall be provided with modulating combustion controls with gas pilot or spark ignition. Modulating controls shall be provided with a means for manually controlling the firing rate.

b. Modulating control function shall be accomplished using positioning type controls. Air flow ratio and fuel control valve shall be controlled by relative positions of operative levers on a jackshaft responding to a water temperature controller. Positioning type combustion control equipment shall include draft controls with synchronized fuel feed and combustion air supply controls, while and shall maintain the proper air/fuel ratio. The desired furnace draft shall be maintained within 0.01 inch of water column.

2.3.4 Combustion Safety Controls and Equipment

Combustion safety controls and equipment shall be UL listed, microprocessor-based distributed process controller. The system shall include mounting hardware, wiring and cables, and associated equipment. The controller shall be mounted completely wired, programmed, debugged, and tested to perform all of its functions. The controller shall process the signals for complete control and monitoring of the boiler. This shall include maintaining boiler status, starting and stopping all control functions, sequencing control functions and signaling alarm conditions. The program shall be documented and include cross references in description of coils and contacts. Microprocessor shall be able to perform self diagnostics and contain a message center to provide operator with status and failure mode information. Controllers for each boiler shall be mounted on a separate, free standing panel adjacent to the boiler or for packaged boilers on the boiler supporting structure. Control systems and safety devices for automatically fired boilers shall conform to ASME CSD-1. Electrical combustion and safety controls shall be rated at 120 volts, single phase, 60 Hz and shall be connected as specified in Section 16415 ELECTRICAL WORK, INTERIOR. A 100 mm diameter alarm bell shall be provided and shall be located where indicated or directed. The alarm bell shall ring when the boiler is shut down by any safety control or interlock. Indicating lights shall be provided on the control panel. A red light shall indicate flame failure, and a green light shall indicate that the main fuel valve is open. The following shutdown conditions shall require a manual reset before the boiler can automatically recycle:

a. Flame failure.

b. Failure to establish pilot flame.

c. Failure to establish main flame.

d. Low-water cutoff.

e. High temperature cutoff.

2.3.4.1 Low-water Cutoff

Low water cutoff shall be float actuated switch or electrically actuated probe type low-water cutoff. Float chamber shall be provided with a blow-
down connection. Cutoff shall cause a safety shutdown and sound an alarm when the boiler water level drops below a safe minimum level. A safety shutdown due to low water shall require manual reset before operation can be resumed and shall prevent recycling of the burner. The cutoff shall be in strict accordance to the latest version of code, ASME CSD-1 Controls and Safety Devices for Automatically Fired Boilers.

2.3.4.2 Water Flow Interlock

Hot water boiler limit controls shall be provided to include protection for low boiler water flow and high boiler water temperature. The limit controls shall be interlocked with the combustion control system to effect boiler alarm and shutdown. The controls shall not allow boiler startup unless hot water flow is proven.

2.4 PUMPS

2.4.1 Hot Water and Boiler Circulating Pumps

Circulating pumps for hot water shall be electrically driven single-stage centrifugal type and have a capacity not less than indicated. Boiler circulating pumps shall be supported by the piping on which installed and shall be closed-coupled shaft. The boiler circulating pumps shall be vertical split case type. Hot water circulating pumps shall be supported on a concrete foundation with a cast iron or structural steel base and shall have a closed-coupled shaft. The hot water circulating pumps shall be vertical split case type. The pump shaft shall be constructed of corrosion-resistant alloy steel, sleeve bearings and glands of bronze designed to accommodate a mechanical seal, and the housing of close-grained cast iron. Pump seals shall be capable of withstanding 115 degrees C temperature without external cooling. The motor shall have sufficient power for the service required, shall be of a type approved by the manufacturer of the pump, shall be suitable for the available electric service, and shall conform to the requirements of paragraph ELECTRICAL EQUIPMENT. Each pump suction and discharge connection shall be provided with a pressure gauge as specified.

2.5 COLD WATER CONNECTIONS

Connections shall be provided which includes consecutively in line a strainer, backflow prevention device, and water pressure regulator in that order in the direction of the flow. The backflow prevention device shall be provided as indicated and in compliance with Section 15400, PLUMBING, GENERAL PURPOSE. Cold water fill connections shall be made to the water supply system as indicated. Necessary pipe, fittings, and valves required for water connections between the boiler and cold water main shall be provided as shown. The pressure regulating valve shall be of a type that will not stick or allow pressure to build up on the low side. The valve shall be set to maintain a terminal pressure of approximately, lately 35 kPa in excess of the static head on the system and shall operate within a 15 kPa tolerance regardless of cold water supply piping pressure and without objectionable noise under any condition of operation.

2.6 AIR HANDLING UNITS

Air handling units and associated equipment shall be in accordance with Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.
2.7 FITTINGS AND ACCESSORIES

Boiler fittings and accessories shall be installed with each boiler in accordance with ASME BPV IV, unless otherwise specified.

2.7.1 Conventional Breeching and Stacks

2.7.1.1 Stacks

Prefabricated double wall stacks system shall extend above the roof to the height indicated. The inner stack shall be 304 stainless steel having a thickness of not less than 0.89 mm. The outer stack shall be sheet steel having a thickness of not less than 0.635 mm. A method of maintaining concentricity between the inner and outer stacks shall be incorporated. The joints between the stack sections shall be sealed to prevent flue gas leakage. A 7.92 mm diameter hole shall be provided in the stack not greater than 150 mm from the furnace flue outlet for sampling of the exit gases. A method shall be provided to seal the hole to prevent exhaust gases from entering the boiler room when samples are not being taken. Each stack shall be provided complete with rain hood. Plastic materials polyetherimide (PEI) and polyethersulfone (PES) are forbidden to be used for vent piping of combustion gases. The stacks extending above the roof shall be painted dark bronze with factory finish to match the roof.

2.7.2 Expansion Tank

The hot water pressurization system shall include a diaphragm-type expansion tank which will accommodate the expanded water of the system generated within the normal operating temperature range, limiting the pressure increase at all components in the system to the maximum allowable pressure at those components. The only air in the system shall be the permanent sealed-in air cushion contained in the diaphragm-type tank. The sizes shall be as indicated. The expansion tank shall be welded steel, constructed, tested, and stamped in accordance with ASME BPV VIII Div 1 for a working pressure of 850 kPa and precharged to the minimum operating pressure. The tank's air chamber shall be fitted with an air charging valve and pressure gauge. The tank shall be supported by steel legs or bases for vertical installation or steel saddles for horizontal installations. The tank shall have lifting rings and a drain connection. All components shall be suitable for a maximum operating temperature of 120 degrees C.

2.7.3 Air Separator

External air separation tank shall be steel, constructed, tested and stamped in accordance with ASME BPV VIII Div 1 for a working pressure of 850 kPa. The capacity of the air separation tank indicated is minimum.

2.7.4 Filters

Filters shall conform to ASTM F 872.

2.7.5 Gaskets

Gaskets shall be nonasbestos material in accordance with ASME B16.21, full face or self-centering type. The gaskets shall be of the spiral wound type with graphite filler material.
2.7.6 Steel Pipe and Fittings

2.7.6.1 Steel Pipe

Steel pipe shall be ASTM A 53, Type E or S, Grade A or B, black steel, standard weight.

2.7.6.2 Steel Pipe Fittings

Fittings shall have the manufacturer's trademark affixed in accordance with MSS SP-25 so as to permanently identify the manufacturer.

2.7.6.3 Steel Flanges

Flanged fittings including flanges, bolts, nuts, bolt patterns, etc. shall be in accordance with ASME B16.5 class 150 and shall have the manufacturer's trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A 105/A 105M. Flanges for high temperature water systems shall be serrated or raised-face type. Blind flange material shall conform to ASTM A 516/A 516M cold service and ASTM A 515/A 515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A 193/A 193M.

2.7.6.4 Welded Fittings

Welded fittings shall conform to ASTM A 234/A 234M with WPA marking. Buttwelded fittings shall conform to ASME B16.9, and socket-welded fittings shall conform to ASME B16.11.

2.7.6.5 Malleable-Iron Fittings

Fittings shall be ASME B16.3, type as required to match connecting piping.

2.7.6.6 Unions

Unions shall be ASME B16.39, Class 150.

2.7.6.7 Threads

Pipe threads shall conform to ASME B1.20.1.

2.7.7 Copper Tubing and Fittings

2.7.7.1 Copper Tubing

Tubing shall be ASTM B 88, ASTM B 88M, Type K or L. Adapters for copper tubing shall be brass or bronze for brazed fittings.

2.7.7.2 Solder-Joint Pressure Fittings

Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B 75. Cast copper alloy solder-joint pressure fittings shall conform to ASME B16.18 and ASTM B 828.

2.7.7.3 Flared Fittings
Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B 62.

2.7.7.4 Adapters

Adapters may be used for connecting tubing to flanges and to threaded ends of valves and equipment. Extracted brazed tee joints produced with an acceptable tool and installed as recommended by the manufacturer may be used.

2.7.7.5 Threaded Fittings

Cast bronze threaded fittings shall conform to ASME B16.15.

2.7.7.6 Brazing Material

Brazing material shall conform to AWS A5.8.

2.7.7.7 Brazing Flux

Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides, and contain fluorides. Silver brazing materials shall be in accordance with AWS A5.8.

2.7.7.8 Solder Material

Solder metal shall conform to ASTM B 32 95-5 tin-antimony.

2.7.7.9 Solder Flux

Flux shall be either liquid or paste form, non-corrosive and conform to ASTM B 813.

2.7.8 Dielectric Unions

Dielectric unions shall have metal connections on both ends. The ends shall be threaded, flanged, or brazed to match adjacent piping. Metal parts of the union shall be separated so that the electrical current is below 1 percent of the galvanic current which would exist upon metal-to-metal contact.

2.7.9 Flexible Pipe Connectors

Flexible pipe connectors shall be designed for 861.8 kPa or 1034.2 kPa service. Connectors shall be installed where indicated. The flexible section shall be constructed of rubber, tetrafluoroethylene resin, or corrosion-resisting steel, bronze, monel, or galvanized steel. Materials used and the configuration shall be suitable for the pressure, vacuum, and temperature medium. The flexible section shall be suitable for service intended and may have threaded, welded, soldered, flanged, or socket ends. Flanged assemblies shall be equipped with limit bolts to restrict maximum travel to the manufacturer’s standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by
the manufacturer. Covers to protect the bellows shall be provided where indicated.

2.7.10 Pipe Supports

Pipe supports shall conform to MSS SP-58 and MSS SP-69.

2.7.11 Pipe Expansion

2.7.11.1 Expansion Loops

Expansion loops and offsets shall provide adequate expansion of the main straight runs of the system within the stress limits specified in ASME B31.1. The loops and offsets shall be cold-sprung and installed where indicated. Pipe guides and anchors shall be provided as indicated.

2.7.12 Valves

Valves shall be Class 125 and shall be suitable for the application. Grooved ends per AWWA C606 may be used for water service only. Valves in nonboiler external piping shall meet the material, fabrication and operating requirements of ASME B31.1. The connection type of all valves shall match the same type of connection required for the piping on which installed.

2.7.12.1 Globe Valves

Globe valves 65 mm and smaller shall conform to MSS SP-80, bronze, threaded, soldered, or flanged ends. Globe valves 80 mm and larger shall conform to MSS SP-85, cast iron, bronze trim, flanged, or threaded ends.

2.7.12.2 Check Valves

Check valves 65 mm and smaller shall conform to MSS SP-80, bronze, threaded, soldered, or flanged ends. Check valves 80 mm and larger shall conform to MSS SP-71, cast iron, bronze trim, flanged, or threaded ends.

2.7.12.3 Angle Valves

Angle valves 65 mm and smaller shall conform to MSS SP-80 bronze, threaded, soldered, or flanged ends. Angle valves 80 mm and larger shall conform to MSS SP-85, cast iron, bronze trim, flanged, or threaded ends.

2.7.12.4 Ball Valves

Ball valves 15 mm and larger shall conform to MSS SP-72 or MSS SP-110, ductile iron or bronze, threaded, soldered, or flanged ends.

2.7.12.5 Plug Valves

Plug valves 51 mm and larger shall conform to MSS SP-78. Plug valves smaller than 51 mm shall conform to ASME B16.34.

2.7.12.6 Balancing Valves

Balancing valves shall have meter connections with positive shutoff valves. An integral pointer shall register the degree of valve opening. Valves shall be calibrated so that flow rate can be determined when valve opening in
degrees and pressure differential across valve is known. Each balancing valve shall be constructed with internal seals to prevent leakage and shall be supplied with preformed insulation. Valves shall be suitable for 120 degrees C temperature and working pressure of the pipe in which installed. Valve bodies shall be provided with tapped openings and pipe extensions with shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable meter to measure the pressure differential. One portable differential meter shall be furnished. The meter suitable for the operating pressure specified shall be complete with hoses, vent, and shutoff valves, and carrying case. In lieu of the balancing valve with integral metering connections, a ball valve or plug valve with a separately installed orifice plate or venturi tube may be used for balancing.

2.7.12.7 Butterfly Valves

Butterfly valves shall be 2-flange type or lug wafer type, and shall be bubbletight at 1135 kPa. Valve bodies shall be cast iron, malleable iron, or steel. ASTM A 167, Type 404 or Type 316, corrosion resisting steel stems, bronze, or corrosion resisting steel discs, and synthetic rubber seats shall be provided. Valves smaller than 200 mm shall have throttling handles with a minimum of seven locking positions. Valves 200 mm and larger shall have totally enclosed manual gear operators with adjustable balance return stops and position indicators. Valves in insulated lines shall have extended neck to accommodate insulation thickness.

2.7.12.8 Drain valves

Drain valves shall be provided at each drain point of blowdown as recommended by the boiler manufacturer. Piping shall conform to ASME BPV IV and ASTM A 53.

2.7.12.9 Safety Valves

Safety valves shall have steel bodies and shall be equipped with corrosion-resistant trim and valve seats. The valves shall be properly guided and shall be positive closing so that no leakage can occur. Adjustment of the desired back-pressure shall cover the range between 15 and 70 kPa. The adjustment shall be made externally, and any shafts extending through the valve body shall be provided with adjustable stuffing boxes having renewable packing. Boiler safety valves of proper size and of the required number, in accordance with ASME BPV IV, shall be installed so that the discharge will be through piping extended to the blowoff tank to a location as indicated. Each discharge pipe for steam service shall be provided with a drip pan elbow to prevent accumulation of water on the valve. A slip joint shall be provided between drip pan elbow and riser. Each discharge pipe for hot water service shall be pitched away from the valve seat.

2.7.13 Strainers

Basket and "Y" type strainers shall be the same size as the pipelines in which they are installed. The strainer bodies shall be heavy and durable, fabricated of cast iron, and shall have bottoms drilled and tapped with a gate valve attached for blowdown purposes. Strainers shall be designed for 861.8 kPa service and 120 degrees C. The bodies shall have arrows clearly cast on the sides indicating the direction of flow. Each strainer shall be equipped with an easily removable cover and sediment screen. The screen
shall be made of 0.795 mm thick corrosion-resistant steel with small perforations numbering not less than 620,000 per square m to provide a net free area through the basket of at least 3.30 times that of the entering pipe. The flow shall be into the screen and out through the perforations.

2.7.14 Pressure Gauges

Gauges shall conform to ASME B40.1 and shall be provided with throttling type needle valve or a pulsation dampener and shutoff valve. Minimum dial size shall be 90 mm. A pressure gauge shall be provided for each boiler in a visible location on the boiler. Pressure gauges shall be provided with readings in Kpa and psi. Pressure gauges shall have an indicating pressure range that is related to the operating pressure of the fluid in accordance with the following table:

<table>
<thead>
<tr>
<th>Operating Pressure (kPA)</th>
<th>Pressure Range (kPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>519-1030</td>
<td>0-1400</td>
</tr>
<tr>
<td>105-518</td>
<td>0-690</td>
</tr>
<tr>
<td>14-104</td>
<td>0-210 (retard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Pressure (psi)</th>
<th>Pressure Range (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-150</td>
<td>0-200</td>
</tr>
<tr>
<td>16-75</td>
<td>0-100</td>
</tr>
<tr>
<td>2-15</td>
<td>0-30 (retard)</td>
</tr>
</tbody>
</table>

2.7.15 Thermometers

Thermometers shall be provided with wells and separable corrosion-resistant steel sockets. Thermometers for inlet water and outlet water for each hot water boiler shall be provided in a visible location on the boiler. Thermometers shall have brass, malleable iron, or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a minimum 225 mm scale. The operating range of the thermometers shall be 0-100 degrees centigrade (32 - 212 degrees Fahrenheit). The thermometers shall be provided with readings in degrees centigrade and Fahrenheit.

2.7.16 Air Vents

2.7.16.1 Manual Air Vents

Manual air vents shall be brass or bronze valves or cocks suitable for the pressure rating of the piping system and furnished with threaded plugs or caps.

2.7.16.2 Automatic Air Vents

Automatic air vents shall be 20 mm quick-venting float and vacuum air valves. Each air vent valve shall have a large port permitting the expulsion of the air without developing excessive back pressure, a noncollapsible metal float which will close the valve and prevent the loss of water from the system, an air seal that will effectively close and prevent the re-entry of air into the system when subatmospheric pressures
prevail therein, and a thermostatic member that will close the port against the passage of steam from the system. The name of the manufacturer shall be clearly stamped on the outside of each valve. The air vent valve shall be suitable for the pressure rating of the piping system.

2.8 ELECTRICAL EQUIPMENT

Electric motor-driven equipment shall be provided complete with motors, motor starters, and necessary control devices. Electrical equipment, motor control devices, motor efficiencies and wiring shall be as specified in Section 16415 ELECTRICAL WORK, INTERIOR. Motors which are not an integral part of a packaged boiler shall be rated for standard high efficiency service. Motors which are an integral part of the packaged boiler shall be the highest efficiency available by the manufacturer of the packaged boiler. Motor starters shall be provided complete with properly sized thermal overload protections and other appurtenances necessary for the motor control specified. Starters shall be furnished in general purpose enclosures. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices but not shown shall be provided.

2.8.1 Motor Ratings

Motors shall be suitable for the voltage and frequency provided. Motors 375 W (1/2 hp) and larger shall be three-phase, unless otherwise indicated. Motors shall be of sufficient capacity to drive the equipment at the specified capacity without exceeding the nameplate rating on the motor.

2.8.2 Motor Controls

Motor controllers shall be provided complete with properly sized thermal overload protection. Manual or automatic control and protective or signal devices required for the operation specified and any wiring required to such devices shall be provided. Where two-speed or variable-speed motors are indicated, solid-state variable-speed controllers may be provided to accomplish the same function. Solid state variable speed controllers shall be utilized for fractional through 7.46 kW ratings. Adjustable frequency drives shall be used for larger motors.

2.9 INSULATION

Shop and field-applied insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.10 TOOLS

Special tools shall be furnished. Special tools shall include uncommon tools necessary for the operation and maintenance of boilers, burners, pumps, fans, controls, meters, special piping systems, and other equipment. Small hand tools shall be furnished within a suitable cabinet, mounted where directed.

2.10.1 Breeching Cleaner
A cleaner shall be provided to clean the breeching. The cleaner shall have a jointed handle of sufficient length to clean the breeching without dismantling.

2.10.2 Tube Cleaner

If a watertube boiler is being furnished, a water-driven tube cleaner with three rotary cutters and rotary wire brush complete with the necessary length of armored water hose, valves, and other appurtenances necessary for operation shall be provided. Tube cleaner and rotary brush shall be provided for each size of water tube in the boiler, with one extra set of cutters for each size cleaner. Necessary valves and fittings shall be provided to permit ready connection of the cleaner hose to a high-pressure pump for cold water supply to operate the cleaner.

2.10.3 Tube Brush

If a firetube boiler is being furnished, a tube brush, with steel bristles and jointed handle of sufficient length to clean full length of firetubes, shall be provided.

2.10.4 Wrenches

Wrenches shall be provided as required for specialty fittings such as manholes, handholes, and cleanouts. One set of extra gaskets shall be provided for all manholes and handholes, for pump barrels, and other similar items of equipment. Gaskets shall be packaged and properly identified.

2.11 BOILER WATER TREATMENT

The water treatment system shall be capable of feeding chemicals and bleeding the system to prevent corrosion and scale within the boiler and piping distribution system. The water shall be treated to maintain the conditions recommended by the boiler manufacturer. Chemicals shall meet required federal, state, and local environmental regulations for the treatment of boilers and discharge to the sanitary sewer. The services of a company regularly engaged in the treatment of boilers shall be used to determine the correct chemicals and concentrations required for water treatment. The company shall maintain the chemical treatment and provide all chemicals required for a period of 1 year from the date of occupancy. Filming amines and proprietary chemicals shall not be used. The water treatment chemicals shall remain stable throughout the operating temperature range of the system and shall be compatible with pump seals and other elements of the system.

2.11.1 Chemical Shot Feeder

A shot feeder shall be provided as indicated. Size and capacity of feeder shall be based upon local requirements and water analysis. The feeder shall be furnished with an air vent, gauge glass, funnel, valves, fittings, and piping.

2.11.2 Test Kits

One test kit of each type required to determine the water quality as outlined within the operation and maintenance manuals shall be provided.
PART 3 EXECUTION

3.1 ERECTION OF BOILER AND AUXILIARY EQUIPMENT

Boiler and auxiliary equipment shall be installed in accordance with manufacturer's written instructions. Proper provision shall be made for expansion and contraction between boiler foundation and floor. Boiler supports shall permit free expansion and contraction of each portion of the boiler without placing undue stress on any part of the boiler or setting. Boiler breeching shall be as indicated with full provision for expansion and contraction between all interconnected components.

3.2 PIPING INSTALLATION

Unless otherwise specified, nonboiler external pipe and fittings shall conform to the requirements of ASME B31.1. Pipe installed shall be cut accurately to suit field conditions, shall be installed without springing or forcing, and shall properly clear windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted. Pipes shall be free of burrs, oil, grease and other foreign material and shall be installed to permit free expansion and contraction without damaging the building structure, pipe, pipe joints, or pipe supports. Changes in direction shall be made with fittings, except that bending of pipe 100 mm and smaller will be permitted provided a pipe bender is used and wide sweep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. Vent pipes shall be carried through the roof as directed and shall be properly flashed. Unless otherwise indicated, horizontal supply mains shall pitch down in the direction of flow with a grade of not less than 0.2 percent. Open ends of pipelines and equipment shall be properly capped or plugged during installation to keep dirt or other foreign materials out of the systems. Pipe not otherwise specified shall be uncoated. Unless otherwise specified or shown, final connections to equipment shall be made with malleable-iron unions for steel pipe 65 mm or less in diameter and with flanges for pipe 80 mm or more in diameter. Unions for copper pipe or tubing shall be brass or bronze. Reducing fittings shall be used for changes in pipe sizes. In horizontal hot water lines, reducing fittings shall be eccentric type to maintain the top of the lines at the same level to prevent air binding.

3.2.1 Hot Water Piping and Fittings

Pipe shall be black steel or copper tubing. Fittings for steel piping shall be black malleable iron or cast iron to suit piping. Fittings adjacent to valves shall suit valve material. Grooved mechanical fittings will not be allowed for water temperatures above 110 degrees C.

3.2.2 Vent Piping and Fittings

Vent piping shall be black steel. Fittings shall be black malleable iron or cast iron to suit piping.

3.2.3 Gauge Piping

Piping shall be copper tubing.
3.2.4 Joints

Joints between sections of steel pipe and between steel pipe and fittings shall be threaded, grooved, flanged or welded as indicated or specified. Except as otherwise specified, fittings 25 mm and smaller shall be threaded; fittings 32 mm and up to but not including 80 mm shall be either threaded, grooved, or welded; and fittings 80 mm and larger shall be either flanged, grooved, or welded. Pipe and fittings 32 mm and larger installed in inaccessible conduit or trenches beneath concrete floor slabs shall be welded. Connections to equipment shall be made with black malleable-iron unions for pipe 65 mm or smaller in diameter and with flanges for pipe 80 mm or larger in diameter. Joints between sections of copper tubing or pipe shall be flared, soldered, or brazed.

3.2.4.1 Threaded Joints

Threaded joints shall be made with tapered threads properly cut and shall be made perfectly tight with a stiff mixture of graphite and oil or with polytetrafluoroethylene tape applied to the male threads only and in no case to the fittings.

3.2.4.2 Welded Joints

Welded joints shall be in accordance with paragraph GENERAL REQUIREMENTS unless otherwise specified. Changes in direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connections may be made with either welding tees or forged branch outlet fittings, either being acceptable without size limitation. Branch outlet fittings, where used, shall be forged, flared for improved flow characteristics where attached to the run, reinforced against external strains, and designed to withstand full pipe bursting strength. Socket weld joints shall be assembled so that the space between the end of the pipe and the bottom of the socket is no less than 1.5 mm and no more than 3 mm.

3.2.4.3 Flared and Brazed Copper Pipe and Tubing

Tubing shall be cut square, and burrs shall be removed. Both inside of fittings and outside of tubing shall be cleaned thoroughly with sand cloth or steel wire brush before brazing. Annealing of fittings and hard-drawn tubing shall not occur when making connections. Installation shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Brazed joints shall be made in conformance with AWS B2.2, MSS SP-73, and CDA Tube Handbook with flux. Copper-to-copper joints shall include the use of copper-phosphorous or copper-phosphorous-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorous, copper-phosphorous-silver or a silver brazing filler metal. Joints for flared fittings shall be of the compression pattern. Swing joints or offsets shall be provided in all branch connections, mains, and risers to provide for expansion and contraction forces without undue stress to the fittings or to short lengths of pipe or tubing. Flared or brazed copper tubing to pipe adapters shall be provided where necessary for joining threaded pipe to copper tubing.
3.2.4.4 Soldered Joints

Soldered joints shall be made with flux and are only acceptable for lines 50 mm and smaller. Soldered joints shall conform to ASME B31.5 and CDA Tube Handbook.

3.2.4.5 Copper Tube Extracted Joint

An extruded mechanical tee joint may be made in copper tube. Joint shall be produced with an appropriate tool by drilling a pilot hole and drawing out the tube surface to form a collar having a minimum height of three times the thickness of the tube wall. To prevent the branch tube from being inserted beyond the depth of the extracted joint, dimpled depth stops shall be provided. The branch tube shall be notched for proper penetration into fitting to assure a free flow joint. Extracted joints shall be brazed using a copper phosphorous classification brazing filler metal. Soldered joints will not be permitted.

3.2.5 Flanges and Unions

Flanges shall be faced true, provided with 1.6 mm thick gaskets, and made square and tight. Where steel flanges mate with cast-iron flanged fittings, valves, or equipment, they shall be provided with flat faces and full face gaskets. Union or flange joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items. Dielectric pipe unions shall be provided between ferrous and nonferrous piping to prevent galvanic corrosion. The dielectric unions shall have metal connections on both ends. The ends shall be threaded, flanged, or brazed to match adjacent piping. The metal parts of the union shall be separated so that the electrical current is below 1 percent of the galvanic current which would exist upon metal-to-metal contact. Gaskets, flanges, and unions shall be installed in accordance with manufacturer's recommendations.

3.2.6 Branch Connections

3.2.6.1 Branch Connections for Hot Water Systems

Branches from the main shall pitch up or down as shown to prevent air entrapment. Connections shall ensure unrestricted circulation, eliminate air pockets, and permit complete drainage of the system. Branches shall pitch with a grade of not less than 8 mm in 1 m. When indicated, special flow fittings shall be installed on the mains to bypass portions of the water through each radiator. Special flow fittings shall be standard catalog products and shall be installed as recommended by the manufacturer.

3.2.6.2 Branch Connections for Steam Systems

Branches shall be taken from the supply mains at an angle of 45 degrees above the horizontal, unless otherwise indicated. The branches from return mains shall be taken from the top or sides, unless indicated otherwise. Branches shall pitch up from the mains toward the undripped risers or radiator connections with a grade of not less than 8 mm in 1 m. Connections to ensure unrestricted circulation, eliminate air pockets, and permit the complete drainage of the system.
3.2.7 Flared, Brazed, and Soldered Copper Pipe and Tubing

Copper tubing shall be flared, brazed, or soldered. Tubing shall be cut square, and burrs shall be removed. Both inside of fittings and outside of tubing shall be cleaned thoroughly with sand cloth or steel wire brush before brazing. Annealing of fittings and hard-drawn tubing shall not occur when making connections. Installation shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints for flared fittings shall be of the compression pattern. Swing joints or offsets shall be provided on branch connections, mains, and risers to provide for expansion and contraction forces without undue stress to the fittings or to short lengths of pipe or tubing. Pipe adapters shall be provided where necessary for joining threaded pipe to copper tubing. Brazed joints shall be made in conformance with MSS SP-73, and CDA Tube Handbook. Copper-to-copper joints shall include the use of copper-phosphorous or copper-phosphorous-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorous, copper-phosphorous-silver, or a silver brazing filler metal. Soldered joints shall be made with flux and are only acceptable for lines 50 mm or smaller. Soldered joints shall conform to ASME B31.5 and shall be in accordance with CDA Tube Handbook.

3.2.8 Copper Tube Extracted Joint

An extracted mechanical tee joint may be made in copper tube. Joint shall be produced with an appropriate tool by drilling a pilot hole and drawing out the tube surface to form a collar having a minimum height of three times the thickness of the tube wall. To prevent the branch tube from being inserted beyond the depth of the extracted joint, dimpled depth stops shall be provided. The branch tube shall be notched for proper penetration into fitting to assure a free flow joint. Extracted joints shall be brazed using a copper phosphorous classification brazing filler metal. Soldered joints will not be permitted.

3.2.9 Supports

Hangers used to support piping 50 mm and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. Threaded rods which are used for support shall not be formed or bent.

3.2.9.1 Seismic Requirements for Supports and Structural Bracing

Piping and attached valves shall be supported and braced to resist seismic loads as specified in Sections 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT. Structural steel required for reinforcement to properly support piping, headers, and equipment, but not shown, shall be provided in this section. Material used for supports shall be as specified in Section 05120 STRUCTURAL STEEL.

3.2.9.2 Pipe Hangers, Inserts, and Supports
Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein.

a. Types 5, 12, and 26 shall not be used.

b. Type 3 shall not be used on insulated pipe which has a vapor barrier. Type 3 may be used on insulated pipe that does not have a vapor barrier if clamped directly to the pipe, if the clamp bottom does not extend through the insulation, and if the top clamp attachment does not contact the insulation during pipe movement.

c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for Type 18 inserts.

d. Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices furnished by the manufacturer. Field fabricated C-clamp bodies or retaining devices are not acceptable.

e. Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

f. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

g. Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 300 mm from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 1500 mm apart at valves.

h. Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 4500 mm, not more than 2400 mm from end of risers, and at vent terminations.

i. Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered.

1. Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 100 mm and larger, a Type 39 saddle may be welded to the pipe and freely rested on a steel plate. On piping under 100 mm, a Type 40 protection shield may be attached to the pipe or insulation and freely rested on a steel slide plate.

2. Where there are high system temperatures and welding to piping is not desirable, the Type 35 guide shall include a pipe cradle welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 100 mm or by an amount adequate for the insulation, whichever is greater.
j. Except for Type 3, pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation.

k. Piping in trenches shall be supported as indicated.

l. Structural steel attachments and brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material and installation shall be as specified under Section 05120 STRUCTURAL STEEL. Pipe hanger loads suspended from steel joist between panel points shall not exceed 22 kg. Loads exceeding 22 kg shall be suspended from panel points.

3.2.9.3 Multiple Pipe Runs

In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support member shall not exceed the hanger and support spacing required for any individual pipe in the multiple pipe run. The clips or clamps shall be rigidly attached to the common base member. A clearance of 3 mm shall be provided between the pipe insulation and the clip or clamp for piping which may be subjected to thermal expansion.

3.2.10 Anchors

Anchors shall be provided where necessary to localize expansion or to prevent undue strain on piping. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results, using turnbuckles where required. Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline.

3.2.11 Valves

Valves shall be installed where indicated, specified, and required for functioning and servicing of the systems. Valves shall be safely accessible. Swing check valves shall be installed upright in horizontal lines and in vertical lines only when flow is in the upward direction. Gate and globe valves shall be installed with stems horizontal or above. Valves to be brazed shall be disassembled prior to brazing and all packing removed. After brazing, the valves shall be allowed to cool before reassembling.

3.2.12 Pipe Sleeves

Pipe passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. A waterproofing clamping flange shall be installed as indicated where membranes are involved. Sleeves shall not be installed in structural members except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective wall, floor, or roof. Sleeves through walls shall be cut flush with wall surface. Sleeves through floors shall be cut flush with floor surface extend above top surface of floor a sufficient distance to allow proper flashing or finishing. Sleeves through roofs shall extend above the top surface of roof at least 150 mm for proper flashing or finishing. Unless otherwise indicated, sleeves shall be sized to provide a minimum
clearance of 6 mm between bare pipe and sleeves or between jacket over insulation and sleeves. Sleeves in waterproofing membrane floors, bearing walls, and wet areas shall be galvanized steel pipe or cast-iron pipe. Sleeves in nonbearing walls, floors, or ceilings may be galvanized steel pipe, cast-iron pipe, or galvanized sheet metal with lock-type longitudinal seam. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over insulation and sleeve in nonfire rated walls shall be sealed as indicated and specified in Section 07900 JOINT SEALING. Metal jackets shall be provided over insulation passing through exterior walls, firewalls, fire partitions, floors, or roofs.

a. Metal jackets shall not be thinner than 0.1524 mm thick aluminum, if corrugated, and 0.4 mm thick aluminum, if smooth.

b. Metal jackets shall be secured with aluminum or stainless steel bands not less than 9 mm wide and not more than 200 mm apart. When penetrating roofs and before fitting the metal jacket into place, a 15 mm wide strip of sealant shall be run vertically along the inside of the longitudinal joint of the metal jacket from a point below the backup material to a minimum height of 1000 mm above the roof. If the pipe turns from vertical to horizontal, the sealant strip shall be run to a point just beyond the first elbow. When penetrating waterproofing membrane for floors, the metal jacket shall extend from a point below the back-up material to a minimum distance of 50 mm above the flashing. For other areas, the metal jacket shall extend from a point below the backup material to a point 300 mm above material to a minimum distance of 50 mm above the flashing. For other areas, the metal jacket shall extend from a point below the backup material to a point 300 mm above the floor; when passing through walls above grade, the jacket shall extend at least 100 mm beyond each side of the wall.

3.2.12.1 Pipes Passing Through Waterproofing Membranes

In addition to the pipe sleeves referred to above, pipes passing through waterproofing membranes shall be provided with a 1.6 mm lead flashing or a 0.55 mm copper flashing, each within an integral skirt or flange. Flashing shall be suitably formed, and the skirt or flange shall extend not less than 200 mm from the pipe and shall set over the membrane in a troweled coating of bituminous cement. The flashing shall extend above the roof or floor a minimum of 250 mm. The annular space between the flashing and the bare pipe or between the flashing and the metal-jacket-covered insulation shall be sealed as indicated. Pipes up to and including 250 mm in diameter which pass through waterproofing membrane may be installed through a cast-iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess.

3.2.12.2 Optional Modular Mechanical Sealing Assembly

At the option of the Contractor, a modular mechanical type sealing assembly may be installed in the annular space between the sleeve and conduit or pipe in lieu of a waterproofing clamping flange and caulking and sealing specified above. The seals shall include interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion-protected carbon steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a
continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved.

3.2.12.3 Optional Counterflashing

As alternates to caulking and sealing the annular space between the pipe and flashing or metal-jacket-covered insulation and flashing, counterflashing may consist of standard roof coupling for threaded pipe up to 150 mm in diameter, lead flashing sleeve for dry vents with the sleeve turned down into the pipe to form a waterproof joint, or a tack-welded or banded-metal rain shield around the pipe, sealed as indicated.

3.2.12.4 Fire Seal

Where pipes pass through firewalls, fire partitions, or floors, a fire seal shall be provided as specified in Section 07840 FIRESTOPPING.

3.2.13 Balancing Valves

Balancing valves shall be installed as indicated.

3.2.14 Thermometer Wells

A thermometer well shall be provided in each return line for each circuit in multicircuit systems.

3.2.15 Air Vents

Air vents shall be installed where shown or directed. Air vents shall be installed in piping at all system high points. The vent shall remain open until water rises in the tank or pipe to a predetermined level at which time it shall close tight. An overflow pipe from the vent shall be run to a point designated by the Contracting Officer's representative. The inlet to the air vent shall have a gate valve or ball valve.

3.2.16 Escutcheons

Escutcheons shall be provided at all finished surfaces where exposed piping, bare or insulated, passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe or pipe covering and shall be chromium-plated iron or chromium-plated brass, either one-piece or split pattern, held in place by internal spring tension or setscrews.

3.2.17 Drains

A drain connection with a 25 mm gate valve or 20 mm hose bib shall be installed at the lowest point in the return main near the boiler. In addition, threaded drain connections with threaded cap or plug shall be installed on the heat exchanger coil on each unit heater or unit ventilator and wherever required for thorough draining of the system.
3.2.18 Strainer Blow-Down Piping

Strainer blow-down connections shall be fitted with a black steel blow-down pipeline routed to an accessible location and provided with a blow-down valve.

3.2.19 Direct Venting for Combustion Intake Air and Exhaust Air

The intake air and exhaust vents shall be installed in accordance with NFPA 54 and boiler manufacturer's recommendations. The exhaust vent shall be sloped 20.8 mm per m toward the boiler's flue gas condensate collection point.

3.3 GAS FUEL SYSTEM

Gas piping, fittings, valves, regulators, tests, cleaning, and adjustments shall be in accordance with the Section 15190 GAS PIPING SYSTEMS. NFPA 54 shall be complied with unless otherwise specified. Burners, pilots, and all accessories shall be listed in UL Gas&Oil Dir. The fuel system shall be provided with a gas tight, manually operated, UL listed stop valve at the gas-supply connections, a gas strainer, a pressure regulator, pressure gauges, a burner-control valve, a safety shutoff valve suitable for size of burner and sequence of operation, and other components required for safe, efficient, and reliable operation as specified. Approved permanent and ready facilities to permit periodic valve leakage tests on the safety shutoff valve or valves shall be provided.

3.4 TEST OF BACKFLOW PREVENTION ASSEMBLIES

Backflow prevention assemblies shall be tested in accordance with Section 15400, PLUMBING, GENERAL PURPOSE.

3.5 HEATING SYSTEM TESTS

Before any covering is installed on pipe or heating equipment, the entire heating system's piping, fittings, and terminal heating units shall be hydrostatically tested and proved tight at a pressure of 1-1/2 times the design working pressure, but not less than 689 kPa. Before pressurizing system for test, items or equipment (e.g., vessels, pumps, instruments, controls, relief valves) rated for pressures below the test pressure shall be blanked off or replaced with spool pieces. Before balancing and final operating test, test blanks and spool pieces shall be removed; and protected instruments and equipment shall be reconnected. With equipment items protected, the system shall be pressurized to test pressure. Pressure shall be held for a period of time sufficient to inspect all welds, joints, and connections for leaks, but not less than 2 hours. No loss of pressure will be allowed. Leaks shall be repaired and repaired joints shall be retested. Repair joints shall not be allowed under the floor for floor radiant heating systems. If a leak occurs in tubing located under the floor in radiant heating systems, the entire zone that is leaking shall be replaced. If any repair is made above the floor for floor radiant heating systems, access shall be provided for the installed joint. Caulking of joints shall not be permitted. System shall be drained and after instruments and equipment are reconnected, the system shall be refilled with service medium and maximum operating pressure applied. The pressure shall be held while inspecting these joints and connections for leaks. The leaks shall be repaired and the repaired joints retested. Upon completion of hydrostatic tests and before
acceptance of the installation, the Contractor shall balance the heating system in accordance with Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS; and operating tests required to demonstrate satisfactory functional and operational efficiency shall be performed. The operating test shall cover a period of at least 24 hours for each system, and shall include, as a minimum, the following specific information in a report, together with conclusions as to the adequacy of the system:

 a. Certification of balancing.
 b. Time, date, and duration of test.
 c. Outside and inside dry bulb temperatures.
 d. Temperature of hot water supply leaving boiler.
 e. Temperature of heating return water from system at boiler inlet.
 f. Quantity of water feed to boiler.
 g. Boiler make, type, serial number, design pressure, and rated capacity.
 h. Fuel burner make, model, and rated capacity; ammeter and voltmeter readings for burner motor.
 i. Circulating pump make, model, and rated capacity, and ammeter and voltmeter readings for pump motor during operation.
 j. Flue-gas temperature at boiler outlet.
 k. Percent carbon dioxide in flue-gas.
 l. Grade or type and calorific value of fuel.
 m. Draft at boiler flue-gas exit.
 n. Draft or pressure in furnace.
 o. Quantity of water circulated.
 p. Quantity of fuel consumed.
 q. Stack emission pollutants concentration.

Indicating instruments shall be read at half-hour intervals unless otherwise directed. The Contractor shall furnish all instruments, equipment, and personnel required for the tests and balancing. Fuels, water, and electricity shall be obtained as specified in the SPECIAL CONTRACT REQUIREMENTS. Operating tests shall demonstrate that fuel burners and combustion and safety controls meet the requirements of ASME CSD-1.

3.5.1 Water Treatment Testing

3.5.1.1 Water Quality Test
The boiler water shall be analyzed prior to the acceptance of the facility by the water treatment company. The analysis shall include the following information recorded in accordance with ASTM D 596.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Sample</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees C</td>
</tr>
<tr>
<td>Silica (SiO2)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Insoluble</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Iron and Aluminum Oxides</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Sodium and Potassium (Na and K)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Carbonate (HCO3)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Sulfate (SO4)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Nitrate (NO3)</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Turbidity</td>
<td>unit</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Residual Chlorine</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Total Alkalinity</td>
<td>epm (meq/1)</td>
</tr>
<tr>
<td>Noncarbonate Hardness</td>
<td>epm (meq/1)</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>epm (meq/1)</td>
</tr>
<tr>
<td>Dissolved Solids</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Fluorine</td>
<td>ppm (mg/1)</td>
</tr>
<tr>
<td>Conductivity</td>
<td>microhm/cm</td>
</tr>
</tbody>
</table>

If the boiler water is not in conformance with the boiler manufacturer's recommendations, the water treatment company shall take corrective action.

3.5.1.2 Boiler/Piping Test

At the conclusion of the 1 year period, the boiler shall be inspected for problems due to corrosion and scale. If the boiler is found not to conform to the manufacturer's recommendations, and the water treatment company recommendations have been followed, the water treatment company shall provide all chemicals and labor for cleaning or repairing the equipment as required by the manufacturer's recommendations. If corrosion is found within the condensate piping, proper repairs shall be made by the water treatment company.

3.6 CLEANING

3.6.1 Boilers and Piping

After the hydrostatic tests have been made and before the system is balanced and operating tests are performed, the boilers and feed water piping shall be thoroughly cleaned by filling the system with a solution consisting of either 0.5 kg of caustic soda or 0.5 kg of trisodium phosphate per 100 L of water. The proper safety precautions shall be observed in the handling and use of these chemicals. The water shall be heated to approximately 65 degrees C and the solution circulated in the system for a period of 48 hours. The system shall then be drained and thoroughly flushed out with fresh water. Strainers and valves shall be thoroughly cleaned. Prior to operating tests, air shall be removed from all water systems by operating the air vents.
3.6.2 Heating Units

Inside space heating equipment, ducts, plenums, and casing shall be thoroughly cleaned of debris and blown free of small particles of rubbish and dust and then vacuum cleaned before installing outlet faces. Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided for fans that are operated during construction, and new filters shall be installed after construction dirt has been removed from the building, and the ducts, plenum, casings, and other items specified have been vacuum cleaned. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions.

3.7 FUEL SYSTEM TESTS

3.7.1 Gas System Test

The gas fuel system shall be tested in accordance with the test procedures outlined in NFPA 54.

3.8 FIELD TRAINING

The Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of 4 hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. The field instructions shall cover all of the items contained in the approved operation and maintenance instructions, as well as demonstrations of routine maintenance operations and boiler safety devices. The Contracting Officer shall be notified at least 14 days prior to date of proposed conduction of the training course.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI)

ARI 590 (1992) Positive Displacement Compressor Water-Chilling Packages

ARI 700 (1995; Apx C) Specifications for Fluorocarbon and Other Refrigerants

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53 (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A 181/A181M (1995b) Carbon Steel Forgings for General-Purpose Piping

ASTM A 234/A 234M (1999) Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service

ASTM A 307 (1997) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength

ASTM A 733 (1999) Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples

ASTM B 32 (1996) Solder Metal

ASTM B 62 (1993) Composition Bronze or Ounce Metal Castings

ASTM B 75M (1997) Seamless Copper Tube (Metric)

ASTM B 88 (1996) Seamless Copper Water Tube

ASTM B 88M (1996) Seamless Copper Water Tube (Metric)

ASTM B 813 (1993) Liquid and Paste Fluxes for Soldering Applications of Copper and Copper Alloy Tube

ASTM C 534 (1999) Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

ASTM D 520 (1984; R 1995el) Zinc Dust Pigment

ASTM D 1384 (1997a) Corrosion Test for Engine Coolants in Glassware

ASTM D 3308 (1997) PTFE Resin Skived Tape

ASTM F 1199 (1988; R 1998) Cast (All Temperature and Pressures) and Welded Pipe Line Strainers (150 psig and 150 degrees F Maximum)

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 34 (1997) Number Designation and Safety Classification of Refrigerants

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (1983; R 1992) Pipe Threads, General Purpose (Inch)

ASME B16.5 (1996; B16.5a) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24

ASME B16.18 (1984; R 1994) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (1992) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element

ASME BPV VIII Div 1 (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage

ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications

AMERICAN WELDING SOCIETY (AWS)

HYDRAULIC INSTITUTE (HI)

HI 1.1-1.5 (1994) Centrifugal Pumps

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-67 (1995) Butterfly Valves

MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application

MSS SP-71 (1997) Gray Iron Swing Check Valves, Flanges and Threaded Ends

MSS SP-72 (1992) Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-78 (1998) Cast Iron Plug Valves, Flanged and Threaded Ends

MSS SP-80 (1997) Bronze Gate, Globe, Angle and Check Valves

MSS SP-110 (1996) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
1.2 SYSTEM DESCRIPTION

This specification section covers the provisions and installation procedures necessary for a complete and totally functional central refrigerated air-conditioning system as defined herein.

1.3 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Central Refrigerated Air-Conditioning System; GA.

Manufacturer's catalog data, at least 5 weeks prior to beginning construction, shall be highlighted to show model No., size, options, performance charts and curves, etc. in adequate detail to demonstrate compliance with contract requirements. Data shall include manufacturer's recommended installation instructions and procedures. Data shall be adequate to demonstrate compliance with contract requirements as specified within the paragraphs:

a. Refrigeration System
b. System Components
c. Accessories
d. Piping Components

If vibration isolation is specified for a unit, vibration isolator literature shall be included containing catalog cuts and certification that the isolation characteristics of the isolators provided meet the manufacturer's recommendations.

Water Treatment Systems; FIO.
Six complete copies, at least 5 weeks prior to the purchase of the water treatment system, of the proposed water treatment plan including a layout, control scheme, a list of existing make-up water conditions including the items listed in Paragraph Water Analysis, a list of chemicals, the proportion of chemicals to be added, the final treated water conditions, and a description of environmental concerns for handling the chemicals.

Spare Parts; FIO.

Spare parts data for each different item of material and equipment specified, after approval of the detail drawings and not later than 2 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with source of supply.

Qualifications; FIO.

Six copies of qualified procedures, and list of names and identification symbols of qualified welders and welding operators, prior to non-factory welding operations.

SD-04 Drawings

Central Refrigerated Air-Conditioning System; FIO.

Drawings, at least 5 weeks prior to beginning construction, shall provide adequate detail to demonstrate compliance with contract requirements. Drawings shall consist of:

a. Equipment layouts which identify assembly and installation details.

b. Piping layouts which identify all valves and fittings.

c. Plans and elevations which identify clearances required for maintenance and operation.

d. Wiring diagrams which identify each component individually and all interconnected or interlocked relationships between components.

e. Foundation drawings, bolt-setting information, and foundation bolts prior to concrete foundation construction for all equipment indicated or required to have concrete foundations.

f. Details, if piping and equipment are to be supported other than as indicated, which include loadings and type of frames, brackets, stanchions, or other supports.

SD-06 Instructions

Posted Instructions; FIO.

Posted instructions, at least 2 weeks prior to construction completion, shall include equipment layout, wiring and control diagrams, piping, valves and control sequences, and typed condensed operation instructions. The condensed operation instructions shall include preventative maintenance procedures, methods of checking the system for normal and safe operation, and procedures for safely starting and stopping the system. The posted
instructions shall be framed under glass or laminated plastic and be posted where indicated by the Contracting Officer.

SD-07 Schedules

Tests; FIO.

Test schedules, at least 2 weeks prior to the start of related testing, for each of the field tests, the system performance tests, and the condenser water quality tests. The schedules shall identify the date, time, and location for each test.

Demonstrations; FIO.

A schedule, at least 2 weeks prior to the date of the proposed training course, which identifies the date, time, and location for the training.

SD-08 Statements

Verification of Dimensions; FIO.

A letter, at least 2 weeks prior to beginning construction, including the date the site was visited, conformation of existing conditions, and any discrepancies found.

Manufacturer's Multi-Year Compressor Warranty; FIO

Manufacturer's multi-year warranty for compressor(s) in air-cooled liquid chillers as specified.

SD-09 Reports

Field Tests; FIO.

Six copies of the report shall be provided in bound 216 x 279 mm (8 1/2 x 11 inch) booklets. Reports shall document all phases of tests performed during the Water Pipe Testing, the Refrigerant Pipe Testing, and the Cooling Tower Tests. The report shall include initial test summaries, all repairs/adjustments made, and the final test results.

System Performance Tests; FIO.

Six copies of the report shall be provided in bound 216 x 279 (8 1/2 x 11 inch) booklets. The report shall document compliance with the specified performance criteria upon completion and testing of the system. The report shall indicate the number of days covered by the tests and any conclusions as to the adequacy of the system. The report shall also include the following information and shall be taken at least three different times at outside dry-bulb temperatures that are at least 3 degrees C (5 degrees F) apart:

a. Date and outside weather conditions.

b. The load on the system based on the following:

 (1) The refrigerant used in the system.

 (2) Condensing temperature and pressure.
(3) Suction temperature and pressure.

(4) For absorption units, the cooling water pressures and temperatures entering and exiting the absorber and condenser. Also the refrigerant solution pressures, concentrations, and temperatures at each measurable point within the system.

(5) Running current, voltage and proper phase sequence for each phase of all motors.

(6) The actual on-site setting of all operating and safety controls.

(7) Chilled water pressure, flow and temperature in and out of the chiller.

(8) The position of the capacity-reduction gear gas supply control valve fuel oil supply valve at machine off, one-third loaded, one-half loaded, two-thirds loaded, and fully loaded.

Inspections; FIO.

Six copies of an inspection report, at the completion of one year of service, in bound 216 x 279 (81/2 x 11 inch) inch booklets. The report shall identifying the condition of each cooling tower and condenser. The report shall also include a comparison of the condition of the cooling tower and condenser with the manufacturer's recommended operating conditions. The report shall identify all actions taken by the Contractor and manufacturer to correct deficiencies during the first year of service.

SD-13 Certificates

Central Refrigerated Air-Conditioning System; FIO.

Where the system, components, or equipment are specified to comply with requirements of AGA, NFPA, ARI, ASHRAE, ASME, or UL, 1 copy of proof of such compliance shall be provided. The label or listing of the specified agency shall be acceptable evidence. In lieu of the label or listing, a written certificate from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency may be submitted. When performance requirements of this project's drawings and specifications vary from standard ARI rating conditions, computer printouts, catalog, or other application data certified by ARI or a nationally recognized laboratory as described above shall be included. If ARI does not have a current certification program that encompasses such application data, the manufacturer may self certify that his application data complies with project performance requirements in accordance with the specified test standards.

SD-19 Operation and Maintenance Manuals

Operation Manual; FIO.

Six complete copies of an operation manual in bound 216 x 279 (81/2 x 11 inch) booklets listing step-by-step procedures required for system startup,
operation, abnormal shutdown, emergency shutdown, and normal shutdown at least 4 weeks prior to the first training course. The booklets shall include the manufacturer's name, model number, and parts list. The manuals shall include the manufacturer's name, model number, service manual, and a brief description of all equipment and their basic operating features.

Maintenance Manual; FIO.

Six complete copies of maintenance manual in bound 216 x 279 (8½ x 11 inch) booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping and equipment layouts and simplified wiring and control diagrams of the system as installed.

Water Treatment System; FIO.

Six complete copies of operating and maintenance manuals for the step-by-step water treatment procedures. The manuals shall include testing procedures used in determining water quality.

1.4 QUALIFICATIONS

Piping shall be welded in accordance with the qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests and the tests shall be performed at the work site if practical. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record.

1.5 SAFETY REQUIREMENTS

Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired. Catwalk, ladder, and guardrail shall be provided where indicated and in accordance with Section 05500 MISCELLANEOUS METAL.

1.6 DELIVERY, STORAGE, AND HANDLING

All equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants.

1.7 PROJECT/SITE CONDITIONS

1.7.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work.
1.7.2 Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and shall arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions.

1.8 MANUFACTURER'S MULTI-YEAR COMPRESSOR WARRANTY

The Contractor shall provide a 5 year parts only (excludes refrigerant) manufacturer's warranty on the air-cooled chiller compressor(s). This warranty shall be directly from the chiller manufacturer to the Government and shall be in addition to the standard one-year warranty of construction. The manufacturer's warranty shall provide for the repair or replacement of the chiller compressor(s) that become inoperative as a result of defects in material or workmanship within 5 years after the date of final acceptance. When the manufacturer determines that a compressor requires replacement, the manufacturer shall furnish new compressor(s) at no additional cost to the Government. Upon notification that a chiller compressor has failed under the terms of the warranty, the manufacturer shall respond in no more than 24 hours. Response shall mean having a manufacturer-qualified technician onsite to evaluate the extent of the needed repairs. The warranty period shall begin on the same date as final acceptance and shall continue for the full product warranty period.

1.8.1 Equipment Warranty Tags and Guarantor's Local Representative

The Contractor shall furnish with each manufacturer's multi-year warranty the name, address, and telephone number (day, night, weekend, and holiday) of the service representative nearest to the location where the equipment is installed. Upon a request for service under the multi-year warranty, the service representative shall honor the warranty during the warranty period, and shall provide the services prescribed by the terms of the warranty. At the time of installation, each item of manufacturer's multi-year warranted equipment shall be tagged with a durable, oil- and water-resistant tag, suitable for interior and exterior locations, resistant to solvents, abrasion, and fading due to sunlight. The tag shall be attached with copper wire or a permanent, pressure-sensitive, adhesive backing. The tag shall be installed in an easily noticed location attached to the warranted equipment. The tag for this equipment shall be similar to the following in format, and shall contain all of the listed information:

MANUFACTURER'S MULTI-YEAR WARRANTY EQUIPMENT TAG

Equipment/Product Covered: ____________________
Manufacturer: ______ Model No.:_____ Serial No.:__
Warranty Period: From _________ to _____________
Contract No.: _________________________________
Warranty Contact: _____________________________
Name: _______________________________________
Address: _____________________________________
Telephone: _________________________________

STATION PERSONNEL SHALL PERFORM PREVENTIVE MAINTENANCE AND OPERATIONAL MAINTENANCE
PART 2 PRODUCTS

Minimum Efficiencies for Air-Cooled Chillers

<table>
<thead>
<tr>
<th>Air-Cooled (with Condenser):</th>
<th>Full Load COP (EER)</th>
<th>IPLV COP (kW/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>527 kW (150 tons) or less</td>
<td>2.8 (9.5)</td>
<td>3.1 (1.12)</td>
</tr>
<tr>
<td>greater than 527 kW (150 tons)</td>
<td>2.7 (9.2)</td>
<td>2.9 (1.22)</td>
</tr>
<tr>
<td>Air-Cooled (Condenserless):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Capacities</td>
<td>3.1 (10.6)</td>
<td>3.2 (1.10)</td>
</tr>
</tbody>
</table>

Minimum Efficiencies for Water-Cooled Chillers

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Full Load COP (EER)</th>
<th>IPLV COP (kW/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>281 kW (80 tons) or less</td>
<td>3.9 (13.3)</td>
<td>4.7 (0.75)</td>
</tr>
<tr>
<td>greater than 281 kW (80 tons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or less than or equal to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351 kW (100 tons)</td>
<td>3.9 (13.3)</td>
<td>5.1 (0.70)</td>
</tr>
<tr>
<td>greater than 351 kW (100 tons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or less than or equal to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>702 kW (200 tons)</td>
<td>4.7 (16.0)</td>
<td>5.4 (0.65)</td>
</tr>
<tr>
<td>greater than 702 kW (200 tons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or less than or equal to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1757 kW (500 tons)</td>
<td>5.7 (19.4)</td>
<td>6.1 (0.58)</td>
</tr>
<tr>
<td>greater than 1757 kW (500 tons)</td>
<td>5.9 (20.0)</td>
<td>6.3 (0.56)</td>
</tr>
</tbody>
</table>

2.1 **STANDARD COMMERCIAL PRODUCTS**

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for two years prior to bid opening. The two-year use shall include applications of equipment and materials under similar circumstances and of similar size. The two years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a two-year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. All products shall be supported by a service organization. The Contractor shall submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations shall be reasonably convenient to the equipment installation and shall be
able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

2.2 NAMEPLATES

Each major component of equipment shall have the manufacturer's name, address, type or style, and catalog or serial number on a plate securely attached to the item of equipment. As a minimum, nameplates shall be provided for:

a. Liquid-Chilling Package(s)
b. Compressor(s)
c. Compressor Driver(s)
d. Condenser(s)
e. Liquid Cooler(s)
f. Receiver(s)
g. Pump(s)
h. Pump Motor(s)
i. Expansion Tanks
j. Air Separator Tanks

2.3 ELECTRICAL WORK

Electrical equipment, motors, motor starters, and wiring shall be in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. Electrical motor driven equipment specified shall be provided complete with motors, motor starters, and controls. Electrical characteristics and enclosure type shall be as shown, and unless otherwise indicated, all motors of 745 W (1 horsepower) and above with open, drip-proof, or totally enclosed fan cooled enclosures, shall be high efficiency type. Field wiring shall be in accordance with manufacturer's instructions. Each motor shall conform to NEMA MG 1 and be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Motors shall be continuous duty with the enclosure specified. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control indicated. Motors shall be furnished with a magnetic across-the-line or reduced voltage type starter as required by the manufacturer. Motor starter shall be provided in enclosures constructed in accordance with UL and NEMA 1 enclosures. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided.

2.4 SELF-CONTAINED LIQUID CHILLER

Unless necessary for delivery purposes, units shall be assembled, leak-tested, charged (refrigerant and oil), and adjusted at the factory. In lieu of delivery constraints, a chiller may be assembled, leak-tested, charged (refrigerant and oil), and adjusted at the job site by a factory representative. Unit components delivered separately shall be sealed and charged with a nitrogen holding charge. Unit assembly shall be completed in strict accordance with manufacturer's recommendations. Chiller shall operate within capacity range and speed recommended by the manufacturer. Parts weighing 23 kg or more which must be removed for inspection, cleaning, or repair, such as motors, gear boxes, cylinder heads, casing tops, condenser, and cooler heads, shall have lifting eyes or lugs. Chiller
shall be provided with factory installed insulation on surfaces subject to sweating including the liquid cooler, suction line piping, economizer, and cooling lines. Chiller shall include all customary auxiliaries deemed necessary by the manufacturer for safe, controlled, automatic operation of the equipment. Chiller shall be provided with a single point wiring connection for incoming power supply. Factory installed insulation shall be provided on all suction piping from the evaporator to the compressor and on the liquid cooler shell. Where motors are the gas-cooled type, factory installed insulation shall be provided on the cold-gas inlet connection to the motor per manufacturer's standard practice. Chiller's condenser and liquid cooler shall be provided with standard marine water boxes with grooved mechanical flanged welded connections.

2.4.1 Scroll, Reciprocating, or Rotary Screw Type

Chiller shall be constructed and rated in accordance with ARI 590. Chiller shall be conform to ASHRAE 15. Chiller shall have a minimum full load COP rating of 2.8 and a part load COP rating of 1.12 in accordance with ARI 590. As a minimum, chiller shall include the following components as defined in paragraph CHILLER COMPONENTS.

a. Refrigerant and oil
b. Structural base
c. Controls package
d. Scroll, reciprocating, or rotary screw compressor
e. Compressor driver, electric motor
f. Compressor driver connection
g. Liquid cooler (evaporator)
h. Air-condenser coil
i. Tools
j. Chiller refrigerant circuit

2.5 CHILLER COMPONENTS

2.5.1 Refrigerant and Oil

Refrigerants shall be one of the fluorocarbon gases. Refrigerants shall have number designations and safety classifications in accordance with ASHRAE 34. Refrigerants shall meet the requirements of ARI 700 as a minimum. Refrigerants shall have an Ozone Depletion Potential (ODP) of less than or equal to 0.05.

2.5.2 Structural Base

Chiller and individual chiller components shall be provided with a factory-mounted welded structural steel base or support legs. Chiller and individual chiller components shall be isolated from the building structure by means of molded neoprene isolation pads. vibration isolators with published load ratings. Vibration isolators shall have isolation characteristics as recommended by the manufacturer for the unit supplied and the service intended.

2.5.3 Chiller Refrigerant Circuit

Chiller refrigerant circuit shall be completely piped and factory leak tested. For multicompressor units, not less than 2 independent refrigerant
circuits shall be provided. Circuit shall include as a minimum a combination filter and drier, combination sight glass and moisture indicator, liquid-line solenoid valve for reciprocating or scroll units, an electronic or thermostatic expansion valve with external equalizer, charging ports, compressor service valves, and superheat adjustment.

2.5.4 Controls Package

Chiller shall be provided with a complete factory mounted and prewired electric or microprocessor based control system. Controls package shall be unit-mounted which contains as a minimum a digital display or acceptable gauges, an on-auto-off switch, motor starters, power wiring, control wiring, and disconnect switches. Controls package shall provide operating controls, monitoring capabilities, programmable setpoints, safety controls, and EMCS interfaces as defined below.

2.5.4.1 Operating Controls

Chiller shall be provided with the following adjustable operating controls as a minimum.

a. Leaving chilled water temperature control
b. Adjustable timer to prevent compressor from short cycling
c. Automatic lead/lag controls (adjustable) for multiprocessor units
d. Load limiting
e. Fan sequencing for air-cooled condenser
f. System capacity control to adjust the unit capacity in accordance with the system load and the programmable setpoints. Controls shall automatically re-cycle the chiller on power interruption.
g. Startup and head pressure controls to allow system operation at all ambient temperatures down to 7.22 degrees C.

2.5.4.2 Monitoring Capabilities

During normal operations, the control system shall be capable of monitoring and displaying the following operating parameters. Access and operation of display shall not require opening or removing any panels or doors.

a. Entering and leaving chilled water temperatures
b. Self diagnostic
c. Operation status
d. Operating hours
e. Number of starts
f. Compressor status (on or off)
g. Refrigerant discharge and suction pressures

2.5.4.3 Programable Setpoints

The control system shall be capable of being reprogrammed directly at the unit. No parameters shall be capable of being changed without first entering a security access code. The programable setpoints shall include the following as a minimum.
a. Leaving Chilled Water Temperature
b. Time Clock/Calendar Date

2.5.4.4 Safety Controls with Manual Reset

Chiller shall be provided with the following safety controls which automatically shutdown the chiller and which require manual reset.

a. Low chilled water temperature protection
b. High condenser refrigerant discharge pressure protection
c. Low suction pressure protection
d. Chilled water flow detection
e. Motor current overload and phase loss protection
f. High motor winding temperature protection for hermetic motors
g. Low oil flow protection

2.5.4.5 Safety Controls with Automatic Reset

Chiller shall be provided with the following safety controls which automatically shutdown the chiller and which provide automatic reset.

a. Over/under voltage protection
b. Phase reversal protection
c. Chilled water flow interlock

2.5.4.6 Remote Alarm

During the initiation of a safety shutdown, the control system shall be capable of activating a remote alarm bell. In coordination with the chiller, the contractor shall provide an alarm circuit (including transformer if applicable) and a minimum 100 mm (4 inch) diameter alarm bell. Alarm circuit shall activate bell in the event of machine shutdown due to the chiller's monitoring of safety controls. The alarm bell shall not sound for a chiller that uses low-pressure cutout as an operating control.

2.5.4.7 Energy Management Control System (EMCS) Interface

The control system shall be capable of communicating all data to a remote integrated DDC processor through a single shielded cable. The data shall include as a minimum all system operating conditions, capacity controls, and safety shutdown conditions. The control system shall also be capable of receiving at a minimum the following operating commands.

a. Remote Unit Start/Stop
b. Remote Chilled Water Reset

2.5.5 Compressor(s)

2.5.5.1 Reciprocating Compressor(s)

All rotating parts shall be statically and dynamically balanced at the factory to minimize vibration. Compressors shall be capable of operating at partial-load conditions without increased vibration over the normal vibration at full load operation and shall be capable of continuous operation down to the lowest step of unloading as specified. Compressors of size 7.45 kW (10 horsepower) and above shall have an oil lubrication system.
of the reversible, forced-feed type with oil strainer. Shaft seal in open-type units shall be mechanical type. Piston speed for open-type compressors shall not exceed the manufacturer's recommendation or 6 m/s (1200 fpm), whichever is less. Compressors shall include:

a. Vertical, V, W, or radial cylinder design
b. Oil lubrication
c. Integrally cast block of close-grained iron or cast aluminum block with hardened steel cylinder sleeves
d. Oil-level bull's eye
e. Cast cylinder heads
f. Cast-aluminum or forged-steel connecting rods
g. Cast iron or forged-steel crankshaft
h. Main bearings of the sleeve-insert type
i. Crankcase oil heaters controlled as recommended by the manufacturer
j. Suction and discharge refrigerant service valves that are flange connected, wrench operated, with cap
k. A strainer on the suction side of the compressor

2.5.5.2 Scroll Compressor(s)

Compressors shall be of the compliant, hermetically sealed design. Compressors shall be mounted on vibration isolators to minimize vibration and noise. Rotating parts shall be statically and dynamically balanced at the factory to minimize vibration. Lubrication system shall be centrifugal pump type equipped with a means for determining oil level and an oil charging valve. Crankcase oil heater shall be provided if standard or if available as an option. If provided, the crankcase oil heater shall be controlled as recommended by the manufacturer.

2.5.6 Compressor Driver, Electric Motor

Motor shall be the polyphase, induction type conforming to NEMA MG 1. Motors shall be suitable for use with the indicated electrical power characteristics and the type of starter provided. Motor starters shall be the reduced voltage, closed-transition type conforming to NEMA ICS 1 and NEMA ICS 2. Motor starter shall be unit mounted as indicated with starter type, wiring, and accessories coordinated by the chiller manufacturer. Starter shall be able to operate in temperatures up to 120 degrees F.

2.5.7 Liquid Cooler (Evaporator)

Cooler shall be of the shell-and-coil or shell-and-tube type design. Condenser's refrigerant side shall be designed and factory pressure tested to comply with ASHRAE 15. Condenser's water side shall be designed and factory pressure tested for not less than 1,000 kPa. Cooler shell shall be constructed of seamless or welded steel. Coil bundles shall be totally
removable and arranged to drain completely. Tubes shall be seamless copper, plain, integrally finned with smooth bore or integrally finned with enhanced bore. Each tube shall be individually replaceable. Tubes shall be installed into carbon mild steel tube sheets by rolling. Tube baffles shall be properly spaced to provide adequate tube support and cross flow. Performance shall be based on a water velocity not less than 0.91 m/s (3 fps) nor more than 3.7 mm (12 fps) and a fouling factor of 0.00025 0.0005.

2.5.8 Air-Cooled Condenser Coil

Condenser coil shall be of the extended-surface fin-and-tube type and shall be constructed of seamless copper tubes with compatible aluminum fins. Fins shall be soldered or mechanically bonded to the tubes and installed in a metal casing. Coils shall be circuited and sized for a minimum of 3 degrees C subcooling and full pumpdown capacity. Coil shall be factory leak and pressure tested after assembly in accordance with ASHRAE 15.

2.5.9 Tools

One complete set of special tools as recommended by the manufacturer for field maintenance of the system shall be provided. Tools shall be mounted on a tool board in the equipment room or contained in a toolbox as directed by the Contracting Officer.

2.6 ACCESSORIES

2.6.1 Pumps

Pumps shall be the electrically driven, non-overloading, centrifugal type which conform to HI 1.1-1.5. Pump capacity, efficiency, motor size, and impeller type shall be as indicated on the drawings. Pumps shall be selected at or near peak efficiency. Pump curve shall rise continuously from maximum capacity to shutoff. Pump motor shall be totally enclosed and have sufficient wattage (horsepower) for the service required. Each pump motor shall be equipped with an across-the-line magnetic controller in a NEMA 250, Type 1 enclosure with "START-STOP" switch in the cover.

2.6.1.1 Construction

Shaft seal shall be mechanical-seal type. Impeller shall be statically and dynamically balanced. Each pump casing shall be designed to withstand the discharge head specified plus the static head on system plus 50 percent of the total, but not less than 862 kPa. Pump casing and bearing housing shall be close grained cast iron. High points in the casing shall be provided with manual air vents; low points shall be provided with drain plugs. Impeller, impeller wearing rings, glands, casing wear rings, and shaft sleeve shall be bronze. Shaft shall be carbon or alloy steel, turned and ground. Bearings shall be ball-bearings, roller-bearings, or oil-lubricated bronze-sleeve type bearings, and be efficiently sealed or isolated to prevent loss of oil or entrance of dirt or water. Pump and motor shall be mounted on a common cast iron base having lipped edges and tapped drainage openings or structural steel base with lipped edges or drain pan and tapped drainage openings. Close coupled pumps shall be provided with drip pockets and tapped openings. Pump motor shall have the required capacity to prevent overloading with pump operating at any point on its characteristic curve. Pump speed shall not exceed 3,600 rpm, except where the pump head is less
than 180 kPa, the pump speed shall not exceed 1,750 rpm. Pump shall be accessible for servicing without disturbing piping connections.

2.6.1.2 Mechanical Shaft Seals

Seals shall be single, inside mounted, end-face-elastomer bellows type with stainless steel spring, brass or stainless steel seal head, carbon rotating face, and tungsten carbide or ceramic sealing face. Glands shall be bronze and of the water-flush design to provide lubrication flush across the face of the seal. Bypass line from pump discharge to flush connection in gland shall be provided, with filter or cyclone separator in line.

2.6.2 Expansion Tanks

Expansion tanks shall be welded steel, constructed, tested and stamped in accordance with ASME BPV VIII Div 1 for a working pressure of 862 kPa and precharged to the minimum operating pressure. Expansion tanks shall have a replaceable diaphragm and be the captive air type. Tanks shall accommodate expanded water of the system generated within the normal operating temperature range, limiting this pressure increase at all components in the system to the maximum allowable pressure at those components. Each tank air chamber shall be fitted with an air charging valve. Tanks shall be supported by steel legs or bases for vertical installation or steel saddles for horizontal installations. The only air in the system shall be the permanent sealed-in air cushion contained within the expansion tank.

2.6.3 Air Separator Tanks

External air separation tank shall be steel, constructed, tested, and stamped in accordance with ASME BPV VIII Div 1 for a working pressure of 862 kPa.

2.6.4 Field Installed Insulation

Field installed insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS, except for header and waterbox insulation which shall be flexible cellular insulation in accordance with ASTM C 534, Type I.

2.6.5 Gaskets

Gaskets shall conform to ASTM F 104 - classification for compressed sheet with nitrile binder and acrylic fibers for maximum 371 degrees C (700 degrees F) service.

2.6.6 Bolts and Nuts

Bolts and nuts, except as required for piping applications, shall be in accordance with ASTM A 307. The bolt head shall be marked to identify the manufacturer and the standard with which the bolt complies in accordance with ASTM A 307.

2.7 WATER TREATMENT SYSTEMS

When water treatment is specified, the use of chemical-treatment products containing hexavalent chromium (Cr) is prohibited.
2.7.1 Chilled Water

Water to be used in the chilled water systems shall be treated to maintain the conditions recommended by this specification as well as the recommendations from the manufacturers of the condenser and evaporator coils. Chemicals shall meet all required federal, state, and local environmental regulations for the treatment of evaporator coils and direct discharge to the sanitary sewer.

2.7.2 Glycol Solution

A 30 percent concentration by volume of industrial grade propylene glycol shall be provided for the system. The glycol shall be tested in accordance with ASTM D 1384 with less than 0.013 mm (0.5 mils) penetration per year for all system metals. The glycol shall contain corrosion inhibitors. Silicate based inhibitors shall not be used. The solution shall be compatible with pump seals, other elements of the system, and water treatment chemicals used within the system.

2.7.3 Water Treatment Services

The services of a company regularly engaged in the treatment of chilled water systems shall be used to determine the correct chemicals required, the concentrations required, and the water treatment equipment sizes and flow rates required. The company shall maintain the chemical treatment and provide all chemicals required for the chilled water systems for a period of 1 year from the date of occupancy. The chemical treatment and services provided over the 1 year period shall meet the requirements of this specification as well as the recommendations from the manufacturers of the condenser and evaporator coils. Acid treatment and proprietary chemicals shall not be used.

2.7.4 Chilled Water System

A shot feeder shall be provided on the chilled water piping as indicated. Size and capacity of feeder shall be based on local requirements and water analysis. The feeder shall be furnished with an air vent, gauge glass, funnel, valves, fittings, and piping.

2.7.4.1 Test Kits

One test kit of each type required to determine the water quality as outlined within the operation and maintenance manuals shall be provided.

2.8 PIPING COMPONENTS

2.8.1 Water Piping and Fittings

2.8.1.1 Steel Pipe

Steel pipe shall conform to ASTM A 53, Schedule 40, Type E or S, Grades A or B. Type F pipe shall not be used.

2.8.1.2 Steel Pipe Joints and Fittings

Joints and fittings shall be welded, flanged, threaded, or grooved as indicated. If not otherwise indicated, piping 25 mm (1 inch) and smaller
shall be threaded; piping larger than 25 mm (1 inch) and smaller than 80 mm (3 inches) shall be either threaded, grooved, or welded; and piping 80 mm (3 inches) and larger shall be grooved, welded, or flanged. Rigid grooved mechanical joints and fittings may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 110 degrees C. Flexible grooved joints shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein. The manufacturer of each fitting shall be permanently identified on the body of the fitting in accordance with MSS SP-25.

b. Flanged Joints and Fittings: Flanges shall conform to ASTM A 181/A181M and ASME B16.5 Class 150. Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1.59 mm (1/16 inch) thickness, full face or self-centering flat ring type. This gaskets shall contain aramid fibers bonded with styrene butadeine rubber (SBR) or nitrile butadeine rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.5. Bolts shall be high or intermediate strength material conforming to ASTM A 193/A 193M.

c. Threaded Joints and Fittings: Threads shall conform to ASME B1.20.1. Pipe nipples shall conform to ASTM A 733, type and material to match adjacent piping. Unions shall conform to ASME B16.39, type as required to match adjacent piping.

d. Dielectric Unions and Flanges: Dielectric unions shall have the tensile strength and dimensional requirements specified. Unions shall have metal connections on both ends threaded to match adjacent piping. Metal parts of dielectric unions shall be separated with a nylon insulator to prevent current flow between dissimilar metals. Unions shall be suitable for the required operating pressures and temperatures. Dielectric flanges shall provide the same pressure ratings as standard flanges and provide complete electrical isolation.

2.8.1.3 Copper Tube

Copper tubing for water service shall conform to ASTM B 88,ASTM B 88M, Type K or L.

2.8.1.4 Copper Tube Joints and Fittings

Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B 75M . Cast copper alloy solder-joint pressure fittings shall conform to ASME B16.18. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B 62. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment. Extracted brazed tee joints produced with an acceptable tool and installed as recommended by the manufacturer may be used.
2.8.2 Water Piping Valves and Accessories

Valves shall be rated for Class 125 and shall be suitable for operating temperature of 120 degrees C (250 degrees F). Valves shall be suitable for the working pressure of the pipe in which installed. Valves shall meet the material, fabrication and operating requirements of ASME B31.1. Chain operators shall be provided for valves located 3 m or higher above the floor. Valves in sizes larger than 25 mm (1 inch) and used on steel pipe systems, may be provided with rigid grooved mechanical joint ends. Such grooved end valves shall be subject to the same requirements as rigid grooved mechanical joints and fittings and, shall be provided by the same manufacturer as the grooved pipe joint and fitting system.

2.8.2.1 Globe and Angle Valves

Globe and angle valves 65 mm (2-1/2 inches) and smaller shall conform to MSS SP-80 and shall be bronze with threaded, soldered, or flanged ends. Globe and angle valves 80 mm (3 inches) and larger shall conform to MSS SP-85 and shall be cast iron with bronze trim and flanged or threaded ends.

2.8.2.2 Check Valves

Check valves 65 mm (2-1/2 inches) and smaller shall conform to MSS SP-80 and shall be bronze with threaded, soldered, or flanged ends. Check valves 80 mm (3 inches) and larger shall conform to MSS SP-71, Type I, II, III, or IV, Class 125 or 150 and shall be cast iron with bronze trim and flanged or threaded ends.

2.8.2.3 Butterfly Valves

Butterfly valves shall be in accordance with MSS SP-67, Type 1 and shall be 2 flange or lug wafer type, and shall be bubble tight at 1,000 kPa (150 psig) 1,700 kPa (250 psig). Valve bodies shall be cast iron, malleable iron, or steel. Valves smaller than 200 mm (8 inches) shall have throttling handles with a minimum of seven locking positions. Valves 200 mm (8 inches) and larger shall have totally enclosed manual gear operators with adjustable balance return stops and position indicators. Valves in insulated lines shall have extended neck to accommodate insulation thickness.

2.8.2.4 Plug Valves

Plug valves 50 mm (2 inches) and larger shall conform to MSS SP-78, have flanged or threaded ends, and have cast iron bodies with bronze trim. Valves 50 mm (2 inches) and smaller shall be bronze with NPT connections for black steel pipe and brazed connections for copper tubing. Valves shall be lubricated, non-lubricated, or tetrafluoroethylene resin-coated type. Valves shall be resilient, double seated, trunnion mounted with tapered lift plug capable of 2-way shutoff. Valves shall operate from fully open to fully closed by rotation of the handwheel to lift and turn the plug. Valves shall a weatherproof operators with mechanical position indicators. Valves 200 mm (8 inches) or larger shall be provided with manual gear operators with position indicators.

2.8.2.5 Ball Valves
Ball valves 15 mm (1/2 inch) and larger shall conform to MSS SP-72 or MSS SP-110 and shall be ductile iron or bronze with threaded, soldered, or flanged ends. Valves 200 mm (8 inches) or larger shall be provided with manual gear operators with position indicators.

2.8.2.6 Calibrated Balancing Valves

Each valve shall be calibrated so that flow can be determined when the temperature and pressure differential across valve is known. Valves shall have an integral pointer which registers the degree of valve opening. Each valve shall be constructed with internal seals to prevent leakage and shall be supplied with preformed insulation. Valves Cv rating shall be as indicated. Valve bodies shall be provided with tapped openings and pipe extensions with positive shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable meter to measure the pressure differential. One portable differential meter, suitable for the operating pressure specified, shall be provided. The meter shall be complete with hoses, vent, integral metering connections, and carrying case as recommended by the valve manufacturer. In lieu of the balancing valve with integral metering connections, a ball valve or plug valve with a separately installed orifice plate or venturi tube may be used for balancing.

2.8.2.7 Air Vents

Manual air vents shall be brass or bronze valves or cocks suitable for 862 kpa (125 psig) service, and furnished with threaded plugs or caps. Automatic air vents shall be float type, cast iron, stainless steel, or forged steel construction, suitable for 862 kpa service.

2.8.2.8 Strainers

Strainers shall be in accordance with ASTM F 1199, except as modified herein. Strainer shall be the cleanable, basket or "Y" type, the same size as the pipeline. The strainer bodies shall be fabricated of cast iron with bottoms drilled, and tapped. The bodies shall have arrows clearly cast on the sides indicating the direction of flow. Each strainer shall be equipped with removable cover and sediment screen. The screen shall be made of minimum 0.8 mm corrosion-resistant steel, with small perforations numbering not less than 60 per square centimeter to provide a net free area through the basket of at least 3.30 times that of the entering pipe. The flow shall be into the screen and out through the perforations.

2.8.2.9 Combination Strainer and Suction Diffuser

A combination strainer and suction diffuser, consisting of an angle type body with removable strainer basket and straightening vanes, a suction pipe support, and a blowdown outlet, shall be provided on pump suction. The combination strainer and suction diffuser shall be in accordance with ASTM F 1199, except as modified herein.

2.8.2.10 Pump Discharge Valves

Pump discharge valves shall be installed where indicated and shall perform the functions of a nonslam check valve, a manual balancing valve, and a shutoff. Valves shall be of cast iron or ductile iron construction with bronze and/or stainless steel accessories. Valves shall have an integral
pointer which registers the degree of valve opening. Flow through the valve shall be manually adjustable from bubble tight shutoff to full flow. Valves smaller than 50 mm shall have NPT connections. Valves 50 mm and larger shall have flanged or grooved end connections. The valve design shall allow the back seat for the stem to be replaced in the field under full line pressure. Valve Cv rating shall be as indicated.

2.8.2.11 Flexible Pipe Connectors

Flexible pipe connectors shall be designed for 862 kPa or 1034 kPa service as appropriate for the static head plus the system head, and 120 110 degrees C, for grooved end flexible connectors. The flexible section shall be constructed of rubber, tetrafluoroethylene resin, or corrosion-resisting steel, bronze, monel, or galvanized steel. The flexible section shall be suitable for intended service with end connections to match adjacent piping. Flanged assemblies shall be equipped with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. Covers to protect the bellows shall be provided where indicated.

2.8.2.12 Pressure Gauges

Gauges shall conform to ASME B40.1 and shall be provided with throttling type needle valve or a pulsation damper and shut-off valve. Gauge shall be a minimum of 85 mm in diameter with a range from 0 kPa to approximately 1.5 times the maximum system working pressure.

2.8.2.13 Thermometers

Thermometers shall have brass, malleable iron, or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 225 mm scale. Thermometers shall have rigid stems with straight, angular, or inclined pattern.

2.8.2.14 Pipe Nipples

Pipe nipples shall be in accordance with ASTM A 733 and be of material to match adjacent piping.

2.8.2.15 Pipe Unions

Pipe unions shall be in accordance with ASME B16.39 and be of material to match adjacent piping.

2.8.2.16 Solder

Solder for water piping shall be in accordance with ASTM B 32, alloy grade 50B. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B 813.

2.8.3 Escutcheons

SECTION 15650 Page 22
Escutcheons shall be chromium-plated iron or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or set screws.

2.8.4 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69.

2.9 FABRICATION

2.9.1 Factory Coating

Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand 500 hours exposure to the salt spray test specified in ASTM B 117 using a 5 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 3 mm on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D 520, Type I.

2.10 SUPPLEMENTAL COMPONENTS/SERVICES

2.10.1 Drain and Makeup Water Piping

Piping and backflow preventers shall comply with the requirements of Section 15400 PLUMBING, GENERAL PURPOSE. Drains which connect to sanitary sewer system shall be connected by means of an indirect waste.

PART 3 EXECUTION

3.1 INSTALLATION

All work shall be performed in accordance with the manufacturer's published diagrams, recommendations, and equipment warranty requirements. Where equipment is specified to conform to the requirements of ASME BPV VIII Div I and ASME BPV IX, the design, fabrication, and installation of the system shall conform to ASME BPV VIII Div I and ASME BPV IX.

3.1.1 Refrigeration System

3.1.1.1 Equipment

Necessary supports shall be provided for all equipment, appurtenances, and pipe as required, including frames or supports for pumps and similar items. If mechanical vibration isolators are not provided, vibration absorbing foundations shall be provided. Each foundation shall include isolation units consisting of machine and floor or foundation fastenings, together with intermediate isolation material. Other floor-mounted equipment shall be set on not less than a 150 mm concrete pad doweled in place. Concrete foundations for floor mounted pumps shall have a mass equivalent to three times the weight of the components, pump, base plate, and motor to be supported. Concrete for foundations shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Equipment shall be properly leveled,
aligned, and secured in place in accordance with manufacturer's instructions.

3.1.1.2 Oil Charging

Except for factory sealed units, two complete charges of lubricating oil for each compressor crankcase shall be furnished. One charge shall be used during the performance testing period, and upon the satisfactory completion of the tests, the oil shall be drained and replaced with the second charge.

3.1.1.3 Automatic Controls

Automatic controls for the central refrigeration system specified in paragraph REFRIGERATION SYSTEM shall be provided with the central refrigeration equipment. These controls shall operate automatically to balance the equipment capacity with the load on the air conditioning system, and shall be fully coordinated with and integrated into the temperature control system specified in Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.1.2 General Piping Installation

3.1.2.1 Brazed Joints

Before brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. Brazing flux shall not be used. Surplus brazing material shall be removed at all joints. Steel tubing joints shall be made in accordance with the manufacturer's recommendations. Joints in steel tubing shall be painted with the same material as the baked-on coating within 8 hours after joints are made. Tubing shall be protected against oxidation during brazing by continuous purging of the inside of the piping using nitrogen. All piping shall be supported prior to brazing and shall not be sprung or forced.

3.1.2.2 Threaded Joints

Threaded joints shall be made with tapered threads and made tight with PTFE tape complying with ASTM D 3308 or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is made.

3.1.2.3 Welded Joints

Welding shall be in accordance with qualified procedures using qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. Contracting Officer shall be notified 24 hours in advance of welding tests and the tests shall be performed at the work site if practical. A permanent mark shall be applied near each weld to identify the welder who made that weld. Changes in direction of piping shall be made with welded fittings only; mitering or notching pipe or other similar construction to form elbows or tees will not be permitted. Branch connections shall be made with welding tees or forged welding branch outlets. Steel pipe shall be thoroughly cleaned of all scale and foreign matter before the piping is assembled. During welding the pipe and fittings
shall be filled with an inert gas, such as nitrogen, to prevent the formation of scale. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and rewelded at no additional cost to the Government. Electrodes shall be stored and dried in accordance with AWS D1.1 or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used.

3.1.2.4 Flanged Joints

Flanged joints shall be faced true, provided with gaskets suitable for use with refrigerants and made square and tight. When steel refrigerant piping is used, union or flange joints shall be provided in each line immediately preceding the connection to each piece of equipment requiring maintenance, such as compressors, coils, chillers, control valves, and other similar items.

3.1.2.5 Flared Connections

When flared connections are used, a suitable lubricant shall be used between the back of the flare and the nut in order to avoid tearing the flare while tightening the nut.

3.1.2.6 Thermometers

Thermometers shall be located specifically on, but not limited to the following: condenser water lines entering and leaving the condenser the sensing element of each automatic temperature control device where a thermometer is not an integral part thereof the liquid line leaving receiver and the suction line at each evaporator or liquid cooler.

3.1.2.7 Supports

a. Seismic Requirements: All piping and attached valves shall be supported and braced to resist seismic loads as specified under Sections 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT as shown on the drawings. Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Section 05120 STRUCTURAL STEEL.

b. Structural Attachments: Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material and installation shall be as specified under Section 05120 STRUCTURAL STEEL.

3.1.2.8 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. Pipe hanger types 5, 12, and 26 shall not be used.

a. Hangers: Type 3 shall not be used on insulated piping.

b. Inserts: Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more
adjustments may be used if they otherwise meet the requirements for Type 18 inserts.

c. C-Clamps: Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

d. Angle Attachments: Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

e. Hangers: Type 24 may be used only on trapeze hanger systems or on fabricated frames.

f. Saddles and Shields: Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 100 mm (4 inches) and larger when the temperature of the medium is 16 degrees C or higher. Type 40 shields shall be used on all piping less than 100 mm (4 inches) and all piping 100 mm (4 inches) and larger carrying medium less than 16 degrees C. A high density insulation insert of cellular glass shall be used under the Type 40 shield for piping 50 mm (2 inches) and larger.

g. Horizontal Pipe Supports: Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 300 mm from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 1.5 m apart at valves. Pipe hanger loads suspended from steel joist with hanger loads between panel points in excess of 22 kg shall have the excess hanger loads suspended from panel points.

h. Vertical Pipe Supports: Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 4.5 m, not more than 2.4 m from end of risers, and at vent terminations.

i. Pipe Guides: Type 35 guides using, steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered.

j. Steel Slides: Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 100 mm (4 inches) and larger, a Type 39 saddle shall be used. On piping under 100 mm (4 inches), a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate.

k. High Temperature Guides with Cradles: Where there are high system temperatures and welding to piping is not desirable, then the Type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated
from the slide material by at least 100 mm, or by an amount adequate for the insulation, whichever is greater.

1. Multiple Pipe Runs: In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run.

3.1.2.9 Pipe Alignment Guides

Pipe alignment guides shall be provided where indicated for expansion loops, offsets, and bends and as recommended by the manufacturer for expansion joints, not to exceed 1.5 m on each side of each expansion joint, and in lines 100 mm (4 inches) or smaller not more than 600 mm on each side of the joint.

3.1.2.10 Anchors

Anchors shall be provided wherever necessary or indicated to localize expansion or to prevent undue strain on piping. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results using turnbuckles where required. Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline. Detailed drawings of pipe anchors shall be submitted for approval before installation.

3.1.2.11 Pipe Sleeves

Sleeves shall not be installed in structural members except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Unless otherwise indicated, sleeves shall be of such size as to provide a minimum of 6 mm all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Sleeves in bearing walls, waterproofing membrane floors, and wet areas shall be steel pipe or cast iron pipe. Sleeves in non-bearing walls, floors, or ceilings may be steel pipe, cast iron pipe, galvanized sheet metal with lock-type longitudinal seam and of the metal thickness indicated, or moisture resistant fiber or plastic. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed as indicated and specified in Section 07900 JOINT SEALING. Pipes passing through wall waterproofing membrane shall be sleeved as specified above, and a waterproofing clamping flange shall be installed.

a. Roof and Floor Penetrations: Pipes passing through roof or floor waterproofing membrane shall be installed through a 5.17 kg/sq. m. (17 ounce) copper sleeve, or a 0.81 mm (0.032 inch) thick aluminum sleeve, each within an integral skirt or flange. Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 200 mm from the pipe and shall be set over the roof or floor membrane in a troweled coating of bituminous cement. The
flashing sleeve shall extend up the pipe a minimum of 50 mm above the highest floor level of the roof or a minimum of 250 mm above the roof, whichever is greater, or 250 mm above the floor. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Pipes up to and including 250 mm (10 inches) in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess. In lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters.

b. Fire-Rated Walls and Partitions: Penetration of fire-rated walls and partitions shall be sealed as specified in Section 07840 FIRESTOPPING.

3.1.2.12 Escutcheons

Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering.

3.1.2.13 Access Panels

Access panels shall be provided for all concealed valves, vents, controls, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05500 MISCELLANEOUS METALS.

3.1.3 Water Piping

Pipe and fitting installation shall conform to the requirements of ASME B31.1. Pipe shall be cut accurately to measurements established at the jobsite, and worked into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipe or tubing shall be cut square, shall have burrs removed by reaming, and shall permit free expansion and
contraction without causing damage to the building structure, pipe, joints, or hangers.

3.1.3.1 Directional Changes

Changes in direction shall be made with fittings, except that bending of pipe 100 mm (4 inches) and smaller will be permitted, provided a pipe bender is used and wide weep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted.

3.1.3.2 Functional Requirements

Horizontal supply mains shall pitch down in the direction of flow as indicated. The grade shall not be less than 2 mm in 1 m. Reducing fittings shall be used for changes in pipe sizes. Open ends of pipelines and equipment shall be capped or plugged during installation to keep dirt or other foreign materials out of the system. Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 65 mm (2-1/2 inches) or less in diameter, and with flanges for pipe 80 mm (3 inches) and above in diameter. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric unions or flanges. All piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded.

3.1.3.3 Valves

Isolation gate or ball valves shall be installed on each side of each piece of equipment, at the midpoint of all looped mains, and at any other points indicated or required for draining, isolating, or sectionalizing purpose. Isolation valves may be omitted where balancing cocks are installed to provide both balancing and isolation functions. Each valve except check valves shall be identified. Valves in horizontal lines shall be installed with stems horizontal or above.

3.1.3.4 Air Vents

Air vents shall be provided at all high points, on all water coils, and where indicated to ensure adequate venting of the piping system. Provide manual air vents in mechanical rooms and finished areas.

3.1.3.5 Drains

Drains shall be provided at all low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps or plugged tees unless otherwise indicated.

3.1.3.6 Flexible Pipe Connectors

Preinsulated flexible pipe connectors shall be attached to other components in strict accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the flexible pipe connector manufacturer and shall be provided at the intervals recommended.
3.1.3.7 Flanges and Unions

Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items.

3.1.4 Mechanical Room Ventilation

Mechanical ventilation systems shall be in accordance with Section 15895 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.1.5 Field Applied Insulation

Field applied insulation other than that specified for water boxes and headers shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.2 TESTS

3.2.1 Field Tests

Tests shall be conducted in the presence of the Contracting Officer. Water and electricity required for the tests will be furnished by the Government. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor. The services of a qualified technician shall be provided as required to perform all tests and procedures indicated herein. Field tests shall be coordinated with Section 15990 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS.

3.2.1.1 Water Pipe Testing

After cleaning, water piping shall be hydrostatically tested at a pressure equal to 150 percent of the total system operating pressure for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Leaks shall be repaired and piping retested until test is successful. No loss of pressure shall be allowed. Leaks shall be repaired by rewelding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before concealing.

3.2.1.2 Test of Backflow Prevention Assemblies

Backflow prevention assemblies shall be tested in accordance with Section 15400 PLUMBING, GENERAL PURPOSE.

3.2.2 System Performance Tests

After the foregoing tests have been completed and before each refrigeration system is accepted, tests to demonstrate the general operating characteristics of all equipment shall be conducted by a registered professional engineer or an approved manufacturer's startup representative experienced in system startup and testing, at such times as directed. Tests shall cover a period of not less than 1 day for each system and shall demonstrate that the entire system is functioning in accordance with the drawings and specifications. Corrections and adjustments shall be made as
necessary and tests shall be re-conducted to demonstrate that the entire system is functioning as specified.

3.3 CLEANING AND ADJUSTING

3.3.1 Piping

Pipes shall be cleaned free of scale and thoroughly flushed of all foreign matter. A temporary bypass shall be provided for all water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from all water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented.

3.3.2 Equipment

Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided for all fans that are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions.

3.4 DEMONSTRATIONS

Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 4 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests. The field instructions shall cover all of the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations.

-- End Of Section --
SECTION 15653

AIR-CONDITIONING SYSTEM (UNITARY TYPE)

09/93

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI)

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASME INTERNATIONAL (ASME)

ASME BPV VIII Div 1 (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage

ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (1998) Motors and Generators
1.2 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Air-Conditioning System; GA.

Manufacturer's standard catalog data, prior to the purchase or installation of a particular component, shall be highlighted to show brand name, model number, size, options, performance charts and curves, etc. in sufficient detail to demonstrate compliance with contract requirements. Data shall be submitted for each specified component. Data shall include manufacturer's recommended installation instructions and procedures. If vibration isolation is specified for a unit, vibration isolator literature shall be included containing catalog cuts and certification that the isolation characteristics of the isolators provided meet the manufacturer's recommendations.

Spare Parts Data; FIO.

Spare parts data for each different item of equipment specified, after approval of detail drawings and not later than 2 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, a recommended spare parts list for 1 year of operation, and a list of the parts recommended by the manufacturer to be replaced on a routine basis.

SD-04 Drawings

Air-Conditioning System; FIO.

Drawings shall provide adequate detail to demonstrate compliance with contract requirements. Drawings shall consist of:

(1) Equipment layouts which identify assembly and installation details.
(2) Piping layouts which identify valves and fittings.

(3) Plans and elevations which identify clearances required for maintenance and operation.

(4) Wiring diagrams which identify each component individually and interconnected or interlocked relationships between components.

(5) Foundation drawings, bolt-setting information, and foundation bolts prior to concrete foundation construction for equipment indicated or required to have concrete foundations.

(6) Details, if piping and equipment are to be supported other than as indicated, which include loadings and type of frames, brackets, stanchions, or other supports.

(7) Automatic temperature control diagrams and control sequences.

(8) Installation details which includes the amount of factory set superheat and corresponding refrigerant pressure/temperature.

SD-06 Instructions

Framed Instructions; FIO.

Framed instructions for posting, at least 2 weeks prior to construction completion.

SD-07 Schedules

Tests; FIO.

A letter, at least 10 working days in advance of each tests, advising the Contracting Officer of the test. Individual letters shall be submitted for the condenser water system, refrigerant system, ductwork leak tests, cooling tower tests, condenser water quality tests, and the system performance tests. Each letter shall identify the date, time, and location for each test.

Demonstrations; GA.

A letter, at least 14 working days prior to the date of the proposed training course, which identifies the date, time, and location for the training.

Verification of Dimensions; FIO.

A letter, at least 2 weeks prior to beginning construction, including the date the site was visited, conformation of existing conditions, and any discrepancies found.

SD-09 Reports

Tests; GA.
Six copies of each test containing the information described below in bound 216 x 279 mm booklets. Individual reports shall be submitted for the condenser water system, refrigerant system, ductwork leak tests, and the cooling tower tests.

1. The date the tests were performed.
2. A list of equipment used, with calibration certifications.
3. Initial test summaries.
4. Repairs/adjustments performed.
5. Final test results.

System Performance Tests; GA.

Six copies of the report shall be provided in bound 216 x 279 mm booklets. The report shall document compliance with the specified performance criteria upon completion and testing of the system. The report shall indicate the number of days covered by the tests and any conclusions as to the adequacy of the system. The report shall also include the following information and shall be taken at least three different times at outside dry-bulb temperatures that are at least 3 degrees C apart:

1. Date and outside weather conditions.
2. The load on the system based on the following:
 a. The refrigerant used in the system.
 b. Condensing temperature and pressure.
 c. Suction temperature and pressure.
 d. Ambient, condensing and coolant temperatures
 e. Running current, voltage and proper phase sequence for each phase of all motors.
3. The actual on-site setting of operating and safety controls.
4. Thermostatic expansion valve superheat – value as determined by field test
5. Subcooling
6. High and low refrigerant temperature switch set-points
7. Low oil pressure switch set-point
8. Defrost system timer and thermostat set-points
9. Moisture content
10. Capacity control set-points
11. Field data and adjustments which affect unit performance and energy consumption.
(12) Field adjustments and settings which were not permanently marked as an integral part of a device.

Inspections; FIO.

Test report, at the completion of one year of service, in bound 216 x 279 mm booklets. The report shall identify the condition of the cooling tower and condenser. The report shall also include a comparison of the condition of the cooling tower and condenser with the manufacturer's recommended operating conditions.

SD-13 Certificates

Air-Conditioning System; FIO.

Where the system, components, or equipment are specified to comply with requirements of ARI, ASHRAE, ASME, or UL, proof of such compliance shall be provided. The label or listing of the specified agency shall be acceptable evidence. In lieu of the label or listing, a written certificate from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency may be submitted. When performance requirements of this project's drawings and specifications vary from standard ARI rating conditions, computer printouts, catalog, or other application data certified by ARI or a nationally recognized laboratory as described above shall be included. If ARI does not have a current certification program that encompasses such application data, the manufacturer may self certify that his application data complies with project performance requirements in accordance with the specified test standards.

Service Organizations; FIO.

A certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

SD-19 Operation and Maintenance Manuals

Operation Manual; FIO.

Six complete copies of an operation manual in bound 216 x 279 mm booklets listing step-by-step procedures required for system startup, operation, and shutdown. The booklets shall include the manufacturer's name, model number, and parts list. The manuals shall include the manufacturer's name, model number, service manual, and a brief description of all equipment and their basic operating features.

Maintenance Manual; FIO.

Six complete copies of maintenance manual in bound 216 x 279 mm booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping and equipment layouts and simplified wiring and control diagrams of the system as installed.
1.3 DELIVERY, STORAGE, AND HANDLING

Stored items shall be protected from the weather and contamination. Proper protection and care of all material before, during, and after installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter.

1.4 PROJECT/SITE CONDITIONS

1.4.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.4.2 Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions. Equipment, ductwork, and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance.

PART 2 PRODUCTS

2.1 STANDARD COMMERCIAL PRODUCTS

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2 year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Products shall be supported by a service organization. System components shall be environmentally suitable for the indicated locations.

2.2 NAMEPLATES

Major equipment including compressors, condensers, receivers, heat exchangers, fans, cooling towers, pumps and motors shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment. Plates shall be durable and legible throughout equipment life and made of anodized aluminum. Plates shall be fixed in prominent locations with nonferrous screws or bolts.
2.3 ELECTRICAL WORK

Electrical equipment, motors, motor efficiencies, and wiring shall be in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. Electrical motor driven equipment specified shall be provided complete with motors, motor starters, and controls. Electrical characteristics shall be as shown, and unless otherwise indicated, all motors of 746 kW (1 hp) and above with open, dripproof, totally enclosed, or explosion proof fan cooled enclosures, shall be high efficiency type. Field wiring shall be in accordance with manufacturer's instructions. Each motor shall conform to NEMA MG 1 and NEMA MG 2 and be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Motors shall be continuous duty with the enclosure specified. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control indicated. Motors shall be furnished with a magnetic across-the-line or reduced voltage type starter as required by the manufacturer. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motors shall be sized for the applicable loads. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of enclosure. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided.

2.4 AIR-CONDITIONERS FOR ELECTRONIC DATA PROCESSING (EDP) SPACES

Unit shall be a chilled water, self-contained type air-conditioning unit. Unit shall be designed and constructed for automatic control of space conditions. Unit shall be in accordance with ASHRAE 127 and UL 1995. Unit shall be rated in accordance with ARI 210/240 ARI 340/360. ARI certification is not required. The system shall be designed and constructed for maximum reliability and ease of maintenance. Necessary redundancy, access to refrigeration circuits, means of troubleshooting, and malfunction alarms shall be provided. Unit shall be provided with necessary fans, air filters, coils supplemental heat, and cabinet construction as specified in paragraph "System Components". Evaporator or supply fans shall be double-width, double inlet, forward curved centrifugal scroll type.

2.4.1 Water Coils

Coils shall have copper or aluminum tubes of 10 mm minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system.

2.4.2 Unit Controls

A unit's basic functions and space ambient conditions shall be controllable at one station. A temperature and humidity strip-chart recorder, integral or external to the unit, readable to specified control accuracy, shall be
provided, complete with cartridge ink and chart supply for 1 year of operation.

2.4.2.1 Externally Accessible Controls

The following controls shall be externally accessible:

a. Start and stop total system functions.
b. Audible alarm silence.
c. Main power disconnect.

2.4.2.2 Status Indicators

The following status indicators shall be externally visible:

a. Power On.
b. System On.
c. Malfunction.
d. Provision for remote alarm status indication.

2.4.2.3 Alarmed Conditions

The following system status conditions shall be both audibly and visually alarmed:

a. Loss of air flow.
b. Dirty filters.
c. High room temperature.
d. High humidity alarm.

2.4.2.4 Space Temperature

Space temperature shall be controlled within plus or minus 1 degrees C of the set point over a range of 16 to 32 degrees C with a set point of 22 degrees C. Space relative humidity shall be controlled within plus or minus 5 percent of the set point over a range of 20 to 80 percent with a set point of 50 percent.

2.4.3 Cabinet Construction

Cabinet shall be totally enclosed. Enclosure surfaces shall be pulsation free, with hinged and removable doors and panels for vertical side or front access to unit components. Routine maintenance access to compressor and system control components shall be possible without unit shut-down. Enclosure surfaces shall be thermally and acoustically insulated. Interior baffle and compartment surfaces shall be galvanized steel. Drain pans shall collect all condensate and be steel with external insulation as required. Surface mounting steel pads and vibration isolating pads shall be provided. Enclosure surfaces shall be prepared, primed and finished. Paint and
finishes shall comply with the requirements specified in paragraph "Factory Coating". Cabinets shall be fitted with integral or separable, adjustable and lockable jacks to support the units from the structural slab at the raised-floor elevation.

2.5 SYSTEM COMPONENTS

2.5.1 Fans

Fan wheel shafts shall be supported by either maintenance-accessible lubricated antifriction block-type bearings, or permanently lubricated ball bearings. Unit fans shall be selected to produce the cfm required at the fan total pressure. Motor starters, if applicable, shall be magnetic across-the-line type with a open dripproof enclosure. Thermal overload protection shall be of the manual or automatic-reset type. Fan wheels or propellers shall be constructed of aluminum or galvanized steel. Centrifugal fan wheel housings shall be of galvanized steel, and both centrifugal and propeller fan casings shall be constructed of aluminum or galvanized steel. Steel elements of fans, except fan shafts, shall be hot-dipped galvanized after fabrication or fabricated of mill galvanized steel. Mill-galvanized steel surfaces and edges damaged or cut during fabrication by forming, punching, drilling, welding, or cutting shall be recoated with an approved zinc-rich compound. Fan wheels or propellers shall be statically and dynamically balanced. Direct-drive fan motors shall be of the multiple-speed variety. Belt-driven fans shall have adjustable sheaves to provide not less than 15 percent fan-speed adjustment. The sheave size shall be selected so that the fan speed at the approximate midpoint of the sheave adjustment will produce the specified air quantity. Centrifugal scroll-type fans shall be provided with streamlined orifice inlet and V-belt drive. Each drive will be independent of any other drive.

2.5.2 Primary/Supplemental Heating

2.5.2.1 Water Coil

Coil shall conform to the provisions of ARI 410. Coil shall be fin-and-tube type constructed of seamless copper tubes and aluminum or copper fins mechanically bonded or soldered to tubes. Headers shall be constructed of cast iron, welded steel or copper. Coil shall be constructed to float within the casing to allow free expansion and contraction of tubing. Casing and tube support sheets shall not be lighter than 1.6 mm galvanized steel formed to provide structural strength. When required, multiple tube supports shall be provided to prevent tube sag. Coil shall be circuited for suitable water velocity without excessive pressure drop and properly pitched for drainage where required or indicated. Each coil shall be tested at the factory under water at not less than 2000 kPa air pressure, tested hydrostatically after assembly of the unit and proved tight under a gauge pressure of 1400 kPa. Coil shall be suitable for use with water up to 120 degrees C. Coil shall allow complete coil drainage with a pitch of not less than 10 mm per meter slope to drain.

2.5.3 Air Filters

Air filters shall be listed in accordance with requirements of UL 900, except medium efficiency particulate air filters of 60 percent efficiency by the DOP Test Method shall be as listed under the label service and shall meet the requirements of UL 586.
2.5.3.1 Extended Surface Pleated Panel Filters

Filters shall be 150 mm depth sectional type of the size indicated and shall have an average efficiency of 60 percent when tested in accordance with ASHRAE 52.1. Initial resistance at 2.54 m/s will not exceed 90 Pa. Filters shall be UL Class 2. Media shall be nonwoven cotton and synthetic fiber mat. A wire support grid bonded to the media shall be attached to a moisture resistant fiberboard frame. Four edges of the filter media shall be bonded to the inside of the frame to prevent air bypass and increase rigidity.

2.5.4 Humidifier

2.5.4.1 Infrared Type

The humidifier shall be of the infrared type consisting of high intensity quartz lamps mounted above and out of the water supply. The evaporator pan shall be stainless steel and arranged to be serviceable without disconnecting water supply lines, drain lines or electrical connections. The complete humidifier section shall be prepiped ready for final connection. The infrared humidification system shall use bypass air to prevent over-humidification of the controlled space. The auto flush system shall automatically flush deposits from the humidifier pan. The system shall be field adjustable to change the cycle time to suit local water conditions.

2.5.4.2 Steam Generating Canister Type

The environmental control system shall be equipped with a steam generating humidifier that is controlled by the microprocessor control system. It shall be complete with disposable canister, all supply and drain valves, steam distributor, and electronic controls. The need to change canister shall be annunciated on the microprocessor wall box control panel. An LED light on the humidifier assembly shall indicate cylinder full, over-current detection, fill system full, over-current detection, fill system fault, and end of cylinder life conditions.

2.6 FACTORY COATINGS

Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish.

PART 3 EXECUTION

3.1 INSTALLATION

Work shall be performed in accordance with the manufacturer's published diagrams, recommendations, and equipment warranty requirements. Where equipment is specified to conform to the requirements of ASME BPV VIII Div I and ASME BPV IX, the design, fabrication, and installation of the system shall conform to ASME BPV VIII Div I and ASME BPV IX.

3.1.1 Equipment
Refrigeration equipment and the installation thereof shall conform to ASHRAE 15. Necessary supports shall be provided for all equipment, appurtenances, and pipe as required, including frames or supports.

3.2 CLEANING AND ADJUSTING

3.2.1 Ductwork

Prior to testing, inside of ducts, plenums, and casing shall be thoroughly cleaned of all debris and blown free of small particles of rubbish and dust and then vacuum cleaned before installing outlet faces. Temporary filters shall be provided for fans that are operated during construction. New filters shall be installed after all construction dirt has been removed from the building and the ducts, plenum, casings, and other items specified have been vacuum cleaned. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions.

3.2.2 Equipment

Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. System shall be maintained in this clean condition until final acceptance. Bearings shall be lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed.

3.2.3 Testing, Adjusting, and Balancing

Testing, adjusting, and balancing shall be as specified in Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS.

3.3 DEMONSTRATIONS

Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 4 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests. The field instructions shall cover all of the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI)

ARI 430 (1989) Central-Station Air-Handling Units
ARI 880 (1994) Air Terminals
ARI Guideline D (1996) Application and Installation of Central Station Air-Handling Units

AIR CONDITIONING CONTRACTORS OF AMERICA (ACCA)

AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA)

AMCA 210 (1985) Laboratory Methods of Testing Fans for Rating

AMERICAN BEARING MANUFACTURERS ASSOCIATION (AFBMA)

AFBMA Std 9 (1990) Load Ratings and Fatigue Life for Ball Bearings
AFBMA Std 11 (1990) Load Ratings and Fatigue Life for Roller Bearings

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 53 (1998) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
ASTM A 123/A 123M (1997a) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 181/A 181M</td>
<td>Carbon Steel, Forgings for General-Purpose Piping (1995b)</td>
</tr>
<tr>
<td>ASTM A 193/A 193M</td>
<td>Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service (1998)</td>
</tr>
<tr>
<td>ASTM A 234/A 234M</td>
<td>Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service (1997)</td>
</tr>
<tr>
<td>ASTM A 733</td>
<td>Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples (1993)</td>
</tr>
<tr>
<td>ASTM A 924/A 924M</td>
<td>General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process (1997a)</td>
</tr>
<tr>
<td>ASTM B 62</td>
<td>Composition Bronze or Ounce Metal Castings (1993)</td>
</tr>
<tr>
<td>ASTM B 75M</td>
<td>Seamless Copper Tube (Metric) (1997)</td>
</tr>
<tr>
<td>ASTM B 88</td>
<td>Seamless Copper Water Tube (1996)</td>
</tr>
<tr>
<td>ASTM B 88M</td>
<td>Seamless Copper Water Tube (Metric) (1996)</td>
</tr>
<tr>
<td>ASTM B 813</td>
<td>Liquid and Paste Fluxes for Soldering Applications for Copper and Copper Alloy Tube (1993)</td>
</tr>
<tr>
<td>ASTM C 1071</td>
<td>Thermal and Acoustical Insulation (Glass Fiber, Duct Lining Material) (1998)</td>
</tr>
<tr>
<td>ASTM D 520</td>
<td>Zinc Dust Pigment (1984; R 1995)</td>
</tr>
<tr>
<td>ASTM D 1384</td>
<td>Corrosion Test for Engine Coolants in Glassware (1997a)</td>
</tr>
<tr>
<td>ASTM D 1654</td>
<td>Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments (1992)</td>
</tr>
<tr>
<td>ASTM D 3359</td>
<td>Measuring Adhesion by Tape Test (1997)</td>
</tr>
<tr>
<td>ASTM E 437</td>
<td>Industrial Wire Cloth and Screens (Square Opening Series) (1992)</td>
</tr>
<tr>
<td>ASTM F 1199</td>
<td>Cast (All Temperature and Pressures) and Welded Pipe Line Strainers (150 psig and 150 degrees F Maximum) (1988; R 1998)</td>
</tr>
<tr>
<td>ASTM F 1200</td>
<td>Fabricated (Welded) Pipe Line Strainers (Above 150 psig and 150 degrees F) (1988; R 1998)</td>
</tr>
</tbody>
</table>
AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 68 (1986) Laboratory Method of Testing In-Duct Sound Power Measurement Procedures for Fans

ASHRAE 70 (1991) Method of Testing for Rating the Performance of Air Outlets and Inlets

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B1.20.1 (1983; R 1992) Pipe Threads, General Purpose (Inch)

ASME B16.3 (1992) Malleable Iron Threaded Fittings

ASME B16.5 (1996; B16.5a) Pipe Flanges and Flanged Fittings NPS 1/2 thru NPS 24

ASME B16.18 (1984; R 1994) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (1992) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.22 (1995; B16.22a) Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element

ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications

AMERICAN WELDING SOCIETY (AWS)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application

MSS SP-71 (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends

MSS SP-72 (1992) Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-80 (1997) Bronze Gate, Globe, Angle and Check Valves

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (1993; Rev 1; Rev 2; Rev 3; Rev 4) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 90A (1996) Installation of Air Conditioning and Ventilating Systems

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

SMACNA HVAC Duct Const Stds (1995; Addenda Nov 1997) HVAC Duct Construction Standards - Metal and Flexible

UNDERWRITERS LABORATORIES (UL)

UL 181 (1996; Rev Dec 1998) Factory-Made Air Ducts and Air Connectors

UL 214 (1997) Tests for Flame-Propagation of Fabrics and Films

UL 555 (1999) Fire Dampers

UL 586 (1996) High-Efficiency, Particulate, Air Filter Units
1.2 COORDINATION OF TRADES

Ductwork, piping offsets, fittings, and accessories shall be furnished as required to provide a complete installation and to eliminate interference with other construction.

1.3 DELIVERY AND STORAGE

Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants.

1.4 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Components and Equipment Data; GA.

Manufacturer's catalog data shall be included with the detail drawings for the following items. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with contract requirements for the following:

a. Piping Components
b. Ductwork Components
c. Air Systems Equipment
d. Air Handling Units
e. Terminal Units

SD-04 Drawings

Air Supply, Distribution, Ventilation, and Exhaust Equipment; FIO.

Drawings shall consist of equipment layout including assembly and installation details and electrical connection diagrams; ductwork layout showing the location of all supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and
static pressure and seal classifications; and piping layout showing the location of all guides and anchors, the load imposed on each support or anchor, and typical support details. Drawings shall include any information required to demonstrate that the system has been coordinated and will properly function as a unit and shall show equipment relationship to other parts of the work, including clearances required for operation and maintenance.

SD-06 Instructions

Test Procedures; FIO.

Proposed test procedures for piping hydrostatic test, ductwork leak test, and performance tests of systems, at least 2 weeks prior to the start of related testing.

Welding Procedures; FIO.

A copy of qualified welding procedures, at least 2 weeks prior to the start of welding operations.

System Diagrams; GA.

Proposed diagrams, at least 2 weeks prior to start of related testing. System diagrams that show the layout of equipment, piping, and ductwork, and typed condensed operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system shall be framed under glass or laminated plastic. After approval, these items shall be posted where directed.

SD-07 Schedules

Test Schedules; FIO.

Proposed test schedules for hydrostatic test of piping, ductwork leak test, and performance tests, at least 2 weeks prior to the start of related testing.

Field Training Schedule; FIO.

Proposed schedule for field training, at least 2 weeks prior to the start of related training.

SD-08 Statements

Similar Services; FIO.

Statement demonstrating successful completion of similar services on at least 5 projects of similar size and scope, at least 2 weeks prior to submittal of other items required by this section.

Welding Qualification; FIO.

A list of names and identification symbols of qualified welders and welding operators, at least 2 weeks prior to the start of welding operations.
SD-09 Reports

Test Reports; FIO.

Test reports for the piping hydrostatic test, ductwork leak test, and performance tests in booklet form, upon completion of testing. Reports shall document phases of tests performed including initial test summary, repairs/adjustments made, and final test results.

SD-13 Certificates

Bolts; FIO.

Written certification from the bolt manufacturer that the bolts furnished comply with the requirements of this specification. The certification shall include illustrations of product markings, and the number of each type of bolt to be furnished.

SD-19 Operation and Maintenance Manuals

Air Supply, Distribution, Ventilation, and Exhaust Manuals; FIO.

Six manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 2 weeks prior to field training. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4 hour onsite response to a service call on an emergency basis.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Components and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years before bid opening. The 2-year experience shall include applications of components and equipment under similar circumstances and of similar size. The 2 years must be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization.

2.2 ASBESTOS PROHIBITION

Asbestos and asbestos-containing products shall not be used.

2.3 NAMEPLATES
Equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number.

2.4 EQUIPMENT GUARDS AND ACCESS

Belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact shall be fully enclosed or guarded according to OSHA requirements. High temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard shall be properly guarded or covered with insulation of a type specified. Catwalks, operating platforms, ladders, and guardrails shall be provided where shown and shall be constructed according to Section 05500 MISCELLANEOUS METAL.

2.5 PIPING COMPONENTS

2.5.1 Steel Pipe

Steel pipe shall conform to ASTM A 53, Schedule 40, Grade A or B, Type E or S.

2.5.2 Joints and Fittings For Steel Pipe

Joints shall be welded, flanged, threaded, or grooved as indicated. If not otherwise indicated, piping 25 mm and smaller shall be threaded; piping larger than 25 mm and smaller than 80 mm shall be either threaded, grooved, or welded; and piping 80 mm and larger shall be grooved, welded, or flanged. Rigid grooved mechanical joints and fittings may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 110 degrees C. Flexible grooved joints shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein. The manufacturer of each fitting shall be permanently identified on the body of the fitting according to MSS SP-25.

2.5.2.1 Welded Joints and Fittings

Welded fittings shall conform to ASTM A 234/A 234M, and shall be identified with the appropriate grade and marking symbol. Butt-welded fittings shall conform to ASME B16.9. Socket-welded fittings shall conform to ASME B16.11.

2.5.2.2 Flanged Joints and Fittings

Flanges shall conform to ASTM A 181/A 181M and ASME B16.5, Class 150. Gaskets shall be nonasbestos compressed material according to ASME B16.21, 2.0 mm thickness, full face or self-centering flat ring type. The gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.5. Bolts shall be high or intermediate strength material conforming to ASTM A 193/A 193M.

2.5.2.3 Threaded Joints and Fittings

Threads shall conform to ASME B1.20.1. Unions shall conform to ASME B16.39, Class 150. Nipples shall conform to ASTM A 733. Malleable iron fittings shall conform to ASME B16.3, type as required to match piping.
2.5.2.4 Dielectric Unions and Flanges

Dielectric unions shall have the tensile strength and dimensional requirements specified. Unions shall have metal connections on both ends threaded to match adjacent piping. Metal parts of dielectric unions shall be separated with a nylon insulator to prevent current flow between dissimilar metals. Unions shall be suitable for the required operating pressures and temperatures. Dielectric flanges shall provide the same pressure ratings as standard flanges and provide complete electrical isolation.

2.5.3 Copper Tube

Copper tube shall conform to ASTM B 88, and ASTM B 88M, Type K or L.

2.5.4 Joints and Fittings For Copper Tube

Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B 75M. Cast copper alloy solder-joint pressure fittings shall conform to ASME B16.18. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B 62. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment. Extracted brazed tee joints produced with an acceptable tool and installed as recommended by the manufacturer may be used.

2.5.5 Valves

Valves shall be Class 125 and shall be suitable for the intended application. Valves shall meet the material, fabrication and operating requirements of ASME B31.1. Chain operators shall be provided for valves located 3 meters or higher above the floor. Valves in sizes larger than 25 mm and used on steel pipe systems, may be provided with rigid grooved mechanical joint ends. Such grooved end valves shall be subject to the same requirements as rigid grooved mechanical joints and fittings and, shall be provided by the same manufacturer as the grooved pipe joint and fitting system.

2.5.5.1 Globe Valves

Globe valves 65 mm and smaller shall conform to MSS SP-80, bronze, threaded, soldered, or flanged ends. Globe valves 80 mm and larger shall conform to MSS SP-85 and shall be cast iron with bronze trim and flanged, or threaded ends.

2.5.5.2 Check Valves

Check valves 65 mm and smaller shall conform to MSS SP-80 and shall be bronze with threaded, soldered, or flanged ends. Check valves 80 mm and larger shall conform to MSS SP-71 and shall be cast iron with bronze trim and flanged or threaded ends.

2.5.5.3 Angle Valves

Angle valves 65 mm and smaller shall conform to MSS SP-80 and shall be bronze with threaded, soldered, or flanged ends. Angle valves 80 mm and
larger shall conform to MSS SP-85 and shall be cast iron with bronze trim and flanged, or threaded ends.

2.5.5.4 Ball Valves

Ball valves 15 mm and larger shall conform to MSS SP-72, and shall be ductile iron or bronze with threaded, soldered, or flanged ends.

2.5.5.5 Butterfly Valves

Butterfly valves shall be 2 flange or lug wafer type, and shall be bubble-tight at 1.03 MPa. Valve bodies shall be cast iron, malleable iron, or steel. ASTM A 167, Type 404 or Type 316, corrosion resisting steel stems, bronze or corrosion resisting steel discs, and synthetic rubber seats shall be provided. Valves smaller than 200 mm shall have throttling handles with a minimum of seven locking positions. Valves 200 mm and larger shall have totally enclosed manual gear operators with adjustable balance return stops and position indicators. Valves in insulated lines shall have extended neck to accommodate insulation thickness.

2.5.5.6 Balancing Valves

Balancing valves 50 mm or smaller shall be bronze with NPT connections for black steel pipe and brazed connections for copper tubing. Valves 25 mm or larger may be all iron with threaded or flanged ends. The valves shall have a square head or similar device and an indicator arc and shall be designed for 120 degrees C. Iron valves shall be lubricated, nonlubricated, or tetrafluoroethylene resin-coated plug valves. In lieu of plug valves, ball valves may be used. Plug valves and ball valves 200 mm or larger shall be provided with manual gear operators with position indicators. In lieu of balancing valves specified, automatic flow control valves may be provided to maintain constant flow, and shall be designed to be sensitive to pressure differential across the valve to provide the required opening. Valves shall be selected for the flow required and provided with a permanent nameplate or tag carrying a permanent record of the factory-determined flow rate and flow control pressure levels. Valves shall control the flow within 5 percent of the tag rating. Valves shall be suitable for the maximum operating pressure of 862 kPa or 150 percent of the system operating pressure, whichever is the greater. Where the available system pressure is not adequate to provide the minimum pressure differential that still allows flow control, the system pump head capability shall be appropriately increased. Where flow readings are provided by remote or portable meters, valve bodies shall be provided with tapped openings and pipe extensions with shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable meter to measure the pressure differential across the automatic flow control valve. A portable meter furnished with accessory kit as recommended by the automatic valve manufacturer shall be provided. Automatic flow control valve specified may be substituted for venturi tubes or orifice plate flow measuring devices.

2.5.5.7 Air Vents

Manual air vents shall be brass or bronze valves or cocks suitable for pressure rating of piping system and furnished with threaded plugs or caps. Automatic air vents shall be float type, cast iron, stainless steel, or forged steel construction, suitable for pressure rating of piping system.
2.5.6 Strainers

Strainer shall be in accordance with ASTM F 1199 ASTM F 1200, except as modified herein. Strainer shall be the cleanable, basket or "Y" type, the same size as the pipeline. The strainer bodies shall be fabricated of cast iron with bottoms drilled, and tapped. The bodies shall have arrows clearly cast on the sides indicating the direction of flow. Each strainer shall be equipped with removable cover and sediment screen. The screen shall be made of minimum 0.8 mm brass sheet, monel, corrosion-resistant steel, with small perforations numbering not less than 60 per square centimeter to provide a net free area through the basket of at least 3,300 times that of the entering pipe. The flow shall be into the screen and out through the perforations.

2.5.7 Chilled Water System Accessories

Chilled water system accessories such as pumps, combination strainer and suction diffusers, and expansion tanks shall be as specified in Section 15650 CENTRAL REFRIGERATED AIR CONDITIONING SYSTEM.

2.5.8 Water or Steam Heating System Accessories

Water or steam heating accessories such as expansion tanks and steam traps shall be as specified in Section 15569 WATER AND STEAM HEATING; OIL, GAS OR BOTH; UP TO 20 MBTUH.

2.5.9 Glycol

The glycol shall be tested according to ASTM D 1384 and shall cause less than 0.0125 mm penetration per year for all system metals. The glycol shall contain corrosion inhibitors. Silicon based inhibitors shall not be used. The solution shall be compatible with all wetted items within the system.

2.5.10 Backflow Preventers

Backflow preventers shall be according to Section 15400 PLUMBING, GENERAL PURPOSE.

2.5.11 Flexible Pipe Connectors

Flexible pipe connectors shall be designed for 862 kPa or 1034 kPa service as appropriate for the static head plus the system head, and 120 degrees C, 110 degrees C for grooved end flexible connectors. The flexible section shall be constructed of rubber, tetrafluoroethylene resin, or corrosion-resisting steel, bronze, monel, or galvanized steel. The flexible section shall be suitable for intended service with end connections to match adjacent piping. Flanged assemblies shall be equipped with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. Covers to protect the bellows shall be provided where indicated.

2.5.12 Pressure Gauges
Gauges shall conform to ASME B40.1 and shall be provided with throttling type needle valve or a pulsation dampener and shut-off valve. Gauge shall be a minimum of 85 mm in diameter and shall have a range from 0 kPa to approximately 1.5 times the maximum system working pressure.

2.5.13 Thermometers

Thermometers shall have brass, malleable iron, or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 225 mm (9 inch) scale, and shall have rigid stems with straight, angular, or inclined pattern.

2.5.14 Escutcheons

Escutcheons shall be chromium-plated iron or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or setscrews.

2.5.15 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69.

2.5.16 Expansion Joints

2.5.17 Insulation

Shop and field applied insulation shall be as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.5.18 Condensate Drain Lines

Condensate drainage shall be provided for each item of equipment that generates condensate as specified for drain, waste, and vent piping systems in Section 15400 PLUMBING, GENERAL PURPOSE.

2.6 ELECTRICAL WORK

Electrical motor-driven equipment specified shall be provided complete with motor, motor starter, and controls. Unless otherwise specified, electric equipment, including wiring and motor efficiencies, shall be according to Section 16415 ELECTRICAL WORK, INTERIOR. Electrical characteristics and enclosure type shall be as shown. Unless otherwise indicated, motors of 745 W and above shall be high efficiency type. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary. Each motor shall be according to NEMA MG 1 and shall be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Manual or automatic control and protective or signal devices required for the operation specified, and any control wiring required for controls and devices, but not shown, shall be provided. Where two-speed or variable-speed motors are indicated, solid-state variable-speed controller may be provided to accomplish the same function. Solid-state variable-speed controllers shall be utilized for motors rated 7.45 kW or less. Adjustable frequency drives shall be used for larger motors.
2.7 DUCTWORK COMPONENTS

2.7.1 Metal Ductwork

All aspects of metal ductwork construction, including all fittings and components, shall comply with SMACNA HVAC Duct Const Stds unless otherwise specified. Elbows shall be radius type with a centerline radius of 1-1/2 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes may be used. Static pressure Class 125, 250, and 500 Pa. ductwork shall meet the requirements of Seal Class C. Class 750 through 2500 Pa shall meet the requirements of Seal Class A. Sealants shall conform to fire hazard classification specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Pressure sensitive tape shall not be used as a sealant. Spiral lock seam duct, and flat oval shall be made with duct sealant and locked with not less than 3 equally spaced drive screws or other approved methods indicated in SMACNA HVAC Duct Const Stds. The sealant shall be applied to the exposed male part of the fitting collar so that the sealer will be on the inside of the joint and fully protected by the metal of the duct fitting. One brush coat of the sealant shall be applied over the outside of the joint to at least 50 mm band width covering all screw heads and joint gap. Dents in the male portion of the slip fitting collar will not be acceptable. Outdoor air intake ducts and plenums shall be fabricated with watertight soldered or brazed joints and seams.

2.7.1.1 Transitions

Diverging air flow transitions shall be made with each side pitched out a maximum of 15 degrees, for an included angle of 30 degrees. Transitions for converging air flow shall be made with each side pitched in a maximum of 30 degrees, for an included angle of 60 degrees, or shall be as indicated. Factory-fabricated reducing fittings for systems using round duct sections when formed to the shape of the ASME short flow nozzle, need not comply with the maximum angles specified.

2.7.1.2 Insulated Nonmetallic Flexible Duct Runouts

Flexible duct runouts shall be used only where indicated. Runout length shall be as shown on the drawings, but shall in no case exceed 1.5 m. Runouts shall be preinsulated, factory fabricated, and shall comply with NFPA 90A and UL 181. Either field or factory applied vapor barrier shall be provided. Where coil induction or high velocity units are supplied with vertical air inlets, a streamlined and vaned and mitered elbow transition piece shall be provided for connection to the flexible duct or hose. The last elbow to these units, other than the vertical air inlet type, shall be a die-stamped elbow and not a flexible connector. Insulated flexible connectors may be used as runouts. The insulated material and vapor barrier shall conform to the requirements of Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. The insulation material surface shall not be exposed to the air stream.

2.7.1.3 General Service Duct Connectors

A flexible duct connector approximately 150 mm in width shall be provided where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, the flexible material shall be
secured by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, the flexible material locked to metal collars shall be installed using normal duct construction methods. The composite connector system shall comply with UL 214 and be classified as "flame-retarded fabrics" in UL Bld Mat Dir.

2.7.1.4 High Temperature Service Duct Connections

Material shall be approximately 2.38 mm thick, 1.2 to 1.36 kg per square meter) weight, plain weave fibrous glass cloth with, nickel/chrome wire reinforcement for service in excess of 650 degrees C.

2.7.2 Ductwork Accessories

2.7.2.1 Duct Access Doors

Access doors shall be provided in ductwork and plenums where indicated and at all air flow measuring primaries, automatic dampers, fire dampers, coils, thermostats, and other apparatus requiring service and inspection in the duct system, and unless otherwise shown, shall conform to SMACNA HVAC Duct Const Stds. Access doors shall be provided upstream and downstream of air flow measuring primaries and heating and cooling coils. Doors shall be minimum 375 x 450 mm, unless otherwise shown. Where duct size will not accommodate this size door, the doors shall be made as large as practicable. Doors 600 x 600 mm or larger shall be provided with fasteners operable from both sides. Doors in insulated ducts shall be the insulated type.

2.7.2.2 Fire Dampers

Fire dampers shall be 1-1/2 hour fire rated unless otherwise indicated. Fire dampers shall conform to the requirements of NFPA 90A and UL 555. The Contractor shall perform the fire damper test as outlined in NFPA 90A. A pressure relief damper shall be provided upstream of the fire damper. If the ductwork connected to the fire damper is to be insulated then this pressure relief damper shall be factory insulated. Fire dampers shall be automatic operating type and shall have a dynamic rating suitable for the maximum air velocity and pressure differential to which it will be subjected. Fire dampers shall be approved for the specific application, and shall be installed according to their listing. Fire dampers shall be equipped with a steel sleeve or adequately sized frame installed in such a manner that disruption of the attached ductwork, if any, will not impair the operation of the damper. Sleeves or frames shall be equipped with perimeter mounting angles attached on both sides of the wall or floor opening. Ductwork in fire-rated floor-ceiling or roof-ceiling assembly systems with air ducts that pierce the ceiling of the assemblies shall be constructed in conformance with UL Fire Resist Dir. Fire dampers shall be curtain type with damper blades out of the air stream. Dampers shall not reduce the duct or the air transfer opening cross-sectional area. Dampers shall be installed so that the centerline of the damper depth or thickness is located in the centerline of the wall, partition or floor slab depth or thickness. Unless otherwise indicated, the installation details given in SMACNA Install Fire Damp HVAC and in manufacturer's instructions for fire dampers shall be followed.

2.7.2.3 Smoke Dampers
Smoke-damper and actuator assembly required per NFPA 90A shall meet the Class II leakage requirements of UL 555S. Dampers shall be rated at not less than 10 m/s air velocity.

2.7.2.4 Splitters and Manual Balancing Dampers

Splitters and manual balancing dampers shall be furnished with accessible operating mechanisms. Where operators occur in finished portions of the building, operators shall be chromium plated with all exposed edges rounded. Splitters shall be operated by quadrant operators or 5 mm rod brought through the side of the duct with locking setscrew and bushing. Two rods are required on splitters over 200 mm. Manual volume control dampers shall be operated by locking-type quadrant operators. Dampers and splitters shall be 2 gauges heavier than the duct in which installed. Unless otherwise indicated, multileaf dampers shall be opposed blade type with maximum blade width of 300 mm. Access doors or panels shall be provided for all concealed damper operators and locking setscrews. Unless otherwise indicated, the locking-type quadrant operators for dampers, when installed on ducts to be thermally insulated, shall be provided with stand-off mounting brackets, bases, or adapters to provide clearance between the duct surface and the operator not less than the thickness of the insulation. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer. Volume dampers shall be provided where indicated.

2.7.2.5 Air Deflectors and Branch Connections

Air deflectors shall be provided at duct mounted supply outlets, at takeoff or extension collars to supply outlets, at duct branch takeoff connections, and at 90 degree elbows, as well as at locations as indicated on the drawings or otherwise specified. Conical branch connections or 45 degree entry connections may be used in lieu of deflectors or extractors for branch connections. All air deflectors, except those installed in 90 degree elbows, shall be provided with an approved means of adjustment. Adjustment shall be made from easily accessible means inside the duct or from an adjustment with sturdy lock on the face of the duct. When installed on ducts to be thermally insulated, external adjustments shall be provided with stand-off mounting brackets, integral with the adjustment device, to provide clearance between the duct surface and the adjustment device not less than the thickness of the thermal insulation. Air deflectors shall be factory-fabricated units consisting of curved turning vanes or louver blades designed to provide uniform air distribution and change of direction with minimum turbulence or pressure loss. Air deflectors shall be factory or field assembled. Blade air deflectors, also called blade air extractors, shall be approved factory fabricated units consisting of equalizing grid and adjustable blade and lock. Adjustment shall be easily made from the face of the diffuser or by position adjustment and lock external to the duct. Stand-off brackets shall be provided on insulated ducts and are described herein. Fixed air deflectors, also called turning vanes, shall be provided in 90 degree elbows.

2.7.3 Duct Sleeves, Framed Prepared Openings, Closure Collars

2.7.3.1 Duct Sleeves

Duct sleeves shall be provided for round ducts 375 mm in diameter or less passing through floors, walls, ceilings, or roof, and installed during
construction of the floor, wall, ceiling, or roof. Round ducts larger than 375 mm in diameter and square, rectangular, and oval ducts passing through floors, walls, ceilings, or roof shall be installed through framed prepared openings. The Contractor shall be responsible for the proper size and location of sleeves and prepared openings. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Framed prepared openings shall be fabricated from 1.0 mm (20 gauge) galvanized steel, unless otherwise indicated. Where sleeves are installed in bearing walls or partitions, black steel pipe, ASTM A 53, Schedule 20 shall be used. Sleeve shall provide 25 mm clearance between the duct and the sleeve or 25 mm clearance between the insulation and the sleeve for insulated ducts.

2.7.3.2 Framed Prepared Openings

Openings shall have 25 mm clearance between the duct and the opening or 25 mm clearance between the insulation and the opening for insulated ducts.

2.7.3.3 Closure Collars

Collars shall be fabricated of galvanized sheet metal not less than 100 mm wide, unless otherwise indicated, and shall be installed on exposed ducts on each side of walls or floors where sleeves or prepared openings are provided. Collars shall be installed tight against surfaces. Collars shall fit snugly around the duct or insulation. Sharp edges of the collar around insulated duct shall be ground smooth to preclude tearing or puncturing the insulation covering or vapor barrier. Collars for round ducts 375 mm in diameter or less shall be fabricated from 1.0 mm galvanized steel. Collars for round ducts larger than 375 mm and square, and rectangular ducts shall be fabricated from 1.3 mm galvanized steel. Collars shall be installed with fasteners on maximum 150 mm centers, except that not less than 4 fasteners shall be used.

2.7.4 Sound Attenuation Equipment

a. Systems With Total Pressure Above 1 kPa:

Sound attenuators shall be provided on the discharge duct of each fan operating at a total pressure above 1 kPa, and, when indicated, at the intake of each fan system. Sound attenuators shall be provided elsewhere as indicated. The sound attenuators shall be factory fabricated and shall be tested by an independent laboratory for sound and performance characteristics. Net sound reduction shall be as indicated. Maximum permissible pressure drop shall not exceed 157 Pa. Traps shall be constructed to be airtight when operating under an internal static pressure of 2.5 kPa. Air-side surface shall be capable of withstanding air velocity of 50 m/s. The Contractor shall certify that the sound reduction values specified will be obtained after the equipment is installed in the system and coordinated with the sound information of the system fan to be provided. Sound absorbing material shall conform to ASTM C 1071, Type I or II. Sound absorbing material shall meet the fire hazard rating requirements for insulation specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. A duct transition section shall be provided for connection to ductwork. Factory fabricated double-walled internally insulated spiral lock seam and round duct and fittings designed for high pressure air system may be provided in lieu of factory fabricated sound attenuators, and shall comply with requirements specified for factory fabricated sound attenuators.
The double-walled duct and fittings shall be constructed of an outer metal pressure shell of zinc-coated steel sheet, 25 mm thick acoustical blanket insulation, and an internal perforated zinc-coated metal liner. Sufficient length of run shall be provided to obtain the noise reduction coefficient specified. The Contractor shall certify that the sound reduction value specified will be obtained within the length of duct run provided. The outer sheet metal of the double-walled duct shall have welded, or spiral lock, seams to prevent water vapor penetration. The outer sheet of the duct and fittings shall conform to the metal thickness of high pressure spiral and round ducts and fittings shown in SMACNA HVAC Duct Const Stds. The acoustical insulation shall have a thermal conductivity "k" of not more than 0.0389 W/m-K at 24 degrees C mean temperature. The internal perforated zinc-coated metal liner shall be not less than 0.7 mm with perforations not larger than 6.35 mm in diameter providing a net open area not less than 10 percent of the surface.

a. System With Total Pressure of 1000 Pa and Lower:

Sound attenuators shall be provided only where indicated, or in lieu of lined ducts. Factory fabricated sound attenuators shall be constructed of galvanized steel sheets. Outer casing shall be not less than 0.85 mm. Acoustical fill shall be fibrous glass. Net sound reduction shall be as indicated. Values shall be obtained on a test unit not less than 600 mm by 600 mm outside dimensions made by a certified nationally recognized independent acoustical laboratory. Air flow capacity shall be as indicated or required. Pressure drop through the attenuator shall not exceed the value indicated, or shall not be in excess of 15 percent of the total external static pressure of the air handling system, whichever is less. Sound attenuators shall be acoustically tested with metal duct inlet and outlet sections while under the rated air flow conditions. Noise reduction data shall include the effects of flanking paths and vibration transmission. Sound attenuators shall be constructed to be airtight when operating at the internal static pressure indicated or specified for the duct system, but in no case less than 500 Pa.

2.7.5 Diffusers, Registers, and Grilles

Units shall be factory-fabricated of steel, corrosion-resistant steel, or aluminum and shall distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 0.25 m/s in occupied zone, or dead spots anywhere in the conditioned area. Outlets for diffusion, spread, throw, and noise level shall be as required for specified performance. Performance shall be certified according to ASHRAE 70. Inlets and outlets shall be sound rated and certified according to ASHRAE 70. Sound power level shall be as indicated. Diffusers and registers shall be provided with volume damper with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device will be acceptable. Volume dampers shall be opposed blade type for all diffusers and registers, except linear slot diffusers. Linear slot diffusers shall be provided with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 2 m above the floor, they shall be protected by a grille or screen according to NFPA 90A.

2.7.5.1 Diffuser, Architectural Square Panel
Diffuser types shall be of the Architectural, flat panel type. Ceiling mounted units shall be furnished with anti-smudge devices, unless the diffuser unit minimizes ceiling smudging through design features. Diffusers shall be provided with air deflectors of the type indicated. Air handling troffers or combination light and ceiling diffusers shall conform to the requirements of UL Elec Const Dir for the interchangeable use as cooled or heated air supply diffusers or return air units. Ceiling mounted units shall be installed with rims tight against ceiling. Sponge rubber gaskets shall be provided between ceiling and surface mounted diffusers for air leakage control. Suitable trim shall be provided for flush mounted diffusers. Duct collar connecting the duct to diffuser shall be airtight and shall not interfere with volume controller.

2.7.5.2 Diffuser, Round Adjustable

Round ceiling diffusers shall be heavy duty ring operated diffusers of the sizes and mounting type shown on the plans and outlet schedule. The diffuser shall be constructed of 18 gauge steel with a contoured outer cone to guard against ceiling smudging and an inner vane assembly. The airflow discharge pattern shall be field adjustable from horizontal to vertical by rotating a ring operator to open (vertical discharge) or close (horizontal discharge) the inner vane assembly. The inner vane assembly must be easily removable as a unit. The ring operator shall be adjustable with a pole for remote access.

The finish shall be white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100 hour ASTM D 117 Corrosive Environments Salt Spray Test without creepage, blistering, or deterioration of film. The paint must pass a 250 hour ASTM 870 Water Immersion Test. The air must also pass the ASTM D-2794 Reverse Impact Cracking Test with a 50 inch pound force applied.

Provide round damper constructed of heavy gauge steel. Damper must be operable from the face of the diffuser by removing the inner vane assembly.

The manufacturer shall provide published performance data for the round diffuser. The diffuser shall be tested in accordance with ASNI/ASHRAE Standard 70-1991.

2.7.5.3 Diffuser Linear Slot

Plenums must be designed specifically for field attachment to diffusers with 19 mm slot widths. Plenums shall include a factory drawn side inlet (welded-in inlets are not acceptable) to fit 1, 2, 3, or 4 slot diffusers of the sizes and mounting types shown on the plans and outlet schedule. Standard nominal lengths shall be 2, 3, 4, or 5 ft.

Linear slot diffuser shall have internal baffles to maximize air diffusion by shortening the throw and widening the spread of the discharged air. These diffuser plenums shall be available in the same sizes and mounting types as MP models.

Provide internal insulation and field mounted inlet dampers. Plenums shall be provided by the manufacturer of the linear slot diffusers. Plenum material shall be galvanized steel.
The manufacturer shall provide performance data with the linear slot diffuser and plenum tested as one assembly. The linear slot diffuser and plenum assembly shall be tested in accordance with ASNI/ASHRAE Standard 70-1991.

2.7.5.4 Linear Bar Diffuser

Linear bar diffusers shall be with 3 mm bars at 15 deflection, spaces on center. Linear bar diffusers shall be available in standard one-piece lengths up to 1830 mm and shall have the sizes and mounting types shown on the plans and outlet schedule. Diffuser lengths greater than 1830 mm shall be furnished in multiple sections and will be joined together end-to-end with alignment strips on pins to form a continuous appearance. All alignment components to be provided by the manufacturer.

The diffuser core shall have extruded aluminum bars locked into a heavy extruded aluminum border. The deflection bars must be fixed and parallel to the long dimension. The core must have support bars located no more than 9 in apart and shall be parallel to the short dimension.

The finish shall be white. The finish shall be an anodic acrylic paint, baked at 315 F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100 hour ASTM D 117 Corrosive Environments Salt Spray Test without creepage, blistering, or deterioration of film. The paint must pass a 250 hour ASTM 870 Water Immersion Test. The paint must also pass the ASTM D 2794 Reverse Impact Cracking Test with a 50 inch pound force applied.

Heavy gauge extruded aluminum end borders and mitered corners shall be available to close off the ends of the diffusers.

The manufacturer shall provide published performance data for the linear bar diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

2.7.5.5 Registers and Grilles

The return and exhaust registers shall be fixed horizontal louver type with blades on 12 mm centers and fixed at 35 degrees. Registers shall be provided with sponge-rubber gasket between flanges and wall or ceiling. Wall supply registers shall be installed at least 150 mm below the ceiling unless otherwise indicated. Return and exhaust registers shall be located 150 mm above the floor unless otherwise indicated. Grilles shall be as specified for registers, without volume control damper.

2.7.5.6 Return Grille "N"

Steel return grille shall have 12 mm blade spacing for the sizes and mounting types as shown on schedule. The fixed deflection blades shall be parallel and horizontal to the floor. Construction shall be of steel with 32 mm wide border on all sides and a minimum border gauge of 20. Corners shall be assembled with full penetration resistance welds with a reinforcing patch for extra strength.

Blades shall be accurately formed to a proven curvature which has been certified according to current industry standards in a certified laboratory. Blades shall have a minimum gauge of 20 with a fixed deflection angle of 45.
The grille finish shall be white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100 hour ASTM D 117 Corrosive Environments Salt Spray Test without creepage blistering, or deterioration of film. The paint must pass a 250 hour ASTM 870 Water Immersion Test. The paint must also pass the ASTM D 2794 Reverse Impact Cracking Test.

The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

2.7.6 Louvers

Louvers for installation in exterior walls which are associated with the air supply and distribution system shall be storm proof with 150 mm deep drainable blades. Frame and blades shall be made 18 ga. steel. The louver shall be AMC Certified and bear the AMCA Seal. The louver shall have a 50 percent net free opening with a pressure drop of 0.03 kPa at 274 m/min. Color shall be a dark bronze factory finish to match the roof.

2.7.7 Air Vents, Penthouses, and Goosenecks

Air vents, penthouses, and goosenecks shall be fabricated from galvanized steel or aluminum sheets with galvanized or aluminum structural shapes. Sheet metal thickness, reinforcement, and fabrication shall conform to SMACNA HVAC Duct Const Stds. Louver blades shall be accurately fitted and secured to frames. Edges of louver blades shall be folded or beaded for rigidity and baffled to exclude driving rain. Air vents, penthouses, and goosenecks shall be provided with bird screen.

2.7.8 Bird Screens and Frames

Bird screens shall conform to ASTM E 437, Type I, Class 1, 2 by 2 mesh, 1.6 mm diameter aluminum wire or 0.8 mm inch diameter stainless steel wire. Frames shall be removable type or stainless steel or extruded aluminum.

2.8 AIR SYSTEMS EQUIPMENT

2.8.1 Fans

Fans shall be tested and rated according to AMCA 210. Fans may be connected to the motors either directly or indirectly with V-belt drive. V-belt drives shall be designed for not less than 150 140 120 percent of the connected driving capacity. Motor sheaves shall be variable pitch for 11 kW and below and fixed pitch as defined by ARI Guideline D. Variable pitch sheaves shall be selected to drive the fan at a speed which will produce the specified capacity when set at the approximate midpoint of the sheave adjustment. When fixed pitch sheaves are furnished, a replaceable sheave shall be provided when needed to achieve system air balance. Motors for V-belt drives shall be provided with adjustable rails or bases. Removable metal guards shall be provided for all exposed V-belt drives, and speed-test openings shall be provided at the center of all rotating shafts. Fans shall be provided with personnel screens or guards on both suction and supply ends, except that the screens need not be provided, unless otherwise indicated, where ducts are connected to the fan. Fan and motor assemblies shall be provided with vibration-isolation supports or mountings as indicated. Vibration-isolation units shall be standard products with published loading ratings. Each fan shall be selected to produce the
capacity required at the fan static pressure indicated. Sound power level shall be as indicated. The sound power level values shall be obtained according to AMCA 300. Standard AMCA arrangement, rotation, and discharge shall be as indicated.

2.8.1.1 Centrifugal Fans

Centrifugal fans shall be fully enclosed, single-width single-inlet, or double-width double-inlet, AMCA Pressure Class I, II, or III as required or indicated for the design system pressure. Impeller wheels shall be rigidly constructed, accurately balanced both statically and dynamically. Fan blades may be forward curved, backward-inclined or airfoil design in wheel sizes up to 750 mm. Fan blades for wheels over 750 mm in diameter shall be backward-inclined or airfoil design. Fan wheels over 900 mm in diameter shall have overhung pulleys and a bearing on each side of the wheel. Fan wheels 900 mm or less in diameter may have one or more extra long bearings between the fan wheel and the drive. Bearings shall be sleeve type, self-aligning and self-oiling with oil reservoirs, or precision self-aligning roller or ball-type with accessible grease fittings or permanently lubricated type. Grease fittings shall be connected to tubing and serviceable from a single accessible point. Bearing life shall be L50 rated at not less than 200,000 hours as defined by AFBMA Std 9 and AFBMA Std 11. Fan shafts shall be steel, accurately finished, and shall be provided with key seats and keys for impeller hubs and fan pulleys. Each fan outlet shall be of ample proportions and shall be designed for the attachment of angles and bolts for attaching flexible connections. Motors, unless otherwise indicated, shall not exceed 1800 rpm and shall have open dripproof enclosures. Motor starters shall be magnetic across-the-line type with general-purpose enclosure.

2.8.1.2 In-Line Centrifugal Fans

In-line fans shall have centrifugal backward inclined blades, stationary discharge conversion vanes, internal and external belt guards, and adjustable motor mounts. Fans shall be mounted in a welded tubular casing. Air shall enter and leave the fan axially. Inlets shall be streamlined with conversion vanes to eliminate turbulence and provide smooth discharge air flow. Fan bearings and drive shafts shall be enclosed and isolated from the air stream. Fan bearings shall be sealed against dust and dirt and shall be permanently lubricated, and shall be precision self-aligning ball or roller type. Bearing life shall be L50 rated at not less than 200,000 hours as defined by AFBMA Std 9 and AFBMA Std 11. Motors shall have open dripproof enclosure. Motor starters shall be magnetic across-the-line with general-purpose enclosures. Remote manual switch with pilot indicating light shall be provided where indicated.

2.8.1.3 Panel Type Power Wall Ventilators

Fans shall be propeller type, assembled on a reinforced metal panel with venturi opening spun into panel. Fans with wheels less than 600 mm diameter shall be direct or V-belt driven and fans with wheels 600 mm diameter and larger shall be V-belt drive type. Fans shall be furnished with wall mounting collar. Lubricated bearings shall be provided. Fans shall be fitted with wheel and motor side metal or wire guards which have a corrosion-resistant finish. Motor enclosure shall be dripproof type. Motor operated backdraft dampers shall be provided where indicated.
2.8.1.4 Ceiling Exhaust Fans

Suspended cabinet-type ceiling exhaust fans shall be centrifugal type, direct-driven. Fans shall have acoustically insulated housing. Integral backdraft damper shall be chatter-proof. The integral face grille shall be of egg-crate design or louver design. Fan motors shall be mounted on vibration isolators. Unit shall be provided with mounting flange for hanging unit from above. Fans shall be U.L. listed.

2.8.2 Coils

Coils shall be fin-and-tube type constructed of seamless copper tubes and aluminum fins mechanically bonded or soldered to the tubes. Copper tube wall thickness shall be a minimum of 0.406 mm. Aluminum fins shall be 0.14 mm minimum thickness. Casing and tube support sheets shall be not lighter than 1.6 mm galvanized steel, formed to provide structural strength. When required, multiple tube supports shall be provided to prevent tube sag. Each coil shall be tested at the factory under water at not less than 2.76 MPa air pressure and shall be suitable for 1.38 MPa working pressure. Coils shall be mounted for counterflow service. Coils shall be rated and certified according to ARI 410.

2.8.2.1 Water Coils

Water coils shall be installed with a pitch of not less than 10 mm per meter of the tube length toward the drain end. Headers shall be constructed of cast iron, welded steel or copper. Each coil shall be provided with a plugged vent and drain connection extending through the unit casing.

2.8.3 Air Filters

Air filters shall be listed according to requirements of UL 900, except high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test method shall be as listed under the Label Service and shall meet the requirements of UL 586.

2.8.3.1 Extended Surface Pleated Panel Filters

Filters shall be 50 mm depth, sectional, disposable type of the size indicated and shall have an average efficiency of 25 to 30 percent when tested according to ASHRAE 52.1. Initial resistance at 2.54 m/s shall not exceed 9 mm water gauge. Filters shall be UL Class 2. Media shall be nonwoven cotton and synthetic fiber mat. A wire support grid bonded to the media shall be attached to a moisture resistant fiberboard frame. All four edges of the filter media shall be bonded to the inside of the frame to prevent air bypass and increase rigidity.

2.8.3.2 Filter Gauges

Filter gauges shall be dial type, diaphragm actuated draft and shall be provided for all filter stations, including those filters which are furnished as integral parts of factory fabricated air handling units. Gauges shall be at least 98 mm in diameter, shall have white dials with black figures, and shall be graduated in 0.25 mm, and shall have a minimum range of 25 mm beyond the specified final resistance for the filter bank on which each gauge is applied. Each gauge shall incorporate a screw operated zero adjustment and shall be furnished complete with two static pressure
2.9 AIR HANDLING UNITS

2.9.1 Field-Fabricated Air Handling Units

Built-up units shall be as specified in paragraph DUCTWORK COMPONENTS. Fans, coils, spray-coil dehumidifiers, and air filters shall be as specified in paragraph AIR SYSTEMS EQUIPMENT for types indicated.

2.9.2 Factory-Fabricated Air Handling Units

Units shall be draw-through type as indicated. Units shall include fans, coils, airtight insulated casing, filter sections, and diffuser sections where indicated, air blender adjustable V-belt drives, belt guards for externally mounted motors, access sections where indicated, combination sectional filter-mixing box, vibration-isolators, and appurtenances required for specified operation. Vibration isolators shall be as indicated. Each air handling unit shall have physical dimensions suitable to fit space allotted to the unit and shall have the capacity indicated. Air handling unit shall have published ratings based on tests performed according to ARI 430.

2.9.2.1 Casings

Casing sections shall be 50 mm double wall type, constructed of a minimum 18 gauge galvanized steel, or 18 gauge steel outer casing protected with a corrosion resistant paint finish according to paragraph FACTORY PAINTING. Inner casing of double-wall units shall be minimum 1.0 mm solid galvanized steel. Casing shall be designed and constructed with an integral structural steel frame such that exterior panels are non-load bearing. Exterior panels shall be individually removable. Removal shall not affect the structural integrity of the unit. Casings shall be provided with inspection doors, access sections, and access doors as indicated. Inspection and access doors shall be insulated, fully gasketed, double-wall type, of a minimum 1.3 mm outer and 1.0 mm inner panels. Doors shall be rigid and provided with heavy duty hinges and latches. Inspection doors shall be a minimum 300 mm wide by 300 mm high. Access doors shall be minimum 600 mm wide and shall be the full height of the unit casing or a minimum of 1800 mm, whichever is less. Access Sections shall be according to paragraph AIR HANDLING UNITS. Drain pan shall be double-bottom type constructed of 16 gauge stainless steel, pitched to the drain connection. Drain pans shall be constructed water tight, treated to prevent corrosion, and designed for positive condensate drainage. When 2 or more cooling coils are used, with one stacked above the other, condensate from the upper coils shall not flow across the face of lower coils. Intermediate drain pans or condensate collection channels and downspouts shall be provided, as required to carry condensate to the unit drain pan out of the air stream and without moisture carryover. Each casing section handling conditioned air shall be insulated with not less than 25 mm (1 inch) thick, 24 kg per cubic meter (1-1/2 pound density) coated fibrous glass material having a thermal conductivity not greater than 0.033 W/m-K (0.23 Btu/hr-sf-F). Factory applied fibrous glass insulation shall conform to ASTM C 1071, except that the minimum thickness and density requirements do not apply, and shall meet the requirements of NFPA 90A. Foam-type insulation is not acceptable. Foil-faced insulation
shall not be an acceptable substitute for use on double-wall access doors and inspections doors and casing sections. Duct liner material, coating, and adhesive shall conform to fire-hazard requirements specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Exposed insulation edges and joints where insulation panels are butted together shall be protected with a metal nosing strip or shall be coated to conform to meet erosion resistance requirements of ASTM C 1071. A latched inspection door, shall be provided in the fan and coil sections. Additional inspection doors, access doors and access sections shall be provided where indicated.

2.9.2.2 Heating and Cooling Coils

Coils shall be provided as specified in paragraph AIR SYSTEMS EQUIPMENT, for types indicated.

2.9.2.3 Air Filters

Air filters shall be as specified in paragraph AIR SYSTEMS EQUIPMENT for types and thickness indicated.

2.9.2.4 Fans

Fans shall be double-inlet, centrifugal type with each fan in a separate scroll. Fans and shafts shall be dynamically balanced prior to installation into air handling unit, then the entire fan assembly shall be statically and dynamically balanced at the factory after it has been installed in the air handling unit. Fans shall be mounted on steel shafts accurately ground and finished. Fan bearings shall be sealed against dust and dirt and shall be precision self-aligning ball or roller type. Bearing life shall be L50 rated at not less than 200,000 hours as defined by AFBMA Std 9 and AFBMA Std 11. Bearings shall be permanently lubricated or lubricated type with lubrication fittings readily accessible at the drive side of the unit. Bearings shall be supported by structural shapes, or die formed sheet structural members, or support plates securely attached to the unit casing. Bearings may not be fastened directly to the unit sheet metal casing. Fans and scrolls shall be furnished with coating indicated. Fans shall be driven by a unit-mounted or a floor-mounted motor connected to fans by V-belt drive complete with belt guard for externally mounted motors. Belt guards shall be the three sided enclosed type with solid or expanded metal face. Belt drives shall be designed for not less than a 1.3 service factor based on motor nameplate rating. Motor sheaves shall be variable pitch for 20 kW and below and fixed pitch above 20 kW as defined by ARI Guideline D. Where fixed sheaves are required, variable pitch sheaves may be used during air balance, but shall be replaced with an appropriate fixed sheave after air balance is completed. Variable pitch sheaves shall be selected to drive the fan at a speed that will produce the specified capacity when set at the approximate midpoint of the sheave adjustment. Motors for V-belt drives shall be provided with adjustable bases. Fan motors shall have open enclosures. Motor starters shall be magnetic across-the-line type with general-purpose weather-resistant enclosure. Unit fan or fans shall be selected to produce the required capacity at the fan static pressure. Sound power level shall be as indicated. The sound power level values shall be obtained according to AMCA 300 or ASHRAE 68.

2.9.2.5 Access Sections and Filter/Mixing Boxes
Access sections shall be provided where indicated and shall be furnished with access doors as shown. Access sections and filter/mixing boxes shall be constructed in a manner identical to the remainder of the unit casing and shall be equipped with access doors. Mixing boxes shall be designed to minimize air stratification and to promote thorough mixing of the air streams.

2.9.2.6 Dampers

Dampers shall be as specified in paragraph CONTROLS.

2.10 TERMINAL UNITS

2.10.1 Variable Air Volume (VAV)

VAV terminal units shall be the type, size, and capacity shown and shall be mounted in the ceiling or wall cavity and shall be suitable for single system applications. Actuators and controls shall be as specified in paragraph CONTROLS. Unit enclosures shall be constructed of galvanized steel not lighter than 0.85 mm or aluminum sheet not lighter than 1.3 mm. Single or multiple discharge outlets shall be provided as required. Units with flow limiters are not acceptable. Unit air volume shall be factory preset and readily field adjustable without special tools. Reheat coils shall be provided as indicated. A flow chart shall be attached to each unit. Acoustic performance of the terminal units shall be based upon units tested according to ARI 880. Sound power level shall be as indicated. Discharge sound power shall be shown for minimum and 375 Pa inlet static pressure. Acoustical lining shall be according to NFPA 90A.

2.10.1.1 Variable Volume, Single Duct

Variable volume, single duct, terminal units shall be provided with a calibrated air volume sensing device, air valve or damper, actuator, and accessory relays. Units shall control air volume to within plus or minus 5 percent of each air set point volume as determined by the thermostat with variations in inlet pressures from 200 to 1500 Pa. Internal resistance of units shall not exceed 100 Pa at maximum flow range. External differential pressure taps separate from the control pressure taps shall be provided for air flow measurement with a 0 to 250 Pa range. Unit volume controller shall be normally open upon loss of control signal.

2.10.1.2 Reheat Units

a. Hot Water Coils: Hot-water coils shall be fin-and-tube type constructed of seamless copper tubes and copper or aluminum fins mechanically bonded or soldered to the tubes. Headers shall be constructed of cast iron, welded steel or copper. Casing and tube support sheets shall be 1.6 mm, galvanized steel, formed to provide structural strength. Tubes shall be correctly circuited for proper water velocity without excessive pressure drop and they shall be drainable where required or indicated. At the factory, each coil shall be tested at not less than 1700 kPa air pressure and shall be suitable for 1400 kPa working pressure. Drainable coils shall be installed in the air handling units with a pitch of not less than 10 mm per m of tube length toward the drain end. Coils shall conform to the provisions of ARI 410.
2.11 FACTORY PAINTING

Units which are not of galvanized construction according to ASTM A 123/A 123M or ASTM A 924/A 924M shall be factory painted with a corrosion resisting paint finish. Internal and external ferrous metal surfaces shall be cleaned, phosphatized and coated with a paint finish which has been tested according to ASTM B 117, ASTM D 1654, and ASTM D 3359. Evidence of satisfactory paint performance for a minimum of 125 hours for units to be installed indoors and 500 hours for units to be installed outdoors shall be submitted. Rating of failure at the scribe mark shall be not less than 6, average creepage not greater than 3 mm. Rating of the inscribed area shall not be less than 10, no failure. On units constructed of galvanized steel which have been welded, exterior surfaces of welds or welds that have burned through from the interior shall receive a final shop docket of zinc-rich protective paint according to ASTM D 520 Type I.

2.12 VARIABLE FREQUENCY DRIVES

The Adjustable Frequency Drive (AFDs) shall be solid state, with a Pulse Width Modulated (PWM) output waveform utilizing insulated gate bipolar transistors (IGBT's). The AFD package specified herein shall be completely assembled and tested by the Manufacturer. The AFDs shall be mounted in a NEMA MG 1 enclosure. The drive efficiency shall be 97% or better full speed and full load and the fundamental power factor shall be 0.98 at all speeds and loads. All AFDs shall have the following standard features:

a. All AFDs shall have the same customer interface digital display and keypad, regardless of horsepower rating. The keypad is to be used for local control, for setting all parameters, and for stepping through the displays and menus. The keypad shall be removable, capable of remote mounting, and shall have its own non-volatile memory. The keypad shall allow for uploading and downloading of parameter settings as an aid for start-up of multiple AFDs.

b. The AFDs shall utilize plain English digital display (code numbers and letters are not acceptable). All set-up parameters, indications, faults, warnings and other information must be displayed in words to allow the user to understand what is being displayed without the use of an installation manual or cross-reference table. AFDs utilizing codes are not acceptable.

c. The keypad shall include Hand-Off-Auto membrane selections. The drive shall incorporate "bumpless transfer" of speed reference when switching between "Auto" and "Hand" modes and vice-versa.

d. The AFDs shall have a reactor(s). Manufacturer shall include in the submittals harmonic distortion analysis (IEEE Standard 519, 5%) for this particular job-site including total voltage distortion with the submittals. Manufacturers exceeding 5% total harmonic voltage distortion shall not be acceptable.

e. AFDs shall be provided with displays or meters showing:

1. Output Frequency
2. Motor Speeds (RPM)
3. Motor Current
4. DC Bus Voltage
5. Output Voltage
6. Heat Sink Temperature
7. Analog Input Values
8. PID Setpoint Values
9. Elapsed Time Meter (resettable)
10. kWh Meter (resettable)
11. Last Three Faults

f. The AFDs shall operate continuously with an input voltage range from 380-480 VAC 10% 200-240 VAC.

g. The AFD shall be suitable for use on a circuit capable of delivering not more than 65,000 RMS symmetrical amps, 480 V maximum.

h. The AFD shall be capable of starting into a rotating load (forward or reverse) and accelerate or decelerate to setpoint without safety tripping or component damage (flying start). The AFD shall also be capable of DC injection braking at start to stop a reverse spinning motor prior to ramp.

The AFDs shall have the following field programmable features:

a. If the input reference (4-20 mA or 2-10V) is lost, the AFD shall give the user the option of either; (1) stopping and displaying a fault, (2) running at a programmable preset speed, (3) hold the AFD speed based on the last good reference received, or (4) cause a warning to be issued, as selected by the user. The drive shall be programmable to signal this condition via a keypad warning, relay output and/or over the serial communications bus.

b. PID Setpoint controller shall be standard in the drive, allowing a pressure or flow signal to be connected to the AFD, using the microprocessor in the AFD for the closed loop control. The AFD shall have 250 mA or 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID setpoint shall be adjustable from the AFD keypad, analog inputs, or over the communication's bus.

c. Control inputs and outputs:
 1. Isolated
 2. Five digital inputs
 3. Two digital outputs
 4. Two analog inputs
 5. One analog output
 6. Fully field programmable

d. Digital outputs shall include field adjustable motor current levels for motor status. Drives not having this feature shall provide and install field adjustable three phase current relays for digital status of motor (proof of flow). Digital outputs must be true, form C type contacts; open collector outputs are not acceptable. Relays shall be capable of programmable on and off delay times.

e. Analog output capabilities shall include, but not be limited to, frequency, speed, current, voltage, active reference, and kW indications. Manufacturers not having kW output shall provide current transformers and kW transformers for kW output.
f. The AFD shall have an RS-485 port as standard. The standard protocol shall be Modbus.

1. The AFD shall be able to communicate with PLC's, DCS's, and DDC's. Serial communication capabilities shall include, but not be limited to, run-stop control, speed set adjustment, and PID control adjustments. The drive shall have the capability of allowing the DDC to monitor feedback such as process variable feedback, current (in amps), power (kW), kilowatt-hours (resettable), operating hours (resettable), relay outputs, and diagnostic warning and fault information. Additionally, remote (LAN) VFD fault reset shall be possible. A minimum of 15 field parameters shall be capable of being monitored.

2. The AFD shall allow the DDC to control the drive's digital and analog outputs via the serial interface. The serial communications interface shall allow for DO (relay) control and AO (analog) control. In addition, all drive digital and analog inputs shall be capable of being monitored by the DDC system.

Manual or automatic (selectable transfer to line power via contactors. A keypad to control the bypass controller is to be mounted on the enclosure door. The bypass keypad shall include a one line diagram and status LEDs to indicate the mode of operation, drive and bypass contactor is open and the drive output contactor is closed. In the "Test" position, the drive output contactor is open, in the "Bypass" position, the drive output contactor is open, and the bypass contactor is closed via Start/stop command. Start/stop via customer supplied maintained contact shall be 24V or 115V compatible and shall function in both the "Normal" and "Bypass" modes. The voltage tolerance of the bypass power supply shall be +30/-35% to eliminate the problem of contactor coil burnout. The design shall include single-phase protection in both the AFD and bypass modes.

a. Customer Interlock Terminal Strip - provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. All external safety interlocks shall remain fully functional whether the system is in Hand, Auto, Drive, or Bypass modes.

b. Automatic/manual bypass operation shall be selectable in the standard microprocessor based bypass design.

c. Door/cover interlocked disconnect switch which will disconnect all input power from the drive, bypass and all internally mounted options. The disconnect handle shall be through the door, and be padlockable in the "Off" position.

d. Fast acting semi-conductor fuses exclusive to the AFD - fast acting semi-conductor fuses allow the AFD to disconnect from the line prior to clearing upstream branch circuit protection maintaining bypass capability. Bypass designs which have no such fuses, or that incorporate fuses common to both the AFD and the bypass will not be accepted. In such designs, a fuse clearing failure would render the bypass unusable.
e. Class 20 or 30 (selectable) electronic motor overload protection shall be included in the microprocessor bypass to protect the motor in bypass mode.

2.13 GAS-STEAM HUMIDIFIERS

2.13.1 Description

Gas to steam humidifier with ultra-sorb dispersion unit.

2.13.2 Dispersion Panel

Ultra-sorb steam grid shall provide total absorption, 6 inches downstream of humidifier tube panel. Tubing shall be stainless steel. Maximum pressure drop of 0.02 inches of water.

2.13.3 Tank and Cover

Tank and cover shall be constructed of 14-gauge stainless steel with Heli-arc welded seams.

2.13.4 Burner and Burner Assembly

Each burner shall be freely modulating with a gas input turndown ration of up to 4:1. Burner assembly shall be AGA/CGA/CSA certified and tested. Gas train assembly shall be complete with burner/mixing tube assembly, igniter, sight glass, flame rod electrode, gas manifold, integral gas valve and venture.

2.13.5 Mounting

The gas to steam humidifier shall be capable of multiple mounting options.

2.13.6 Heat Exchanger

Heat exchanger shall be tubular stainless steel connected to stainless steel flue box.

2.13.7 Operation and Maintenance

The unit shall contain the following operational and maintenance features.

a. Water makeup valve control.
b. Real time/drain and flush.
c. End-of-season drain.
d. Low water cutoff.
e. Modulating steam control.
f. Aquastat freeze protection.
g. Surface skimmer.
h. Support legs.
i. Factory insulation.

j. Blocked flue safety.

k. Service access port.

l. Removable cleanout plate.

m. Brass body fill valve.

2.13.8 Controls

A microprocessor-based controller shall be provided and be capable of full modulating (0-100%) control of humidifier outputs, as well as control of all fill and drain functions.

The electronic controller shall be interoperable with building management systems using LonTalk open protocol.

A keypad, capable of either unit or remote mounting, shall be provided. The keypad shall be capable of monitoring and/or controlling the following parameters:

a. Relative humidity (RH) set-point and actual conditions in the space (from humidistat or humidity transmitter).

b. Relative humidity (RH) set-point and actual conditions in the duct for variable air volume applications.

c. Relative humidity (RH) high limit set-point and actual conditions.

d. Total system demand in percent of total humidifier capacity.

e. Total system output in lbs/hour.

f. Real time drain and flush.

g. End of season drain.

h. System fault indicator.

2.13.9 Accessories

a. Cold snap offset sensor shall transmit window glass temperature to increase or decrease indoor RH setpoint.

b. Air flow proving switch.

c. Duct high limit humidistat.

d. VAV control.

PART 3 EXECUTION

3.1 INSTALLATION
Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.

3.1.1 Piping

Pipe and fitting installation shall conform to the requirements of ASME B31.1. Pipe shall be cut accurately to measurements established at the jobsite, and worked into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipe or tubing shall be cut square, shall have burrs removed by reaming, and shall permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers. Changes in direction shall be made with fittings, except that bending of pipe 100 mm and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted.

Horizontal supply mains shall pitch down in the direction of flow as indicated. The grade shall be not less than 2 mm in 1 m. Reducing fittings shall be used for changes in pipe sizes. Open ends of pipelines and equipment shall be capped or plugged during installation to keep dirt or other foreign materials out of the system. Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 65 mm or less in diameter, and with flanges for pipe 80 mm and larger. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric unions or flanges. All piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded.

3.1.1.1 Joints

a. Threaded Joints: Threaded joints shall be made with tapered threads and made tight with a stiff mixture of graphite and oil or polytetrafluoroethylene tape or equivalent thread joint compound or material, applied to the male threads only.

b. Soldered Joints: Joints in copper tubing shall be cut square with ends reamed, and all filings and dust wiped from interior of pipe. Joints shall be soldered with 95/5 solder or brazed with silver solder applied and drawn through the full fitting length. Care shall be taken to prevent annealing of tube or fittings when making connections. Joints 65 mm and larger shall be made with heat uniformly around the entire circumference of the joint with a multi-flame torch. Connections in floor slabs shall be brazed. Excess solder shall be wiped from joint before solder hardens. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B 813.

c. Welded Joints: Welding shall be according to qualified procedures using qualified welders and welding operators. Procedures and welders shall be qualified according to ASME BPV IX. Welding procedures qualified by others and welders and welding operators qualified by another operator may be permitted by ASME B31.1. All welds shall be permanently identified by imprinting the welder's or welding operator's assigned symbol adjacent to the weld. Welded
joints shall be fusion welded unless otherwise required. Changes in direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connections may be made with either welding tees or branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Beveling, alignment, heat treatment and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. Electrodes shall be stored and dried according to AWS D1.1 or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used.

3.1.1.2 Flanges and Unions

Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items.

3.1.2 Supports

3.1.2.1 General

Hangers used to support piping 50 mm and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers.

3.1.2.2 Seismic Requirements (Pipe Supports and Structural Bracing)

Piping and attached valves shall be supported and braced to resist seismic loads as specified under Sections 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT. Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Section 05210 STEEL JOISTS.

3.1.2.3 Pipe Hangers, Inserts and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. Types 5, 12, and 26 shall not be used.

a. Hangers: Type 3 shall not be used on insulated piping.

b. Inserts: Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for Type 18 inserts.

c. C-Clamps: Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the
manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

d. Angle Attachments: Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

e. Hangers: Type 24 may be used only on trapeze hanger systems or on fabricated frames.

f. Type 39 saddles shall be used on all insulated pipe 100 mm) and larger when the temperature of the medium is above 15.5 degrees C. Type 39 saddles shall be welded to the pipe.

g. Type 40 shields shall:

 (1) be used on all insulated pipes less than 100 mm.

 (2) be used on all insulated pipes 100 mm and larger when the temperature of the medium is 15.5 degrees C or less.

 (3) have a high density insert for pipe 50 mm (2 inches) and larger, and for smaller pipe when the insulation shows signs of being visibly compressed, or when the insulation or jacket shows visible signs of distortion at or near the type 40 shield. High density inserts shall have a density of 144 kg/cubic meter (9 pcf) or greater.

h. Horizontal Pipe Supports: Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 300 mm from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 1.5 m apart at valves. Pipe hanger loads suspended from steel joist with hanger loads between panel points in excess of 220 N shall have the excess hanger loads suspended from panel points.

i. Vertical Pipe Supports: Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 5 m, not more than 2.4 m from end of risers, and at vent terminations.

j. Pipe Guides: Type 35 guides using steel reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered.

k. Steel Slides: Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 100 mm and larger with medium 15.5 degrees C or greater, a Type 39 saddle may be welded to the pipe and freely rest on a steel plate. On piping under 100 mm, a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate.
1. High Temperature Guides with Cradles: Where there are high system
temperatures and welding to piping is not desirable, the Type 35
guide shall include a pipe cradle, welded to the guide structure
and strapped securely to the pipe. The pipe shall be separated
from the slide material by at least 100 mm, or by an amount
adequate for the insulation, whichever is greater.

m. Insulated Pipe: Insulation on horizontal pipe shall be continuous
through hangers for hot and cold piping. Other requirements on
insulated pipe are specified in Section 15080 THERMAL INSULATION
FOR MECHANICAL SYSTEMS.

3.1.3 Anchors

Anchors shall be provided wherever necessary or indicated to localize
expansion or to prevent undue strain on piping. Anchors shall consist of
heavy steel collars with lugs and bolts for clamping and attaching anchor
braces, unless otherwise indicated. Anchor braces shall be installed in the
most effective manner to secure the desired results using turnbuckles where
required. Supports, anchors, or stays shall not be attached where they will
injure the structure or adjacent construction during installation or by the
weight of expansion of the pipeline.

3.1.4 Pipe Sleeves

Sleeves shall not be installed in structural members except where indicated
or approved. Rectangular and square openings shall be as detailed. Each
sleeve shall extend through its respective wall, floor, or roof, and shall
be cut flush with each surface. Pipes passing through concrete or masonry
wall or concrete floors or roofs shall be provided with pipe sleeves fitted
into place at the time of construction. Unless otherwise indicated, sleeves
shall provide a minimum of 6 mm all-around clearance between bare pipe and
sleeves or between jacket over insulation and sleeves. Sleeves in bearing
walls, waterproofing membrane floors, and wet areas shall be steel pipe or
cast iron pipe. Sleeves in non-bearing walls, floors, or ceilings may be
steel pipe, cast iron pipe, galvanized sheet metal with lock-type
longitudinal seam and of the metal thickness indicated, or moisture
resistant fiber or plastic. Except in pipe chases or interior walls, the
annular space between pipe and sleeve or between jacket over insulation and
sleeve, in non-fire rated walls, shall be sealed as indicated and specified
in Section 07900 JOINT SEALING. Pipes passing through wall waterproofing
membrane shall be sleeved as specified above, and a waterproofing clamping
flange shall be installed as indicated.

3.1.4.1 Roof and Floor Sleeves

Pipes passing through roof or floor waterproofing membrane shall be
installed through a 17-ounce copper sleeve or a 0.8 mm thick aluminum
sleeve, each within an integral skirt or flange. Flashing sleeve shall be
suitably formed, and skirt or flange shall extend not less than 200 mm from
the pipe and shall be set over the roof or floor membrane in a troweled
coating of bituminous cement. Unless otherwise shown, the flashing sleeve
shall extend up the pipe a minimum of 50 mm above highest floor level or a
minimum of 250 mm above the roof. The annular space between the flashing
sleeve and the bare pipe or between the flashing sleeve and the metal-
jacket-covered insulation shall be sealed as indicated. Pipes up to and
including 250 mm in diameter passing through roof or floor waterproofing
membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess. In lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved.

3.1.4.2 Fire Seal

Where pipes pass through firewalls, fire partitions, or floors, a fire seal shall be provided as specified in Section 07840 FIRESTOPPING.

3.1.4.3 Escutcheons

Escutcheons shall be provided at finished surfaces where exposed piping, bare or insulated, passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheons shall be secured to pipe or pipe covering.

3.1.5 Condensate Drain Lines

Water seals shall be provided in the condensate drain from all units. The depth of each seal shall be 50 mm plus 0.1 mm for each Pa, of the total static pressure rating of the unit to which the drain is connected. Water seals shall be constructed of 2 tees and an appropriate U-bend with the open end of each tee plugged. Pipe cap or plug cleanouts shall be provided where indicated. Drains indicated to connect to the sanitary waste system shall be connected by an indirect waste fitting. Air conditioner drain lines shall be insulated as specified in Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.1.6 Pipe-Alignment Guides

Pipe-alignment guides shall be provided where indicated for expansion loops, offsets, and bends and as recommended by the manufacturer for expansion joints, not to exceed 1.5 m on each side of each expansion joint, and in lines 100 mm or smaller not more than 600 mm on each side of the joint.

3.1.7 Air Vents and Drains

3.1.7.1 Vents

Air vents shall be provided at high points, on water coils, and where indicated to ensure adequate venting of the piping system.
3.1.7.2 Drains

Drains shall be provided at low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps or plugged tees unless otherwise indicated.

3.1.8 Valves

Isolation gate or ball valves shall be installed on each side of each piece of equipment such as pumps, heaters, heating or cooling coils, and other similar items, at the midpoint of all looped mains, and at any other points indicated or required for draining, isolating, or sectionalizing purposes. Isolation valves may be omitted where balancing cocks are installed to provide both balancing and isolation functions. Each valve except check valves shall be identified. Valves in horizontal lines shall be installed with stems horizontal or above.

3.1.9 Equipment and Installation

Frames and supports shall be provided for tanks, compressors, pumps, valves, air handling units, fans, coils, dampers, and other similar items requiring supports. Air handling units shall be floor mounted or ceiling hung, as indicated. The method of anchoring and fastening shall be as detailed. Floor-mounted equipment, unless otherwise indicated, shall be set on not less than 150 mm concrete pads or curbs dowelled in place. Concrete foundations for circulating pumps shall be heavy enough to minimize the intensity of the vibrations transmitted to the piping and the surrounding structure, as recommended in writing by the pump manufacturer. In lieu of a concrete pad foundation, a concrete pedestal block with isolators placed between the pedestal block and the floor may be provided. The concrete foundation or concrete pedestal block shall be of a mass not less than three times the weight of the components to be supported. Lines connected to the pump mounted on pedestal blocks shall be provided with flexible connectors. Foundation drawings, bolt-setting information, and foundation bolts shall be furnished prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Concrete for foundations shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE.

3.1.10 Access Panels

Access panels shall be provided for concealed valves, vents, controls, dampers, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05500 MISCELLANEOUS METALS.

3.1.11 Flexible Connectors

Pre-insulated flexible connectors and flexible duct shall be attached to other components in accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the connector or duct manufacturer and shall be provided at the intervals recommended.

3.1.12 Sleeved and Framed Openings
Space between the sleeved or framed opening and the duct or the duct insulation shall be packed as specified in Section 07840 FIRESTOPPING for fire rated penetrations. For non-fire rated penetrations, the space shall be packed as specified in Section 07900 JOINT SEALING.

3.1.13 Metal Ductwork

Installation shall be according to SMACNA HVAC Duct Const Stds unless otherwise indicated. Duct supports for sheet metal ductwork shall be according to SMACNA HVAC Duct Const Stds, unless otherwise specified. Friction beam clamps indicated in SMACNA HVAC Duct Const Stds shall not be used. Risers on high velocity ducts shall be anchored in the center of the vertical run to allow ends of riser to move due to thermal expansion. Supports on the risers shall allow free vertical movement of the duct. Supports shall be attached only to structural framing members and concrete slabs. Supports shall not be anchored to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, suitable intermediate metal framing shall be provided. Where C-clamps are used, retainer clips shall be provided.

3.1.13.1 Underground Ductwork

Underground ductwork shall be PVC plastisol coated galvanized steel with coating on interior and exterior surfaces and watertight joints. Ductwork shall be installed as indicated, according to ACCA Manual 4 and manufacturer's instructions. Maximum burial depth shall be 2 m.

3.1.14 HUMIDIFIER INSTALLATION

a. Install with required clearance for service and maintenance.

b. Seal humidifier dispersion-tube duct penetrations with flange.

c. Install dispersion tubes pitched to drain condensate back to housing.

d. Install drip leg upstream from steam trap, a minimum of 300 mm for proper operation of trap.

3.1.15 HUMIDIFIER CONNECTIONS

Piping installation requirements are specified in other Division 15 Sections.

a. Install piping adjacent to machine to allow service and maintenance.

b. Install shutoff valve and stainer in humidifier supply line.

c. Install backflow prevention device in humidifier supply line.

d. Correct piping with a minimum of 25 mm air gap in fill line to prevent backflow into supply line.

3.1.16 Dust Control
To prevent the accumulation of dust, debris and foreign material during construction, temporary dust control protection shall be provided. The distribution system (supply and return) shall be protected with temporary seal-offs at all inlets and outlets at the end of each day's work. Temporary protection shall remain in place until system is ready for startup.

3.1.17 Insulation

Thickness and application of insulation materials for ductwork, piping, and equipment shall be according to Section 15080 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Outdoor air intake ducts and plenums shall be externally insulated up to the point where the outdoor air reaches the conditioning unit or up to the point where the outdoor air mixes with the outside air stream.

3.1.18 Duct Test Holes

Holes with closures or threaded holes with plugs shall be provided in ducts and plenums as indicated or where necessary for the use of pitot tube in balancing the air system. Extensions, complete with cap or plug, shall be provided where the ducts are insulated.

3.1.19 Power Transmission Components Adjustment

V-belts and sheaves shall be tested for proper alignment and tension prior to operation and after 72 hours of operation at final speed. Belts on drive side shall be uniformly loaded, not bouncing. Alignment of direct driven couplings shall be to within 50 percent of manufacturer's maximum allowable range of misalignment.

3.2 FIELD PAINTING AND COLOR CODE MARKING

Finish painting of items only primed at the factory, surfaces not specifically noted otherwise, and color code marking for piping shall be as specified in Section 09900 PAINTING, GENERAL.

3.3 PIPING HYDROSTATIC TEST

After cleaning, water piping shall be hydrostatically tested at a pressure equal to 150 percent of the total system operating pressure for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Leaks shall be repaired and piping retested until test is successful. No loss of pressure will be allowed. Leaks shall be repaired by re-welding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before covering or concealing.

3.4 CLEANING AND ADJUSTING

Pipes shall be cleaned free of scale and thoroughly flushed of foreign matter. A temporary bypass shall be provided for water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged.
or capped after the system has been vented. Inside of room fan-coil units, coil-induction units, air terminal units, unit ventilators, ducts, plenums, and casing shall be thoroughly cleaned of debris and blown free of small particles of rubbish and dust and then shall be vacuum cleaned before installing outlet faces. Equipment shall be wiped clean, with traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided prior to startup of all fans that are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building, and the ducts, plenums, casings, and other items specified have been vacuum cleaned. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions.

3.5 TESTING, ADJUSTING, AND BALANCING

Testing, adjusting, and balancing shall be as specified in Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS. Testing, adjusting, and balancing shall begin only when the air supply and distribution, including controls, has been completed, with the exception of performance tests.

3.6 PERFORMANCE TESTS

After testing, adjusting, and balancing has been completed as specified, each system shall be tested as a whole to see that all items perform as integral parts of the system and temperatures and conditions are evenly controlled throughout the building. Corrections and adjustments shall be made as necessary to produce the conditions indicated or specified. Capacity tests and general operating tests shall be conducted by an experienced engineer. Tests shall cover a period of not less than 2 days for each system and shall demonstrate that the entire system is functioning according to the specifications. Coincidental chart recordings shall be made at points indicated on the drawings for the duration of the time period and shall record the temperature at space thermostats or space sensors, the humidity at space humidistats or space sensors and the ambient temperature and humidity in a shaded and weather protected area.

3.7 FIELD TRAINING

The Contractor shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 6 hours of normal working time and shall start after the system is functionally complete but prior to the performance tests. The field instruction shall cover all of the items contained in the approved Operating and Maintenance Instructions.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA)

AMCA Std 500 (1989; Rev994) Test Methods for Louvers, Dampers and Shutters

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 88 (1996) Seamless Copper Water Tube
ASTM B 88M (1996) Seamless Copper Water Tube (Metric)
ASTM D 635 (1997) Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position
ASTM D 1693 (1997a) Environmental Stress-Cracking of Ethylene Plastics

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element
ASME BPV VIII Div I (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage

ELECTRONIC INDUSTRIES ASSOCIATION (EIA)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Std 142 (1991) IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (1991) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA ICS 1 (1993) Industrial Control and Systems

NEMA ST 1 (1988) Specialty Transformers (Except General-Purpose Type)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 90A (1996) Installation of Air Conditioning and Ventilating Systems

UNDERWRITERS LABORATORIES (UL)

UL 268A (1998) Smoke Detectors for Duct Application

UL 508 (1993; Rev thru Oct 1997) Industrial Control Equipment

1.2 GENERAL REQUIREMENTS

A EMCS system shall be provided to connect the new facility to the existing Little Rock Air Force Base EMCS system. Components used for new EMCS functions shall be capable of full integration with the existing Base EMCS system. The existing EMCS is a Trane Summit. Remote communication shall be compatible with the existing host Local Area Network (LAN) in the EMCS Work Center located in Building 536. Systems that use emulator programs or third party software to provide interaction with existing EMCS will not be acceptable. Provide new BCU with ethernet card cabling to LAN punchdown board for the Flight Simulator. The BCU shall also be connected to the facilities air handling units, boilers, hot water/chillers, and utility meters. Reference EMCS Block Diagram shown on the drawings for devices to be connected at the new facilities. A data transmission system shall be provided all engineering, devices, installation, calibration, software programming and check out necessary for a complete and fully operational EMCS system herein. Contractor shall develop all algorithms to define the points and applications and install the control LAN panels. After all programming "bugs" have been worked out, the Contractor shall install the software in tabular format on the host computer. The Contractor shall...
program all I/O points, develop on screen graphic, and implement the EMCS system for the new facility. Installation and programming of the EMCS shall be by a Train certified representative. All connected devices shall be configured as necessary. In no case shall programming by the contractor invalidate the existing EMCS warranty.

1.2.1 Installation Requirements

Provide and install a new tracer Summit Building control unit with ethernet card and approximately 10 meters of UTP CAT 6 cable from unit to LAN Rack in same room in Building 1255. Reconnect system, reprogram, and verify operation with Base EMCS System Personnel.

1.2.2 Electrical Work

Refer to Division 16 sections for the following work; not work of this section. Power supply wiring for power source to power connection on controls and/or unit control panels. Include starter, disconnects, and required electrical devices, except where specified as furnished

Provide the following electrical work as work of this section, complying with requirements for Division 16 sections.

Control wiring between field-installed controls, indicating devices, and unit control panels.

1.2.3 Quality Assurance

Installer's qualifications: The EMCS Contractor shall have a local office within a 50 mile radius of the job site, staffed with trained engineers fully capable of providing instructions, routine maintenance, and 24 hour emergency maintenance service on all system components. The EMCS Contractor shall have a three year experience record in the design and installation of computerized building systems similar in scope and performance to that specified herein. The EMCS programmer and installer shall be certified to work on TRANCE EMCS equipment.

1.2.4 Building Control Unit (BCU)

The EMCS BCU shall be manufactured by Trane. The building control units shall have ample memory to support it's operation system, data base, and programming requirements. Data shall automatically be shared between building control units (both old and new). The data base and custom programming routines shall be editable from EMCS workstation located in Building 536. The BCU shall be designed in a modular fashion so that the enclosure may be roughed in prior to the installation of the electronics. Provide LED's for power, communications and alarms. All wiring connections shall be made to field serviceable terminal strips. The BCU shall maintain all programming information in the even of a power loss for at least 7 days.

1.2.5 Nameplates, Lens Caps, and Tags

Nameplates and lens caps bearing legends as shown and tags bearing device-unique identifiers as shown shall have engraved or stamped characters. A plastic or metal tag shall be mechanically attached directly to each device or attached by a metal chain or wire. Each airflow measurement station
shall have a tag showing flow rate range for signal output range, duct size, and identifier as shown.

1.2.6 Verification of Dimensions

After becoming familiar with all details of the work, the Contractor shall verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work.

1.2.7 Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the mechanical, electrical, and finish conditions that could affect the work to be performed, shall arrange such work accordingly, and shall furnish all work necessary to meet such conditions.

1.2.8 Power-Line Surge Protection

Equipment connected to ac circuits shall be protected from power-line surges. Equipment protection shall meet the requirements of IEEE C62.41. Fuses shall not be used for surge protection.

1.2.9 Surge Protection for Transmitter and Control Wiring

DDC system control-panel equipment shall be protected against surges induced on control and transmitter wiring installed outside. The equipment protection shall be tested in the normal mode and in the common mode, using the following two waveforms:

a. A 10-microsecond by 1,000-microsecond waveform with a peak voltage of 1,500 volts and a peak current of 60 amperes.

b. An eight microsecond by 20-microsecond waveform with a peak voltage of 1,000 volts and a peak current of 500 amperes.

1.2.10 System Overall Reliability Requirement

The system shall be configured and installed to yield a mean time between failure (MTBF) of at least 40,000 hours. Each DDC controller shall be designed, configured, installed and programmed to provide for stand alone operation with minimal performance degradation on failure of other system components to which it is connected or with which it communicates.

1.2.11 DDC System Network Accessibility

Where the systems to be controlled by the DDC system are located in multiple mechanical rooms, each mechanical room shall have at least one communication port for the portable workstation/tester. DDC controllers shall be located in the same room as the equipment being controlled or in an adjacent space which has direct access to the equipment room.

1.2.12 System Accuracy and Display

The system shall maintain an end-to-end accuracy for one year from sensor to operator's console display for the applications specified and shall display
the value as specified. Each temperature shall be displayed and printed to nearest 0.05 degree C.

1.2.12.1 Space Temperature

Space temperature with a range of 10 to 30 degrees C plus or minus 0.5 degrees C for conditioned space; minus 1 to plus 55 degrees C plus or minus 0.5 degrees C for unconditioned space.

1.2.12.2 Duct Temperature

Duct temperature with a range of 5 to 60 degrees C plus or minus 1 degree C.

1.2.12.3 Outside Air Temperature

Outside air (OA) temperature with a range of minus 35 to plus 55 degrees C plus or minus 1 degree C; with a subrange of minus 1 to plus 40 degrees C plus or minus 0.5 degree C.

1.2.12.4 Water Temperature

Water temperature with a range of minus 1 to plus 40 degrees C plus or minus 0.5 degree C; the range of 40 to 120 degrees C plus or minus 1 degree C; and water temperatures for the purpose of performing energy calculations using differential temperatures to plus or minus 0.5 degree C using matched sensors.

1.2.12.5 High Temperature

High temperature with a range of 100 to 260 degrees C plus or minus 1 degree C.

1.2.12.6 Relative Humidity

Relative humidity, within a range of 20 to 80 percent, plus or minus 6.0 percent of range (display and print to nearest 1.0 percent).

1.2.12.7 Pressure

Pressure with a range for the specific application plus or minus 2.0 percent of range (display and print to nearest kPa.)

1.2.12.8 Flow

Flow with a range for the specific application plus or minus 3.0 percent of range, and flows for the purpose of thermal calculations to plus or minus 2.0 percent of actual flow (display and print to nearest unit, such as liters per second).

1.2.12.9 KWh and kW Demand

KWh and kW demand with a range for the specific application plus or minus 1.0 percent of reading (display and print to nearest kWh or kW).

1.2.12.10 Analog Value Input
An analog value input to the system's equipment via an AI with a maximum error of 0.50 percent of range, not including the sensor or transmitter error. This accuracy shall be maintained over the specified environmental conditions.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

HVAC Control System; G

Drawings shall be on A1 (841 by 594 mm) sheets in the form and arrangement shown. The drawings shall use the same abbreviations, symbols, nomenclature and identifiers shown. Each control system element on a drawing shall have a unique identifier as shown. The HVAC Control System Drawings shall be delivered together as a complete submittal. Deviations must be approved by the Contracting Officer. Drawings shall be submitted along with Submittal SD-01, Data.

a. HVAC Control System Drawings shall include the following:

 Sheet One: Drawing Index, HVAC Control System Legend.
 Sheet Two: Valve Schedule, Damper Schedule.
 Sheet Three: Compressed Air Station Schematic.
 Sheet Four: Control System Schematic and Equipment Schedule.
 Sheet Five: Sequence of Operation and Data Terminal StripLayout.
 Sheet Six: Control Loop Wiring Diagrams.
 Sheet Seven: Motor Starter and Relay Wiring Diagram.
 Sheet Eight: Communication Network and Block Diagram.
 Sheet Nine: DDC Panel Installation and Block Diagram.
 (Repeat Sheets Four through Seven for each AHU System.)

b. The HVAC Control System Drawing Index shall show the name and number of the building, military site, State or other similar designation, and Country. The Drawing Index shall list HVAC Control System Drawings, including the drawing number, sheet number, drawing title, and computer filename when used. The HVAC Control System Legend shall show generic symbols and the name of devices shown on the HVAC Control System Drawings.

c. The valve schedule shall include each valve's unique identifier, size, flow coefficient Kv , pressure drop at specified flow rate, spring range, positive positioner range, actuator size, close-off pressure data, dimensions, and access and clearance requirements data. Valve schedules may be submitted in advance but shall be included in the complete submittal.

d. The damper schedule shall contain each damper's and each actuator's identifier, nominal and actual sizes, orientation of
axis and frame, direction of blade rotation, spring ranges, operation rate, positive positioner ranges, locations of actuators and damper end switches, arrangement of sections in multi-section dampers, and methods of connecting dampers, actuators, and linkages. The Damper Schedule shall include the maximum leakage rate at the operating static-pressure differential. The Damper Schedule shall contain actuator selection data supported by calculations of the torque required to move and seal the dampers, access and clearance requirements. Damper schedules may be submitted in advance but shall be included in the complete submittal.

e. The compressed air station schematic diagram shall show all equipment, including: compressor with motor horsepower and voltage; starter; isolators; manual bypasses; tubing sizes; drain piping and drain traps; reducing valves; dryer; and data on manufacturer's names and model numbers, mounting, access, and clearance requirements. Air Compressor and air dryer data shall include calculations of the air consumption of all current-to-pneumatic transducers and of any other control system devices to be connected to the compressed air station, and the compressed air supply dewpoint temperature at 140 kPa. Compressed air station schematic drawings shall be submitted for each compressed air station.

f. The HVAC control system schematics shall be in the form shown, and shall show all control and mechanical devices associated with the HVAC system. A system schematic drawing shall be submitted for each HVAC system.

g. The HVAC control system equipment Schedule shall be in the form shown. All devices shown on the drawings having unique identifiers shall be referenced in the equipment schedule. Information to be included in the equipment schedule shall be the control loop, device unique identifier, device function, setpoint, input range, and additional important parameters (i.e., output range). An equipment schedule shall be submitted for each HVAC system.

h. The HVAC control system sequence of operation shall reflect the language and format of this specification, and shall refer to the devices by their unique identifiers as shown. No operational deviations from specified sequences will be permitted without prior written approval of the Contracting Officer. Sequences of operation shall be submitted for each HVAC control system including each type of terminal unit control system.

i. The HVAC control system wiring diagrams shall be functional wiring diagrams which show the interconnection of conductors and cables to HVAC control panel terminal blocks and to the identified terminals of devices, starters and package equipment. The wiring diagrams shall show necessary jumpers and ground connections. The wiring diagrams shall show the labels of all conductors. Sources of power required for HVAC control systems and for packaged equipment control systems shall be identified back to the panel board circuit breaker number, HVAC system control panel, magnetic starter, or packaged equipment control circuit. Each power supply
and transformer not integral to a controller, starter, or packaged equipment shall be shown. The connected volt-ampere load and the power supply volt-ampere rating shall be shown. Wiring diagrams shall be submitted for each HVAC control system.

SD-03 Product Data

Service Organizations;

Six copies of a list of service organizations qualified to service the HVAC control system. The list shall include the service organization name, address, technical point of contact and telephone number, and contractual point of contact and telephone number.

Equipment Compliance Booklet;

The HVAC Control System Equipment Compliance Booklet (ECB) shall be in booklet form and indexed, with numbered tabs separating the information on each device. It shall consist of, but not be limited to, data sheets and catalog cuts which document compliance of all devices and components with the specifications. The ECB shall be indexed in alphabetical order by the unique identifiers. Devices and components which do not have unique identifiers shall follow the devices and components with unique identifiers and shall be indexed in alphabetical order according to their functional name. The ECB shall include a Bill of Materials for each HVAC Control System. The Bill of Materials shall function as the Table of Contents for the ECB and shall include the device's unique identifier, device function, manufacturer, model/part/catalog number used for ordering, and tab number where the device information is located in the ECB. The ECB shall be submitted along with Submittal SD-04, Drawings.

Commissioning Procedures; G

Six copies of the HVAC control system commissioning procedures, in booklet form and indexed, 60 days prior to the scheduled start of commissioning. Commissioning procedures shall be provided for each HVAC control system, and for each type of terminal unit control system. The Commissioning procedures shall reflect the format and language of this specification, and refer to devices by their unique identifiers as shown. The Commissioning procedures shall be specific for each HVAC system, and shall give detailed step-by-step procedures for commissioning of the system.

a. The Commissioning procedures shall include detailed, product specific set-up procedures, configuration procedures, adjustment procedures, and calibration procedures for each device. Where the detailed product specific commissioning procedures are included in manufacturer supplied manuals, reference may be made in the HVAC control system commissioning procedures to the manuals.

b. An HVAC control system commissioning procedures equipment list shall be included that lists the equipment to be used to accomplish commissioning. The list shall include manufacturer
name, model number, equipment function, the date of the latest calibration, and the results of the latest calibration.

Performance Verification Test Procedures;

Six copies of the HVAC Control System Performance Verification Test Procedures, in booklet form and indexed, 60 days before the Contractor's scheduled test dates. The performance verification test procedures shall refer to the devices by their unique identifiers as shown, shall explain, step-by-step, the actions and expected results that will demonstrate that the HVAC control system performs in accordance with the sequences of operation, and other contract documents. An HVAC control system performance verification test equipment list shall be included that lists the equipment to be used during performance verification testing. The list shall include manufacturer name, model number, equipment function, the date of the latest calibration, and the results of the latest calibration.

Training;

An outline for the HVAC control system training course with a proposed time schedule. Approval of the planned training schedule shall be obtained from the Government at least 60 days prior to the start of the training. Six copies of HVAC control system training course material 30 days prior to the scheduled start of the training course. The training course material shall include the operation manual, maintenance and repair manual, and paper copies of overheads used in the course.

SD-06 Test Reports

Commissioning Report;

Six copies of the HVAC Control System Commissioning Report, in booklet form and indexed, within 30 days after completion of the system commissioning. The commissioning report shall include data collected during the HVAC control system commissioning procedures and shall follow the format of the commissioning procedures. The commissioning report shall include all configuration checksheets with final values listed for all parameters, setpoints, P, I, D setting constants, calibration data for all devices, results of adjustments, and results of testing.

Performance Verification Test;

Six copies of the HVAC Control System Performance Verification Test Report, in booklet form and indexed, within 30 days after completion of the test. The HVAC control system performance verification test report shall include data collected during the HVAC control system performance verification test. The original copies of all data gathered during the performance verification test shall be turned over to the Government after Government approval of the test results.

SD-07 Certificates
Air Storage Tank; G

An ASME Air Storage Tank Certificate for each storage tank.

SD-10 Operation and Maintenance Data

Operation Manual;
Maintenance and Repair Manual;

Six copies of the HVAC Control System Operation Manual and HVAC Control System Maintenance and Repair Manual, for each HVAC control system, 30 days before the date scheduled for the training course.

1.4 DELIVERY AND STORAGE

Products shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, and other contaminants, within the storage condition limits published by the equipment manufacturer. Dampers shall be stored so that seal integrity, blade alignment and frame alignment are maintained.

1.5 OPERATION MANUAL

An HVAC control system operation manual in indexed booklet form shall be provided for each HVAC control system. The operation manual shall include the HVAC control system sequence of operation, and procedures for the HVAC system start-up, operation and shut-down. The operation manual shall include as-built HVAC control system detail drawings. The operation manual shall include the as-built configuration checksheets, the procedures for changing HVAC control system setpoints, and the procedures for placing HVAC system controllers in the manual control mode.

a. The procedures for changing HVAC control system setpoints shall describe the step-by-step procedures required to change the process variable setpoints, the alarm setpoints, the bias settings, and setpoint reset schedules.

b. The procedures for placing HVAC system controllers in the manual control mode shall describe step-by-step procedures required to obtain manual control of each controlled device and to manually adjust their positions.

1.6 MAINTENANCE AND REPAIR MANUAL

An HVAC control system maintenance and repair manual in indexed booklet form in hardback binders shall be provided for each HVAC control system. The maintenance and repair manual shall include the routine maintenance checklist, a recommended repair methods list, a list of recommended maintenance and repair tools, the qualified service organization list, the as-built commissioning procedures and report, the as-built performance verification test procedures and report, and the as-built equipment data booklet.

a. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all devices listed in the equipment compliance booklet, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency
of the maintenance activity, and the fourth column for additional comments or reference.

b. The recommended repair methods list shall be arranged in a columnar format and shall list all devices in the equipment data compliance booklet and state the guidance on recommended repair methods, either field repair, factory repair, or whole-item replacement.

c. The as-built equipment data booklet shall include the equipment compliance booklet and manufacturer supplied user manuals and information.

d. If the operation manual and the maintenance and repair manual are provided in a common volume, they shall be clearly differentiated and separately indexed.

1.7 FACTORY TESTING

The Contractor shall assemble the factory test DDC system as specified and shall perform test to demonstrate that the performance of the system satisfies the requirements of this specification. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of data produced, including results of each test procedure during factory testing shall be delivered to the Government at the conclusion of testing, prior to Government approval of the test. The test results documentation shall be arranged so that commands, responses, and data acquired are correlated in a manner which will allow for logical interpretation of the data.

1.7.1 Factory Test Setup

The factory test setup shall include the following:

a. Central workstation/tester.

b. Printer.

c. DDC test set.

d. Portable workstation/tester.

e. Communication links of each type and speed including MODEMs.

f. Dial-up MODEM.

g. Software.

PART 2 PRODUCTS

2.1 GENERAL EQUIPMENT REQUIREMENTS

Units of the same type of equipment shall be products of TRANE summit. Each major component of equipment shall have the manufacturer's name and address, and the model and serial number in a conspicuous place. Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in a satisfactory commercial or industrial use for two years prior to use on this project.
The two years' use shall include applications of equipment and materials under similar circumstances and of similar size. The two years' experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6,000 hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization. Items of the same type and purpose shall be identical, including equipment, assemblies, parts and components. Automatic temperature controls shall be direct digital controls that will provide the required sequence of operation.

2.1.1 Electrical and Electronic Devices

Electrical, electronic, and electropneumatic devices not located within a DDC panel shall have a NEMA ICS 1 enclosure in accordance with NEMA 250 unless otherwise shown.

2.1.2 Standard Signals

Except for air distribution terminal unit control equipment, the output of all analog transmitters and the analog input and output of all DDC controllers shall be 4-to-20 mA dc signals. The signal shall originate from current-sourcing devices and shall be received by current-sinking devices.

2.1.3 Ambient Temperature Limits

DDC panels shall have ambient condition ratings of 1.7 to 49 degrees C and 10 to 95 percent relative humidity, noncondensing. Devices installed outdoors shall operate within limit ratings of minus 37 to plus 66 degrees C. Instrumentation and control elements shall be rated for continuous operation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified or normally encountered for the installed location.

2.1.4 Year 2000 Compliance

All equipment and software shall be Year 2000 compliant and shall be able to accurately process date/time data (including, but not limited to, calculating, comparing, and sequencing) from, into, and between the twentieth and twenty-first centuries, including leap year calculations, when used in accordance with the product documentation provided by the contractor, provided that all products (e.g. hardware, software, firmware) used in combination with other information technology, shall accurately process date/time data if other information technology properly exchanges date/time data with it.

2.2 TUBING

2.2.1 Copper

Copper tubing shall conform to ASTM B 88, ASTM B 88M and shall have sweat fittings and valves.

2.2.2 Plastic
Plastic tubing shall have barbed fittings and valves. Plastic tubing shall have the burning characteristics of linear low-density polyethylene tubing, shall be self-extinguishing when tested in accordance with ASTM D 635, shall have UL 94 V-2 flammability classification, and shall withstand stress cracking when tested in accordance with ASTM D 1693. Plastic-tubing bundles shall be provided with Mylar barrier and flame-retardant polyethylene jacket.

2.3 WIRING

2.3.1 Terminal Blocks

Terminal blocks shall be insulated, modular, feed-through, clamp style with recessed captive screw-type clamping mechanism, shall be suitable for rail mounting, and shall have end plates and partition plates for separation or shall have enclosed sides.

2.3.2 Control Wiring for 24-Volt Circuits

Control wiring for 24-volt circuits shall be 18 AWG minimum, stranded copper and shall be rated for 300-volt service.

2.3.3 Wiring for 120-Volt Circuits

Wiring for 120-volt circuits shall be 18 AWG minimum, stranded copper and shall be rated for 600-volt service.

2.3.4 Instrumentation Cable

Instrumentation cable shall be 18 AWG, stranded copper, single- or multiple-twisted, minimum 50 mm lay of twist, 100 percent shielded pairs, and shall have a 300-volt insulation. Each pair shall have a 20 AWG tinned-copper drain wire and individual overall pair insulation. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape, overall 20 AWG tinned-copper cable drain wire, and overall cable insulation.

2.3.5 Transformers

Step down transformers shall be utilized where control equipment operates at lower than line circuit voltage. Transformers, other than transformers in bridge circuits, shall have primaries wound for the voltage available and secondaries wound for the correct control circuit voltage. Transformer shall be sized so that the connected load is 80 percent of the rated capacity or less. Transformers shall conform to UL 508 and NEMA ST 1.

2.4 ACTUATORS

Actuators shall be electric or electronic as shown and shall be provided with mounting and connecting hardware. Electric or electronic actuators shall be used for variable air volume (VAV) air terminal units. Actuators shall fail to their spring-return positions on signal or power failure, except that VAV terminal unit actuators may be of the floating type. The actuator stroke shall be limited in the direction of power stroke by an adjustable stop. Actuators shall have a visible position indicator. Actuators shall smoothly open or close the devices to which they are applied and shall have a full stroke response time of 90 seconds or less. Electric actuators shall have an oil-immersed gear train. Electric or electronic
actuators operating in series shall have an auxiliary actuator driver. Electric or electronic actuators used in sequencing applications shall have an adjustable operating range and start point. Pneumatic actuators shall be rated for 172 kPa operating pressure except for high-pressure cylinder-type actuators.

2.4.1 Valve Actuators

Valve actuators shall be selected to provide a minimum of 125 percent of the motive power necessary to operate the valve over its full range of operation.

2.4.2 Positive Positioners

Positive positioners are required for pneumatic actuators. Each positive positioner shall be a pneumatic relay with a mechanical feedback mechanism and an adjustable operating range and starting point.

2.5 AUTOMATIC CONTROL VALVES

Valves shall have stainless-steel stems and stuffing boxes with extended necks to clear the piping insulation. Unless otherwise stated, valves shall have globe style bodies. Valve bodies shall be designed for not less than 862 kPa working pressure or 150 percent of the system operating pressure, whichever is greater. Valve leakage rating shall be 0.01 percent of rated Kv. Unless otherwise specified, bodies for valves 40 mm and smaller shall be brass or bronze, with threaded or union ends; bodies for 50 mm valves shall have threaded ends; and bodies for valves 50 to 80 mm shall be of brass, bronze or iron. Bodies for valves 65 mm and larger shall be provided with flanged-end connections. Valve Kv shall be within 100 to 125 percent of the Kv shown.

2.5.1 Butterfly Valve Assembly

Butterfly valves shall be threaded lug type suitable for dead-end service and modulation to the fully-closed position, with carbon-steel bodies and noncorrosive discs, stainless steel shafts supported by bearings, and EPDM seats suitable for temperatures from minus 29 to plus 121 degrees C. Valves shall have a manual means of operation independent of the actuator. The rated Kv for butterfly valves shall be the value Kv at 70% open (60 degrees open).

2.5.2 Two-Way Valves

Two-way modulating valves shall have equal-percentage characteristics.

2.5.3 Three-Way Valves

Three-way valves shall provide linear flow control with constant total flow throughout full plug travel.

2.5.4 Duct-Coil and Terminal-Unit-Coil Valves

Control valves with either flare-type or solder-type ends shall be provided for duct or terminal-unit coils. Flare nuts shall be furnished for each flare-type end valve.
2.5.5 Valves for Chilled-Water and Glycol Service

Internal valve trim shall be bronze except that valve stems may be type 316 stainless steel. Valve Kv shall be within 100 to 125 percent of the Kv shown. Valves 100 mm and larger shall be butterfly.

2.5.6 Valves for Hot-Water Service

For hot water service below 122 degrees C and dual-temperature service, internal trim (including seats, seat rings, modulating plugs, and springs) of valves controlling water hotter than 99 degrees C shall be Type 316 stainless steel. Internal trim for valves controlling water 99 degrees C or less shall be brass or bronze. Nonmetallic parts of hot-water control valves shall be suitable for a minimum continuous operating temperature of 121 degrees C or 28 degrees C above the system design temperature, whichever is higher. Valves 100 mm and larger shall be butterfly valves.

2.6 DAMPERS

2.6.1 Damper Assembly

A single damper section shall have blades no longer than 1.2 meters and shall be no higher than 1.8 meters. Maximum damper blade width shall be 203 mm. Larger sizes shall be made from a combination of sections. Dampers shall be steel, or other materials where shown. Flat blades shall be made rigid by folding the edges. Blade-operating linkages shall be within the frame so that blade-connecting devices within the same damper section shall not be located directly in the air stream. Damper axles shall be 13 mm minimum, plated steel rods supported in the damper frame by stainless steel or bronze bearings. Blades mounted vertically shall be supported by thrust bearings. Pressure drop through dampers shall not exceed 10 Pa at 5.1 m/s in the wide-open position. Frames shall not be less than 50 mm in width. Dampers shall be tested in accordance with AMCA Std 500.

2.6.2 Operating Links

Operating links external to dampers, such as crankarms, connecting rods, and line shafting for transmitting motion from damper actuators to dampers, shall withstand a load equal to at least twice the maximum required damper-operating force. Rod lengths shall be adjustable. Links shall be brass, bronze, zinc-coated steel, or stainless steel. Working parts of joints and clevises shall be brass, bronze, or stainless steel. Adjustments of crankarms shall control the open and closed positions of dampers.

2.6.3 Damper Types

Dampers shall be parallel-blade type.

2.6.3.1 Outside Air, Return Air, and Relief Air Dampers

Outside air, return air and relief air dampers shall be provided where shown. Blades shall have interlocking edges and shall be provided with compressible seals at points of contact. The channel frames of the dampers shall be provided with jamb seals to minimize air leakage. Dampers shall not leak in excess of 102 L/s per square meter at 1017 Pa static pressure when closed. Seals shall be suitable for an operating temperature range of
minus 40 to plus 94 degrees C. Dampers shall be rated at not less than 10 m/s air velocity.

2.6.3.2 Mechanical and Electrical Space Ventilation Dampers

Mechanical and electrical space ventilation dampers shall be as shown. Dampers shall not leak in excess of 406 L/s per square meter at 1017 Pa static pressure when closed. Dampers shall be rated at not less than 7.6 m/s air velocity.

2.6.3.3 Smoke Dampers

Smoke-damper and actuator assembly required per NFPA 90A shall meet the Class II leakage requirements of UL 555S. Dampers shall be rated at not less than 10 m/s air velocity.

2.6.4 Damper End Switches

Each end switch shall be a hermetically sealed switch with a trip lever and over-travel mechanism. The switch enclosure shall be suitable for mounting on the duct exterior and shall permit setting the position of the trip lever that actuates the switch. The trip lever shall be aligned with the damper blade.

2.7 SMOKE DETECTORS

Duct smoke detectors shall be provided in supply and return air ducts in accordance with NFPA 90A. Duct smoke detectors shall conform to the requirements of UL 268A. Duct smoke detectors shall have perforated sampling tubes extended into the air duct. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. Detectors shall have manual reset. Detectors shall be rated for air velocities that include air flows between 2.5 and 20 m/s. Detectors shall be powered from the fire alarm control panel (FACP). Detectors shall have two sets of normally open alarm contacts and two sets of normally closed alarm contacts. Detectors shall be connected to the building fire alarm panel for alarm initiation. A remote annunciation lamp and accessible remote reset switch shall be provided for duct detectors that are mounted eight feet or more above the finished floor and for detectors that are not readily visible. Remote lamps and switches as well as the affected fan units shall be properly identified in etched rigid plastic placards.

2.8 INSTRUMENTATION

2.8.1 Measurements

Transmitters shall be calibrated to provide the following measurements, over the indicated ranges, for an output of 4 to 20 mAdc:

a. Conditioned space temperature, from 10 to 30 degrees C.
b. Duct temperature, from 5 to 60 degrees C.
c. Chilled-water temperature, from minus 1 to plus 38 degrees C.
d. Heating hot-water temperature, from 10 to 121 degrees C.
SECTION 15951 Page 17

e. Outside-air temperature, from minus 35 to plus 55 degrees C.

f. Relative humidity, 0 to 100 percent for space and duct high-limit applications.

g. Differential pressure for VAV supply-duct static pressure from 0 to 500 Pa.

h. Differential pressure for hydraulic power unit (HPU) chilled water lines from 0 to 2 bars.

i. Pitot-tube air-flow measurement station and transmitter, from 0 to 25 Pa for flow velocities of 3.5 to 6 m/s, 0 to 60 Pa for velocities of 3.5 to 9 m/s, or 0 to 125 Pa for velocities of 3.5 to 13 m/s.

j. Electronic air-flow measurement station and transmitter, from 0.6 to 13 m/s.

2.8.2 Temperature Instruments

2.8.2.1 Resistance Temperature Detectors (RTD)

Temperature sensors shall be 100 ohms 3- or 4-wire RTD. Each RTD shall be platinum with a tolerance of 0.30 degrees C at 0 degrees C with a temperature coefficient of resistance (TCR) of .00385 ohms/ohm/deg C and shall be encapsulated in epoxy, series 300 stainless steel, anodized aluminum, or copper. Each RTD shall be furnished with an RTD transmitter as specified, integrally mounted unless otherwise shown.

2.8.2.2 Continuous Averaging RTD

Continuous averaging RTDs shall have a tolerance of plus or minus 0.5 degrees C at the reference temperature, and shall be of sufficient length to ensure that the resistance represents an average over the cross section in which it is installed. The sensing element shall have a bendable copper sheath. Each averaging RTD shall be furnished with an RTD transmitter to match the resistance range of the averaging RTD.

2.8.2.3 RTD Transmitter

The RTD transmitter shall match the resistance range of the RTD. The transmitter shall be a two-wire, loop powered device. The transmitter shall produce a linear 4-to-20 mA dc output corresponding to the required temperature measurement. The output error shall not exceed 0.1 percent of the calibrated measurement.

2.8.3 Relative Humidity Instruments

A relative-humidity instrument for indoor application shall have a measurement range from 0 to 100 percent relative-humidity and be rated for operation at ambient air temperatures within the range of minus 4 to plus 55 degrees C. It shall be capable of being exposed to a condensing air stream (100 percent RH) with no adverse effect to the sensor's calibration or other harm to the instrument. The instrument shall be of the wall-mounted or duct-mounted type, as required by the application, and shall be provided with any required accessories. Instruments used in duct high-limit applications shall have a bulk polymer resistive sensing element. Duct-
mounted instruments shall be provided with a duct probe designed to protect the sensing element from dust accumulation and mechanical damage. The instrument (sensing element and transmitter) shall be a two-wire, loop-powered device and shall have an accuracy of plus or minus three percent of full scale within the range of 20 to 80 percent relative humidity. The instrument shall have a typical long-term stability of 1 percent or less drift per year. The transmitter shall convert the sensing element’s output to a linear 4-20 mA dc output signal in proportion to the measured relative-humidity value. The transmitter shall include offset and span adjustments.

2.8.4 Electronic Airflow Measurement Stations and Transmitters

2.8.4.1 Stations

Each station shall consist of an array of velocity sensing elements and an air-flow straightener. Air-flow straightener shall be contained in a flanged sheet metal or aluminum casing. The velocity sensing elements shall be of the RTD or thermistor type, producing a temperature compensated output. The sensing elements shall be distributed across the duct cross section in the quantity and pattern specified by the published application data of the station manufacturer. The resistance to air flow through the airflow measurement station shall not exceed 20 Pa at an airflow of 10 m/s. Station construction shall be suitable for operation at airflows of up to 25 m/s over a temperature range of 4 to 49 degrees C, and accuracy shall be plus or minus three percent over a range of 0.6 to 12.5 m/s. In outside air measurement or in low-temperature air delivery applications, the station shall be certified by the manufacturer to be accurate as specified over a temperature range of minus 29 to plus 49 degrees C. In outside air measurement applications, the air flow straightener shall be constructed of 3 mm aluminum honeycomb and the depth of the straightener shall not be less than 40 mm.

2.8.4.2 Transmitters

Each transmitter shall produce a linear, 4-to-20 mA dc, output corresponding to the required velocity pressure measurement. The transmitter shall be a two-wire, loop powered device. The output error of the transmitter shall not exceed 0.5 percent of the calibrated measurement.

2.8.5 Pitot Tube Airflow Measurement Stations and Transmitters

2.8.5.1 Stations

Each station shall contain an array of velocity sensing elements and straightening vanes inside a flanged sheet metal casing. The velocity sensing elements shall be of the multiple pitot tube type with averaging manifolds. The sensing elements shall be distributed across the duct cross section in the quantity and pattern specified by the published installation instructions of the station manufacturer. The resistance to air flow through the airflow measurement station shall not exceed 20 Pa at an airflow of 10 m/s. Station construction shall be suitable for operation at airflows of up to 25 m/s over a temperature range of 4 to 49 degrees C, and accuracy shall be plus or minus three percent over a range of 2.5 to 12.5 m/s. This device will not be used if the required velocity measurement is below 3.5 m/s or for outside airflow measurements.
2.8.5.2 Transmitters

Each transmitter shall produce a linear 4-to-20 mA dc output corresponding to the required velocity pressure measurement. Each transmitter shall have a low range differential pressure sensing element. The transmitter shall be a two-wire, loop powered device. Sensing element accuracy shall be plus or minus one percent of full scale, and overall transmitter accuracy shall be plus or minus 0.25 percent of the calibrated measurement.

2.8.6 Differential Pressure Instruments

The instrument shall be a pressure transmitter with an integral sensing element. The instrument over pressure rating shall be 300 percent of the operating pressure. The sensor/transmitter assembly accuracy shall be plus or minus two percent of full scale. The transmitter shall be a two-wire, loop-powered device. The transmitter shall produce a linear 4-to-20 mA dc output corresponding to the required pressure measurement.

2.8.7 Thermowells

Thermowells shall be Series 300 stainless steel with threaded brass plug and chain, 50 mm lagging neck and extension type well. Inside diameter and insertion length shall be as required for the application.

2.8.8 Sunshields

Sunshields for outside air temperature sensing elements shall prevent the sun from directly striking the temperature sensing elements. The sunshields shall be provided with adequate ventilation so that the sensing element responds to the ambient temperature of the surroundings. The top of each sunshield shall have a galvanized metal rainshield projecting over the face of the sunshield. The sunshields shall be painted white.

2.9 THERMOSTATS

Thermostat ranges shall be selected so that the setpoint is adjustable without tools between plus or minus 5 degrees C of the setpoint shown. Thermostats shall be electronic or electric.

2.9.1 Nonmodulating Room Thermostats

Contacts shall be single-pole double-throw (SPDT), hermetically sealed, and wired to identified terminals. Maximum differential shall be 3 degrees C. Room thermostats shall be enclosed with separate locking covers (guards).

2.9.2 Modulating Room Thermostats

Modulating room thermostats shall have either one output signal, two output signals operating in unison, or two output signals operating in sequence, as required for the application. Each thermostat shall have an adjustable throttling range of 2 to 4 degrees C for each output. Room thermostats shall be enclosed with separate locking covers (guards).

2.9.3 Nonmodulating Capillary Thermostats and Aquastats

Each thermostat shall have a capillary length of at least 1500 mm, shall have adjustable direct-reading scales for both setpoint and differential,
and shall have a differential adjustable from 3 to 9 degrees C. Aquastats shall be of the strap on type, with 5 degrees C fixed differential.

2.9.4 Freezestats

Freezestats shall be manual reset, low temperature safety thermostats, with NO and NC contacts and a 6000 mm element which shall respond to the coldest 450 mm segment.

2.9.5 Modulating Capillary Thermostats

Each thermostat shall have either one output signal, two output signals operating in unison, or two output signals operating in sequence, as required for the application. Thermostats shall have adjustable throttling ranges of 2 to 4 degrees C for each output.

2.10 PRESSURE SWITCHES AND SOLENOID VALVES

2.10.1 Pressure Switches

Each switch shall have an adjustable setpoint with visible setpoint scale. Range shall be as shown. Differential adjustment shall span 20 to 40 percent of the range of the device.

2.10.2 Differential-Pressure Switches

Each switch shall be an adjustable diaphragm-operated device with two SPDT contacts, with taps for sensing lines to be connected to duct pressure fittings designed to sense air pressure. These fittings shall be of the angled-tip type with tips pointing into the air stream. The setpoint shall not be in the upper or lower quarters of the range and the range shall not be more than three times the setpoint. Differential shall be a maximum of 35 Pa at the low end of the range and 85 Pa at the high end of the range.

2.10.3 Pneumatic Electric (PE) Switches

Each switch shall have an adjustable setpoint range of 20 to 140 kPa with a switching differential adjustable from 15 to 35 kPa. The switch action shall be SPDT.

2.10.4 Solenoid-Operated Pneumatic (EP) Valves

Each valve shall have three-port operation: common, normally open, and normally closed. Each valve shall have an outer cast aluminum body and internal parts of brass, bronze, or stainless steel. The air connection shall be a 10 mm NPT threaded connection. Valves shall be rated for 345 kPa when used in a control system that operates at 172 kPa or less, or 1035 kPa when used in a control system that operates in the range of 172 to 690 kPa.

2.11 INDICATING DEVICES

2.11.1 Thermometers

2.11.1.1 Piping System Thermometers
Piping system thermometers shall have brass, malleable iron or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 230 mm scale. Thermometers for piping systems shall have rigid stems with straight, angular, or inclined pattern.

2.11.1.2 Piping System Thermometer Stems

Thermometer stems shall have expansion heads as required to prevent breakage at extreme temperatures. On rigid-stem thermometers, the space between bulb and stem shall be filled with a heat-transfer medium.

2.11.1.3 Nonaveraging Air-Duct Thermometers

Air-duct thermometers shall have perforated stem guards and 45-degree adjustable duct flanges with locking mechanism.

2.11.1.4 Averaging Air-Duct Thermometers

Averaging thermometers shall have a 90 mm (nominal) dial, with black legend on white background, and pointer traveling through a 270-degree arc.

2.11.1.5 Accuracy

Thermometers shall have an accuracy of plus or minus one percent of scale range. Thermometers shall have a range suitable for the application.

2.11.2 Pressure Gauges

Gauges shall be 50 mm (nominal) size, back connected, suitable for field or panel mounting as required, shall have black legend on white background, and shall have a pointer traveling through a 270-degree arc. Accuracy shall be plus or minus three percent of scale range. Gauges shall meet requirements of ASME B40.1.

2.11.2.1 Pneumatic Actuator Gauges

Gauges for indicating signal output to pneumatic actuators shall have an outer scale of 21 to 103 kPa in 7 kPa graduations.

2.11.2.2 Air Storage Tank and Filter and Dryer Gauge

Gauges for air storage tanks or for use before and after dirt and oil filters or dryers, shall have a scale of 0 to 1100 kPa with 20 kPa graduations.

2.11.2.3 Hydronic System Gauges

Gauges for hydronic system applications shall have ranges and graduations as shown.

2.11.3 Low Differential Pressure Gauges

Gauges for low differential pressure measurements shall be a minimum of 90 mm (nominal) size with two sets of pressure taps, and shall have a diaphragm-actuated pointer, white dial with black figures, and pointer zero
adjustment. Gauges shall have ranges and graduations as shown. Accuracy shall be plus or minus two percent of scale range.

2.12 CONTROL DEVICES AND ACCESSORIES

2.12.1 Relays

Control relay contacts shall have utilization category and ratings selected for the application, with a minimum of two sets of contacts (two normally open, two normally closed) enclosed in a dustproof enclosure. Relays shall be rated for a minimum life of one million operations. Operating time shall be 20 milliseconds or less. Relays shall be equipped with coil transient suppression devices to limit transients to 150 percent of rated coil voltage. Time delay relays shall be 2PDT with eight-pin connectors, dust cover, and a matching rail-mounted socket. Adjustable timing range shall be 0 to 5 minutes. Power consumption shall not be greater than three watts.

2.12.2 Current to Pneumatic (IP) Transducers

The transducers shall be two-wire current-to-pressure transmitters that convert a 4-to-20 mAdc input signal to a 21 to 103 kPa, or a 103 to 21 kPa, pneumatic output, with a conversion accuracy of plus or minus two percent of full scale, including linearity and hysteresis. Input impedance shall not exceed 250 ohms. Air consumption shall not be greater than 0.12 L/s.

2.12.3 Joule or Watthour Meters

Watt-hour meters shall comply with ANSI C12.1 and ANSI C12.10, except that numbered terminal wiring sequence and case size may be the manufacturer's standard. Watt-hour meters shall be of the draw out type having a 15 minute, cumulative form, demand register meeting ANSI C12.4 and provide with not less than 2-1/2 stators. Watt-hour demand meters shall have factory-installed electronic pulse initiator meeting the requirements of ANSI C12.1. Pulse initiators shall be solid-state devices incorporating light-emitting diodes, photo transistors, and power transistors, except that mercury-wetted output contacts are acceptable. Pulse initiators shall consist of contacts (one normally open, one normally closed) with a current rating not to exceed 2 amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a life rating of one billion operations. Pulse initiator contacts shall be connected to a terminal strip external to the meter enclosure. Meter sockets shall be in accordance with ANSI C12.1. Initiators shall be totally contained within watt-hour demand meter enclosures. They shall be capable of operating at speeds up to 500 pulses per minute with no false pulses, and they shall be factory calibrated with no field adjustments being required. Initiators shall be calibrated for a pulse rate output of 1 pulse per 1/3 disc revolution of the associated meter and shall be compatible with the indicated meter and shall be compatible with the indicated equipment. Meters shall be compatible with EMCS equipment.

2.12.4 Joule or Watthour Meters with Demand Register

Meters shall be in accordance with ANSI C12.1 and shall have pulse initiators for remote monitoring of Joule consumption and instantaneous demand. Pulse initiators shall consist of form C contacts with a current rating not to exceed two amperes and voltage not to exceed 500 V, with
combinations of VA not to exceed 100 VA, and a life rating of one billion operations. Meter sockets shall be in accordance with ANSI C12.1

2.12.5 Joule or Watthour Transducers

Joule transducers shall have an accuracy of plus or minus 0.25 percent for kW and Joule outputs from full lag to full lead power factor. Input ranges for kW and Joule transducers shall be selectable without requiring the changing of current or potential transformers. The output shall be 4 to 20 mAdc.

2.12.6 Current Sensing Relays

Current sensing relays shall provide a normally-open contact rated at a minimum of 50 volts peak and 1/2 ampere or 25 VA, noninductive. There shall be a single hole for passage of current carrying conductors. The devices shall be sized for operation at 50 percent rated current based on the connected load. Voltage isolation shall be a minimum of 600 volts.

2.12.7 Power-Line Conditioners (PLC)

Power line conditioners shall be furnished for each DDC panel. The PLCs shall provide both voltage regulation and noise rejection. The PLCs shall be of the ferro-resonant design, with no moving parts and no tap switching, while electrically isolating the secondary from the power-line side. The PLCs shall be sized for 125 percent of the actual connected kVA load. Characteristics of the PLC shall be as follows:

a. At 85 percent load, the output voltage shall not deviate by more than plus or minus one percent of nominal when the input voltage fluctuates between minus 20 percent to plus 10 percent of nominal.

b. During load changes of zero to full load, the output voltage shall not deviate by more than plus or minus three percent of nominal voltage. Full correction of load switching disturbances shall be accomplished within five cycles, and 95 percent correction shall be accomplished within two cycles of the onset of the disturbance.

c. Total harmonic distortion shall not exceed 3-1/2 percent at full load.

2.13 DIRECT DIGITAL CONTROL (DDC) HARDWARE

All functions, constraints, data base parameters, operator developed programs and any other data shall be downloadable from a portable workstation/tester or the central workstation/tester to network control panels, RIU's, universal programmable controllers, and unitary controllers. Download shall be accomplished through both the primary network and the local DDC portable workstation/tester port.

2.13.1 Network Control Panel

Network control panels shall be microcomputer-based with sufficient memory provided to perform all specified and shown network control panel functions and operations, including spare capacity for all spares and its I/O functions specified. Each network control panel and remote I/O units (RIU) shall have a minimum of 10% of its I/O functions as spare capacity but not
less than 2 of each type used in each. The type of spares shall be in the same proportion as the implemented I/O functions on the panel, but in no case shall there be less than two spare points of each type. The panel I/O functions shall be furnished complete, with no changes or additions necessary to support implementation of spare functions. Output relays associated with digital signals shall be considered part of the I/O function, whether physically mounted in the enclosure or separately mounted. Implementation of spare points shall necessitate only providing the additional field sensor or control device, field wiring including connection to the system, and point definition assignment by the operator using the central workstation/tester or portable workstation/tester. The panel shall contain all necessary I/O functions to connect to field sensors and control panels. I/O function operation shall be fully supervised to detect I/O function failures. Network control panels shall operate in an independent stand-alone mode, which is defined as all network control panel operations performed by the network control panel without any continuing input from other Direct digital controls or portable workstation/tester. The network control panel shall be capable of controlling a mix of at least 32 RIUs, unitary controllers, and universal programmable controllers.

2.13.1.1 Integral Features

The network control panel shall include:

a. Main power switch.

b. Power on indicator.

c. Portable workstation/tester port, connector, and if necessary power supply.

d. Manufacturers control network port.

e. An intrusion detection device, connected as an alarm.

2.13.1.2 Communication Interfaces

The following communication capabilities shall function simultaneously.

a. Manufacturers Control Network. Manufacturers control network communications interfaces for each data transmission systems (DTS) circuit between network control panels and RIUs, unitary controllers, and universal programmable controllers, shall be provided. Communication interfaces shall be provided between each network control panel and associated I/O functions. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the network control panel enclosure.

b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. Network control panel workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel.

c. Primary Network Port. The network control panel shall either have a built in primary network Port or be capable of accepting a primary network port expansion card for future networking to a base wide utility monitoring
and control system (UMCS). The primary network port expansion card shall be either Ethernet (IEEE802.3) or ARCNET.

2.13.1.3 Memory and Real Time Clock (RTC) Backup

The network control panel memory and real time clock functions shall continue to operate for a minimum of 72 hours in the event of a power failure. If rechargeable batteries are provided, automatic charging of batteries shall be provided. Whenever a either a permanent workstation/tester or portable workstation/tester is monitoring the network control panel, a low battery alarm message shall be sent to it.

2.13.1.4 Duplex Outlet

A single phase, 120 Vac electrical service outlet for use with test equipment shall be furnished either inside or within 2 meters of the network control panel enclosure.

2.13.1.5 Locking Enclosures

Locking type mounting cabinets with common keying shall be furnished for each network control panel.

2.13.1.6 Failure Mode

Upon failure of the network control panel, either due to failure of the network control panel hardware or of the manufacturers control network, the network control panel shall revert to the failure mode as shown.

a. Manufacturers Control Network Failure: Upon failure of the manufacturers control network, the network control panel shall operate in an independent stand-alone mode.

b. Network Control Panel Hardware Failure: Upon failure of the network control panel hardware, the network control panel shall cease operation and stop communications with other network control panels, RIUs, unitary controllers and universal programmable controllers connected to the affected network control panel. The affected network control panel shall respond to this failure as specified and shown.

2.13.2 RIU

The RIU shall be functionally a part of the network control panel as specified, but may be remotely located from the network control panel and communicate over a dedicated communication circuit. When remotely located, the I/O functions shall be subject to the same requirements as for the network control panel hardware. RIUs shall be used to connect remote inputs and outputs to a network control panel and shall contain all necessary I/O functions to connect to field sensors and control devices. RIU operation shall be fully supervised by the network control panel to detect failures. Each RIU shall have a minimum of 10% of its I/O functions as spare capacity. The type of spares shall be in the same proportion as the implemented I/O functions on the RIU, but in no case shall there be less than two spare points of each type. The RIU shall be furnished complete, with no changes or additions necessary to support implementation of spare functions. Output relays associated with digital signals shall be considered part of the I/O function, whether physically mounted in the
enclosure or separately mounted. Implementation of spare points by others shall require only providing the additional field sensor or control device, field wiring including connection to the system, and point definition assignment by the operator. The RIU shall either report the status of all connected points on each scan, or report the status of all points which have changed state or value since the previous scan.

2.13.2.1 Integral Features

The RIU shall include:

a. Main power switch.

b. Power on indicator.

c. Portable workstation/tester port, connector, and if necessary power supply.

d. Manufacturers control network port.

e. An intrusion detection device, connected as an alarm.

2.13.2.2 Duplex Outlet

A single phase, 120 Vac electrical service outlet for use with test equipment shall be furnished either inside or within 2 meters of the RIU.

2.13.2.3 Locking Enclosures

Locking type mounting cabinets with common keying shall be furnished for each RIU.

2.13.2.4 Failure Mode

Upon failure of the RIU, either due to failure of the RIU hardware or of the DTS, the RIU shall revert to the failure mode shown.

2.13.3 Universal Programmable Controller (UPC)

The universal programmable controller shall be a microprocessor based controller designed and programmed to control and monitor systems as shown. Resident programs shall be contained in reprogramable nonvolatile memory. Each universal programmable controller shall contain necessary power supplies, transformers, memory, I/O functions and communications interfaces necessary to perform its required functions and to provide control and monitoring of connected equipment and devices. It shall contain all necessary I/O functions to connect to field sensors and controls. I/O operation shall be fully supervised to detect I/O function failures. It shall provide for operation as a device connected to the system via the manufacturers control network.

2.13.3.1 Integral Features

The universal programmable controller shall include as a minimum:

a. Main power switch.
b. Power on indicator.

c. Portable workstation/tester port, connector, and if necessary power supply.

d. Manufacturers control network port.

e. I/O functions

 (1) 8 DI

 (2) 4 DO

 (3) 8 AI

 (4) 4 AO

 (5) 1 PA

f. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the universal programmable controller, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing.

g. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing.

2.13.3.2 Communication Interfaces

The UPC shall have the following communication capabilities which shall function simultaneously.

 a. Manufacturers Control Network. The manufacturers control network communications interface for a data transmission systems (DTS) circuit between the UPC and a network control panels shall be provided. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the UPC Panel enclosure.

 b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. A UPC workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel.

2.13.3.3 Memory and RTC Backup

The UPC memory and real time clock functions shall continue to operate for a minimum of 72 hours in the event of a power failure. If rechargeable batteries are provided, automatic charging of batteries shall be provided. Whenever a either a permanent workstation/tester or portable workstation/tester is monitoring the network control panel, a low battery alarm message shall be sent to it.
2.13.3.4 Specific Requirements

Each universal programmable controller shall be accessible for purposes of application selection, control parameters, set point adjustment, and monitoring from any DDC controller connected to the same manufacturers control network as the universal programmable controller. This shall be done using a portable workstation/tester connected to a portable workstation/tester port either directly or via modem.

2.13.3.5 Locking Enclosures

Locking type mounting cabinets with common keying shall be furnished for each enclosure.

2.13.3.6 Failure Mode

Upon failure of the universal programmable controller, it shall revert to the failure mode of operation as shown.

2.13.4 Unitary Controller

The unitary controller shall be a microprocessor based, stand-alone, dedicated purpose controller, communicating with the network control panel, designed and programmed to control air distribution system mixing boxes, terminal units, heat pumps, fan coil units, self-contained DX units or VAV boxes as shown. Each unitary controller shall contain resident programs in nonvolatile memory for each specific application implemented. Each unitary controller shall contain necessary power supplies, transformers, memory, I/O functions and communications interfaces necessary to perform its required functions and to provide control and monitoring of connected equipment and devices. It shall contain all necessary I/O functions to connect to field sensors and controls. I/O operation shall be fully supervised to detect I/O function failures and shall provide for operation as a device connected to the network control panel via the manufacturers control network.

2.13.4.1 Integral Features

The unitary controller shall include:

a. Main power switch.

b. Power on indicator.

c. Portable workstation/tester port, connector, and power supply.

d. Manufacturers control network port.

e. All I/O functions required to implement the requirements as shown.

f. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the field panel, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing.
g. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing.

2.13.4.2 Communication Interfaces

The unitary controller shall have the following communication capabilities which shall function simultaneously.

a. Manufacturers Control Network. The manufacturers control network communications interface for a data transmission systems (DTS) circuit between the unitary controller and a network control panel shall be provided. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the unitary control panel enclosure.

b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. A unitary controller workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. For unitary controller applications where the controller is not mounted in an enclosure, such as for fan-coil units or VAV terminal units, a portable conversion device for an RS-232 connection to the portable workstation/tester may be provided.

2.13.4.3 Specific Requirements

Unitary controller components for new air distribution terminal units shall be furnished to the air distribution terminal unit manufacturer for factory mounting and calibration. Existing air distribution terminal units shall be controlled by field installed unitary controllers.

a. Accessibility and Interfaces: Each unitary controller shall be accessible for purposes of application selection, control parameters, set point adjustment, and monitoring using a portable workstation/tester connected to the manufacturers control network. They shall also be accessible with a portable workstation/tester connected to the unitary controller portable workstation/tester port.

b. Air Distribution Terminal Unit Controls - Pressure Independent: Controls shall consist of a transducer for connection to the velocity-sensing device provided by the terminal unit supplier in the primary air entering the terminal unit, a room temperature sensor, a damper actuator, and an adjustable microprocessor-based controller. The room temperature sensor shall have occupant setpoint adjustment and temperature display, timed override of unoccupied mode, and a communication port. The controller shall operate the damper for cooling and heating and provide control outputs for duct heating coil if applicable. This controller capability shall allow the sequencing of the damper and the heating coil to maintain conditions in the space.

2.13.4.4 Failure Mode

Upon failure of the unitary controller, it shall revert to the failure mode of operation as shown.
2.13.5 Chiller Control Panel

Chiller control panel shall be microprocessor-based and shall provide, both locally and through the Manufacturers Control Network, the control, monitoring, and safety equipment functions provided by the chiller manufacturer's control panel(s) (two communications ports total). The chiller control panel instrumentation and control ranges and accuracies shall match those of the chiller manufacturer's control devices. The chiller panel shall have a communication port for interface to a Portable Workstation/Tester through either the Manufacturers Control Network or modem for chiller(s) start/stop, chilled water temperature reset, and monitoring of chiller operating status, alarms, and power consumption.

2.13.6 Boiler Control Panel

Boiler control panel shall be microprocessor-based and shall provide, both locally and through the Manufacturers Control Network, the control, monitoring, and safety equipment functions provided by the boiler manufacturer's control panel(s) (two communications ports total). The boiler control panel instrumentation and controls ranges and accuracies shall match those of the boiler manufacturer's control devices. The boiler panel shall have a communication port for interface to a Portable Workstation/Tester through either the Manufacturers Control Network or modem for boiler(s) and start/stop, boiler water temperature reset, and monitoring of boiler operating status, alarms.

2.13.7 I/O Functions

2.13.7.1 DDC Hardware I/O Functions

I/O Functions shall be provided as part of the DDC system and shall be in accordance with the following:

a. The analog input (AI) function shall monitor each analog input, perform A-to-D conversion, and hold the digital value in a buffer for interrogation. The A-to-D conversion shall have a minimum resolution of 10 bits plus sign. Signal conditioning shall be provided for each analog input. Analog inputs shall be individually calibrated for zero and span, in hardware or in software. The AI shall incorporate common mode noise rejection of 50 dB from 0 to 100 Hz for differential inputs, and normal mode noise rejection of 20 dB at 60 Hz from a source impedance of 10,000 ohms. Input ranges shall be within the range of 4-to-20 mAdc.

b. The analog output (AO) function shall accept digital data, perform D-to-A conversion, and output a signal within the range of 4-to-20 mAdc. D-to-A conversion shall have a minimum resolution of eight bits plus sign. Analog outputs shall be individually calibrated for zero and span. Short circuit protection on voltage outputs and open circuit protection on current outputs shall be provided. An individual gradual switch for manual override of each analog output and means of physically securing access to these switches shall be provided. Each AO shall have a three-position switch for selection of the DDC control signal, no control, or a locally generated control signal for connection to the controlled device. Feedback shall be provided to the system as to the status of the output (manual control or automatic). Switches for pneumatic control outputs shall provide a connection for an externally generated pneumatic signal. All switches shall
be either of a key operated design with the same keying system used for other outputs or otherwise suitably protected from unauthorized access.

c. The digital input (DI) function shall accept on-off, open-close, or other change of state (two state data) indications. Isolation and protection against an applied steady-state voltage up to 180 Vac peak shall be provided.

d. The digital output (DO) function shall provide contact closures for momentary and maintained operation of output devices. Closures shall have a minimum duration of 0.1 second. DO relays shall have an initial breakdown voltage between contacts and coil of at least 500 V peak. Electromagnetic interference suppression shall be furnished on all output lines to limit transients to nondamaging levels. Protection against an applied steady-state voltage up to 180 Vac peak shall be provided. Minimum contact rating shall be one ampere at 24 Vac.

e. The pulse accumulator function shall have the same characteristics as the DI. In addition, a buffer shall be provided to totalize pulses and allow for interrogation by the DDC system. The pulse accumulator shall accept rates up to 20 pulses per second. The totalized value shall be reset to zero upon operator's command.

f. Signal conditioning for sensors shall be provided as specified.

g. The binary coded decimal (BCD) function: The BCD function shall have the same characteristics as the DI, except that, in addition, a buffer shall be provided to totalize inputs and allow for interrogation by the network control panel. The BCD function shall have 16-channel optically isolated buffered inputs to read four digit numbers. The BCD function shall accumulate inputs at rates up to 10 inputs per second.

2.13.7.2 Failure Mode

Upon failure of the I/O function, including data transmission failure, logic power supply failure, DDC processor malfunction, software failure, interposing relay power failure, or any other failure which prevents stand alone operation of any DDC normally capable of stand alone operation, connected outputs shall be forced to the failure mode shown.

2.13.8 Portable Workstation/Tester

A portable workstation/tester shall be provided and shall be able to connect to any DDC hardware. The portable workstation/tester shall consist of a portable computer with a nominal 10 inch active color matrix liquid crystal display, capable of displaying up to 256 colors at a minimum resolution of 640 X 480 pixels, an external VGA monitor port, 32 bit microprocessor operating at a minimum of 100 MHZ. The portable workstation/tester shall have, as a minimum, a 1200 MB hard drive, 16 megabytes of memory, integral pointing device, serial and parallel ports, color VGA video port for an external color monitor, 3.5 inch floppy disk drive, modem, PCMCIA type 3 slot, rechargeable battery, battery charger and 120 Vac power supply. It shall include carrying case, extra battery, charger and a compatible network adapter. The workstation/tester shall:

a. Run DDC diagnostics.
b. Load all DDC memory resident programs and information, including parameters and constraints.

c. Display any AI, DI, AO, DO, or PA point in engineering units for analog points or status for digital points.

d. Control any AO or DO.

e. Provide an operator interface, contingent on password level, allowing the operator to use full English language words and acronyms, or an object oriented graphical user interface.

f. Display database parameters.

g. Modify database parameters.

h. Accept DDC software and information for subsequent loading into a specific DDC. Provide all necessary software and hardware required to support this function, including an EIA ANSI/EIA/TIA 232-F port.

i. Disable/enable each DDC.

j. Perform all workstation functions as specified.

2.13.9 Data Terminal Cabinet (DTC)

The DTC shall be an independent metallic enclosure not physically part of the network control panel/RIU as shown. The DTC shall be sized to accommodate the number of I/O functions required for each network control panel/RIU, including installed spares, plus 10% expansion for each type of I/O function provided. The DTC shall be divided into analog input and output groups and digital input and output groups. The DTC shall be provided with double sided screw type terminal strips. One side of the terminal strip shall be used for termination of field wiring from instrumentation-mentation and controls. The other side shall be used to connect the DTC to the network control panel/RIU. Terminal strips shall have individual terminal identification numbers. The DTC shall be a locking type mounting enclosure, with common keying and door switch wired to an input for intrusion alarm annunciation at the central station. DTC keying shall be identical to network control panel/RIU keying.

2.14 DDC SOFTWARE

All DDC software described in this specification shall be furnished as part of the complete DDC System.

2.14.1 Communication Program

The DDC panels shall be equipped with software drivers and handlers, which allow for communication with a base-wide EMCS/UMCS. The software drivers shall allow for communications via modems, line drivers, transmitters/receivers over various wire line data transmission media (DTM). Reference Section 16792 for wire line DTM requirements. The software shall be structured to support communication over the existing Trane summit network. Each communication program module shall be functionally independent of other Contractor-furnished software, to allow for future upgrade or replacement of communication modules without affecting other.
Application programs and other software modules. Communication protocol for communication shall conform to an existing communication protocol.

2.14.2 Operating System

Each DDC shall contain an operating system that controls and schedules that DDC's activities in real time. The DDC shall maintain a point database in its memory that includes all parameters, constraints, and the latest value or status of all points connected to that DDC. The execution of DDC application programs shall utilize the data in memory resident files. The operating system shall include a real time clock function that maintains the seconds, minutes, hours, date and month, including day of the week. Each DDC real time clock shall be automatically synchronized with the network control panel real time clock at least once per day to plus or minus 10 seconds. When the network control panel is connected to a central workstation/tester, the network control panel RTC shall be updated by the central workstation/tester RTC. The time synchronization shall be accomplished without operator intervention and without requiring system shutdown. The operating system shall allow loading of software, data files, data entry, and diagnostics from the central workstation/tester both locally through the central workstation/tester port and remotely through a network control panel and the manufacturers control network.

2.14.2.1 Startup

The DDC shall have startup software that causes automatic commencement of operation without human intervention, including startup of all connected I/O functions. A DDC restart program based on detection of power failure at the DDC shall be included in the DDC software. Upon restoration of power to the DDC, the program shall restart equipment and restore loads to the state at time of power failure, or to the state as commanded by time programs or other overriding programs. The restart program shall include start time delays between successive commands to prevent demand surges or overload trips. The startup software shall initiate operation of self-test diagnostic routines. Upon failure of the DDC, if the database and application software are no longer resident or if the clock cannot be read, the DDC shall not restart and systems shall remain in the failure mode indicated until the necessary repairs are made. If the database and application programs are resident, the DDC shall resume operation after an adjustable time delay of from 0 to 600 seconds. The startup sequence for each DDC shall include a unique time delay setting for each control output when system operation is initiated.

2.14.2.2 Operating Mode

Each DDC shall control and monitor functions as specified, independent of communications with other DDC. This software shall perform all DDC functions and DDC resident application programs as specified using data obtained from I/O functions and based upon the DDC real time clock function. When communications circuits between the DDC are operable, the DDC shall obtain real time clock updates and any required global data values transmitted from other network control panels. The DDC software shall execute commands after performing constraints checks in the DDC. Status and analog values, including alarms and other data shall be transmitted from other network control panels when communications circuits are operable. If communications are not available, each DDC shall function in stand-alone mode and operational data, including the latest status and value of each
point and results of calculations, normally transmitted from other network control panels shall be stored for later transmission to the network control panel. Storage for the latest 256 values shall be provided at each network control panel. Each DDC shall accept software downloaded from the network control panel. Constraints shall reside at the DDC.

2.14.2.3 Failure Mode

Upon failure for any reason, each DDC shall perform an orderly shutdown and force all DDC outputs to a predetermined (failure mode) state, consistent with the failure modes shown and the associated control device.

2.14.3 Functions

The Contractor shall provide software necessary to accomplish the following functions, as appropriate, fully implemented and operational, within each network control panel, RIU, unitary controller and universal programmable controller.

 a. Scanning of inputs.
 b. Control of outputs.
 c. Reporting of analog changes outside a selectable differential.
 d. Reporting of unauthorized digital status.
 e. Reporting of alarms automatically to network control panel.
 f. Reporting of I/O status to network control panel upon request.
 g. Maintenance of real time, updated by the network control panel at least once a day.
 h. Communication with the network control panel.
 i. Execution of DDC resident application programs.
 j. Averaging or filtering of AIs.
 k. Constraints checks (prior to command issuance).
 l. Diagnostics.
 m. Portable workstation/tester operation as specified.
 n. Reset of PA by operator based on time and value.

2.14.3.1 Analog Monitoring

The system shall measure and transmit analog values including calculated analog points. An analog change in value is defined as a change exceeding a preset differential value as specified. The record transmitted for each analog value shall include a readily identifiable flag which indicates the abnormal status of the value when it deviates from operator selectable upper and lower analog limits. Analog values shall be expressed in proper engineering units with sign. Engineering units conversions shall be
provided for each measurement. Each engineering units conversion set shall include range, span, and conversion equation. A vocabulary of engineering unit descriptors shall be provided, using at least three alphanumeric characters to identify information in the system. The system shall support 255 different engineering units.

2.14.3.2 Logic (Virtual) Points

Logic (virtual) points shall be software points entered in the point database which are not directly associated with a physical I/O function. Logic (virtual) points shall be analog or digital points created by calculation from any combination of digital and analog points, or other data having the properties of real points, including alarms, without the associated hardware. Logic (virtual) points shall be defined or calculated and entered into the database by the Contractor. The calculated analog point shall have point identification in the same format as any other analog point. The calculated point shall be used in any program where the real value is not obtainable directly. Constants used in calculations shall be changeable on-line by the operator. Calculated point values shall be current for use by the system within 10 seconds of the time of any input changes.

2.14.3.3 State Variables

If an analog point represents more than two (up to eight) specific states, each state shall be nameable. For example, a level sensor shall be displayed at its measured engineering units plus a state variable with named states usable in programs or for display such as low alarm/low/normal/high/high alarm.

2.14.3.4 Analog Totalization

Any analog point shall be operator assignable to the totalization program. Up to eight analog values shall be totalized within a selectable time period. At the end of the period, the totals shall be stored. Totalization shall then restart from zero for the next time period. The program shall keep track of the peak and total value measured during the current period and for the previous period. The operator shall be able to set or reset each totalized value individually. The time period shall be able to be operator defined, modified or deleted on-line.

2.14.3.5 Energy Totalization

The system shall calculate the heat energy in Btus, for each energy source consumed by the mechanical systems specified, totalize the calculated Btus, the instantaneous rate in Btus per hour, and store totals in thousands of Btus (MBtu). The Btus calculated shall be totalized for an adjustable time period. The time period shall be defined uniquely for each Btu totalization.

2.14.3.6 Trending

Any analog or calculated point shall be operator assignable to the trend program. Up to eight points shall be sampled at individually assigned intervals, selectable between one minute and two hours. A minimum of the most recent 128 samples of each trended point shall be stored. The sample intervals shall be able to be defined, modified, or deleted on-line.
2.14.4 I/O Point Database/Parameter Definition

Each I/O point shall be defined in a database residing in the DDC. The definition shall include all physical parameters associated with each point. Each point shall be defined and entered into the database by the Contractor, including as applicable:

a. Name.

b. Device or sensor type (i.e., sensor, control relay, motors).

c. Point identification number.

d. Unit.

e. Building number.

f. Area.

g. Island.

h. DDC number and channel address.

i. KW (running).

j. KW (starting).

k. Sensor range.

l. Controller range.

m. Sensor span.

n. Controller span.

o. Engineering units conversion (scale factor).

p. Setpoint (analog).

q. High reasonableness value (analog).

r. Low reasonableness value (analog).

s. High alarm limit differential (return to normal).

t. Low alarm limit differential (return to normal).

u. High alarm limit (analog).

v. Low alarm limit (analog).

w. Alarm disable time period upon startup or change of setpoint.

x. Analog change differential (for reporting).

y. Alarm class and associated primary message text.
z. High accumulator limit (pulse).

aa. Status description.

bb. Run time target.

c. Failure mode as specified and shown.

d. Constraints as specified.

2.14.5 Alarm Processing

Each DDC shall have alarm processing software for AI, DI, and PA alarms for all real and virtual points connected to that DDC.

2.14.5.1 Digital Alarms Definition

Digital alarms are those abnormal conditions indicated by DIIs as specified and shown.

2.14.5.2 Analog Alarms Definition

Analog alarms are those conditions higher or lower than a defined value, as measured by an AI. Analog readings shall be compared to predefined high and low limits, and alarmed each time a value enters or returns from a limit condition. Unique high and low limits shall be assigned to each analog point in the system. Analog alarm limits shall be stored in the DDC database. Each analog alarm limit shall have an associated unique limit differential specifying the amount by which a variable must return into the proper operating range before being annunciated as a return-to-normal-state. All limits and differentials shall be entered on-line by the operator in limits of the measured variable, without interruption or loss of monitoring of the point concerned. The program shall automatically change the high or low limits or both, of any analog point, based on time scheduled operations as specified, allowing for a time interval before the alarm limit becomes effective. In CPA applications, key the limit to a finite deviation traveling with the setpoint. The system shall automatically suppress analog alarm reporting associated with a digital point when that digital point is turned off.

2.14.5.3 Pulse Accumulator Alarms Definition

Pulse accumulator alarms are those conditions calculated from totalized values of accumulator inputs or PA input rates that are outside defined limits as specified and shown. PA totalized values shall be compared to predefined limits and alarmed each time a value enters a limit condition. Unique limits shall be assigned to each PA point in the system. Limits shall be stored in the DDC database.

2.14.6 Constraints

2.14.6.1 Equipment Constraints Definitions

Each control point in the database shall have DDC resident constraints defined and entered by the Contractor, including as applicable:
a. Maximum starts (cycles) per hour.
b. Minimum off time.
c. Minimum on time.
d. High limit (value in engineering units).
e. Low limit (value in engineering units).

2.14.6.2 Constraints Checks

Control devices connected to the system shall have the DDC memory resident constraints checked before each command is issued to insure that no equipment damage will result from improper operation. Each command shall be executed by the DDC only after all constraints checks have been passed. Each command point shall have unique constraints assigned. High and low "reasonableness" values or one differential "rate-of-change" value shall be assigned to each AI. Values outside the reasonableness limits shall be rejected and an alarm message sent to the network control panel or portable workstation/tester. Status changes and analog point values shall be reported to the workstation upon operator request, such as for reports, alphanumeric displays, graphic displays, and application programs. Each individual point shall be capable of being selectively disabled by the operator from a workstation/tester. Disabling a point shall prohibit monitoring and automatic control of that point.

2.14.7 Diagnostics

Each DDC shall have self-test diagnostic routines implemented in firmware. The tests shall include routines that exercise memory. Diagnostic software shall be usable in conjunction with the central workstation/tester and portable workstation/tester. The software shall display messages in English to inform the tester's operator of diagnosed problems.

2.14.8 Summer-Winter Operation Monitoring

The system shall provide software to automatically change the operating parameters, monitoring of alarm limits, and start-stop schedules for each mechanical system from summer to winter and vice-versa. The software shall provide automatic commands to applications programs to coordinate proper summer or winter operation. Change over setpoints shall be operator selectable and settable.

2.14.9 Control Sequences and Control Loops

Sufficient memory shall be provided to implement the requirements specified and shown for each DDC. Specific functions to be implemented are defined in individual system control sequences and database tables shown in the drawings, and shall include, as applicable, the following:

a. PI Control: This function shall provide proportional control and proportional plus integral control.
b. Two Position Control: This function shall provide control for a two state device by comparing a set point against a process variable and an established deadband.
c. Floating Point Control: This function shall exercise control when an error signal exceeds a selected deadband, and shall maintain control until the error is within the deadband limits.

d. Signal Selection: This function shall allow the selection of the highest or lowest analog value from a group of analog values as the basis of control. The function shall include the ability to cascade analog values so that large numbers of inputs can be reduced to one or two outputs.

e. Signal Averaging: This function shall allow the mathematical calculation of the average analog value from a group of analog values as the basis of control. The function shall include the ability to "weight" the individual analog values so that the function output can be biased as necessary to achieve proper control.

f. Reset Function: This function shall develop an AO based on up to two AIs and one operator specified reset schedule.

g. Cooling/Heating Operation Program: Software shall be provided to change, either automatically or on operator command, the operating parameters, monitoring of alarm limits, and start-stop schedules for each mechanical system where such a change from cooling to heating and vice versa is meaningful. The software shall provide commands to application programs to coordinate cooling or heating mode operation. Software shall automatically switch facilities from cooling to heating, and vice versa, based on schedules or temperatures. All HVAC equipment and systems shall be assigned to the program.

2.14.10 Command Priorities

A scheme of priority levels shall be provided to prevent interaction of a command of low priority with a command of higher priority. The system shall require the latest highest priority command addressed to a single point to be stored for a period of time longer than the longest time constraint in the on and off states, insuring that the correct command shall be issued when the time constraint is no longer in effect or report the rejected command. Override commands entered by the operator shall have higher priority than those emanating from application programs.

2.14.11 Resident Application Software

The Contractor shall provide resident applications programs to achieve the sequences of operation, parameters, constraints, and interlocks necessary to provide control of the systems connected to the DDC system. Application programs shall be resident and shall execute in the DDC, and shall coordinate with each other, to insure that no conflicts or contentions remain unresolved. The Contractor shall coordinate the application programs specified with the equipment and controls operation, and other specified requirements. A scheme of priority levels shall be provided to prevent interaction of a command of low priority with a command of higher priority. The system shall require the latest highest priority command addressed to a single point to be stored for a period of time longer than the longest time constraint in the ON and OFF states, insuring that the correct command shall be issued when the time constraint is no longer in effect or the rejected command shall be reported. Override commands entered by the operator shall have higher priority than those emanating from application programs.
2.14.11.1 Program Inputs and Outputs

The Contractor shall select the appropriate program inputs listed for each application program to calculate the required program outputs. Where the specific program inputs are not available, a "default" value or virtual point appropriate for the equipment being controlled and the proposed sequence of operation shall be provided to replace the missing input, thus allowing the application program to operate. AIs to application programs shall have an operator adjustable deadband to preclude short cycling or hunting. Program outputs shall be real analog or digital outputs or logic (virtual) points as required to provide the specified functions. The Contractor shall select the appropriate input and output signals to satisfy the requirements for control of systems as shown.

2.14.11.2 DDC General Conditions

The Contractor shall provide software required to achieve the sequences of operation, parameters, constraints, and interlocks shown. Application software shall be resident in the DDC in addition to any other required software. In the event of a DDC failure, the controlled equipment shall continue to function in the failure mode shown.

2.14.11.3 Scheduled Start/Stop Program

This program shall start and stop equipment based on a time of day schedule for each day of the week, and on a holiday schedule. To eliminate power surges, an operator adjustable time delay shall be provided between consecutive start commands.

a. Program Inputs:

(1) Day of week/holiday.
(2) Time of day.
(3) Cooling and heating high-low alarm limits.
(4) Cooling and heating start-stop schedules.
(5) Cooling or heating mode of operation.
(6) Equipment status.
(7) Equipment constraints.
(8) Consecutive start time delay.

b. Program Outputs: Start/stop signal.

2.14.11.4 Optimum Start/Stop Program

This program shall start and stop equipment as specified for the scheduled start/stop program, but shall include a sliding schedule based on indoor and outdoor air conditions. The program shall take into account the thermal characteristics of the structure, and indoor and outdoor air conditions, using prediction software to determine the minimum time of HVAC system
operation needed to satisfy space environmental requirements at the start of
the occupied cycle, and determine the earliest time for stopping equipment
at the day's end without exceeding space environmental requirements. An
adaptive control algorithm shall be utilized to automatically adjust the
constants used in the program.

a. Program Inputs:
 (1) Day of week/holiday.
 (2) Time of day.
 (3) Cooling or heating mode of operation.
 (4) Equipment status.
 (5) Cooling and heating building occupancy schedules.
 (6) Space temperature.
 (7) Building heating constant (operator adjustable and
 automatically optimized).
 (8) Building cooling constant (operator adjustable and
 automatically optimized).
 (9) OA temperature.
 (10) Required space temperature at occupancy (heating).
 (11) Required space temperature at occupancy (cooling).
 (12) Equipment constraints.
 (13) Cooling and heating high-low alarm limits.

b. Program Outputs: Start/stop signal.

2.14.11.5 Day-Night Setback Program

The software shall limit the rise or drop of space temperature (or specified
fluid temperature) during unoccupied hours. Whenever the space temperature
(or specified fluid temperature) is above (or below for heating) the
operator assigned temperature limit, the system shall be turned on until the
temperature is within the assigned temperature limit.

a. Program Inputs:
 (1) Day of week.
 (2) Time of day.
 (3) Cooling or heating mode of operation.
 (4) Cooling and heating occupancy schedules.
 (5) Equipment status.
(6) Space temperature (or specified fluid temperature).

(7) Minimum space temperature (or specified fluid temperature) during unoccupied periods.

(8) Maximum space temperature (or specified fluid temperature) during unoccupied periods.

(9) Equipment constraints.

b. Program Outputs: Start/stop signal.

2.14.11.6 Economizer Program I

The software shall reduce the HVAC system cooling requirements when the OA dry bulb temperature is less than the return air temperature. When the OA dry bulb temperature is above the return air temperature or changeover setpoint, the OA dampers, return air dampers, and relief air dampers shall be positioned to provide minimum required OA. When the OA dry bulb temperature is below a changeover setpoint temperature, the OA dampers, return air dampers, and exhaust air dampers shall be positioned to maintain the required mixed air temperature.

a. Program Input:

(1) Changeover conditions.

(2) OA dry bulb temperature.

(3) RA dry bulb temperature.

(4) Mixed air dry bulb temperature.

(5) Equipment constraints.

b. Program Output: Damper actuator/cooling control signal.

2.14.11.7 Ventilation/Recirculation and Flush Programs

The software shall reduce the HVAC system thermal load for two modes of operation and provide for flushing of the building as follows:

a. Ventilation mode: In this mode, the system shall precool the space prior to building occupancy. When the outside air temperature is lower than the space temperature, the outside air damper and exhaust air damper shall open to their maximum positions and the return air damper shall close to its minimum position.

b. Recirculation mode: In this mode, the system shall preheat the space prior to building occupancy. When the outside air temperature is lower than the space temperature, the outside air damper and the exhaust air damper shall close to their minimum positions and the return air damper shall open to its maximum position.

c. Flush mode: The software shall use the HVAC supply system to provide 100% outside air for ventilation purpose and flush building spaces.
The network control panel shall modulate the control valves to maintain the air supply temperature setpoints while the flush program is in effect. The flush mode shall be manually initiated and have the highest priority (it shall override all other programs). The outside air damper and the exhaust air damper shall be closed at other times during unoccupied periods, except for economizer operation during day/night setback periods. For systems without mechanical cooling, this program shall, in addition to the above requirements, act as an economizer. The outside, return, and exhaust air dampers shall be modulated to maintain the required mixed air temperature setpoint. When this program is released, the outside and exhaust air dampers shall return to their minimum positions, and the return air damper shall return to its maximum position.

d. Program Inputs:

(1) Day of week.
(2) Time of day.
(3) Cooling or heating mode of operation.
(4) Equipment status.
(5) Cooling and heating occupancy schedules.
(6) OA dry bulb temperature.
(7) Space temperature.
(8) Equipment constraints.

e. Program Output: Damper actuator control signal.

2.14.11.8 Air Volume Control Program

The software shall monitor supply and return/exhaust air flow volumes and modulate fan controls to maintain required air flow volumes and/or ratio or fixed differential of supply to return air flows. This program shall be coordinated with the ventilation-recirculation program and the economizer program for damper control and with static pressure control requirements for fan control.

a. Program Inputs

(1) Supply air flow.
(2) Return/exhaust air flow.
(3) Required supply air flow – high and low limits.
(4) Required return/exhaust air flow – high and low limits.
(5) Volume offset or ratio, as appropriate.

b. Program Outputs

(1) Supply fan volume control.
(2) Return/exhaust fan volume control.

2.14.11.9 Air Distribution Unitary Controller Software
Software shall be provided for the management and control of the air distribution terminal units. Software shall allow for operator definition of multiple air distribution terminal units as functional groups which may be treated as a single entity; monitoring, alarming and reporting of terminal unit parameters on an individual or group basis; and remote setpoint adjustment on an individual or group basis.

a. Functions:

(1) Volume control in response to temperature.
(2) Volume flow limits, minimum and maximum.
(3) Occupied and unoccupied operation with associated temperature and volume limits.
(4) Temperature setpoint override.

b. Program Inputs

(1) Space temperature.
(2) Space temperature setpoint.
(3) Space temperature setpoint limits.
(4) Supply airflow volume.
(5) Supply airflow volume high and low limits.

c. Program Outputs

(1) Supply volume control signal.
(2) Auxiliary fan start/stop signal.
(3) Supplemental heat control signal.

2.14.11.10 Chiller Selection Program

Chiller program shall be used for chiller selection as well as control and monitoring of chillers. The software shall select the most efficient chiller or combination of chillers based on chiller operating data to satisfy the cooling load. Based on chiller operating data, energy input vs chilled water output, the chiller with the highest efficiency shall be selected to satisfy the cooling load calculated by prediction software. The program shall calculate equipment electrical energy input based on percent full load, current, or other inputs provided, and equipment nameplate data. The program shall prevent the chiller from going to full load for a predetermined period to allow the system to stabilize, in order to determine the actual cooling load. The program shall follow the chiller manufacturer's startup and shutdown sequence requirements. Interlocks between chilled water pumps and chiller shall be in accordance with the chiller manufacturer's requirements.

a. Program Inputs

(1) Efficiency curves.
(2) Chiller water supply temperatures.
(3) Chiller water return temperatures.
(4) Chiller water flows.

(5) Instantaneous KW to chillers.
(6) Instantaneous KW to chilled water pumps (if variable).

(7) Common chilled water supply temperatures.
(8) Common chilled water return temperatures.
(9) Total chilled water flow.
(10) Chilled water pumps status.
(11) Refrigerant pressure, suction and discharge.
(12) Equipment constraints.

b. Program Outputs

(1) Start/stop signals for chillers (manual or automatic to control panel).
(2) Start/stop signals for chilled water pumps (manual or automatic to control panel).
(4) Chilled water supply temperature setpoint control signal.
(5) Chiller efficiency.

2.14.11.11 Hot Water OA Reset Program

The software shall reset the hot water temperature supplied by the boiler or converter in accordance with the OA temperature or other specified independent variable. The hot water supply temperature shall be reset downward or upward from a fixed temperature proportionally, as a function of OA temperature or other specified independent variable.

a. Program Inputs

(1) Reset schedule.
(2) OA dry bulb temperature or other specified independent variable.
(3) Hot water supply temperature.
(4) Maximum hot water supply temperature.
(5) Minimum hot water supply temperature.
(6) Equipment constraints.

b. Program Output: Valve actuator control signal.

2.14.11.12 Boiler Monitoring and Control

The software shall remotely monitor and control boiler operation based on boiler operational data. The program shall monitor inputs and discontinue boiler operation if any monitored point exceeds a predetermined value or changes status incorrectly. The operator shall be able to add or delete individual program input points from the list of points that will discontinue boiler operation.

a. Program Inputs

(1) Fuel flow.
(2) Fuel pressure (natural gas).
(3) Fuel temperature (heated fuel oil).
(4) Flame status.
(5) Flue gas oxygen.
(6) Flue gas temperature.
(7) Make-up water flow.
(8) Furnace draft.
(9) Hot water flow.
(10) Hot water pressure.
(11) Hot water supply temperature.
(12) Hot water return temperature.
(13) Hot water BTUs.

b. Program Outputs

(1) Boiler enable/disable control signal.
(2) Boiler enable/disable permission to boiler operator for manual control.
(3) Boiler efficiency.

2.14.11.13 Hot Water Distribution Program

The software shall control the hot water distribution temperature to individual building zones. The zone hot water distribution temperature shall be reset downward or upward from a fixed temperature proportionally as a function of OA temperature or other specified independent variable by modulating the respective zone mixing valve. The zone pump shall be stopped when the OA temperature exceeds the specified setpoint. When parallel pumps are used, the software shall alternate pump operation and shall start the standby pump (after a time delay) upon failure of the operating pump.

a. Program Inputs

(1) Zone hot water distribution temperature.
(2) Reset schedule.
(3) OA dry bulb temperature or other specified independent variable.
(4) Maximum zone hot water distribution temperature.
(5) Zone pump status.
(6) Equipment constraints.

b. Program Outputs

(1) Zone mixing valve control.
(2) Zone pump start/stop signal(s).

PART 3 EXECUTION

3.1 GENERAL INSTALLATION CRITERIA

3.1.1 HVAC Control System

The HVAC control system shall be completely installed and ready for operation. Dielectric isolation shall be provided where dissimilar metals are used for connection and support. Penetrations through and mounting holes in the building exterior shall be made watertight. The HVAC control system installation shall provide clearance for control system maintenance by maintaining access space between coils, access space to mixed-air plenums, and other access space required to calibrate, remove, repair, or replace control system devices. The control system installation shall not interfere with the clearance requirements for mechanical and electrical system maintenance.

3.1.2 Software Installation
Software shall be loaded for an operational system, including databases for all points, operational parameters, and system, command, and application software. The Contractor shall provide original and backup copies of source, excluding the general purpose operating systems and utility programs furnished by computer manufacturers and the non-job-specific proprietary code furnished by the system manufacturer, and object modules for software on each type of media utilized, within 30 days of formal Government acceptance. In addition, a copy of individual floppy disks of software for each DDC panel shall be provided.

3.1.3 Device Mounting Criteria

Devices mounted in or on piping or ductwork, on building surfaces, in mechanical/electrical spaces, or in occupied space ceilings shall be installed in accordance with manufacturer's recommendations and as shown. Control devices to be installed in piping and ductwork shall be provided with required gaskets, flanges, thermal compounds, insulation, piping, fittings, and manual valves for shutoff, equalization, purging, and calibration. Strap-on temperature sensing elements shall not be used except as specified.

3.1.4 Wiring Criteria

Wiring external to control panels, including low-voltage wiring, shall be installed in metallic raceways. Nonmetallic-sheathed cables or metallic-armored cables may be installed in areas permitted by NFPA 70. Wiring shall be installed without splices between control devices and DDC panels. Instrumentation grounding shall be installed as necessary to prevent ground loops, noise, and surges from adversely affecting operation of the system. Ground rods installed by the contractor shall be tested as specified in IEEE Std 142. Cables and conductor wires shall be tagged at both ends, with the identifier shown on the shop drawings. Electrical work shall be as specified in Section 16415 ELECTRICAL WORK, INTERIOR and as shown.

3.2 CONTROL SYSTEM INSTALLATION

3.2.1 Damper Actuators

Actuators shall not be mounted in the air stream. Multiple actuators operating a common damper shall be connected to a common drive shaft. Actuators shall be installed so that their action shall seal the damper to the extent required to maintain leakage at or below the specified rate and shall move the blades smoothly.

3.2.2 Local Gauges for Actuators

Pneumatic actuators shall have an accessible and visible receiver gauge installed in the tubing lines at the actuator as shown.

3.2.3 Room Instrument Mounting

Room instruments, such as wall mounted thermostats, shall be mounted 1.5 m above the floor unless otherwise shown. Temperature setpoint devices shall be recess mounted.

3.2.4 Freezestats
For each 2 square meters of coil face area, or fraction thereof, a freezestat shall be provided to sense the temperature at the location shown. Manual reset freezestats shall be installed in approved, accessible locations where they can be reset easily. The freezestat sensing element shall be installed in a serpentine pattern.

3.2.5 Averaging Temperature Sensing Elements

Sensing elements shall have a total element minimum length equal to 3 m per square meter of duct cross-sectional area.

3.2.6 Foundations and Housekeeping Pads

Foundations and housekeeping pads shall be provided for the HVAC control system air compressors.

3.2.7 Compressed Air Stations

The air compressor assembly shall be mounted on vibration eliminators, in accordance with ASME BPV VIII Div I for tank clearance. The air line shall be connected to the tank with a flexible pipe connector. Compressed air station specialties shall be installed with required tubing, including condensate tubing to a floor drain.

3.2.8 Duct Static Pressure Sensing Elements and Transmitters

The duct static pressure sensing element and transmitter sensing point shall be located at 75% to 100% of the distance between the first and last air terminal units.

3.2.9 Indication Devices Installed in Piping and Liquid Systems

Gauges in piping systems subject to pulsation shall have snubbers. Gauges for steam service shall have pigtail fittings with cock. Thermometers and temperature sensing elements installed in liquid systems shall be installed in thermowells.

3.2.10 Tubing

3.2.10.1 Control System Installation

The control system shall be installed so that pneumatic lines are not exposed to outside air temperatures. All tubes and tube bundles exposed to view shall be installed neatly in lines parallel to the lines of the building. Tubing between panels and actuators in mechanical/electrical spaces shall be routed so that the lines are easily traceable.

3.2.10.2 Pneumatic Lines In Mechanical/Electrical Spaces

In mechanical/electrical spaces, pneumatic lines shall be plastic tubing or copper tubing. Horizontal and vertical runs of plastic tubes or soft copper tubes shall be installed in raceways dedicated to tubing. Dedicated raceways and tubing not installed in raceways shall be supported every 2 m for horizontal runs and every 2.5 m for vertical runs.

3.2.10.3 Pneumatic Lines External To Mechanical/Electrical Spaces
Tubing external to mechanical/electrical spaces, when run in plenum ceilings, shall be soft copper with sweat fittings. Tubing not in plenum spaces shall be soft copper with sweat fittings or shall be plastic tubing in raceways dedicated to tubing. Raceways and tubing not in raceways shall be supported every 2.5 m.

3.2.10.4 Connection to Liquid and Steam Lines

Tubing for connection of sensing elements and transmitters to liquid and steam lines shall be copper Series 300 stainless steel with brass compression stainless-steel compression fittings.

3.2.10.5 Connection to Ductwork

Tubing for connection of sensing elements and transmitters to ductwork shall be plastic tubing.

3.2.10.6 Tubing in Concrete

Tubing in concrete shall be installed in rigid conduit. Tubing in walls containing insulation, fill, or other packing materials shall be installed in raceways dedicated to tubing.

3.2.10.7 Final Connection to Actuators

Final connections to actuators shall be plastic tubing 300 mm long and unsupported at the actuator.

3.3 CONTROL SEQUENCES OF OPERATION

3.3.1 General Requirements - HVAC Systems

These requirements shall apply to all primary HVAC systems unless modified herein. The sequences describe the actions of the control system for one direction of change in the HVAC process analog variable, such as temperature, humidity or pressure. The reverse sequence shall occur when the direction of change is reversed.

3.3.1.1 Supply Fan Operating

HVAC system outside air, return air, and relief air dampers shall function as described for specific modes of operation unless control of the dampers is assumed by the fire and smoke control system. Smoke dampers shall open before fans are allowed to start. Interlocked exhaust fans shall be stopped in the unoccupied and ventilation delay modes and their dampers shall be closed. Interlocked exhaust fans shall run in the occupied mode, and their dampers shall open. Cooling coil control valves and cooling coil circulating pumps shall function as described for the specific modes of operation unless their control is assumed by the freeze protection system. Heating coil valves shall be under control.

3.3.1.2 Supply Fan Not Operating

When an HVAC system is stopped, all interlocked fans shall stop, the smoke dampers shall close, the outside air and relief air dampers shall close, the return air damper shall open, all stages of direct-expansion cooling shall stop, the system shall pump down if it has a pump down cycle, humidification
shall stop, and cooling coil valves for coils located indoors shall close to the coil. Cooling coil valves of units located outdoors shall open to the coil. Heating coil valves shall remain under control.

3.3.2 Unit Heater and Cabinet Unit Heater

All Modes - A wall-mounted thermostat with an "AUTO-OFF" switch located as shown, shall cycle the fan to maintain its setpoint as shown when the switch is in the "AUTO" position. When the switch is in the "OFF" position, the fan shall be stopped.

3.4 COMMISSIONING PROCEDURES

3.4.1 Evaluations

The Contractor shall make the observations, adjustments, calibrations, measurements, and tests of the control systems, set the time schedule, and make any necessary control system corrections to ensure that the systems function as described in the sequence of operation.

3.4.1.1 Item Check

Signal levels shall be recorded for the extreme positions of each controlled device. An item-by-item check of the sequence of operation requirements shall be performed using Steps 1 through 4 in the specified control system commissioning procedures. Steps 1, 2, and 3 shall be performed with the HVAC system shut down; Step 4 shall be performed after the HVAC systems have been started. External input signals to the DDC system (such as starter auxiliary contacts, and external systems) may be simulated in steps 1, 2, and 3. With each operational mode signal change, DDC system output relay contacts shall be observed to ensure that they function.

3.4.1.2 Weather Dependent Test Procedures

Weather dependent test procedures that cannot be performed by simulation shall be performed in the appropriate climatic season. When simulation is used, the actual results shall be verified in the appropriate season.

3.4.1.3 Two-Point Accuracy Check

A two-point accuracy check of the calibration of each HVAC control system sensing element and transmitter shall be performed by comparing the DDC system readout to the actual value of the variable measured at the sensing element and transmitter or airflow measurement station location. Digital indicating test instruments shall be used, such as digital thermometers, motor-driven psychrometers, and tachometers. The test instruments shall be at least twice as accurate as the specified sensing element-to-DDC system readout accuracy. The calibration of the test instruments shall be traceable to National Institute Of Standards And Technology standards. The first check point shall be with the HVAC system in the shutdown condition, and the second check point shall be with the HVAC system in an operational condition. Calibration checks shall verify that the sensing element-to-DDC system readout accuracies at two points are within the specified product accuracy tolerances. If not, the device shall be recalibrated or replaced and the calibration check repeated.
3.4.1.4 Insertion and Immersion Temperatures

Insertion temperature and immersion temperature sensing elements and transmitter-to-DDC system readout calibration accuracy shall be checked at one physical location along the axis of the sensing element.

3.4.1.5 Averaging Temperature

Averaging temperature sensing element and transmitter-to-DDC system readout calibration accuracy shall be checked every 600 mm along the axis of the sensing element in the proximity of the sensing element, for a maximum of 10 readings. These readings shall then be averaged.

3.4.2 Space Temperature Controlled Perimeter Radiation

The heating medium shall be turned on, and the thermostat temperature setpoint shall be raised. The valve shall open. The thermostat temperature shall be lowered and the valve shall close. The thermostat shall be set at the setpoint shown.

3.4.3 Unit Heater and Cabinet Unit Heater

The "OFF/AUTO" switch shall be placed in the "OFF" position. Each space thermostat temperature setting shall be turned up so that it makes contact to turn on the unit heater fans. The unit heater fans shall not start. The "OFF/AUTO" switch shall be placed in the "AUTO" position. It shall be ensured that the unit heater fans start. Each space thermostat temperature setting shall be turned down, and the unit heater fans shall stop. The thermostats shall be set at their temperature setpoints. The results of testing of one of each type of unit shall be logged.

3.4.4 Single Building Hydronic Heating with Hot Water Boiler

Steps for installation shall be as follows:

a. Step 1 - System Inspection: The HVAC system shall be observed in its shutdown condition. It shall be verified that power and main air are available where required.

b. Step 2 - Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air temperature and system supply temperature shall be checked.

c. Step 3 - Actuator Range Adjustments: A signal shall be applied to the actuator through an operator entered value to the DDC system. The proper operation of the actuators and positioners for all valves shall be verified visually. The signal shall be varied from live zero to full range, and it shall be verified that the actuators travel from zero stroke to full stroke within the signal range. It shall be verified that all sequenced actuators move from zero stroke to full stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other.

d. Step 4 - Control System Commissioning:
(1) The two-point calibration sensing element-to-DDC system readout accuracy check for the outside air temperature shall be performed. Any necessary software adjustments to setpoints or parameters shall be made to achieve the outside air temperature schedule.

(2) The outside air temperature shall be simulated through an operator entered value to be above the setpoint. It shall be verified that pumps and boiler stop. A value shall be entered to simulate that the outside air temperature is below the setpoint as shown. It shall be verified that pumps start and boiler operates.

(3) The two-point calibration accuracy check of the sensing element-to-DDC system readout for the hydronic system supply temperature shall be performed. The supply temperature setpoint shall be set for the temperature schedule as shown. Signals of 8 ma and 16 ma shall be sent to the DDC system from the outside air temperature sensor, to verify that the supply temperature setpoint changes to the appropriate values.

(4) The control system shall be placed in the occupied mode. The calibration accuracy check of sensing element-to-DDC system readout shall be performed for each space temperature sensor and the values logged. Each space temperature setpoint shall be set as shown. The control system shall be placed in the unoccupied mode, and it shall be verified that each space temperature setpoint changes to the unoccupied mode setting.

3.4.5 Variable Air Volume Control System - With Return Fan

Steps for installation shall be as follows:

a. Step 1 - System Inspection: The HVAC system shall be observed in its shutdown condition. It shall be verified that power and main air are available where required, and that the outside air and relief air dampers are closed, the return air damper is open, and that the supply fan and return/relief fan inlet vanes and cooling coil valve are closed.

b. Step 2 - Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system display readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air, return air, mixed air, and cooling coil discharge temperatures shall be checked. The minimum outside air flow, supply air flow, and return air flow shall be read, using a digital indicating velometer, and the velometer and DDC system display readings logged. The flows should read zero.

c. Step 3 - Actuator Range Adjustments: A signal shall be applied to the actuators through an operator entered value at the DDC system. The proper operation of the actuators and positioners for all dampers and valves shall be visually verified. The signal shall be varied from live zero to full range, and actuator travel shall be verified from zero stroke to full stroke within the signal range. It shall be verified that all sequenced and parallel operated actuators move from zero stroke to full stroke in the
proper direction, and move the connected device in the proper direction from one extreme position to the other.

d. Step 4 - Control System Commissioning:

(1) With the fans ready to start, the control system shall be placed in the ventilation delay mode and in the occupied mode, and it shall be verified that supply fan and return fan start. It shall be verified that the outside air dampers and relief air damper are closed, the return air damper is open, and the cooling coil valve and variable frequency drive are under control, by simulating a change in the fan discharge temperature. The system shall be placed out of the ventilation delay mode, and it shall be verified that the economizer outside air and relief air dampers remain closed, the return air damper remains open, and the minimum outside air damper comes under control.

(2) The two-point calibration accuracy check of sensing element-to-DDC system readout for the minimum outside air flow measurement station shall be performed. Force all VAV box dampers to the full open position, turn all exhaust fans off, manually adjust the supply duct static pressure to achieve the design duct static pressure, manually adjust the output to the return fan to establish the design differential flow difference between the supply and return duct flows, and manually adjust the minimum outside air flow to achieve a flow which is approximately 25% less than the desired air flow. Under these conditions, the minimum outside air flow control loop shall be tuned. Confirm stable operation of the minimum outside air flow control loop in response to a process disturbance.

(3) The variable frequency drive switch of return fan shall be turned to the "OFF" position. With supply fan running, a high static pressure input signal shall be simulated at the device by a pressure input to the sensing device. HVAC system shutdown shall be observed, and it shall be verified that the high static alarm is initiated. The HVAC system shall be restarted by manual reset, and it shall be verified that the high static alarm returns to normal.

(4) The two-point accuracy check of sensing element-to-DDC system readout for the static pressure in the supply duct shall be performed.

(5) Each VAV terminal unit controller's minimum flow and maximum flow setpoints shall be set at the same setting. This will prevent the VAV box damper from modulating under space temperature control and will achieve a constant supply duct system pressure drop. The return fan variable frequency drive shall be placed under control, and the starter switch shall be turned to the "AUTO" position so that the fan starts. The two-point calibration accuracy check of sensing element-to-DDC system readout for the air flow measurement stations shall be performed. The supply fan variable frequency drive shall be operated manually to change the supply fan flow, and the control system shall be set to control at minimum air flow at 4-ma input and minimum air flow at 20-ma input. The supply fan flow shall be changed to verify that the return flow setpoint tracks the supply fan flow with the proper flow differential.
(6) The economizer mode shall be simulated by a change in the outside air temperature and the return air temperature through operator entered values and it shall be verified that the system goes into the economizer mode. The mixed air temperature shall be artificially changed through operator entered values to slightly open the economizer outside air damper and the second point of the two-point calibration accuracy check of sensing element-to-DDC system readout for outside air, return air, and mixed air temperatures shall be performed. The temperature setpoint shall be set as shown.

(7) The two-point calibration accuracy check of sensing element-to-DDC system readout for the fan discharge temperature shall be performed. The setpoint for the fan discharge temperature shall be set as shown. A change shall be simulated in the discharge air temperature through an operator entered value and it shall be verified that the control valve is modulated.

(8) The control system shall be placed in the unoccupied mode and it shall be verified that the HVAC system shuts down and the control system assumes the specified shutdown conditions. The space temperature shall be artificially changed to below the night setback temperature setpoint, and it shall be verified that the HVAC system starts; the space temperature shall be artificially changed to above the night setback temperature setpoint and it shall be verified that the HVAC system stops. The night setback temperature setpoint shall be set at the setpoint.

(9) With the HVAC system running, a filter differential pressure switch input signal shall be simulated at the device. It shall be verified that the filter alarm is initiated. The differential pressure switch shall be set at the setpoint as shown. This shall be performed for each filter.

(10) With the HVAC system running, a freezestat trip input signal shall be simulated at the device. HVAC system shutdown shall be verified. It shall be verified that a low temperature alarm is initiated. The freezestat shall be set at the setpoint as shown. The HVAC system shall be restarted by manual restart and it shall be verified that the alarm returns to normal.

(11) With the HVAC system running, a smoke detector trip input signal shall be simulated at each device. Control device actions and interlock functions as described in the Sequence of Operation shall be verified. Simulation shall be performed without false-alarming any Life Safety systems. It shall be verified that the HVAC system shuts down and the smoke detector alarm is initiated. The detectors shall be reset. The HVAC system shall be restarted by manual reset, and the alarm return-to-normal shall be verified.

(12) For each VAV terminal unit, velocity setpoints shall be set for minimum and maximum flow, and temperature setpoints for the heating/cooling dead band. The actions of the controller, the operation of the damper, and the operation of heating shall be verified. It shall be verified that space temperature is maintained.
3.4.6 Single Zone with Hydronic Heating and Cooling Coils; No Return Fan

Steps for installation shall be as follows:

a. Step 1 - System Inspection: The HVAC system shall be verified in its shutdown condition. The system shall be checked to see that power and main air are available where required, that the outside air damper, relief air damper, and cooling coil valve are closed, and that the return air damper is open.

b. Step 2 - Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system display readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air, return air, and space temperatures shall be checked.

c. Step 3 - Actuator Range Adjustments: A signal shall be applied to the actuator through an operator entered value to the DDC system. The proper operation of the actuators and positioners for all dampers and valves shall be visually verified. The signal shall be varied from live zero to full range, and the actuator travel from zero stroke to full stroke within the signal range shall be verified. It shall be verified that all sequenced and parallel-operated actuators move from zero stroke to full stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other.

d. Step 4 - Control System Commissioning:

(1) With the fan ready to start, the control system shall be placed in the ventilation delay mode and in the occupied mode, and it shall be verified that supply fan starts. It shall be verified that the outside air and relief air dampers are closed, the return air damper is open, and the heating coil and cooling coil valves are under control, by simulating a change in the space temperature through an operator entered value. The control system shall be placed out of the ventilation delay mode, and it shall be verified that the outside air, return air, and relief air dampers come under control by simulating a change in the space temperature.

(2) The control system shall be placed in the minimum outside air mode. It shall be verified that the outside air damper opens to minimum position.

(3) The economizer mode shall be simulated by a change in the outside air temperature and the return air temperature through operator entered values and it shall be verified that the system goes into the economizer mode. The space temperature shall be artificially changed through operator entered values to slightly open the outside air damper and the second point of the two-point calibration accuracy check of sensing element-to-DDC system readout for outside air, return air, and space temperatures shall be performed. The space temperature setpoint shall be set as shown.

(4) An unoccupied mode signal shall be applied, and it shall be verified that the HVAC system shuts down, and the control system...
assumes the specified shutdown conditions. The space temperature shall be artificially changed to below the night setback temperature setpoint, and it shall be verified that the HVAC system starts; the space temperature shall be set to above the night setback setpoint, and it shall be verified that the HVAC system stops. The night setback temperature setpoint shall be set at the setpoint as shown.

(5) With the HVAC system running, a filter differential pressure switch input signal shall be simulated at the device. It shall be verified that the filter alarm is initiated. The differential pressure switch shall be set at the setpoint.

(6) With the HVAC system running, a freezestat trip input signal shall be simulated at the device. HVAC system shutdown shall be verified. It shall be verified that a low temperature alarm is initiated. The freezestat shall be set at the setpoint. The HVAC system shall be restarted by manual restart and it shall be verified that the alarm returns to normal.

(7) With the HVAC system running, a smoke detector trip input signal at each detector shall be simulated, and control device actions and interlock functions as described in the Sequence of Operation shall be verified. Simulation shall be performed without false-alarming any Life Safety systems. It shall be verified that the HVAC system shuts down and that the smoke detector alarm is initiated. The detectors shall be reset. The HVAC system shall be restarted by manual reset, and it shall be verified that the alarm returns to normal.

3.4.7 Single Zone with Humidification; No Return Fan

Steps for installation shall be as follows:

a. Step 1 - System Inspection: The HVAC system shall be verified in its shutdown condition. The system shall be checked to see that power and main air are available where required, and that the outside air damper, humidifier valve and cooling coil valve are closed.

b. Step 2 - Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing elements location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system display readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air, return air, mixed air, and cooling coil discharge temperatures shall be checked. A motor-driven psychrometer shall be used to check the wet-bulb and dry-bulb temperatures of the humidifier discharge air and of the air in the space, and the psychrometer, and DDC system display readings shall be read and logged.

c. Step 3 - Actuator Range Adjustments: A signal shall be applied to the actuator, through an operator entered value to the DDC system. The proper operation of the actuators and positioners for all dampers and valves shall be visually verified. The signal shall be varied from live zero to full range, and the actuators travel shall be verified from zero stroke to full stroke within the signal range. It shall be verified that all sequenced and parallel operated actuators move from zero stroke to full
stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other.

d. Step 4 - Control System Commissioning:

(1) With the fan ready to start, the control system shall be placed in the ventilation delay mode and in the occupied mode, and it shall be verified that supply fan starts. It shall be verified that the outside air damper is closed, and the heating coil, cooling coil, and humidifier valves are under control, by simulating a change in the space humidity and the space temperature. The system shall be placed out of the ventilation delay mode, and it shall be verified that the outside air damper opens.

(2) The two-point calibration accuracy check of sensing element-to-DDC system readout for the preheat coil discharge air temperature shall be performed. The setpoint for the coil discharge air temperature shall be set as shown. A change shall be simulated in the coil discharge air temperature through an operator entered value and it shall be verified that the preheat coil control valve is modulated.

(3) The calibration accuracy check for sensing element-to-DDC system readout for the space temperature shall be performed. The space temperature setpoint shall be set as shown. A change shall be simulated in the space temperature and it shall be verified that the heating coil valve and cooling coil valve are under control.

(4) The calibration accuracy check for sensing element-to-DDC system readout for the space relative humidity shall be performed. An identical calibration accuracy check for the duct relative humidity shall be performed. The space relative humidity and the duct relative humidity setpoints shall be set as shown. A change shall be simulated in the space relative humidity or in the duct relative humidity and it shall be verified that the humidifier valve and cooling coil valve are under control.

(5) The hydronic heating temperature controller "MANUAL/AUTO" station shall be indexed to the "MANUAL" position. The controller output shall be changed to open the converter valve slightly. The 2-point calibration accuracy check for sensing element-to-DDC system readout for the space temperature shall be performed. The temperature setpoint shall be set as shown.

(6) The control system shall be placed in the unoccupied mode and it shall be verified that the HVAC system shuts down, and the control system assumes the specified shutdown conditions. The space temperature shall be artificially changed to below the night setback temperature setpoint and it shall be verified that the HVAC system starts; the space temperature shall be artificially changed to above the night setback temperature setpoint, and it shall be verified that the HVAC system stops. The night setback temperature setpoint shall be set at the setpoint as shown.

(7) With the HVAC system running, a filter differential pressure switch input signal shall be simulated at the device. It shall be
verified that the filter alarm is initiated. The differential pressure switch shall be set at the setpoint.

(8) With the HVAC system running, a freezestat trip input signal shall be simulated at the device. HVAC system shutdown shall be verified. It shall be verified that a low temperature alarm is initiated. The freezestat shall be set at the setpoint. The HVAC system shall be restarted by manual restart and it shall be verified that the alarm returns to normal.

(9) With the HVAC system running, a smoke detector trip input signal shall be simulated at each detector, and control device actions and interlock functions as described in the Sequence of Operation shall be verified. Simulation shall be performed without false-alarming any Life Safety systems. It shall be verified that the HVAC system shuts down and that the smoke detector alarm is initiated. The detectors shall be reset. The HVAC system shall be restarted by manual reset, and it shall be verified that the alarm returns to normal.

3.5 BALANCING, COMMISSIONING, AND TESTING

3.5.1 Coordination with HVAC System Balancing

Commissioning of the control system, except for tuning of controllers, shall be performed prior to or simultaneous with HVAC system balancing. The contractor shall tune the HVAC control system after all air system and hydronic system balancing has been completed, minimum damper positions set and a report has been issued.

3.5.2 Control System Calibration, Adjustments, and Commissioning

Control system commissioning shall be performed for each HVAC system, using test plans and procedures previously approved by the Government. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform commissioning and testing of the HVAC control system. All instrumentation and controls shall be calibrated and the specified accuracy shall be verified using test equipment with calibration traceable to NIST standards. Wiring shall be tested for continuity and for ground, open, and short circuits. Tubing systems shall be tested for leaks. Mechanical control devices shall be adjusted to operate as specified. HVAC control panels shall be pretested off-site as a functioning assembly ready for field connections, calibration, adjustment, and commissioning of the operational HVAC control system. Control parameters and logic (virtual) points including control loop setpoints, gain constants, and integral constraints, shall be adjusted before the system is placed on line. Communications requirements shall be as indicated. Written notification of any planned commissioning or testing of the HVAC Control systems shall be given to the Government at least 14 calendar days in advance.

3.5.3 Performance Verification Test

The Contractor shall demonstrate compliance of the HVAC control system with the contract documents. Using test plans and procedures previously approved by the Government, the Contractor shall demonstrate all physical and functional requirements of the project. The performance verification test shall show, step-by-step, the actions and results demonstrating that the
control systems perform in accordance with the sequences of operation. The performance verification test shall not be started until after receipt by the Contractor of written permission by the Government, based on Government approval of the Commissioning Report and completion of balancing. The tests shall not be conducted during scheduled seasonal off periods of base heating and cooling systems.

3.5.4 Endurance Test

The endurance test shall be used to demonstrate the specified overall system reliability requirement of the completed system. The endurance test shall not be started until the Government notifies the Contractor in writing that the performance verification test is satisfactorily completed. The Government may terminate the testing at any time when the system fails to perform as specified. Upon termination of testing by the Government or by the Contractor, the Contractor shall commence an assessment period as described for Phase II. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Government prior to acceptance of the system.

 a. Phase I (Testing). The test shall be conducted 24 hours per day, 7 days per week, for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized by the Government in writing.

 b. Phase II (Assessment). After the conclusion of Phase I, the Contractor shall identify failures, determine causes of failures, repair failures, and deliver a written report to the Government. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and shall recommend the point at which testing should be resumed. After delivering the written report, the Contractor shall convene a test review meeting at the jobsite to present the results and recommendations to the Government. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and test review meeting, the Government may require that the Phase I test be totally or partially rerun. After the conclusion of any retesting which the Government may require, the Phase II assessment shall be repeated as if Phase I had just been completed.

3.5.5 Posted and Panel Instructions

Posted and Panel Instructions, showing the final installed conditions, shall be provided for each system. The posted instructions shall consist of laminated half-size drawings and shall include the control system schematic, equipment schedule, sequence of operation, wiring diagram, communication network diagram, and valve and damper schedules. The posted instructions shall be permanently affixed, by mechanical means, to a wall near the control panel. Panel instructions shall consist of laminated letter-size sheets and shall include a Routine Maintenance Checklist and as-built configuration check sheets. Panel instructions and one copy of the Operation and Maintenance Manuals, previously described herein, shall be placed inside each control panel or permanently affixed, by mechanical means, to a wall near the panel.

3.6 TRAINING
3.6.1 Training Course Requirements

A training course shall be conducted for 4 operating staff members designated by the Contracting Officer in the maintenance and operation of the system, including specified hardware and software. The training period, for a total of 32 hours of normal working time, shall be conducted within 30 days after successful completion of the performance verification test. The training course shall be conducted at the project site. Audiovisual equipment and 4 sets of all other training materials and supplies shall be provided. A training day is defined as 8 hours of classroom instruction, including two 15 minute breaks and excluding lunchtime, Monday through Friday, during the daytime shift in effect at the training facility.

3.6.2 Training Course Content

For guidance in planning the required instruction, the Contractor shall assume that attendees will have a high school education or equivalent, and are familiar with HVAC systems. The training course shall cover all of the material contained in the Operating and Maintenance Instructions, the layout and location of each HVAC control panel, the layout of one of each type of unitary equipment and the locations of each, the location of each control device external to the panels, the location of the compressed air station, preventive maintenance, troubleshooting, diagnostics, calibration, adjustment, commissioning, tuning, and repair procedures. Typical systems and similar systems may be treated as a group, with instruction on the physical layout of one such system. The results of the performance verification test and the calibration, adjustment and commissioning report shall be presented as benchmarks of HVAC control system performance by which to measure operation and maintenance effectiveness.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASSOCIATED AIR BALANCE COUNCIL (AABC)

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)

1.2 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having a "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

TAB Related HVAC Submittals; FIO.

A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB Specialist.

SD-04 Drawings

TAB Schematic Drawings and Report Forms; GA.

Three copies of the TAB Schematic Drawings and Report Forms, no later than 21 days prior to the start of TAB field measurements.

SD-06 Instructions

TAB Procedures; GA.

Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms.

SD-07 Schedules

Systems Readiness Check; FIO.
Proposed date and time to begin the Systems Readiness Check, no later than 7 days prior to the start of the Systems Readiness Check.

TAB Execution; GA.

Proposed date and time to begin field measurements, making adjustments, etc., for the TAB Report, submitted with the Systems Readiness Check Report.

TAB Verification; GA.

Proposed date and time to begin the TAB Verification, submitted with the TAB Report.

SD-08 Statements

TAB Firm; GA.

Certification of the proposed TAB Firm's qualifications by either AABC or NEBB to perform the duties specified herein and in other related Sections, no later than 21 days after the Notice to Proceed. The documentation shall include the date that the Certification was initially granted and the date that the current Certification expires. Any lapses in Certification of the proposed TAB Firm or disciplinary action taken by AABC or NEBB against the proposed TAB Firm shall be described in detail.

TAB Specialist; GA.

Certification of the proposed TAB Specialist's qualifications by either AABC or NEBB to perform the duties specified herein and in other related Sections, no later than 21 days after the Notice to Proceed. The documentation shall include the date that the Certification was initially granted and the date that the current Certification expires. Any lapses in Certification of the proposed TAB Specialist or disciplinary action taken by AABC or NEBB against the proposed TAB Specialist shall be described in detail.

Instrument Calibration; FIO.

List of each instrument to be used during TAB, stating calibration requirements required or recommended by both the TAB Standard and the instrument manufacturer and the actual calibration history of the instrument, submitted with the TAB Procedures. The calibration history shall include dates calibrated, the qualifications of the calibration laboratory, and the calibration procedures used.

SD-09 Reports

Design Review Report; GA.

A copy of the Design Review Report, no later than 14 days after approval of the TAB Firm and the TAB Specialist.

Systems Readiness Check Report; GA.

A copy of completed checklists for each system, each signed by the TAB Specialist, at least 7 days prior to the start of TAB Execution. All items in the Systems Readiness Check Report shall be signed by the TAB Specialist.
and shall bear the seal of the Professional Society or National Association used as the TAB Standard.

TAB Report; GA.

Three copies of the completed TAB Reports, no later that 7 days after the execution of TAB. All items in the TAB Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard.

TAB Verification Report; GA.

Three copies of the completed TAB Verification Report, no later that 7 days after the execution of TAB Verification. All items in the TAB Verification Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard.

1.3 SIMILAR TERMS

In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results. The following table of similar terms is provided for clarification only. Contract requirements take precedent over the corresponding AABC or NEBB requirements where differences exist.

SIMILAR TERMS

<table>
<thead>
<tr>
<th>Contract Term</th>
<th>AABC Term</th>
<th>NEBB Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB Standard</td>
<td>National Standards for Testing and Balancing</td>
<td>Procedural Standards for Testing Adjusting</td>
</tr>
<tr>
<td></td>
<td>Heating, Ventilating, and Air Conditioning Systems</td>
<td>Balancing of Environmental Systems.</td>
</tr>
<tr>
<td>TAB Specialist</td>
<td>TAB Engineer</td>
<td>TAB Supervisor</td>
</tr>
<tr>
<td>Systems Readiness Check</td>
<td>Construction Phase Inspection</td>
<td>Field Readiness Check & Preliminary Field Procedures.</td>
</tr>
</tbody>
</table>

1.4 TAB STANDARD

TAB shall be performed in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1or NEBB Procedural Stds, unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard shall be considered mandatory. The provisions of the TAB Standard, including checklists, report forms, etc., shall, as nearly as practical, be used to satisfy the Contract requirements. The TAB Standard shall be used for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, the manufacturer's recommendations shall be adhered to. All quality assurance provisions of the TAB Standard such as performance
guarantees shall be part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures shall be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC or NEBB), the requirements and recommendations contained in these procedures and requirements shall be considered mandatory.

1.5 QUALIFICATIONS

1.5.1 TAB Firm

The TAB Firm shall be either a member of AABC or certified by the NEBB and certified in all categories and functions where measurements or performance are specified on the plans and specifications, including TAB of environmental systems building systems commissioning. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor shall immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm shall be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor. These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm shall be a subcontractor of the prime Contractor, and shall report to and be paid by the prime Contractor.

1.5.2 TAB Specialist

The TAB Specialist shall be either a member of AABC or an experienced technician of the Firm certified by the NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the Contractor shall immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.

1.6 TAB SPECIALIST RESPONSIBILITIES

All TAB work specified herein and in related sections shall be performed under the direct guidance of the TAB Specialist. The TAB Specialist shall participate in the commissioning process specified in Section 15995COMMISSIONING OF HVAC SYSTEMS.

PART 2 PRODUCTS (NOT APPLICABLE)
PART 3 EXECUTION

3.1 DESIGN REVIEW

The TAB Specialist shall review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.2 TAB RELATED HVAC SUBMITTALS

The TAB Specialist shall prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the TAB Specialist when submitted to the Government. The TAB Specialist shall also ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

3.3 TAB SCHEMATIC DRAWINGS AND REPORT FORMS

A schematic drawing showing each system component, including balancing devices, shall be provided for each system. Each drawing shall be accompanied by a copy of all report forms required by the TAB Standard used for that system. Where applicable, the acceptable range of operation or appropriate setting for each component shall be included on the forms or as an attachment to the forms. The schematic drawings shall identify all testing points and cross reference these points to the report forms and procedures.

3.4 TESTING, ADJUSTING, AND BALANCING

3.4.1 TAB Procedures

Step by step procedures for each measurement required during TAB Execution shall be provided. The procedures shall be oriented such that there is a separate section for each system. The procedures shall include measures to ensure that each system performs as specified in all operating modes, interactions with other components (such as exhaust fans, relief vents, etc.) and systems, and with all seasonal operating differences, diversity, simulated loads, and pressure relationships required.

3.4.2 Systems Readiness Check

The TAB Specialist shall inspect each system to ensure that it is complete, including installation and operation of controls, and that all aspects of the facility that have any bearing on the HVAC systems, including installation of ceilings, walls, windows, doors, and partitions, are complete to the extent that TAB results will not be affected by any detail or touch-up work remaining. The TAB Specialist shall also verify that all items such as ductwork and piping ports, terminals, connections, etc., necessary to perform TAB shall be complete during the Systems Readiness Check.
3.4.3 Preparation of TAB Report

Preparation of the TAB Report shall begin only when the Systems Readiness Report has been approved. The Report shall be oriented so that there is a separate section for each system. The Report shall include a copy of the appropriate approved Schematic Drawings and TAB Related Submittals, such as pump curves, fan curves, etc., along with the completed report forms for each system. The operating points measured during successful TAB Execution and the theoretical operating points listed in the approved submittals shall be marked on the performance curves and tables. Where possible, adjustments shall be made using an "industry standard" technique which would result in the greatest energy savings, such as adjusting the speed of a fan instead of throttling the flow. Any deficiencies outside of the realm of normal adjustments and balancing during TAB Execution shall be noted along with a description of corrective action performed to bring the measurement into the specified range. If, for any reason, the TAB Specialist determines during TAB Execution that any Contract requirement cannot be met, the TAB Specialist shall immediately provide a written description of the deficiency and the corresponding proposed corrective action necessary for proper system operation to the Contracting Officer.

3.4.4 TAB Verification

The TAB Specialist shall recheck ten percent of the measurements listed in the TAB Report and prepare a TAB Verification Report. The measurements selected for verification and the individuals that witness the verification will be selected by the Contracting Officer's Representative (COR). The measurements will be recorded in the same manner as required for the TAB Report. All measurements that fall outside the acceptable operating range specified shall be accompanied by an explanation as to why the measurement does not correlate with that listed in the TAB Report and a description of corrective action performed to bring the measurement into the specified range. The TAB Specialist shall update the original TAB report to reflect any changes or differences noted in the TAB verification report and submit the updated TAB report. If over 20 percent of the measurements selected by the COR for verification fall outside of the acceptable operating range specified, the COR will select an additional ten percent for verification. If over 20 percent of the total tested (including both test groups) fall outside of the acceptable range, the TAB Report shall be considered invalid and all contract TAB work shall be repeated beginning with the Systems Readiness Check.

3.4.5 Marking of Setting

Following approval of TAB Verification Report, the setting of all HVAC adjustment devices including valves, splitters, and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time.

3.4.6 Identification of Test Ports

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leakage or to maintain integrity of vapor barrier.
PART 1 GENERAL

1.1 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals with "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Commissioning Team; FIO.

List of team members who will represent the Contractor in the pre-commissioning checks and functional performance testing, at least 2 weeks prior to the start of pre-commissioning checks. Proposed revision to the list, prior to the start of the impacted work.

SD-06 Instructions

Test Procedures; FIO.

Detailed procedures for pre-commissioning checks and functional performance tests, at least 4 weeks prior to the start of pre-commissioning checks.

SD-07 Schedules

Test Schedule; GA.

Schedule for pre-commissioning checks and functional performance tests, at least 2 weeks prior to the start of pre-commissioning checks.

SD-09 Reports

Test Reports; GA.

Completed pre-commissioning checklists and functional performance test checklists organized by system and by subsystem and submitted as one package. The results of failed tests shall be included along with a description of the corrective action taken.

1.2 SEQUENCING AND SCHEDULING

The work described in this Section shall begin only after all work required in related Sections, including Section Section 15990 TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS, has been successfully completed, and all test and inspection reports and operation and maintenance manuals required in these Sections have been submitted and approved. Seismic details shall be in accordance with Sections 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT as indicated
PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION

3.1 COMMISSIONING TEAM AND CHECKLISTS

The Contractor shall designate team members to participate in the pre-commissioning checks and the functional performance testing specified herein. In addition, the Government will be represented by a representative of the Contracting Officer, the Design Agent's Representative, and the Using Agency. The team members shall be as follows:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Contractor's Chief Quality Control Representative</td>
</tr>
<tr>
<td>M</td>
<td>Contractor's Mechanical Representative</td>
</tr>
<tr>
<td>E</td>
<td>Contractor's Electrical Representative</td>
</tr>
<tr>
<td>T</td>
<td>Contractor's Testing, Adjusting, and Balancing Representative</td>
</tr>
<tr>
<td>C</td>
<td>Contractor's Controls Representative</td>
</tr>
<tr>
<td>D</td>
<td>Design Agent's Representative</td>
</tr>
<tr>
<td>O</td>
<td>Contracting Officer's Representative</td>
</tr>
<tr>
<td>U</td>
<td>Using Agency's Representative</td>
</tr>
</tbody>
</table>

Each checklist shown in appendices A and B shall be completed by the commissioning team. Acceptance by each commissioning team member of each pre-commissioning checklist item shall be indicated by initials and date unless an "X" is shown indicating that participation by that individual is not required. Acceptance by each commissioning team member of each functional performance test checklist shall be indicated by signature and date.

3.2 TESTS

The pre-commissioning checks and functional performance tests shall be performed in a manner which essentially duplicates the checking, testing, and inspection methods established in the related Sections. Where checking, testing, and inspection methods are not specified in other Sections, methods shall be established which will provide the information required. Testing and verification required by this section shall be performed during the Commissioning phase. Requirements in related Sections are independent from the requirements of this Section and shall not be used to satisfy any of the requirements specified in this Section. The Contractor shall provide all materials, services, and labor required to perform the pre-commissioning checks and functional performance tests. A pre-commissioning check or functional performance test shall be aborted if any system deficiency prevents the successful completion of the test or if any participating non-Government commissioning team member of which participation is specified is not present for the test. The Contractor shall reimburse the Government for all costs associated with effort lost due to tests that are aborted. These costs shall include salary, travel costs and per diem (where applicable) for Government commissioning team members.

3.2.1 Pre-Commissioning Checks

Pre-commissioning checks shall be performed for the items indicated on the checklists in Appendix A. Deficiencies discovered during these checks shall
be corrected and retested in accordance with the applicable contract requirements.

3.2.2 Functional Performance Tests

Functional performance tests shall be performed for the items indicated on the checklists in Appendix B. Functional performance tests shall begin only after all pre-commissioning checks have been successfully completed. Tests shall prove all modes of the sequences of operation, and shall verify all other relevant contract requirements. Tests shall begin with equipment or components and shall progress through subsystems to complete systems. Upon failure of any functional performance test checklist item, the Contractor shall correct all deficiencies in accordance with the applicable contract requirements. The checklist shall then be repeated until it has been completed with no errors.

APPENDIX A

PRE-COMMISSIONING CHECKLISTS

Pre-commissioning checklist - Piping

For _____ Piping System

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Piping complete.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b. As-built shop drawings submitted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c. Piping flushed and cleaned.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>d. Strainers cleaned.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>e. Valves installed as required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>f. Piping insulated as required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>g. Thermometers and gauges installed as</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Verify operation of valves.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Air vents installed as specified.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>j. Flexible connectors installed as specified</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Verify that piping has been labeled and</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valves identified as specified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing, Adjusting, and Balancing (TAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Hydrostatic test complete.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. TAB operation complete.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Ductwork

For Air Handler: ____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Ductwork complete.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. As-built shop drawings submitted.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>NOTE: The first bracketed item d will be used for Army projects, the second for Air Force projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Fire dampers, smoke dampers, and access doors installed as required.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Ductwork insulated as required.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Thermometers and gauges installed as required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Verify open/closed status of dampers.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>g. Verify smoke dampers operation.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Flexible connectors installed as specified</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Testing, Adjusting, and Balancing (TAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. TAB operation complete.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Variable Volume Air Handling Unit

For Air Handling Unit: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Vibration isolation devices installed.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Inspection and access doors are operable and sealed.</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Casing undamaged.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Insulation undamaged.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Condensate drainage is unobstructed.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Visually verify drainage by pouring a cup of water into drain pan.)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Fan belt adjusted.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Manufacturer's required maintenance clearance provided.</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to unit disconnect.</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Power available to unit control panel.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Proper motor rotation verified.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Verify that power disconnect is located within sight of the unit it controls.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Chilled water piping properly connected.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Chilled water piping pressure tested.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Hot water piping properly connected.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Hot water piping pressure tested.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Air vents installed on water coils with shutoff valves as specified.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Any damage to coil fins has been repaired.</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Control valves/actuators properly installed.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b. Control valves/actuators operable. ___ ___ X ___ ___ ___ ___ ___
c. Dampers/actuators properly installed. ___ ___ X ___ ___ ___ ___ ___
d. Dampers/actuators operable. ___ ___ X ___ ___ ___ ___ ___
e. Verify proper location, installation and calibration of duct static pressure sensor. ___ ___ X ___ ___ ___ ___ ___
f. Fan air volume controller operable. ___ ___ X ___ ___ ___ ___ ___
g. Air handler controls system operational. ___ ___ X ___ ___ ___ ___ ___

Testing, Adjusting, and Balancing (TAB)

a. Construction filters removed and replaced. ___ ___ X ___ ___ ___ ___ ___
b. TAB report submitted. ___ ___ X ___ X ___ ___ ___
c. TAB results within +10%/-0% of L/s shown on drawings ___ ___ X ___ X ___ ___ ___
d. TAB results for outside air intake within +10%/-0% of both the minimum and maximum L/s shown on drawings. ___ ___ X ___ X ___ ___ ___
Pre-commissioning Checklist - VAV Terminal

For VAV Terminal: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. VAV terminal in place.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. VAV terminal ducted.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. VAV terminal connected to controls.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Reheat coil connected to hot water pipe.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Manufacturer's required maintenance clearance provided.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reheat VAV terminal controls set.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Reheat terminal/coil controls verified.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Testing, Adjusting, and Balancing (TAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Verify terminal maximum air flow set.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Verify terminal minimum air flow set.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. TAB operation complete.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Pumps

For Pump: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pumps grouted in place.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Pump vibration isolation devices functional.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Pump/motor coupling alignment verified.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Piping system installed.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Piping system pressure tested.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Pump not leaking.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Field assembled couplings aligned to meet manufacturer's prescribed tolerances.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to pump disconnect.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Pump rotation verified.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Control system interlocks functional.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Verify that power disconnect is located within sight of the unit it controls.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing, Adjusting, and Balancing (TAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pressure/temperature gauges installed.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Piping system cleaned.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Chemical water treatment complete.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Water balance complete.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Water balance with design maximum flow.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. TAB Report submitted.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Packaged Air Cooled Chiller

For Chiller: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Chiller properly piped.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Chilled water pipe leak tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Verify that refrigerant used complies with specified requirements.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Any damage to coil fins has been repaired.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Manufacturer's required maintenance clearance provided.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to unit disconnect.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Power available to unit control panel.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Separate power is supplied to electric heating tape.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Verify that power disconnect is located within sight of the unit it controls.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Factory startup and checkout complete.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Chiller safety/protection devices tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Chilled water flow switch installed.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Chilled water flow switch tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Chilled water pump interlock installed.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. Chilled water pump interlock tested.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Hot Water Boiler

For Boiler: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Boiler flue installed.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Boiler hot water piping installed.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Boiler hot water piping tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Boiler makeup water piping installed.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Boiler gas piping installed.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. Boiler gas piping tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>g. Manufacturer's required maintenance clearance provided.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Boiler system cleaned and filled with treated water.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Boiler safety/protection devices, including high temperature burner shut-off, low water cutoff, flame failure, pre and post purge, have been tested.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Verify that PRV rating conforms to boiler rating.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Boiler water treatment system functional.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Boiler startup and checkout complete.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. Combustion efficiency demonstrated.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Verify that power disconnect is located within sight of the unit served.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Hot water pump interlock installed.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Hot water pump interlock tested.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Hot water heating system balanced.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>
d. Hot water heating controls operational. ___ ___ X X ___ ___ ___ ___
Pre-commissioning Checklist - Unit Heater

For Unit Heater: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Hot water piping properly connected.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Hot water piping pressure tested.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Air vent installed on hot water coil with shutoff valve as specified.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Any damage to coil fins has been repaired.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Manufacturer's required maintenance/operational clearance provided.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to unit disconnect.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Proper motor rotation verified.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Verify that power disconnect is located within sight of the unit it controls.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Control valves properly installed.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Control valves operable.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Verify proper location and installation of thermostat.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing, Adjusting, and Balancing (TAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. TAB Report submitted.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Exhaust and Ventilation Fans

For Exhaust Fan: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Fan belt adjusted (if applicable).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to fan disconnect.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b. Proper motor rotation verified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c. Verify that power disconnect is located within sight of the unit it controls.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Control interlocks properly installed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b. Control interlocks operable.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c. Dampers/actuators properly installed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>d. Dampers/actuators operable.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>e. Verify proper location and installation of thermostat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Testing, Adjusting, and Balancing (TAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. TAB results +10%/-0% to L/s shown on drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b. TAB Report submitted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist - Computer Room Unit

For Computer Room Unit: ____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Unit properly supported.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Access doors are operable and sealed.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Casing undamaged.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Insulation undamaged.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Condensate drainage is unobstructed and routed to appropriate receptor.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. Fan belt adjusted (if applicable).</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>g. Manufacturer's required maintenance operational clearance provided.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to unit disconnect.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Proper motor rotation verified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Proper motor rotation verified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Verify that power disconnect is located within sight of the unit it controls.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Coils/Humidifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Chilled water piping properly connected.</td>
<td></td>
<td></td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Chilled water piping pressure tested.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Hot water piping properly connected.</td>
<td></td>
<td></td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Hot water piping pressure tested.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Humidifier makeup water connected.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Control valves operable.</td>
<td></td>
<td></td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Unit control system operable and verified.</td>
<td></td>
<td></td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Verify proper location and installation of thermostat.</td>
<td></td>
<td></td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>
Testing, Adjusting, and Balancing (TAB)

a. Construction filters removed and replaced. ___ ___ X ___ X ___ ___ ___

b. TAB results +10%/-0% L/s shown on drawings. ___ ___ X ___ X ___ ___ ___

c. TAB Report submitted. ___ ___ X ___ X ___ ___ ___
Pre-commissioning Checklist - HVAC System Controls

For HVAC System: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. As-built shop drawings submitted.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Layout of control panel matches drawings.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Framed instructions mounted in or near control panel.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Components properly labeled (on inside and outside of panel).</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Control components piped and/or wired to each labeled terminal strip.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. EMCS connection made to each labeled terminal strip as shown.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>g. Control wiring and tubing labeled at all terminations, splices, and junctions.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>h. Shielded wiring used on electronic sensors.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Main Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. 110 volt AC power available to panel.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Testing, Commissioning, and Balancing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Testing, Commissioning, and Balancing Report submitted.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>
Pre-commissioning Checklist – Single Zone Air Handling Unit

For Air Handling Unit: _____

<table>
<thead>
<tr>
<th>Checklist Item</th>
<th>Q</th>
<th>M</th>
<th>E</th>
<th>T</th>
<th>C</th>
<th>D</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Vibration isolation devices installed.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>b. Inspection and access doors are operable and sealed.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>__</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>c. Casing undamaged.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>d. Insulation undamaged.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>e. Condensate drainage is unobstructed.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>f. Fan belt adjusted.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>__</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>g. Any damage to coil fins has been repaired.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>__</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>h. Manufacturer's required maintenance clearance provided.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>__</td>
<td>__</td>
<td>__</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power available to unit disconnect.</td>
<td>__</td>
<td>__</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Power available to unit control panel.</td>
<td>__</td>
<td>__</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Proper motor rotation verified.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Verify that power disconnect is located within sight of the unit it controls.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Power available to electric heating coil.</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Coils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Chilled water piping properly connected.</td>
<td>__</td>
<td>__</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Chilled water piping pressure tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. Hot water piping properly connected.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Hot water piping pressure tested.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. Air vents installed on water coils with shutoff valves as specified.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. Any damage to coil fins has been repaired.</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

Controls
Testing, Adjusting, and Balancing (TAB)

<table>
<thead>
<tr>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Control valves/actuators properly installed.</td>
<td>___ X</td>
</tr>
<tr>
<td>b. Control valves/actuators operable.</td>
<td>___ X</td>
</tr>
<tr>
<td>c. Dampers/actuators properly installed.</td>
<td>___ X</td>
</tr>
<tr>
<td>d. Dampers/actuators operable.</td>
<td>___ X</td>
</tr>
<tr>
<td>e. Verify proper location and installation of thermostat.</td>
<td>___ X</td>
</tr>
<tr>
<td>Construction filters removed and replaced.</td>
<td>___ X</td>
</tr>
<tr>
<td>TAB results +10%/-0% L/s shown on drawings.</td>
<td>___ X</td>
</tr>
<tr>
<td>TAB Report submitted.</td>
<td>___ X</td>
</tr>
</tbody>
</table>
APPENDIX B

FUNCTIONAL PERFORMANCE TESTS CHECKLISTS
Functional Performance Test Checklist - Pumps

For Pump: _____

Prior to performing this checklist, ensure that for closed loop systems, system is pressurized and the make-up water system is operational or, for open loop systems, that the sumps are filled to the proper level.

1. Activate pump start using control system commands (all possible combination, on/auto, etc.). ON__________ AUTO__________ OFF__________
 a. Verify pressure drop across strainer:
 Strainer inlet pressure _________ kPa (_____ psig)
 Strainer outlet pressure _________ kPa (_____ psig)

 b. Verify pump inlet/outlet pressure reading, compare to Testing, Adjusting, and Balancing (TAB) Report, pump design conditions, and pump manufacturer's performance.

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>TAB</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump inlet pressure (kPa gauge)</td>
<td>_________</td>
<td>_________</td>
</tr>
<tr>
<td>Pump outlet pressure (kPa gauge)</td>
<td>_________</td>
<td>_________</td>
</tr>
</tbody>
</table>

 c. Operate pump at shutoff and at 100 percent of designed flow when all components are in full flow. Plot test readings on pump curve and compare results against readings taken from flow measuring devices.

<table>
<thead>
<tr>
<th>SHUTOFF</th>
<th>100 percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump inlet pressure (kPa gauge)</td>
<td>_________</td>
</tr>
<tr>
<td>Pump outlet pressure</td>
<td>_________</td>
</tr>
<tr>
<td>Pump flow rate (L/s)</td>
<td>_________</td>
</tr>
</tbody>
</table>

d. Operate pump at shutoff and at minimum flow or when all components are in full by-pass. Plot test readings on pump curve and compare results against readings taken from flow measuring devices.

<table>
<thead>
<tr>
<th>SHUTOFF</th>
<th>100 percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump inlet pressure (kPa gauge)</td>
<td>_________</td>
</tr>
<tr>
<td>Pump outlet pressure</td>
<td>_________</td>
</tr>
<tr>
<td>Pump flow rate (L/s)</td>
<td>_________</td>
</tr>
</tbody>
</table>

2. Verify motor amperage each phase and voltage phase to phase and phase to ground for both the full flow and the minimum flow conditions.

 a. Full flow:

<table>
<thead>
<tr>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperage</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Voltage</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Voltage</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Voltage to ground</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>
b. Minimum flow:

<table>
<thead>
<tr>
<th></th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage to ground</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Unusual vibration, noise, etc.

4. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

Signature and Date

Contractor's Chief Quality Control Representative

Contractor's Mechanical Representative

Contractor's Electrical Representative

Contractor's Testing, Adjusting and Balancing Representative

Contractor's Controls Representative

Contracting Officer's Representative

Using Agency's Representative
Functional Performance Test Checklist - VAV Terminals

The Contracting officer will select VAV terminals to be spot-checked during the functional performance test. The number of terminals shall not exceed 10 percent.

1. Functional Performance Test: Contractor shall demonstrate operation of selected VAV boxes as per specifications including the following:

 a. Cooling with reheat VAV boxes:

 (1) Verify VAV box response to room temperature set point adjustment. Turn thermostat to 3 degrees C above ambient and measure maximum air flow. Turn thermostat to 3 degrees C below ambient and measure minimum air flow.

 Maximum flow _____ L/s
 Minimum flow _____ L/s

 (2) Check damper maximum/minimum flow settings.

 Maximum flow setting _____ L/s
 Minimum flow setting _____ L/s

 Reheat coil operation range (full open to full closed) ________________

2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

 Signature and Date

 Contractor's Chief Quality Control Representative ______________________________

 Contractor's Mechanical Representative ______________________________

 Contractor's Electrical Representative ______________________________

 Contractor's Testing, Adjusting and Balancing Representative ______________________________

 Contractor's Controls Representative ______________________________

 Contracting Officer's Representative ______________________________

 Using Agency's Representative ______________________________

 Functional Performance Test Checklist - Variable Volume Air Handling Unit

 For Air Handling Unit: ____

 Ensure that a slight negative pressure exists on inboard side of the outside air dampers throughout the operation of the dampers. Modulate OA, RA, and EA dampers from fully open to fully closed positions.
1. Functional Performance Test: Contractor shall verify operation of air handling unit as per specification including the following:

 a. The following shall be verified when the supply and return fans operating mode is initiated:

 (1) All dampers in normal position. __

 (2) All valves in normal position. ____________________________

 (3) System safeties allow start if safety conditions are met. _____

 (4) VAV fan controller shall "soft-start" fan. __________________

 (5) Modulate all VAV boxes to minimum air flow and verify that the static pressure does not exceed the design static pressure Class shown.

 b. Occupied mode of operation – economizer de-energized.

 (1) Outside air damper at minimum position. _____________________________

 (2) Return air damper open. __

 (3) Relief air damper at minimum position. _____________

 (4) Chilled water control valve modulating to maintain leaving air temperature set point. ________________________________

 (5) Fan VAV controller receiving signal from duct static pressure sensor and modulating fan to maintain supply duct static pressure set point.

 c. Occupied mode of operation – economizer energized.

 (1) Outside air damper modulated to maintain mixed air temperature set point. ________________________________

 (2) Relief air damper modulates with outside air damper according to sequence of operation. ____________________________

 (3) Chilled water control valve modulating to maintain leaving air temperature set point. ________________________________

 (4) Hot water control valve modulating to maintain leaving air temperature set point. ________________________________

 (5) Fan VAV controller receiving signal from duct static pressure sensor and modulating fan to maintain supply duct static pressure set point.

 d. Unoccupied mode of operation

 (1) All dampers in normal position. ________________________________
(2) Verify low limit space temperature is maintained as specified in sequence of operation.

e. The following shall be verified when the supply and return fans off mode is initiated:

(1) All dampers in normal position.
(2) All valves in normal position.
(3) Fan de-energizes.

f. Verify the chilled water coil control valve operation by setting all VAV's to maximum and minimum cooling.

<table>
<thead>
<tr>
<th>Max cooling</th>
<th>Min cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply air volume (___ L/s)</td>
<td>_____</td>
</tr>
<tr>
<td>Supply air temp. (___ degrees C)</td>
<td>_____</td>
</tr>
</tbody>
</table>

g. Verify safety shut down initiated by smoke detectors.

h. Verify safety shut down initiated by low temperature protection thermostat.

2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

Signature and Date

Contractor's Chief Quality Control Representative

Contractor's Mechanical Representative

Contractor's Electrical Representative

Contractor's Testing, Adjusting and Balancing Representative

Contractor's Controls Representative

Contracting Officer's Representative

Using Agency's Representative

Functional Performance Test Checklist - Single Zone Air Handling Unit

For Air Handling Unit: ____

1. Functional Performance Test: Contractor shall verify operation of air handling unit as per specification including the following:

 a. The following shall be verified when the supply fan operating mode is initiated:
(1) All dampers in normal position.

(2) All valves in normal position.

(3) System safeties allow start if safety conditions are met.

b. Occupied mode of operation - economizer de-energized.

(1) Outside air damper at minimum position.

(2) Return air damper open.

(3) Relief air damper at minimum position.

(4) Chilled water control valve modulating to maintain space cooling temperature set point.

(5) Hot water control valve modulating to maintain space heating temperature set point input from outside air temperature controller.

c. Occupied mode of operation - economizer energized.

(1) Outside air damper modulated to maintain mixed air temperature set point.

(2) Relief air damper modulates with outside air damper according to sequence of operation.

(3) Chilled water control valve modulating to maintain space cooling temperature set point.

d. Unoccupied mode of operation

(1) All dampers in normal position.

(2) Verify low limit space temperature is maintained as specified in sequence of operation.

e. The following shall be verified when the supply fan off mode is initiated:

(1) All dampers in normal position.

(2) All valves in normal position.

(3) Fan de-energizes.

f. Verify cooling coil and heating coil operation by varying thermostat set point from cooling set point to heating set point and returning to cooling set point.

g. Verify safety shut down initiated by smoke detectors.

h. Verify safety shut down initiated by low temperature protection thermostat.

2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

Signature and Date

Contractor's Chief Quality Control Representative ________________________________
Contractor's Mechanical Representative ________________________________
Contractor's Electrical Representative ________________________________
Contractor's Testing, Adjusting and Balancing Representative ________________________________
Contractor's Controls Representative ________________________________
Contracting Officer's Representative ________________________________
Using Agency's Representative ________________________________
Functional Performance Test Checklist - Packaged Air Cooled Chiller

For Chiller: _____

1. Functional Performance Test: Contractor shall demonstrate operation of chilled water system as per specifications including the following: Start building air handler to provide load for chiller. Activate controls system chiller start sequence as follows.

 a. Start chilled water pump and establish chilled water flow. Verify chiller-chilled water proof-of-flow switch operation. ___________________

 b. Verify control system energizes chiller start sequence. ________

 c. Verify chiller senses chilled water temperature above set point and control system activates chiller start. ____________________________

 d. Verify functioning of "soft start" sequence. _________________

 e. Shut off air handling equipment to remove load on chilled water system. Verify chiller shutdown sequence is initiated and accomplished after load is removed. __

 f. Restart air handling equipment one minute after chiller shut down. Verify chiller restart sequence. ________________________________

2. Verify chiller inlet/outlet pressure reading, compare to Testing, Adjusting, and Balancing (TAB) Report, chiller design conditions, and chiller manufacturer's performance data.

 Chiller inlet pressure (kPa gauge) DESIGN TAB ACTUAL __________ __________ __________

 Chiller outlet pressure (kPa gauge) DESIGN TAB ACTUAL __________ __________ __________

3. Verify chiller amperage each phase and voltage phase-to-phase and phase-to-ground.

 Amperage PHASE 1 PHASE 2 PHASE 3
 Voltage
 Voltage
 Voltage to ground

4. Record the following information:

 Ambient dry bulb temperature ________ degrees C
 Ambient wet bulb temperature ________ degrees C
 Entering chilled water temperature ________ degrees C
 Leaving chilled water temperature ________ degrees C

5. Unusual vibration, noise, etc.

SECTION 15995 Page 27
6. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

Signature and Date

Contractor's Chief Quality Control Representative

Contractor's Mechanical Representative

Contractor's Electrical Representative

Contractor's Testing, Adjusting and Balancing Representative

Contractor's Controls Representative

Contracting Officer's Representative

Using Agency's Representative

Functional Performance Test Checklist - Hot Water Boiler

For Boiler: _____

1. Functional Performance Test: Contractor shall demonstrate operation of hot water system as per specifications including the following: Start building heating equipment to provide load for boiler. Activate controls system boiler start sequence as follows.

 a. Start hot water pump and establish hot water flow. Verify boiler hot water proof-of-flow switch operation. ______________________________

 b. Verify control system energizes boiler start sequence. ____________

 c. Verify boiler senses hot water temperature below set point and control system activates boiler start. ________________________________

 d. Shut off building heating equipment to remove load on hot water system. Verify boiler shutdown sequence is initiated and accomplished after load is removed. ___

2. Verify boiler inlet/outlet pressure reading, compare to Test and Balance (TAB) Report, boiler design conditions, and boiler manufacturer's performance data.

<table>
<thead>
<tr>
<th>Boiler inlet pressure (kPa gauge)</th>
<th>DESIGN</th>
<th>TAB</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler outlet pressure (kPa gauge)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flue-gas temperature at boiler outlet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent carbon dioxide in flue-gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft at boiler flue-gas exit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft or pressure in furnace</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fuel type

3. Record the following information:

<ENG>Entering hot water temperature

4. Verify temperatures in item 3 are in accordance with the reset schedule.

5. Verify proper operation of boiler safeties.

6. Unusual vibration, noise, etc.

7. Visually check refractory for cracks or spalling and refractory and tubes for flame impingement.

8. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

Signature and Date

Contractor's Chief Quality Control Representative

Contractor's Mechanical Representative

Contractor's Electrical Representative

Contractor's Testing, Adjusting and Balancing Representative

Contractor's Controls Representative

Contracting Officer's Representative

Using Agency's Representative

Functional Performance Test Checklist - Unit Heaters

The Contracting Officer will select unit heaters to be spot-checked during the functional performance test. The number of terminals shall not exceed 2 percent.

1. Functional Performance Test: Contractor shall demonstrate operation of selected unit heaters as per specifications including the following:

 a. Verify unit heater response to room temperature set point adjustment. Changes to be heating set point to heating set point minus 10 degrees and return to heating set point.
b. Check blower fan speed. ___________________________ rpm

c. Check heating mode inlet air temperature. ____ degrees C Check heating mode inlet air temperature.

d. Check heating mode outlet air temperature. ____ degrees C Check heating mode outlet air temperature.

2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

Signature and Date

Contractor's Chief Quality Control Representative ______________________________________

Contractor's Mechanical Representative ______________________________________

Contractor's Electrical Representative ______________________________________

Contractor's Testing, Adjusting and Balancing Representative ______________________________________

Contractor's Controls Representative ______________________________________

Contracting Officer's Representative ______________________________________

Using Agency's Representative ______________________________________

Functional Performance Test Checklist - Computer Room Unit

For Computer Room Unit: _____

1. Functional Performance Test: Contractor shall verify operation of computer room unit as per specification including the following:

 a. System safeties allow start if safety conditions are met. ________

 b. Verify cooling and heating operation by varying thermostat set point from space set point to space set point plus 10 degrees, space set point minus 10 degrees, and returning to space set point. __________________

 c. Verify humidifier operation by varying humidistat set point from space set point to space set point plus 20 percent RH, and returning to space set point. __________________

 d. Verify that airflow is within +10/-0 percent of design airflow. __________________

 e. Verify unit shut down during fire event initiated by smoke/heat sensors. __________________

2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.
Functional Performance Test Checklist - HVAC Controls

For HVAC System: _____

The Contracting Officer will select HVAC control systems to undergo functional performance testing. The number of systems shall not exceed 2 10 percent.

1. Functional Performance Test: Contractor shall verify operation of HVAC controls by performing the following tests:

 a. Verify that controller is maintaining the set point by manually measuring the controlled variable with a thermometer, sling psychrometer, inclined manometer, etc.

 b. Verify sensor/controller combination by manually measuring the controlled medium. Take readings from control panel display and compare readings taken manually. Record all readings.

 Sensor ________________________________
 Manual measurement ____________________
 Panel reading value ____________________

 c. Verify system stability by changing the controller set point as follows:

 (1) Air temperature - 10 degrees F
 (2) Water temperature - 10 degrees F
 (3) Static pressure - 10 percent of set point
 (4) Relative humidity - percent (RH)

 The control system shall be observed for 10 minutes after the change in set point. Instability or excessive hunting will be unacceptable.

 d. Verify interlock with other HVAC controls.
e. Verify interlock with fire alarm control panel.

f. Verify interlock with EMCS.

2. Verify that operation of control system conforms to that specified in the sequence of operation.

3. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications.

 Signature and Date

Contractor's Chief Quality Control Representative _________________________
Contractor's Mechanical Representative _______________________________
Contractor's Electrical Representative _______________________________
Contractor's Testing, Adjusting and Balancing Representative
Contractor's Controls Representative _______________________________
Contractor's Officer's Representative _______________________________
Using Agency's Representative _______________________________

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

CORPS OF ENGINEERS, HUNTSVILLE ENGINEERING AND SUPPORT CENTER (CEHNC)

TI 809-04 (1998) Seismic Design for Buildings

UNDERWRITERS LABORATORIES (UL)

UL 1570 (1995; Rev thru Feb 1999) Fluorescent Lighting Fixtures

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Lighting Fixtures in Buildings; GA
Equipment Requirements; GA

Detail drawings along with catalog cuts, templates, and erection and installation details, as appropriate, for the items listed. Submittals shall be complete in detail; shall indicate thickness, type, grade, class of metal, and dimensions; and shall show construction details, reinforcement, anchorage, and installation with relation to the building construction.

SD-03 Product Data

Lighting Fixtures in Buildings; GA
Equipment Requirements; GA

Copies of the design calculations with the detail drawings. Calculations shall be stamped by a registered engineer and shall verify the capability of structural members to which bracing is attached for carrying the load from the brace.

Contractor Designed Bracing; GA
Copies of the Design Calculations with the Drawings. Calculations shall be approved, certified, stamped and signed by a Registered Professional Engineer. Calculations shall verify the capability of structural members to which bracing is attached for carrying the load from the brace.

1.3 SYSTEM DESCRIPTION

1.3.1 General Requirements

The requirements for seismic protection measures described in this section shall be applied to the electrical equipment and systems listed below. Structural requirements shall be in accordance with Section 15070SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT.

1.3.2 Electrical Equipment

Electrical equipment shall include the following items to the extent required on the drawings or in other sections of these specifications:

- Control Panels
- Air Handling Units
- Pumps with Motors
- Switchgear
- Light Fixtures
- Transformers
- Motor Control Centers
- Switchboards (Floor Mounted)
- Storage Racks

1.3.3 Contractor Designed Bracing

The Contractor shall design the bracing in accordance with TI 809-04 and additional data furnished by the Contracting Officer or from the internet. Resistance to lateral forces induced by earthquakes shall be accomplished without consideration of friction resulting from gravity loads. TI 809-04 uses parameters for the building, not for the equipment in the building; therefore, corresponding adjustments to the formulas shall be required. Loadings determined using TI 809-04 are based on strength design; therefore, the AISC LRFP specifications shall be used for the design. The bracing for the following electrical equipment and systems shall be developed by the Contractor: Fire Pump and Associated Electrical Equipment.

1.3.4 Conduits Requiring No Special Seismic Restraints

Seismic restraints may be omitted from electrical conduit less than 64 mm trade size. All other interior conduit, shall be seismically protected as specified.

1.4 EQUIPMENT REQUIREMENTS

1.4.1 Rigidly Mounted Equipment

The following specific items of equipment are to be furnished under this contract shall be constructed and assembled to withstand the seismic forces specified in TI 809-04, Chapter 10. Each item of rigid electrical equipment shall be entirely located and rigidly attached on one side only of a building expansion joint. Piping, electrical conduit, etc., which cross the expansion joint shall be provided with flexible joints that are capable of
accommodating displacements equal to the full width of the joint in both orthogonal directions.

Transformers
Switch Boards and Switch Gears
Fire Pumps

PART 2 PRODUCTS

2.1 LIGHTING FIXTURE SUPPORTS

Lighting fixtures and supports shall conform to UL 1570 as applicable.

2.2 SWAY BRACING MATERIALS

Sway bracing materials (e.g. rods, plates, rope, angles, etc.) shall be as specified in Section 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT.

PART 3 EXECUTION

3.1 SWAY BRACES FOR CONDUIT

Conduit shall be braced as for an equivalent weight pipe in accordance with Section 15070 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT.

3.2 LIGHTING FIXTURES IN BUILDINGS

Lighting fixtures and supports shall conform to the following:

3.2.1 Pendant Fixtures

Pendant fixtures shall conform to the requirements of TI 809-04, Chapter 10.

3.2.2 Ceiling Attached Fixtures

3.2.2.1 Recessed Fluorescent Fixtures

Recessed fluorescent individual or continuous-row mounted fixtures shall be supported by a seismic-resistant suspended ceiling support system built in accordance with Section 09510 ACOUSTICAL CEILINGS. Seismic protection for the fixtures shall conform to the requirements of TI 809-04, Chapter 10. Recessed lighting fixtures not over 25 kg in weight may be supported by and attached directly to the ceiling system runners using screws or bolts, number and size as required by the seismic design. Fixture accessories, including louvers, diffusers, and lenses shall have lock or screw attachments.

3.2.2.2 Surface-Mounted Fluorescent Fixtures

Surface-mounted fluorescent individual or continuous-row fixtures shall be attached to a seismic-resistant ceiling support system built in accordance with Section 09510 ACOUSTICAL CEILINGS. Seismic protection for the fixtures shall conform to the requirements of TI 809-04, Chapter 10.
3.2.3 Assembly Mounted on Outlet Box

A supporting assembly, that is intended to be mounted on an outlet box, shall be designed to accommodate mounting features on 100 mm boxes, plaster rings, and fixture studs.

3.2.4 Wall-Mounted Emergency Light Unit

Attachments for wall-mounted emergency light units shall be designed and secured for the worst expected seismic disturbance at the site.

3.2.5 Lateral Force

Structural requirements for light fixture bracing shall be in accordance with Section 15070 SEISMIC PROTECTION FOR Mechanical EQUIPMENT.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI C29.2 (1992) Insulators - Wet-Process Porcelain and Toughened Glass - Suspension Type
ANSI C29.4 (1989) Wet-Process Porcelain Insulators - Strain Type
ANSI C29.6 (1984) Wet-Process Porcelain Insulators - High-Voltage Pin Type
ANSI C29.8 (1985) Wet-Process Porcelain Insulators - Apparatus, Cap and Pin Type
ANSI C29.9 (1983) Wet-Process Porcelain Insulators - Apparatus, Post-Type
ANSI C135.1 (1979) Galvanized Steel Bolts and Nuts for Overhead Line Construction
ANSI C135.4 (1987) Zinc-Coated Ferrous Eyebolts and Nuts for Overhead Line Construction
ANSI C135.14 (1979) Staples with Rolled or Slash Points for Overhead Line Construction
ANSI C135.17 (1988) Insulator Pins with Lead Threads for Overhead Line Construction Galvanized Ferrous Bolt-Type
ANSI O5.1 (1992) Specifications and Dimensions for Wood Poles

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM A 123 (1989a) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

ASTM A 153 (1996) Zinc Coating (Hot-Dip) on Iron and Steel Hardware

ASTM A 475 (1995) Zinc-Coated Steel Wire Strand

ASTM A 575 (1989) Steel Bars, Carbon, Merchant Quality, M-Grades

ASTM B 8 (1993) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

ASTM B 228 (1993) Concentric-Lay-Stranded Copper-Clad Steel Conductors

ASTM B 231 (1990) Concentric-Lay-Stranded Aluminum 1350 Conductors

AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA)

AWPA C4 (1995) Poles - Preservative Treatment by Pressure Processes

AWPA C25 (1995) Sawn Crossarms - Preservative Treatment by Pressure Processes

AWPA P1/P13 (1995) Standard for Coal Tar Creosote for Land and Fresh Water and Marine (Coastal Water Use)

INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS (IEEE)

IEEE Std 100 (1992) IEEE Standard Dictionary of Electrical and Electronics Terms

IEEE Std 404 (1993) Cable Joints for Use with Extruded Dielectric Cable Rated 5000 V Through 46 000 V and Cable Joints for Use with Laminated Dielectric Cable Rated 2500 V Through 500 000 V

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA LA 1 (1992) Surge Arresters

NEMA SG 2 (1993) High Voltage Fuses

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

RURAL ELECTRIFICATION ADMINISTRATION (REA)

UNDERWRITERS LABORATORIES (UL)
UL 467 (1993; Rev thru Aug 1996) Grounding and Bonding Equipment

1.2 GENERAL REQUIREMENTS

1.2.1 Terminology

Terminology used in this specification is as defined in IEEE Std 100.

1.3 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data

Manufacturer's Catalog; GA.

Catalog cuts, brochures, circulars, specifications, product data, and printed information in sufficient detail and scope to verify compliance with the requirements of the contract documents.

Material, Equipment, and Fixture Lists; GA.

A complete itemized listing of equipment and materials proposed for incorporation into the work. Each entry shall include the item number, the quantity of items proposed, and the name of the manufacturer of the item.

SD-04 Drawings

Electrical Distribution System; GA.

Detail drawings consisting of equipment drawings, illustrations, schedules, instructions, diagrams and other information necessary to define the installation and enable the Government to check conformity with the requirements of the contract drawings. Detail drawings shall as a minimum include:

a. Poles.

b. Crossarms.

c. Conductors.

d. Insulators.

e. Surge arresters.
If departures from the contract drawings are deemed necessary by the Contractor, complete details of such departures shall be submitted with the detail drawings. Approved departures shall be made at no additional cost to the Government.

Detail drawings shall show how components are assembled, function together and how they will be installed on the project. Data and drawings for component parts of an item or system shall be coordinated and submitted as a unit. Data and drawings shall be coordinated and included in a single submission. Multiple submissions for the same equipment or system are not acceptable except where prior approval has been obtained from the Contracting Officer. In such cases, a list of data to be submitted later shall be included with the first submission. Detail drawings shall consist of the following:

a. Detail drawings showing physical arrangement, construction details, connections, finishes, materials used in fabrication, provisions for conduit or busway entrance, access requirements for installation and maintenance, physical size, electrical characteristics, foundation and support details, and equipment weight. Drawings shall be drawn to scale and/or dimensioned. Optional items shall be clearly identified as included or excluded.

b. Internal wiring diagrams of equipment showing wiring as actually provided for this project. External wiring connections shall be clearly identified.

As-Built Drawings; GA.

The as-built drawings shall be a record of the construction as installed. The drawings shall include the information shown on the contract drawings as well as deviations, modifications, and changes from the contract drawings, however minor. The as-built drawings shall be kept at the job site and updated daily. The as-built drawings shall be a full sized set of prints marked to reflect deviations, modifications, and changes. The as-built drawings shall be complete and show the location, dimensions, part identification, and other information. Additional sheets may be added. The as-built drawings shall be jointly inspected for accuracy and completeness by the Contractor's quality control representative and by the Contracting Officer prior to the submission of each monthly pay estimate. Upon completion of the work, the Contractor shall submit three full sized sets of the marked prints to the Contracting Officer for approval. If upon review, the as-built drawings are found to contain errors and/or omissions, they will be returned to the Contractor for correction. The Contractor shall correct and return the as-built drawings to the Contracting Officer for approval within ten calendar days from the time the drawings are returned to the Contractor.

Field Testing; GA.

A proposed field test plan 30 days prior to testing the installed system. No field test shall be performed until the test plan is approved. The test plan shall consist of complete field test procedures including tests to be performed, test equipment required, and tolerance limits.

Test Reports; GA.
Six copies of the information described below in 215.9 by 279.4 mm binders having a minimum of 5 rings, and including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs.

a. A list of equipment used, with calibration certifications.

b. A copy of measurements taken.

c. The dates of testing.

d. The equipment and values to be verified.

e. The condition specified for the test.

f. The test results, signed and dated.

g. A description of adjustments made.

SD-13 Certificates

Materials and Equipment; FIO.

Where materials or equipment are specified to conform to the standards of the Underwriters Laboratories (UL) or to be constructed or tested, or both, in accordance with the standards of the American National Standards Institute (ANSI), the Institute of Electrical and Electronic Engineers (IEEE), or the National Electrical Manufacturers Association (NEMA), the Contractor shall submit proof that the items provided under this section of the specifications conform to such requirements. The label of, or listing by, UL will be acceptable as evidence that the items conform thereto. Either a certification or a published catalog specification data statement, to the effect that the item is in accordance with the referenced ANSI or IEEE standard, will be acceptable as evidence that the item conforms thereto. A similar certification or published catalog specification data statement to the effect that the item is in accordance with the referenced NEMA standard, by a company listed as a member company of NEMA, will be acceptable as evidence that the item conforms thereto. In lieu of such certification or published data, the Contractor may submit a certificate from a recognized testing agency equipped and competent to perform such services, stating that the items have been tested and that they conform to the requirements listed, including methods of testing of the specified agencies.

SD-19 OPERATION AND MAINTENANCE MANUALS

Electrical Distribution System; FIO.

Six copies of Operation and Maintenance manuals electrical distribution system shall be provided, within 7 calendar days following the completion of tests and shall include assembly, installation, operation and maintenance instructions, spare parts data which provides supplier name, current cost, catalog order number, and a recommended list of spare parts to be stocked. Manuals shall also include data outlining detailed procedures for system startup and operation, and a troubleshooting guide which lists possible operational problems and corrective action to be taken. A brief description of all equipment, basic operating features, and routine maintenance requirements shall also be included. Documents shall be bound in a binder.
marked or identified on the spine and front cover. A table of contents page shall be included and marked with pertinent contract information and contents of the manual. Tabs shall be provided to separate different types of documents, such as catalog ordering information, drawings, instructions, and spare-parts data. Index sheets shall be provided for each section of the manual when warranted by the quantity of documents included under separate tabs or dividers. Three additional copies of the instructions manual shall be provided within 30 calendar days following the manuals.

Three additional copies of the instructions manual within 30 calendar days following the approval of the manuals.

1.4 DELIVERY, STORAGE, AND HANDLING

Devices and equipment shall be visually inspected by the Contractor when received and prior to acceptance from conveyance. Stored items shall be protected from the environment in accordance with the manufacturer's published instructions. Damaged items shall be replaced. Oil filled transformers and switches shall be stored in accordance with the manufacturer's requirements. Wood poles held in storage for more than 2 weeks shall be stored in accordance with ANSI O5.1. Handling of wood poles shall be in accordance with ANSI O5.1, except that pointed tools capable of producing indentations more than 25 mm in depth shall not be used. Metal poles shall be handled and stored in accordance with the manufacturer's instructions.

1.5 EXTRA MATERIALS

One additional spare fuse or fuse element for each furnished fuse or fuse element shall be delivered to the Contracting Officer when the electrical system is accepted. Two complete sets of all special tools required for maintenance shall be provided, complete with a suitable tool box. Special tools are those that only the manufacturer provides, for special purposes (to access compartments, or operate, adjust, or maintain special parts).

PART 2 PRODUCTS

2.1 GENERAL REQUIREMENTS

Products shall conform to the following requirements. Items of the same classification shall be identical including equipment, assemblies, parts, and components.

2.2 STANDARD PRODUCT

Material and equipment shall be the standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

2.3 NAMEPLATES

2.3.1 General

Each major component shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a nameplate securely attached to the equipment. Equipment containing liquid-dielectrics shall
have the type of dielectric on the nameplate. Nameplates shall be made of noncorrosive metal. As a minimum, nameplates shall be provided for transformers, regulators, circuit breakers, capacitors, meters and switches.

2.4 CORROSION PROTECTION

2.4.1 Aluminum Materials

Aluminum shall not be used in contact with earth or concrete. Where aluminum conductors are connected to dissimilar metal, fittings conforming to UL 486B shall be used. Aluminum shall not be used.

2.4.2 Ferrous Metal Materials

2.4.2.1 Hardware

Ferrous metal hardware shall be hot-dip galvanized in accordance with ASTM A 123.

2.4.2.2 Equipment

Equipment and component items, including but not limited to transformers and ferrous metal luminaires not hot-dip galvanized or porcelain enamel finished, shall be provided with corrosion-resistant finishes which shall withstand 120 hours of exposure to the salt spray test specified in ASTM B 117 without loss of paint or release of adhesion of the paint primer coat to the metal surface in excess of 1.6 mm from the test mark. The described test mark and test evaluation shall be in accordance with a rating of not less than 7 in accordance with TABLE 1, (procedure A). Cut edges or otherwise damaged surfaces of hot-dip galvanized sheet steel or mill galvanized sheet steel shall be coated with a zinc rich paint conforming to the manufacturer's standard.

2.4.3 Finishing

Painting required for surfaces not otherwise specified and finish painting of items only primed at the factory shall be as specified in Section 09900 PAINTING, GENERAL.

2.5 CONDUCTORS, CONNECTORS, AND SPLICES

2.5.1 Aluminum-Composition Conductors

All-aluminum-conductors, AAC, shall be alloy 1350-H19 and comply with ASTM B 231. All-aluminum-alloy-conductors, AAAC, shall be alloy 6201-T81 and comply with ASTM B 399. Aluminum-conductor-steel-reinforced, ACSR, shall comply with ASTM B 232.

2.5.2 Connectors and Splices

Connectors and splices shall be of copper alloys for copper conductors, aluminum alloys for aluminum-composition conductors, and a type designed to minimize galvanic corrosion for copper to aluminum-composition conductors. Aluminum-composition and aluminum-composition to copper shall comply with UL 486B, and copper-to-copper shall comply with UL 486A.
2.6 MEDIUM-VOLTAGE LINES

2.6.1 Bare Medium-Voltage Lines

Aluminum-conductor-steel-reinforced, ACSR. Conductor types shall not be mixed on any project, unless specifically indicated. Conductors larger than 35 mm shall be stranded.

2.7 POLES AND HARDWARE

Poles shall be of lengths and classes strengths indicated.

2.7.1 Wood Poles

Wood poles shall comply with ANSI O5.1, and shall be pressure treated in accordance with AWPA C4, with creosote conforming to AWPA P1/P13 or with oil-borne preservatives and petroleum conforming to AWPA P9, respectively, and waterborne preservatives conforming to AWPA P5. Waterborne preservatives shall be either chromated or ammoniacal copper arsenate. Any species listed in ANSI O5.1 for which a preservative treatment is not specified in AWPA C4, shall not be used; northern white cedar, if treated as specified for western red cedar, and western fir, if treated as specified for Douglas fir, may be used. Wood poles shall have pole markings located approximately 3 m from pole butts for poles 15.2 m or less in length, and 4 m from the pole butts for poles longer than 16.8 m. Poles shall be machine trimmed by turning smooth full length, and shall be roofed, gained, and bored prior to pressure treatment. Where poles are not provided with factory-cut gains, metal gain plates shall be provided.

2.7.2 Pole Line Hardware

Zinc-coated hardware shall comply with ANSI C135.1, ANSI C135.2, ANSI C135.4, ANSI C135.14, ANSI C135.17, ANSI C135.22. Steel hardware shall comply with ASTM A 575. Hardware shall be hot-dip galvanized in accordance with ASTM A 153. Pole-line hardware shall be hot-dip galvanized steel. Steel, except anchor rods of the copper-molten welded-to-steel type with nonferrous corrosion-resistant fittings shall be used. Washers shall be installed under boltheads and nuts on wood surfaces and elsewhere as required. Washers used on through-bolts and double-arming bolts shall be approximately 57.2 mm square and 4.8 mm thick. The diameter of holes in washers shall be the correct standard size for the bolt on which a washer is used. Washers for use under heads of carriage-bolts shall be of the proper size to fit over square shanks of bolts. Eye bolts, bolt eyes, eyenuts, strain-load plates, lag screws, guy clamps, fasteners, hooks, shims, and clevises shall be used wherever required to support and to protect poles, brackets, crossarms, guy wires, and insulators.

2.7.3 Guy Assemblies

Guy assemblies shall be copper-clad steel in accordance with ASTM B 228 or zinc-coated steel in accordance with ASTM A 475. Guy assemblies, including insulators and attachments, shall provide a strength exceeding the required guy strength. Three-eye thimbles shall be provided on anchor rods to permit attachment of individual primary, secondary, and communication down guys. Anchors shall provide adequate strength to support all loads. Guy strand shall be 7 strand. Guy material shall be Class 30 HS 30 EHS copper-clad steel Class A zinc-coated-steel utilities with a minimum breaking strength
not less than 26.7 kN as shown, except where two or more guys are used to provide the required strength. Guy rods shall be not less than 2.4 m in length by 19.1 mm in diameter.

2.8 INSULATORS

Insulators shall comply with NEMA HV 2 for general requirements. Suspension insulators shall be used at corners, angles, dead-ends, other areas where line insulators do not provide adequate strength, and as indicated. Mechanical strength of suspension insulators and hardware shall exceed the rated breaking strength of the attached conductors.

2.8.1 Medium-Voltage Line Insulators

Medium-voltage line insulators shall comply with ANSI C29.2, ANSI C29.5, and ANSI C29.6, and as applicable. Ratings shall not be lower than the ANSI classes indicated in TABLE I. Horizontal line-post insulators shall be used for armless construction and shall have the same mechanical and electrical ratings as vertical line-post insulators for the ANSI class indicated, but shall be modified to be suitable for horizontal installation. Where line-post insulators are used for angles greater than 15 degrees, clamp-top fittings shall be provided as well as for other locations shown. Conductor clamps for use with clamp-top, line-post insulators shall be hot-dip galvanized malleable iron for copper conductors and aluminum alloy for aluminum-composition conductors. Either line-post or pin insulators may be used for crossarm construction. Pin insulators for use on voltages in excess of 6 kV phase-to-phase shall be radio-interference-freed or else line-post insulators shall be used.

TABLE I

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>Line-Post</th>
<th>Pin</th>
<th>Suspension</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 kV to 15 kV</td>
<td>57-1 or 11</td>
<td>55-5</td>
<td>Two 52-2</td>
</tr>
<tr>
<td></td>
<td>57-2 or 12</td>
<td>56-3</td>
<td>Two 52-3 or 4</td>
</tr>
</tbody>
</table>

2.8.2 Strain Insulators for Guy Wires

Strain insulators for use in insulated guy assemblies shall comply with ANSI C29.4 for porcelain or equivalent fiberglass, and shall have a mechanical strength exceeding the rated breaking strength of the attached guy wire. Insulators shall be not smaller than Class 54-2 54-3 for lines of 6 kV to 15 kV.

2.8.3 Apparatus Insulators

Apparatus insulators shall comply with IEEE C57.19.01, ANSI C29.8, and ANSI C29.9 as applicable.

2.9 CROSSARM ASSEMBLIES

2.9.1 Crossarms
Crossarms shall comply with REA Bulletin 1728H-701 and shall be solid wood, distribution type, except cross-sectional area with pressure treatment conforming to AWPA C25, and a 6.4 mm, 45 degree chamfer on all top edges. Cross-sectional area minimum dimensions shall be 108.0 mm in height by 82.6 mm in depth in accordance with IEEE C2 for Grade B construction. Crossarms shall be 2.4 m in length. Crossarms shall be machined, chamfered, trimmed, and bored for stud and bolt holes before pressure treatment. Factory drilling shall be provided for pole and brace mounting, for four pin or four vertical line-post insulators, and for four suspension insulators, except where otherwise indicated or required. Drilling shall provide required climbing space and wire clearances. Crossarms shall be straight and free of twists to within 2.5 mm per 304.8 mm of length. Bend or twist shall be in one direction only.

2.10 FUSES AND SWITCHES, MEDIUM-VOLTAGE

2.10.1 Fuse Cutouts

Medium-voltage fuses and cutouts shall comply with NEMA SG 2 and shall be of the open type construction rated 7.8 kV and of the normal ratings and types indicated. Open-link cut-outs are not acceptable. Fuses shall be either indicating or dropout type. Fuse ratings shall be as indicated. Fuse cutouts shall be equipped with mounting brackets suitable for the indicated installations.

2.10.2 Group Operated Load Interrupter Switches

2.11 SURGE ARRESTERS

Surge arresters shall comply with NEMA LA 1 and IEEE C62.1, IEEE C62.2, and IEEE C62.11, and shall be provided for protection of aerial-to-underground transitions, automatic circuit reclosers, capacitor equipment, group-operated load-interrupter switches, transformers and other indicated equipment. Arresters shall be distribution class, rated as shown. Arresters shall be equipped with mounting brackets suitable for the indicated installations. Arresters shall be of the valve or metal-oxide varistor type suitable for outdoor installations.

2.12 GROUNDING AND BONDING

2.12.1 Driven Ground Rods

Ground rods shall be of copper-clad steel conforming to UL 467 not less than 19.1 mm in diameter by 2.4 meter in length of the sectional type driven full length into the earth.

2.12.2 Grounding Conductors

Grounding conductors shall be bare, except where installed in conduit with associated phase conductors. Insulated conductors shall be of the same material as the phase conductors and green color-coded, except that conductors shall be rated no more than 600 volts. Bare conductors shall be ASTM B 8 soft-drawn unless otherwise indicated. Aluminum is not acceptable.

2.13 WARNING SIGNS
Warning signs shall be porcelain enameled steel or approved equal. Voltage warning signs shall comply with IEEE C2.

2.14 FACTORY TESTS

Factory tests shall be performed, as follows, in accordance with the applicable publications and with other requirements of these specifications. The Contracting Officer shall be notified at least 10 days before the equipment is ready for testing.

a. High-Voltage Fuses: Manufacturer's standard tests in accordance with IEEE C37.41.

b. Electric Power Insulators: Manufacturer's standard tests in accordance with ANSI C29.1.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Equipment and devices shall be installed and energized in accordance with the manufacturer's published instructions. Circuits installed in conduits or underground and splices and terminations for medium-voltage cable shall conform to the requirements of Section 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND. Secondary circuits installed in conduit on poles shall conform to the requirements of Section 16415 ELECTRICAL WORK, INTERIOR.

3.1.1 Conformance to Codes

The installation shall comply with the requirements and recommendations of IEEE C2 for medium loading districts, Grade B construction. No reduction in clearance shall be made. The installation shall also comply with the applicable parts of NFPA 70.

3.1.2 Verification of Dimensions

The Contractor shall become familiar with details of the work, shall verify dimensions in the field, and shall notify the Contracting Officer of any discrepancy before performing any work.

3.1.3 Tree Trimming

Where lines pass through trees, trees shall be trimmed at least 4.5 m clear on both sides horizontally and below for medium-voltage lines, and 1.5 m clear on both sides horizontally and below for other lines, and no branch shall overhang horizontal clearances. Where trees are indicated to be removed to provide a clear right-of-way, clearing is specified in Section 02230 CLEARING AND GRUBBING.

3.1.4 Disposal of Liquid Dielectrics

PCB-contaminated dielectric shall be marked as PCB and transported to and incinerated by an approved EPA waste disposal facility. The Contractor shall furnish certification of proper disposal. Contaminated dielectric shall not be diluted to lower the level of contamination.
3.2 POLE INSTALLATION

Joint-use electric/roadway-lighting poles for overhead electric and communication lines shall be wood poles utilizing crossarm construction. Crossarm construction shall be provided for support of other equipment, except where direct-pole mounting is indicated. Detail drawings shall be submitted for approval. Provision for communication services is required on pole-line construction, except where specifically noted otherwise. A vertical pole space of not less than 600 mm shall be reserved at all locations.

3.2.1 Wood Pole Setting

Wood Pole Setting: Wood poles shall be set straight and firm. In normal firm ground, minimum pole-setting depths shall be as listed in Table II. In swampy or soft ground, a bog shoe shall be used where support for a pole is required. Poles in straight runs shall be in a straight line. Curved poles shall be placed with curvatures in the direction of the pole line. Poles shall be set to maintain as even a grade as practicable. When the average ground run is level, consecutive poles shall not vary more than 1.5 m in height. When the ground is uneven, poles differing in length shall be kept to a minimum by locating poles to avoid the highest and lowest ground points. If it becomes necessary to shorten a pole, a piece shall be sawed off the top end and roofed. If any pole is shortened after treatment, the shortened end of the pole shall be given an application of hot preservative. Where poles are set on hilly terrain, along edges of cuts or embankments, or where soil may be washed out, special precautions shall be taken to ensure durable pole foundations, and the setting depth shall be measured from the lower side of the pole. Holes shall be dug large enough to permit proper use of tampers to the full depth of a hole. Earth shall be placed into the hole in 300 mm maximum layers, then thoroughly tamped before the next layer is placed. Surplus earth shall be placed around each pole in a conical shape and packed tightly to drain water away from poles.

TABLE II

MINIMUM POLE-SETTING DEPTH (METERS)

<table>
<thead>
<tr>
<th>Length Meters</th>
<th>Curves, Corners, and Points of Extra Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>Straight Lines</td>
</tr>
<tr>
<td>6.1</td>
<td>1.5</td>
</tr>
<tr>
<td>7.6</td>
<td>1.7</td>
</tr>
<tr>
<td>9.2</td>
<td>1.8</td>
</tr>
<tr>
<td>10.7</td>
<td>1.8</td>
</tr>
<tr>
<td>12.2</td>
<td>1.8</td>
</tr>
<tr>
<td>13.7</td>
<td>2.0</td>
</tr>
<tr>
<td>15.2</td>
<td>2.1</td>
</tr>
<tr>
<td>16.7</td>
<td>2.3</td>
</tr>
<tr>
<td>18.3</td>
<td>2.5</td>
</tr>
<tr>
<td>19.8</td>
<td>2.6</td>
</tr>
<tr>
<td>21.3</td>
<td>2.8</td>
</tr>
<tr>
<td>22.9</td>
<td>2.9</td>
</tr>
<tr>
<td>24.4</td>
<td>3.0</td>
</tr>
<tr>
<td>25.9</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Crossarms shall be bolted to poles with 15.9 mm through-bolts with square washers at each end. Bolts shall extend not less than 3 mm nor more than 50 mm beyond nuts. On single crossarm construction, the bolt head shall be installed on the crossarm side of the pole. Wood crossarm braces shall be provided on crossarms. Wooden crossarm braces shall be bolted to crossarms with 50.8 mm bolts with round or square washers between bolt heads and crossarms, and secured to poles with 15.9 mm through-bolts. Double crossarms shall be securely held in position by means of 15.9 mm double-arming bolts. Each double-arming bolt shall be equipped with four nuts and four square washers.

3.3.1 Line Arms and Buck Arms

Line arms and buck arms shall be set at right angles to lines for straight runs and for angles 45 degrees and greater; and line arms shall bisect angles of turns of less than 45 degrees. Dead-end assemblies shall be used for turns where shown. Buckarms shall be installed, as shown, at corners and junction poles. Double crossarms shall be provided at ends of joint use or conflict sections, at dead-ends, and at angles and corners to provide adequate vertical and longitudinal strength. Double crossarms shall be provided at each line-crossing structure and where lines not attached to the same pole cross each other.

3.3.2 Equipment Arms

Equipment arms shall be set parallel or at right angles to lines as required to provide climbing space. Equipment arms shall be located below line construction to provide necessary wire and equipment clearances.

3.4 GUY INSTALLATION

Guys shall be provided where shown, with loads and strengths as indicated, and wherever conductor tensions are not balanced, such as at angles, corners, and dead-ends. Where a single guy will not provide the required strength, two or more guys shall be provided. Where guys are wrapped around poles, at least two guy hooks shall be provided and pole shims shall be provided where guy tension exceeds 27 kN. Guy clamps 152.4 mm in length with three 15.9 mm bolts, or offset-type guy clamps, or approved guy grips shall be provided at each guy terminal. Guy-strain insulators shall be provided in each guy for wood poles. Multiple-helix screw anchors shall be provided in marshy ground; rock anchors shall be installed in rock at right angles to guys, elsewhere anchors shall be of an expanding type, except that power installed screw anchors of equivalent holding power are acceptable. A half-round chocolate brown polyvinyl, fiberglass, or other suitable plastic guy marker, not less than 2.4 m in length, shall be provided at the anchor end of each guy shown, securely clamped to the guy or anchor at the bottom and top of the marker. Holding capacities for down guys shall be based on a lead angle of 45 degrees.

3.5 CONDUCTOR INSTALLATION
3.5.1 Line Conductors

Unless otherwise indicated, conductors shall be installed in accordance with manufacturer's approved tables of sags and tensions. Proper care shall be taken in handling and stringing conductors to avoid abrasions, sharp bends, cuts, kinks, or any possibility of damage to insulation or conductors. Conductors shall be paid out with the free end of conductors fixed and cable reels portable, except where terrain or obstructions make this method unfeasible. Bend radius for any insulated conductor shall not be less than the applicable NEMA specification recommendation. Conductors shall not be drawn over rough or rocky ground, nor around sharp bends. When installed by machine power, conductors shall be drawn from a mounted reel through stringing sheaves in straight lines clear of obstructions. Initial sag and tension shall be checked by the Contractor, in accordance with the manufacturer's approved sag and tension charts, within an elapsed time after installation as recommended by the manufacturer.

3.5.2 Connectors and Splices

Connectors and splices shall be mechanically and electrically secure under tension and shall be of the nonbolted compression type. The tensile strength of any splice shall be not less than the rated breaking strength of the conductor. Splice materials, sleeves, fittings, and connectors shall be noncorrosive and shall not adversely affect conductors. Aluminum-composition conductors shall be wire brushed and an oxide inhibitor applied before making a compression connection. Connectors which are factory-filled with an inhibitor are acceptable. Inhibitors and compression tools shall be of types recommended by the connector manufacturer. Primary line apparatus taps shall be by means of hot line clamps attached to compression type bail clamps (stirrups). Low-voltage connectors for copper conductors shall be of the solderless pressure type. Noninsulated connectors shall be smoothly taped to provide a waterproof insulation equivalent to the original insulation, when installed on insulated conductors. On overhead connections of aluminum and copper, the aluminum shall be installed above the copper.

3.5.3 Conductor-To-Insulator Attachments

Conductors shall be attached to insulators by means of clamps, shoes or tie wires, in accordance with the type of insulator. For insulators requiring conductor tie-wire attachments, tie-wire sizes shall be as indicated in TABLE II.

<table>
<thead>
<tr>
<th>CONDUCTOR</th>
<th>TIE WIRE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (mm)</td>
<td>Soft-Drawn Copper (mm)</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>25 and 35</td>
<td>16</td>
</tr>
<tr>
<td>50 through 95</td>
<td>25</td>
</tr>
<tr>
<td>120 and larger</td>
<td>35</td>
</tr>
</tbody>
</table>

AAC, AAAC, or ACSR AAAC OR AAC
3.5.4 Armor Rods

Armor rods shall be provided for ACSR conductors. Armor rods shall be installed at supports, except armor rods will not be required at primary dead-end assemblies if aluminum or aluminum-lined zinc-coated steel clamps are used. Lengths and methods of fastening armor rods shall be in accordance with the manufacturer's recommendations. For span lengths of less than 61 m, flat aluminum armor rods may be used. Flat armor rods, not less than 762.0 micrometers by 6.4 mm shall be used on 20 mm ACSR and smaller conductors. On larger sizes, flat armor rods shall be not less than 1.3 by 7.6 mm. For span lengths of 61 m or more, preformed round armor rods shall be used.

3.5.5 Medium-Voltage Insulated Cables

Medium-voltage cable messengers shall be attached to poles with clamps providing a strength exceeding the required messenger strength and with not less than 15.9 mm through-bolts. Messengers shall be dead-ended, grounded, and storm and line-guyed at corners and dead-ends, and at intervals not exceeding 305 m along straight runs.

3.5.6 Low-Voltage Insulated Cables

Low-voltage cables shall be supported on clevis fittings using spool insulators. Dead-end clevis fittings and suspension insulators shall be provided where required for adequate strength. Dead-end construction shall provide a strength exceeding the rated breaking strength of the neutral messenger. Clevis attachments shall be provided with not less than 15.9 mm through-bolts. Secondary racks may be used when installed on wood poles and where the span length does not exceed 61 m. Secondary racks shall be two-, three-, or four-wire, complete with spool insulators. Racks shall meet strength and deflection requirements for heavy-duty steel racks, and shall be either galvanized steel or aluminum alloy. Tops of insulator saddles shall be rounded and smooth to avoid damage to conductor insulation. Each insulator shall be held in place with a 15.9 mm button-head bolt equipped with a nonferrous cotter pin, or equivalent, at the bottom. Racks for dead-ending four 120 mm or four larger conductors shall be attached to poles with three 15.9 mm through-bolts. Other secondary racks shall be attached to poles with at least two 15.9 mm through-bolts. Minimum vertical spacing between conductors shall not be less than 200 mm.

3.6 CONNECTIONS TO UTILITY LINES

The Contractor shall coordinate the work with the Contracting Officer and shall provide for final connections to the utility installation electric lines. Schedule outage time(s) for cutover with contracting officer. Outages may be required during nights and/or weekends per the direction of the Contracting Officer.

3.7 CONNECTIONS BETWEEN AERIAL AND UNDERGROUND SYSTEMS

Connections between aerial and underground systems shall be made as shown. Underground cables shall be extended up poles in conduit to cable terminations. Conduits shall be secured to poles by conduit supports two-
hole galvanized steel pipe straps. Cables shall be supported by devices separate from the conduit or guard, near their point of exit from the riser conduit or guard. Cables guards shall be secured in accordance with the manufacturer's published procedure. Risers shall be equipped with bushings to protect cables. Capnut potheads shall be used to terminate medium-voltage multiple-conductor cable.

3.8 CONNECTIONS TO BUILDINGS

3.8.1 Underground Services

Connections to buildings shall be made at the point indicated and shall be terminated at the service entrance equipment terminals. Cable pulling shall be in accordance with Section 16375, ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND. Service entrance conduits with termination fittings and conductors within the building shall conform to the requirements of Section 16415 ELECTRICAL WORK, INTERIOR.

3.9 GROUNDING

Noncurrent-carrying metal parts of equipment and conductor assemblies, such as medium-voltage cable terminations and messengers, metal poles, luminaires, operating mechanisms of pole top switches, panel enclosures, transformers, capacitors, recloser frames (cases) and other noncurrent-carrying metal items shall be grounded. Additional grounding of equipment, neutral, and surge arrester grounding systems shall be installed at poles where indicated.

3.9.1 Grounding Electrodes

Grounding electrodes shall be installed as follows:

a. Driven rod electrodes - Unless otherwise indicated, ground rods shall be located approximately 900 mm out from base of the pole and shall be driven into the earth until the tops of the rods are approximately 300 mm below finished grade. Multiple rods shall be evenly spaced at least 3 m apart and connected together 600 mm below grade with a minimum 16 mm bare copper conductor.

b. Ground Resistance - The maximum resistance of a driven ground rod shall not exceed 10 ohms under normally dry conditions. Whenever the required ground resistance is not met, provide additional electrodes interconnected with grounding conductors as indicated, to achieve the specified ground resistance. The additional electrodes will be up to three, 3 m rods spaced a minimum of 3 m apart, a single extension-type rod, 19.1 mm diameter, up to 9.1 m long, driven perpendicular to grade coupled and driven with the first rod. In high ground resistance, UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 10 ohms measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately. Connections below grade shall be fusion welded. Connections above grade shall be fusion welded or shall use UL 467 approved connectors.

3.9.2 Grounding and Bonding Connections
Connections above grade shall be made by the fusion-welding process or with bolted solderless connectors in compliance with UL 467, and those below grade shall be made by a fusion-welding process.

3.9.3 Grounding Electrode Conductors

On multi-grounded circuits, as defined in IEEE C2, provide a single continuous vertical grounding electrode conductor. Neutrals, surge arresters, and equipment grounding conductors shall be bonded to this conductor. For single grounded or ungrounded systems, provide a grounding conductor for the surge arrester and equipment grounding conductors and a separate grounding conductor for the secondary neutrals. Grounding electrode conductors shall be sized as shown. Secondary system neutral conductors shall be connected directly to the transformer neutral bushings, then connected with a neutral bonding jumper between the transformer neutral bushing and the vertical grounding electrode conductor, as shown. Grounding electrode conductors shall be stapled to wood poles at intervals not exceeding 600 mm. On metal poles, a preformed galvanized steel strap, 15.9 mm wide by 0.853 minimum by length, secured by a preformed locking method standard with the manufacturer, shall be used to support a grounding electrode conductor installation on the pole and spaced at intervals not exceeding 1.5 m with one band not more than 75 mm from each end of the vertical grounding electrode conductor. Bends greater than 45 degrees in grounding electrode conductor are not permitted.

3.10 FIELD TESTING

3.10.1 General

Field testing shall be performed in the presence of the Contracting Officer. The Contractor shall notify the Contracting Officer 2 days prior to conducting tests. The Contractor shall furnish materials, labor, and equipment necessary to conduct field tests. The Contractor shall perform tests and inspections recommended by the manufacturer unless specifically waived by the Contracting Officer. The Contractor shall maintain a written record of tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results. Field reports will be signed and dated by the Contractor.

3.10.2 Safety

The Contractor shall provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. The Contractor shall replace any devices or equipment which are damaged due to improper test procedures or handling.

3.10.3 Ground-Resistance Tests

The resistance of each grounding electrode system each pole ground shall be measured using the fall-of-potential method defined in IEEE Std 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes shall be provided.
3.10.4 Medium-Voltage Preassembled Cable Test

After installation, prior to connection to an existing system, and before the operating test, the medium-voltage preassembled cable system shall be given a high potential test. Direct-current voltage shall be applied on each phase conductor of the system by connecting conductors at one terminal and connecting grounds or metallic shieldings or sheaths of the cable at the other terminal for each test. Prior to the test, the cables shall be isolated by opening applicable protective devices and disconnecting equipment. The method, voltage, length of time, and other characteristics of the test for initial installation shall be in accordance with NEMA WC 8 for the particular type of cable installed, and shall not exceed the recommendations of IEEE Std 404 for cable joints unless the cable and accessory manufacturers indicate higher voltages are acceptable for testing. Should any cable fail due to a weakness of conductor insulation or due to defects or injuries incidental to the installation or because of improper installation of cable, cable joints, terminations, or other connections, the Contractor shall make necessary repairs or replace cables as directed. Repaired or replaced cables shall be retested.

3.10.5 Sag and Tension Test

The Contracting Officer shall be given prior notice of the time schedule for stringing conductors or cables serving overhead medium-voltage circuits and reserves the right to witness the procedures used for ascertaining that initial stringing sags and tensions are in compliance with requirements for the applicable loading district and cable weight.

3.10.6 Low-Voltage Cable Test

For underground secondary or service laterals from overhead lines, the low-voltage cable, complete with splices, shall be tested for insulation resistance after the cables are installed, in their final configuration, ready for connection to the equipment, and prior to energization. The test voltage shall be 500 volts dc, applied for one minute between each conductor and ground and between all possible combinations of conductors in the same trench, duct, or cable, with other conductors in the same trench, duct, or conduit. The minimum value of insulation shall be:

\[R \text{ in megohms} = \frac{(\text{rated voltage in kV} + 1) \times 304.8}{\text{length of cable in meters}} \]

Each cable failing this test shall be repaired or replaced. The repaired cable shall then be retested until failures have been eliminated.

3.10.7 Pre-Energization Services

The following services shall be performed on the equipment listed below. These services shall be performed subsequent to testing but prior to the initial energization. The equipment shall be inspected to insure that installation is in compliance with the recommendations of the manufacturer and as shown on the detail drawings. Terminations of conductors at major equipment shall be inspected to ensure the adequacy of connections. Bare and insulated conductors between such terminations shall be inspected to detect possible damage during installation. If factory tests were not performed on completed assemblies, tests shall be performed after the installation of completed assemblies. Components shall be inspected for damage caused during installation or shipment and to ensure that packaging
materials have been removed. Components capable of being both manually and electrically operated shall be operated manually prior to the first electrical operation. Components capable of being calibrated, adjusted, and tested shall be calibrated, adjusted, and tested in accordance with the instructions of the equipment manufacturer. Items for which such services shall be provided, but are not limited to, are the following:

Transformers.

3.10.8 Operating Tests

After the installation is completed, and at such time as the Contracting Officer may direct, the Contractor shall conduct operating tests for approval. The equipment shall be demonstrated to operate in accordance with the specified requirements. An operating test report shall be submitted in accordance with paragraph SUBMITTALS.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

- **ANSI C12.4** (1984; R 1990) Mechanical Demand Registers
- **ANSI C37.72** (1987) Manually-Operated Dead-Front, Padmounted Switchgear with Load-Interrupting Switches and Separable Connectors for Alternating-Current Systems
- **ANSI C57.12.26** (1993) Pad-Mounted Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers for Use with Separable Insulated High-Voltage Connectors, High-Voltage, 34 500 Grd Y/19 920 Volts and Below; 2500 kVa and Smaller
- **ANSI C57.12.28** (1988) Switchgear and Transformers - Padmounted Equipment - Enclosure Integrity
- **ANSI C80.1** (1990) Rigid Steel Conduit - Zinc Coated
- **ANSI O5.1** (1992) Specifications and Dimensions for Wood Poles

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

- **ASTM A 123** (1989a) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
- **ASTM A 153** (1996) Zinc Coating (Hot-Dip) on Iron and Steel Hardware
- **ASTM B 8** (1993) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- **ASTM C 478** (1994) Precast Reinforced Concrete Manhole Sections
ASTM D 923 (1991) Sampling Electrical Insulating Liquids
ASTM D 1654 (1992) Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
ASTM F 883 (1990) Padlocks

ASSOCIATION OF EDISON ILLUMINATING COMPANIES (AEIC)
AEIC CS6 (1987; Rev Mar 1989) Ethylene Propylene Rubber Insulated Shielded Power Cables Rated 5 Through 69 kV

FACTORY MUTUAL ENGINEERING AND RESEARCH (FM)
FM P7825 (1995; Supple I; Supple II; Supple III) Approval Guide

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)
IEEE C37.20.3 (1987) Metal-Enclosed Interrupter Switchgear
IEEE C57.13 (1993) Instrument Transformers
<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Std 48</td>
<td>(1996) Standard Test Procedures and Requirements for Alternating-Current Cable Terminations 2.5 kV through 765 kV</td>
<td></td>
</tr>
<tr>
<td>IEEE Std 100</td>
<td>(1992) IEEE Standard Dictionary of Electrical and Electronics Terms</td>
<td></td>
</tr>
<tr>
<td>IEEE Std 404</td>
<td>(1993) Cable Joints for Use with Extruded Dielectric Cable Rated 5000 V through 46 000 V and Cable Joints for Use with Laminated Dielectric Cable Rated 2500 V Through 500 000 V</td>
<td></td>
</tr>
<tr>
<td>IEEE Std 592</td>
<td>(1990) Exposed Semiconducting Shields on Premolded High Voltage Cable Joints and Separable Insulated Connectors</td>
<td></td>
</tr>
<tr>
<td>NEMA FB 1</td>
<td>(1993) Fittings, Cast Metal Boxes and Conduit Bodies for Conduit and Cable Assemblies</td>
<td></td>
</tr>
<tr>
<td>NEMA LA 1</td>
<td>(1992) Surge Arresters</td>
<td></td>
</tr>
<tr>
<td>UL 6</td>
<td>(1993; Rev March 96) Rigid Metal Conduit</td>
<td></td>
</tr>
<tr>
<td>UL 467</td>
<td>(1993; Rev thru Aug 1996) Grounding and Bonding Equipment</td>
<td></td>
</tr>
<tr>
<td>UL 510</td>
<td>(1994) Insulating Tape</td>
<td></td>
</tr>
<tr>
<td>UL 514A</td>
<td>(1996) Metallic Outlet Boxes</td>
<td></td>
</tr>
<tr>
<td>UL 651</td>
<td>(1995) Schedule 40 and 80 Rigid PVC Conduit</td>
<td></td>
</tr>
</tbody>
</table>
UL 854 (1996; Rev May 1996) Service-Entrance Cables
UL 1242 (1996) Intermediate Metal Conduit

1.2 GENERAL REQUIREMENTS

1.2.1 Terminology

Terminology used in this specification is as defined in IEEE Std 100.

1.3 SUBMITTALS

Governmental approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-01 Data
Manufacturer's Catalog Data; GA.

Catalog cuts, brochures, circulars, specifications, product data, and printed information in sufficient detail and scope to verify compliance with the requirements of the contract documents. Documents shall be provided for all equipment and materials proposed for incorporation into the work.

Material, Equipment, and Fixture Lists; GA.

A complete itemized listing of equipment and materials proposed for incorporation into the work. Each entry shall include an item number, the quantity of items proposed, and the name of the manufacturer of each such item.

Installation Procedures; GA.

As a minimum, installation procedures for transformers, substations, switchgear, and medium-voltage cable terminations and splices.

Procedures shall include cable pulling plans, diagrams, instructions, and precautions required to install, adjust, calibrate, and test the devices and equipment.

SD-04 Drawings

Electrical Distribution System; FIO.

Detail drawings consisting of equipment drawings, illustrations, schedules, instructions, diagrams manufacturers standard installation drawings and other information necessary to define the installation and enable the Government to check conformity with the requirements of the contract drawings.

If departures from the contract drawings are deemed necessary by the Contractor, complete details of such departures shall be included with the
Detail drawings shall show how components are assembled, function together and how they will be installed on the project. Data and drawings for component parts of an item or system shall be coordinated and submitted as a unit. Data and drawings shall be coordinated and included in a single submission. Multiple submissions for the same equipment or system are not acceptable except where prior approval has been obtained from the Contracting Officer. In such cases, a list of data to be submitted later shall be included with the first submission. Detail drawings shall consist of the following:

a. Detail drawings showing physical arrangement, construction details, connections, finishes, materials used in fabrication, provisions for conduit or busway entrance, access requirements for installation and maintenance, physical size, electrical characteristics, foundation and support details, and equipment weight. Drawings shall be drawn to scale and/or dimensioned. All optional items shall be clearly identified as included or excluded.

b. Internal wiring diagrams of equipment showing wiring as actually provided for this project. External wiring connections shall be clearly identified.

Detail drawings shall as a minimum depict the installation of the following items:

a. Medium-voltage cables and accessories including cable installation plan.

b. Transformers.

c. Pad-mounted loadbreak switches.

d. Surge arresters.

As-Built Drawings; FIO.

The as-built drawings shall be a record of the construction as installed. The drawings shall include the information shown on the contract drawings as well as deviations, modifications, and changes from the contract drawings, however minor. The as-built drawings shall be a full sized set of prints marked to reflect deviations, modifications, and changes. The as-built drawings shall be complete and show the location, size, dimensions, part identification, and other information. Additional sheets may be added. The as-built drawings shall be jointly inspected for accuracy and completeness by the Contractor's quality control representative and by the Contracting Officer prior to the submission of each monthly pay estimate. Upon completion of the work, the Contractor shall provide three full sized sets of the marked prints to the Contracting Officer for approval. If upon review, the as-built drawings are found to contain errors and/or omissions, they will be returned to the Contractor for correction. The Contractor shall correct and return the as-built drawings to the Contracting Officer for approval within 10 calendar days from the time the drawings are returned to the Contractor.
SD-09 Reports

Factory Test; FIO.

Certified factory test reports shall be submitted when the manufacturer performs routine factory tests, including tests required by standards listed in paragraph REFERENCES. Results of factory tests performed shall be certified by the manufacturer, or an approved testing laboratory, and submitted within 7 days following successful completion of the tests. The manufacturer's pass-fail criteria for tests specified in paragraph FIELD TESTING shall be included.

Field Testing; GA.

A proposed field test plan, 30 days prior to testing the installed system. No field test shall be performed until the test plan is approved. The test plan shall consist of complete field test procedures including tests to be performed, test equipment required, and tolerance limits.

Test Reports; GA.

Six copies of the information described below in 215.9 by 279.4 mm binders having a minimum of three rings, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs.

a. A list of equipment used, with calibration certifications.

b. A copy of measurements taken.

c. The dates of testing.

d. The equipment and values to be verified.

e. The condition specified for the test.

f. The test results, signed and dated.

g. A description of adjustments made.

Cable Installation Reports; GA.

Six copies of the information described below in 215.9 by 279.4 mm binders having a minimum of three rings from which material may readily be removed and replaced, including a separate section for each cable pull. Sections shall be separated by heavy plastic dividers with tabs, with all data sheets signed and dated by the person supervising the pull.

a. Site layout drawing with cable pulls numerically identified.

b. A list of equipment used, with calibration certifications. The manufacturer and quantity of lubricant used on pull.

c. The cable manufacturer and type of cable.

d. The dates of cable pulls, time of day, and ambient temperature.

e. The length of cable pull and calculated cable pulling tensions.
f. The actual cable pulling tensions encountered during pull.

SD-13 Certificates

Materials and Equipment; FIO.

Where materials or equipment are specified to conform to the standards of the Underwriters Laboratories (UL) or to be constructed or tested, or both, in accordance with the standards of the American National Standards Institute (ANSI), the Institute of Electrical and Electronics Engineers (IEEE), or the National Electrical Manufacturers Association (NEMA), the Contractor shall submit proof that the items provided conform to such requirements. The label of, or listing by, UL will be acceptable as evidence that the items conform. Either a certification or a published catalog specification data statement, to the effect that the item is in accordance with the referenced ANSI or IEEE standard, will be acceptable as evidence that the item conforms. A similar certification or published catalog specification data statement to the effect that the item is in accordance with the referenced NEMA standard, by a company listed as a member company of NEMA, will be acceptable as evidence that the item conforms. In lieu of such certification or published data, the Contractor may submit a certificate from a recognized testing agency equipped and competent to perform such services, stating that the items have been tested and that they conform to the requirements listed, including methods of testing of the specified agencies. Compliance with above-named requirements does not relieve the Contractor from compliance with any other requirements of the specifications.

Cable Splicer Qualification; FIO.

A certification that contains the names and the qualifications of people recommended to perform the splicing and termination of medium-voltage cables approved for installation under this contract. The certification shall indicate that any person recommended to perform actual splicing and terminations has been adequately trained in the proper techniques and have had at least three recent years of experience in splicing and terminating the same or similar types of cables approved for installation. In addition, any person recommended by the Contractor may be required to perform a practice splice and termination, in the presence of the Contracting Officer, before being approved as a qualified installer of medium-voltage cables. If that additional requirement is imposed, the Contractor shall provide short sections of the approved types of cables along with the approved type of splice and termination kits, and detailed manufacturer's instruction for the proper splicing and termination of the approved cable types.

Cable Installer Qualifications; FIO.

The Contractor shall provide at least one onsite person in a supervisory position with a documentable level of competency and experience to supervise all cable pulling operations. A resume shall be provided showing the cable installers' experience in the last three years, including a list of references complete with points of contact, addresses and telephone numbers.

SD-19 OPERATION AND MAINTENANCE MANUALS

Electrical Distribution System; GA.
Six copies of operation and maintenance manuals, within 7 calendar days following the completion of tests and including assembly, installation, operation and maintenance instructions, spare parts data which provides supplier name, current cost, catalog order number, and a recommended list of spare parts to be stocked. Manuals shall also include data outlining detailed procedures for system startup and operation, and a troubleshooting guide which lists possible operational problems and corrective action to be taken. A brief description of all equipment, basic operating features, and routine maintenance requirements shall also be included. Documents shall be bound in a binder marked or identified on the spine and front cover. A table of contents page shall be included and marked with pertinent contract information and contents of the manual. Tabs shall be provided to separate different types of documents, such as catalog ordering information, drawings, instructions, and spare parts data. Index sheets shall be provided for each section of the manual when warranted by the quantity of documents included under separate tabs or dividers.

Three additional copies of the instructions manual shall be provided within 30 calendar days following the manuals.

1.4 DELIVERY, STORAGE, AND HANDLING

Devices and equipment shall be visually inspected by the Contractor when received and prior to acceptance from conveyance. Stored items shall be protected from the environment in accordance with the manufacturer's published instructions. Damaged items shall be replaced. Oil filled transformers and switches shall be stored in accordance with the manufacturer's requirements. Wood poles held in storage for more than 2 weeks shall be stored in accordance with ANSI O5.1. Handling of wood poles shall be in accordance with ANSI O5.1, except that pointed tools capable of producing indentations more than 25 mm in depth shall not be used. Metal poles shall be handled and stored in accordance with the manufacturer's instructions.

1.5 EXTRA MATERIALS

One additional spare fuse or fuse element for each furnished fuse or fuse element shall be delivered to the contracting officer when the electrical system is accepted. Two complete sets of all special tools required for maintenance shall be provided, complete with a suitable tool box. Special tools are those that only the manufacturer provides, for special purposes (to access compartments, or operate, adjust, or maintain special parts).

PART 2 PRODUCTS

2.1 STANDARD PRODUCT

Material and equipment shall be the standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Items of the same classification shall be identical including equipment, assemblies, parts, and components.

2.2 NAMEPLATES
2.2.1 General

Each major component of this specification shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a nameplate securely attached to the equipment. Nameplates shall be made of noncorrosive metal. Equipment containing liquid dielectrics shall have the type of dielectric on the nameplate. Sectionalizer switch nameplates shall have a schematic with all switch positions shown and labeled. As a minimum, nameplates shall be provided for transformers, circuit breakers, meters, switches, and switchgear.

2.2.2 Liquid-Filled Transformer Nameplates

Power transformers shall be provided with nameplate information in accordance with IEEE C57.12.00. Nameplates shall indicate the number of liters and composition of liquid-dielectric, and shall be permanently marked with a statement that the transformer dielectric to be supplied is non-polychlorinated biphenyl. If transformer nameplate is not so marked, the Contractor shall furnish manufacturer's certification for each transformer that the dielectric is non-PCB classified, with less than 50 ppm PCB content in accordance with paragraph LIQUID DIELECTRICS. Certifications shall be related to serial numbers on transformer nameplates. Transformer dielectric exceeding the 50 ppm PCB content or transformers without certification will be considered as PCB insulated and will not be accepted.

2.3 CORROSION PROTECTION

2.3.1 Aluminum Materials

Aluminum shall not be used.

2.3.2 Ferrous Metal Materials

2.3.2.1 Hardware

Ferrous metal hardware shall be hot-dip galvanized in accordance with ASTM A 153 and ASTM A 123.

2.3.2.2 Equipment

Equipment and component items, including but not limited to transformer stations and ferrous metal luminaries not hot-dip galvanized or porcelain enamel finished, shall be provided with corrosion-resistant finishes which shall withstand 120 hours of exposure to the salt spray test without loss of paint or release of adhesion of the paint primer coat to the metal surface in excess of 1.6 mm from the test mark. The scribed test mark and test evaluation shall be in accordance with ASTM D 1654 with a rating of not less than 7 in accordance with TABLE 1, (procedure A). Cut edges or otherwise damaged surfaces of hot-dip galvanized sheet steel or mill galvanized sheet steel shall be coated with a zinc rich paint conforming to the manufacturer's standard.

2.3.3 Finishing

Painting required for surfaces not otherwise specified and finish painting of items only primed at the factory shall be as specified in Section 09900 PAINTING, GENERAL.
2.4 CABLES

Cables shall be single conductor type unless otherwise indicated.

2.4.1 Conductor Material

Underground cables shall be of soft drawn copper conductor material.

2.4.2 Medium-Voltage Cables

2.4.2.1 General

Medium voltage cables shall conform to the requirements on NEMA WCT for cables utilizing cross-linked thermosetting polyethylene ((XLP) insulation and for cables utilizing ethylene-propylene-rubber (EPR) insulation. Cables shall be in accordance with the requirements of NFPA 70.

2.4.2.2 Insulation

Cables shall utilize cross-linked thermosetting polyethylene (XLP) insulation. Cables shall be provided with 133 percent insulation level.

2.4.2.3 Jackets

Cables shall be provided with a nonmetallic jacket. Concentric neutral cables for direct buried applications shall have a moisture-resistant, nonmetallic jacket rated for direct burial.

2.4.2.4 Neutrals

Neutral conductors of grounded neutral systems except for concentric neutral cables shall be of the same insulation material as phase conductors, except that a 600-volt insulation rating is acceptable. Cables employing a concentric neutral shall have full concentric neutral with an insulating jacket over the concentric neutral.

2.4.2.5 Shielding

Cables rated for above 2 kV shall have both conductor and insulation shielding for each phase, except insulation shielding is not required for 5 kV armored or metallic-sheathed cable.

2.4.2.6 Ratings

Medium-voltage cables shall be rated for a circuit voltage 15 kV.

2.4.3 Low-Voltage Cables

Cables shall be rated 600 volts and shall conform to the requirements of NFPA 70. Cables shall utilize cross-linked thermosetting polyethylene (XLP) insulation and shall conform to the requirements of NEMA WC 7 or ethylene-propylene-rubber (EPR) insulation and shall conform to the requirements of NEMA WC 8.

2.4.3.1 Direct Buried
Service entrance cables shall conform to UL 854 for Type USE service entrance cable. Other direct buried cable applications shall be single-conductor cable identified for such use and conforming to NEMA WC 7 or NEMA WC 8.

2.4.3.2 In Duct

Cables shall be single-conductor cable, Type RHW, THW, THWN, TW, USE, or XHHW in accordance with NFPA 70.

2.5 CABLE JOINTS, TERMINATIONS, AND CONNECTORS

2.5.1 Medium-Voltage Cable Joints

Medium-voltage cable joints shall comply with IEEE Std 404 and IEEE Std 592. Medium-voltage cable terminations shall comply with IEEE Std 48. Joints shall be the standard products of a manufacturer and shall be either of the factory preformed type or of the kit type containing tapes and other required parts. Joints shall have ratings not less than the ratings of the cables on which they are installed. Splice kits may be of the heat-shrinkable type for voltages up to 15 kV, of the premolded splice and connector type, the conventional taped type, or the resin pressure-filled overcast taped type for voltages up to 35 kV; except that for voltages of 7.5 kV or less a resin pressure-filled type utilizing a plastic-tape mold is acceptable. Joints used in manholes, handholes, vaults and pull boxes shall be certified by the manufacturer for waterproof, submersible applications.

2.5.2 Medium-Voltage Separable Insulated Connectors

Separable insulated connectors shall comply with IEEE Std 386 and IEEE Std 592 and shall be of suitable construction or standard splice kits shall be used. Separable insulated connectors are acceptable for voltages up to 35 kV. Connectors shall be of the loadbreak type as indicated, of suitable construction for the application and the type of cable connected, and shall include cable shield adaptors. Separable insulated connectors shall not be used as substitutes for conventional permanent splices. External clamping points and test points shall be provided.

2.5.3 Terminations

Terminations shall be in accordance with IEEE Std 48, Class 1 or Class 2; of the molded elastomer, wet-process porcelain, prestretched elastomer, heat-shrinkable elastomer, or taped type. Acceptable elastomers are track-resistant silicone rubber or track-resistant ethylene propylene compounds, such as ethylene propylene rubber or ethylene propylene diene monomer. Separable insulated connectors may be used for apparatus terminations, when such apparatus is provided with suitable bushings. Terminations shall be of the outdoor type, except that where installed inside outdoor equipment housings which are sealed against normal infiltration of moisture and outside air, indoor, Class 2 terminations are acceptable. Class 3 terminations are not acceptable. Terminations, where required, shall be provided with mounting brackets suitable for the intended installation and with grounding provisions for the cable shielding, metallic sheath, and armor.

2.5.3.1 Factory Preformed Type
Molded elastomer, wet-process porcelain, prestretched, and heat-shrinkable terminations shall utilize factory preformed components to the maximum extent practicable rather than tape build-up. Terminations shall have basic impulse levels as required for the system voltage level. Leakage distances shall comply with wet withstand voltage test requirements of IEEE Std 48 for the next higher Basic Insulation Level (BIL) level. Anti-tracking tape shall be applied over exposed insulation of preformed molded elastomer terminations.

2.5.3.2 Taped Terminations

Taped terminations shall use standard termination kits providing terminal connectors, field-fabricated stress cones, and rain hoods. Terminations shall be at least 510 mm long from the end of the tapered cable jacket to the start of the terminal connector, or not less than the kit manufacturer's recommendations, whichever is greater.

2.6 CONDUIT AND DUCTS

Ducts shall be single, round-bore type, with wall thickness and fittings suitable for the application. Capped, thin-wall type. Duct lines shall be concrete-capped, thick-wall type for duct lines between switches and handholes and for other medium-voltage lines. Where concrete capping is not required, low-voltage circuits may utilize factory-installed cable in coilable plastic duct.

2.6.1 Metallic Conduit

Intermediate metal conduit shall comply with UL 1242. Rigid galvanized steel conduit shall comply with UL 6 and ANSI C80.1. Metallic conduit fittings and outlets shall comply with UL 514A and NEMA FB 1.

2.6.2 Nonmetallic Ducts

2.6.2.1 Direct Burial

UL 651 Schedule 40 as indicated on the drawings.

2.6.3 Conduit Sealing Compound

Compounds for sealing ducts and conduit shall have a putty-like consistency workable with the hands at temperatures as low as 2 degrees C, shall neither slump at a temperature of 150 degrees C, nor harden materially when exposed to the air. Compounds shall adhere to clean surfaces of fiber or plastic ducts; metallic conduits or conduit coatings; concrete, masonry, or lead; any cable sheaths, jackets, covers, or insulation materials; and the common metals. Compounds shall form a seal without dissolving, noticeably changing characteristics, or removing any of the ingredients. Compounds shall have no injurious effect upon the hands of workmen or upon materials.

2.7 MANHOLES, HANDHOLES, AND PULLBOXES

Manholes, handholes, and pullboxes shall be as indicated. Strength of manholes, handholes, and pullboxes and their frames and covers shall conform to the requirements of IEEE C2. Precast-concrete manholes shall have the required strength established by ASTM C 478. Frames and covers shall be made of gray cast iron and a machine-finished seat shall be provided to
ensure a matching joint between frame and cover. Pullbox and handhole covers in sidewalks, and turfed areas shall be of the same material as the box. Concrete pullboxes shall consist of precast reinforced concrete boxes, extensions, bases, and covers.

2.8 POLES AND HARDWARE

Poles and hardware shall be in accordance with Section 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL.

2.9 TRANSFORMERS, AND SWITCHGEAR

Transformers, and switchgear shall be of the outdoor type having the ratings and arrangements indicated. Medium-voltage ratings of cable terminations shall be 15 kV between phases for 133 percent insulation level.

2.9.1 Pad-Mounted Transformers

Pad-mounted transformers shall comply with ANSI C57.12.26 and shall be of the loop feed type. Pad-mounted transformer stations shall be assembled and coordinated by one manufacturer and each transformer station shall be shipped as a complete unit so that field installation requirements are limited to mounting each unit on a concrete pad and connecting it to primary and secondary lines. Stainless steel pins and hinges shall be provided. Barriers shall be provided between high- and low-voltage compartments. High-voltage compartment doors shall be interlocked with low-voltage compartment doors to prevent access to any high-voltage section unless its associated low-voltage section door has first been opened. Compartments shall be sized to meet the specific dimensional requirements of ANSI C57.12.26. Pentahead locking bolts shall be provided with provisions for a padlock. Provide 8 pin "BEST" core padlock for transformer.

2.9.1.1 High-Voltage Compartments

The high-voltage compartment shall be dead-front construction. Primary switching and protective devices shall include loadbreak switching, oil-immersed, current-limiting, bayonet-type fuses, medium-voltage separable loadbreak connectors, universal bushing wells and inserts or integral one piece bushings and surge arresters. Fuses shall comply with the requirements of paragraph METERING AND PROTECTIVE DEVICES. The switch shall be mounted inside transformer tank with switch operating handle located in high-voltage compartment and equipped with metal loop for hook stick operation. Fuses shall be interlocked with switches so that fuses can be removed only when the associated switch is in the "OPEN" position. Adjacent to medium-voltage cable connections, a nameplate or equivalent stencilled inscription shall be provided inscribed "DO NOT OPEN CABLE CONNECTORS UNLESS SWITCH IS OPEN." Surge arresters shall be fully insulated and configured to terminate on the same bushing as the primary cable by means of a loadbreak, feed-through bushing insert a second set of high voltage bushings.

2.9.1.2 Transformer Tank Sections

Transformers shall comply with IEEE C57.12.00 and ANSI C57.12.26 and shall be of the mineral oil-insulated type less-flammable, liquid-insulated type with high molecular-weight hydrocarbon or dimethyl silicone liquid. Transformers shall be suitable for outdoor use and shall have 2 separate windings per phase. Standard NEMA primary taps shall be provided. Where
primary taps are not specified, 4, 2-1/2 percent rated kVA high-voltage taps shall be provided 2 above and 2 below below rated, primary voltage. Operating handles for primary tap changers for de-energized operation shall be located within high-voltage compartments, externally to transformer tanks. Adjacent to the tap changer operating handle, a nameplate or equivalent stenciled inscription shall be provided and inscribed "DO NOT OPERATE UNDER LOAD." Transformer ratings at 60 Hz shall be as follows:

Three-phase capacity ...750 and 500 kVA.
Impedance ..5.75%.
Temperature Rise ...65 degrees C.
High-voltage winding ..13,800 volts.
High-voltage winding connectionsDelta.
Low-voltage winding ...480 volts.
Low-voltage winding connectionsWYE.

2.9.1.3 Low-Voltage Cable Compartments

Neutrals shall be provided with fully-insulated bushings. Clamp type cable terminations, suitable for copper aluminum conductors entering from below, shall be provided as necessary.

2.9.1.4 Accessories

High-voltage warning signs shall be permanently attached to each side of transformer stations. Voltage warning signs shall comply with IEEE C2. Copper-faced steel or stainless steel ground connection pads shall be provided in both the high- and low-voltage compartments. Dial-type thermometer, liquid-level gauge, and drain valve with built-in sampling device shall be provided for each transformer station. Insulated-bushing-type parking stands shall be provided adjacent to each separable load-break elbow to provide for cable isolation during sectionalizing operations.

2.9.2 Pad-Mounted, Metal-Enclosed, Switchgear

2.9.2.1 Operators, Devices, and Controls

Operators and controls shall be provided for the switchgear as follows:

a. Switches shall be provided with a manual, handle-type operator or a push-button mechanical spring tripping mechanism, utilizing a store-energy (spring-driven) mechanism to simultaneously open or close all phases. The switchgear shall be configured so that the switch actuator is padlockable, but may be accessed without opening the switch compartment doors.

b. Fused disconnects shall be hook-stick operated.

c. Switches shall be provided with an automatic switch operator configured for local and remote opening and closing. A actuator charging motor shall be provide which operates at 12 V dc, 24 V dc
120 V ac. Switches shall be provided with remote telemetry units (RTUs) for remote operation and integration with supervisory, control, and data acquisition systems. Systems, components, and equipment shall conform to the requirements and recommendations of IEEE C37.1.

d. Vacuum type interrupters shall be provided with an electronic controller for trip initiation. Manual trip initiation shall be provided by a push button or switch. Automatic trip shall be initiated by detection of excessive current. The electronic controller shall provide trip current selection capability according to present time-current response curves, as indicated. Each interrupter shall be provided with a 3 phase, gang-operated handle mechanism for trip and reset.

2.9.2.2 Enclosures

Switchgear enclosures shall be of freestanding self-supporting construction provided with separate incoming and outgoing compartments configured for bottom cable entry. Enclosures shall be of deadfront construction, provided with a hinged door for access to each compartment, and conform to the requirements of ANSI C57.12.28, ANSI C37.72, and IEEE C37.20.3, Category A.

2.9.3 Cable Terminating Cabinets

Cable terminating cabinets shall be hook-stick operable, deadfront construction conforming to the requirements of IEEE C37.20.3, Category A. Cabinets shall be provided with with 200 A. loadbreak junctions and elbow-type separable loadbreak connectors, cable parking stands, and growing lugs with 600 A. dead-break junctions and elbow-type separable dead-break connectors, cable parking stands, and growing lugs. The cable terminating equipments shall conform to IEEE Std 386.

Ratings at 60 Hz shall be:

Nominal voltage (kV) ..

Rated maximum voltage (kV) ..

Rated continuous current (A) ..

Three-second short-time current-carrying capacity (kA)

BIL (kV) ..

2.10 METERING AND PROTECTIVE DEVICES

2.10.1 Circuit Breakers, Low-Voltage

2.10.2 Watthour Meters

Watthour meters shall comply with ANSI C12.1 and ANSI C12.10, except that numbered terminal wiring sequence and case size may be the manufacturer's standard. Watthour meters shall be of the drawout type having a 15 minute, cumulative form, demand register meeting ANSI C12.4 and provided with not
less than 2-1/2 stators. Watthour demand meters shall have factory-installed electronic pulse initiators meeting the requirements of ANSI C12.1. Pulse initiators shall be solid-state devices incorporating light-emitting diodes, phototransistors, and power transistors, except that mercury-wetted output contacts are acceptable. Pulse initiators shall consist of contacts (one normally open, one normally closed) with a current rating not to exceed 2 amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a live rating of one billion operations. Pulse initiator contacts shall be connected to a terminal strip external to the meter enclosure. Meter sockets shall be in accordance with ANSI C12.1. Initiators shall be totally contained within watt-hour demand meter enclosures. They shall be capable of operating at speeds up to 500 pulses per minute with no false pulses, and they shall be factory calibrated with no field adjustments being required. Initiators shall be calibrated for a pulse rate output of 1 pulse per 1/4 disc revolution of the associated meter and shall be compatible with the indicated equipment. Meter shall be compatible with Little Rock AFB EMCS system interface.

2.11 SURGE ARRESTERS

Surge arresters shall comply with NEMA LA 1, IEEE C62.1, IEEE C62.2, and IEEE C62.11 and shall be provided where indicated. Arresters shall be station intermediate distribution class, rated as shown. Arresters for use at elevations in excess of 1.8 km above mean sea level shall be specifically rated for that purpose. Arresters shall be equipped with mounting brackets suitable for the indicated installations. Arresters shall be of the valve or metal-oxide varistor or combination valve-metal-oxide varistor type.

2.12 GROUNDING AND BONDING

2.12.1 Driven Ground Rods

Ground rods shall be copper-clad steel conforming to UL 467 19 mm in diameter by 3.1 min length. Sectional type rods may be used.

2.12.2 Grounding Conductors

Grounding conductors shall be bare, except where installed in conduit with associated phase conductors. Insulated conductors shall be of the same material as phase conductors and green color-coded, except that conductors shall be rated no more than 600 volts. Bare conductors shall be ASTM B 8 soft-drawn unless otherwise indicated. Aluminum is not acceptable.

2.13 CONCRETE AND REINFORCEMENT

Concrete work shall have minimum 20 MPa compressive strength and conform to the requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Concrete reinforcing shall be as specified in Section 03200 CONCRETE REINFORCEMENT.

2.14 PADLOCKS

Padlocks shall conform to ASTM F 883, Type EPC, size 2. Padlocks shall be 8-pin "BEST" core or approved equal.

2.15 CABLE FIREPROOFING SYSTEMS
Cable fireproofing systems shall be listed in FM P7825 as a fire-protective coating or tape approved for grouped electrical conductors and shall be suitable for application on the type of medium-voltage cables provided. After being fully cured, materials shall be suitable for use where exposed to oil, water, gases, salt water, sewage, and fungus and shall not damage cable jackets or insulation. Asbestos materials are not acceptable.

2.15.1 Fireproof Coating

Cable fireproofing coatings shall be compounded of water-based thermoplastic resins, flame-retardant chemicals, and inorganic noncombustible fibers and shall be suitable for the application methods used. Coatings applied on bundled cables shall have a derating factor of less than 5 percent, and a dielectric strength of 95 volts per mil minimum after curing.

2.15.2 Fireproofing Tape

Fireproofing tape shall be at least 50 mm wide and shall be a flexible, conformable, polymeric, elastomer tape designed specifically for fireproofing cables.

2.15.3 Plastic Tape

Preapplication plastic tape shall be pressure sensitive, 0.254 mm thick, conforming to UL 510.

2.16 LIQUID DIELECTRICS

Liquid dielectrics for transformers, capacitors, reclosers, and other liquid-filled electrical equipment shall be non-polychlorinated biphenyl (PCB) mineral-oil or less-flammable liquid as specified. Nonflammable fluids shall not be used. Tetrachloroethylene (perchloroethylene) and 1, 2, 4 trichlorobenzene fluids shall not be used. Liquid dielectrics in retrofitted equipment shall be certified by the manufacturer as having less than 50 parts per million (ppm) PCB content. In lieu of the manufacturer's certification, the Contractor may submit a test sample of the dielectric in accordance with ASTM D 923 and have tests performed per ASTM D 4059 at a testing facility approved by the Contracting Officer. Equipment with test results indicating PCB level exceeding 50 ppm shall be replaced.

2.17 FACTORY TESTS

Factory tests shall be performed, as follows, in accordance with the applicable publications and with other requirements of these specifications. The Contracting Officer shall be notified at least 10 days before the equipment is ready for testing. The Contracting Officer reserves the right to witness the tests.

a. Transformers: Manufacturer's standard routine design and other tests in accordance with IEEE C57.12.00.

b. Transformers rated 200 kVA and above: Reduced full-wave, chopped-wave, and full-wave impulse test on each line and neutral terminal, in accordance with IEEE C57.98.

c. High-Voltage Air Switches: Manufacturer's standard tests in accordance with IEEE C37.41.
d. Relaying Current Transformers: Manufacturer's standard tests in accordance with IEEE C57.13.

e. Instrument Current Transformers: Manufacturer's standard tests in accordance with IEEE C57.13.

f. Factory Preformed Terminations: Wet withstand voltage tests in accordance with IEEE Std 48 for the next higher BIL level.

g. Outdoor Switchgear: Manufacturer's standard tests in accordance with IEEE C37.20.3.

h. Electrical Power Insulators: Manufacturer's standard tests in accordance with ANSI C29.1.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Equipment and devices shall be installed and energized in accordance with the manufacturer's published instructions. Circuits installed aerially shall conform to the requirements of Section 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL. Steel conduits installed underground shall be installed and protected from corrosion in conformance with the requirements of Section 16415 ELECTRICAL WORK, INTERIOR. Except as covered herein, excavation, trenching, and backfilling shall conform to the requirements of Section 02316 EXCAVATION, TRENCHING, AND BACKFILLING FOR UTILITIES SYSTEMS. Concrete work shall have minimum 20 MPa compressive strength and conform to the requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE.

3.1.1 Conformance to Codes

The installation shall comply with the requirements and recommendations of NFPA 70 and IEEE C2 as applicable.

3.1.2 Verification of Dimensions

The Contractor shall become familiar with details of the work, shall verify dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work.

3.1.3 Disposal of Liquid Dielectrics

PCB-contaminated dielectrics must be marked as PCB and transported to and incinerated by an approved EPA waste disposal facility. The Contractor shall furnish certification of proper disposal. Contaminated dielectrics shall not be diluted to lower the contamination level.

3.2 CABLE AND BUSWAY INSTALLATION

The Contractor shall obtain from the manufacturer an installation manual or set of instructions which addresses such aspects as cable construction, insulation type, cable diameter, bending radius, cable temperature, lubricants, coefficient of friction, conduit cleaning, storage procedures, moisture seals, testing for and purging moisture, etc. The Contractor shall then prepare a checklist of significant requirements perform pulling
calculations and prepare a pulling plan which shall be submitted along with the manufacturers instructions in accordance with SUBMITTALS.

3.2.1 Cable Installation Plan and Procedure

Cable shall be installed strictly in accordance with the cable manufacturer's recommendations. Each circuit shall be identified by means of a fiber, laminated plastic, or non-ferrous metal tags, or approved equal, in each manhole, handhole, junction box, and each terminal. Each tag shall contain the following information; cable type, conductor size, circuit number, circuit voltage, cable destination and phase identification.

3.2.1.1 Cable Inspection

The cable reel shall be inspected for correct storage positions, signs of physical damage, and broken end seals. If end seal is broken, moisture shall be removed from cable in accordance with the cable manufacturer's recommendations.

3.2.1.2 Duct Cleaning

Duct shall be cleaned with an assembly that consists of a flexible mandrel (manufacturers standard product in lengths recommended for the specific size and type of duct) that is 6.4 mm less than inside diameter of duct, 2 wire brushes, and a rag. The cleaning assembly shall be pulled through conduit a minimum of 2 times or until less than a volume of 131 cubic centimeters of debris is expelled from the duct.

3.2.1.3 Duct Lubrication

The cable lubricant shall be compatible with the cable jacket for cable that is being installed. Application of lubricant shall be in accordance with lubricant manufacturer's recommendations.

3.2.1.4 Cable Installation

The Contractor shall provide a cable feeding truck and a cable pulling winch as required. The Contractor shall provide a pulling grip or pulling eye in accordance with cable manufacturer's recommendations. The pulling grip or pulling eye apparatus shall be attached to polypropylene or manilla rope followed by lubricant front end packs and then by power cables. A dynamometer shall be used to monitor pulling tension. Pulling tension shall not exceed cable manufacturer's recommendations. The Contractor shall not allow cables to cross over while cables are being fed into duct. For cable installation in cold weather, cables shall be kept at 10 degrees C temperature for at least 24 hours before installation.

3.2.1.5 Cable Installation Plan

The Contractor shall submit a cable installation plan for all cable pulls in accordance with the detail drawings portion of paragraph SUBMITTALS. Cable installation plan shall include:

a. Site layout drawing with cable pulls identified in numeric order of expected pulling sequence and direction of cable pull.

b. List of cable installation equipment.
c. Lubricant manufacturer's application instructions.

d. Procedure for resealing cable ends to prevent moisture from entering cable.

e. Cable pulling tension calculations of all cable pulls.

f. Cable percentage conduit fill.

g. Cable sidewall thrust pressure.

h. Cable minimum bend radius and minimum diameter of pulling wheels used.

i. Cable jam ratio.

j. Maximum allowable pulling tension on each different type and size of conductor.

k. Maximum allowable pulling tension on pulling device.

3.2.2 Duct Line

Medium-voltage cables Low-voltage cables Cables shall be installed in duct lines where indicated. Cable splices in low-voltage cables shall be made in manholes and handholes only, except as otherwise noted. Cable joints in medium-voltage cables shall be made in manholes or approved pullboxes only. Neutral and grounding conductors shall be installed in the same duct with their associated phase conductors.

3.2.3 Direct-Burial

3.2.3.1 Trenching

Trenches for direct-burial cables shall be excavated to depths required to provide the minimum necessary cable cover. Bottoms of trenches shall be smooth and free of stones and sharp objects. Where bottoms of trenches comprise materials other than sand, a 75 mm layer of sand shall be laid first and compacted to approximate densities of surrounding firm soil.

3.2.3.2 Cable Markers

Markers shall be located as indicated near the ends of cable runs, at each cable joint or splice, at approximately every 150 m along cable runs, and at changes in direction of cable runs. In addition to markers, a 0.127 mm, brightly colored plastic tape not less than 75 mm in width and suitably inscribed at not more than 3 m on centers, or other approved dig-in warning indication, shall be placed approximately 300 mm below finished grade levels of trenches.

3.2.4 Electric Manholes

Cables shall be routed around the interior walls and securely supported from walls on cables racks. Cable routing shall minimize cable crossover, provide access space for maintenance and installation of additional cables, and maintain cable separation in accordance with IEEE C2.
3.3 CABLE JOINTS

Medium-voltage cable joints shall be made by qualified cable splicers only. Qualifications of cable splicers shall be submitted in accordance with paragraph SUBMITTALS. Shields shall be applied as required to continue the shielding system through each entire cable joint. Shields may be integrally molded parts of preformed joints. Shields shall be grounded at each joint or in accordance with manufacturer's recommended practice. Cable joints shall provide insulation and jacket equivalent to that of the associated cable. Armored cable joints shall be enclosed in compound-filled, cast-iron or alloy, splice boxes equipped with stuffing boxes and armor clamps of a suitable type and size for the cable being installed.

3.4 FIREPROOFING

Each medium-voltage cable and conductor in manholes shall be fire-proofed for their entire length within the manhole. Where cables and conductors have been lubricated to enhance pulling into ducts, the lubricant shall be removed from cables and conductors exposed in the manhole before fireproofing. Fire-stops shall be installed in each conduit entering or leaving a manhole.

3.4.1 Tape Method

Before application of fireproofing tape, plastic tape wrapping shall be applied over exposed metallic items such as the cable ground wire, metallic outer covering, or armor to minimize the possibility of corrosion from the fireproofing materials and moisture. Before applying fireproofing tape, irregularities of cables, such as at cable joints, shall be evened out with insulation putty. A flexible conformable polymeric elastomer fireproof tape shall be wrapped tightly around each cable spirally in 1/2 lapped wrapping or in 2 butt-jointed wrappings with the second wrapping covering the joints of the first.

3.5 DUCT LINES

3.5.1 Requirements

Numbers and sizes of ducts shall be as indicated. Duct lines shall be laid with a minimum slope of 100 mm per 30 m. Depending on the contour of the finished grade, the high-point may be at a terminal, a manhole, a handhole, or between manholes or handholes. Short-radius manufactured 90-degree duct bends may be used only for pole or equipment risers, unless specifically indicated as acceptable. The minimum manufactured bend radius shall be 450 mm for ducts of less than 80 mm diameter, and 900 mm for ducts 80 mm or greater in diameter. Otherwise, long sweep bends having a minimum radius of 7.6 m shall be used for a change of direction of more than 5 degrees, either horizontally or vertically. Both curved and straight sections may be used to form long sweep bends, but the maximum curve used shall be 30 degrees and manufactured bends shall be used. Ducts shall be provided with end bells whenever duct lines terminate in manholes or handholes.

3.5.2 Treatment

Ducts shall be kept clean of concrete, dirt, or foreign substances during construction. Field cuts requiring tapers shall be made with proper tools.
and match factory tapers. A coupling recommended by the duct manufacturer shall be used whenever an existing duct is connected to a duct of different material or shape. Ducts shall be stored to avoid warping and deterioration with ends sufficiently plugged to prevent entry of any water or solid substances. Ducts shall be thoroughly cleaned before being laid. Plastic ducts shall be stored on a flat surface and protected from the direct rays of the sun.

3.5.3 Concrete Encasement

Ducts requiring concrete encasements shall comply with NFPA 70, except that electrical duct bank configurations for ducts 150 mm (6 inches) in diameter shall be determined by calculation and as shown on the drawings. The separation between adjacent electric power and communication ducts shall conform to IEEE C2. Duct line encasements shall be monolithic construction. Where a connection is made to a previously poured encasement, the new encasement shall be well bonded or doweled to the existing encasement. The Contractor shall submit proposed bonding method for approval in accordance with the detail drawing portion of paragraph SUBMITTALS. At any point, except railroad and airfield crossings, tops of concrete encasements shall be not less than the cover requirements listed in NFPA 70. Where ducts are jacked under existing pavement, rigid steel conduit will be installed because of its strength. To protect the corrosion-resistant conduit coating, predrilling or installing conduit inside a larger iron pipe sleeve (jack-and-sleeve) is required. Separators or spacing blocks shall be made of steel, concrete, plastic, or a combination of these materials placed not farther apart than 1.2 m on centers. Ducts shall be securely anchored to prevent movement during the placement of concrete and joints shall be staggered at least 150 mm vertically.

3.5.4 Installation of Couplings

Joints in each type of duct shall be made up in accordance with the manufacturer's recommendations for the particular type of duct and coupling selected and as approved.

3.5.4.1 Plastic Duct

Duct joints shall be made by brushing a plastic solvent cement on insides of plastic coupling fittings and on outsides of duct ends. Each duct and fitting shall then be slipped together with a quick 1/4-turn twist to set the joint tightly.

3.5.5 Duct Line Markers

Duct line markers shall be provided as indicated at the ends of long duct line stubouts or for other ducts whose locations are indeterminate because of duct curvature or terminations at completely below-grade structures. In addition to markers, a 0.127 mm brightly colored plastic tape, not less than 75 mm in width and suitably inscribed at not more than 3 m on centers with a continuous metallic backing and a corrosion-resistant 0.0254 mm metallic foil core to permit easy location of the duct line, shall be placed approximately 300 mm below finished grade levels of such lines.

3.6 MANHOLES, HANDHOLES, AND PULLBOXES
3.6.1 General

Manholes shall be constructed approximately where shown. The exact location of each manhole shall be determined after careful consideration has been given to the location of other utilities, grading, and paving. The location of each manhole shall be approved by the Contracting Officer before construction of the manhole is started. Manholes shall be the type noted on the drawings and shall be constructed in accordance with the applicable details as indicated. Top, walls, and bottom shall consist of reinforced concrete. Walls and bottom shall be of monolithic concrete construction. The Contractor may at his option utilize monolithically constructed precast-concrete manholes having the required strength and inside dimensions as required by the drawings or specifications. In unpaved areas, the top of manhole covers shall be approximately 15 mm above the finished grade. Where existing grades that are higher than finished grades are encountered, concrete assemblies designed for the purpose shall be installed to elevate temporarily the manhole cover to existing grade level. All duct lines entering manholes must be installed on compact soil or otherwise supported when entering a manhole to prevent shear stress on the duct at the point of entrance to the manhole. Duct lines entering cast-in-place concrete manholes shall be cast in-place with the manhole. Duct lines entering precast concrete manholes through a precast knockout penetration shall be grouted tight with a portland cement mortar. PVC duct lines entering precast manholes through a PVC endbell shall be solvent welded to the endbell. A cast metal grille-type sump frame and cover shall be installed over the manhole sump. A cable-pulling iron shall be installed in the wall opposite each duct line entrance.

3.6.2 Communications Manholes

The number of hot-dip galvanized cable racks with a plastic coating over the galvanizing indicated shall be installed in each telephone manhole. Each cable rack shall be provided with 2 cable hooks. Cables for the telephone and communication systems will be installed by others.

3.6.3 Handholes

Handholes shall be located approximately as shown. Handholes shall be of the type noted on the drawings and shall be constructed in accordance with the details shown.

3.6.4 Pullboxes

Pullbox tops shall be flush with sidewalks or curbs or placed 15 mm above surrounding grades when remote from curbed roadways or sidewalks. Covers shall be marked "Low-Voltage" and provided with 2 lifting eyes and 2 hold-down bolts. Each box shall have a suitable opening for a ground rod. Conduit, cable, ground rod entrances, and unused openings shall be sealed with mortar.

3.6.5 Ground Rods

A ground rod shall be installed at the manholes, handholes and pullboxes. Ground rods shall be driven into the earth before the manhole floor is poured so that approximately 100 mm of the ground rod will extend above the manhole floor. When precast concrete manholes are used, the top of the
ground rod may be below the manhole floor and a 54 mm ground conductor brought into the manhole through a watertight sleeve in the manhole wall.

3.7 PAD-MOUNTED EQUIPMENT INSTALLATION

Pad-mounted equipment, shall be installed on concrete pads in accordance with the manufacturer's published, standard installation drawings and procedures, except that they shall be modified to meet the requirements of this document. Units shall be installed so that they do not damage equipment or scratch painted or coated surfaces. After installation, surfaces shall be inspected and scratches touched up with a paint or coating provided by the manufacturer especially for this purpose.

3.7.1 Concrete Pads

3.7.1.1 Construction

Concrete pads for pad-mounted electrical equipment shall be poured-in-place. Pads shall be constructed as indicated, except that exact pad dimensions and mounting details are equipment specific and are the responsibility of the Contractor. Tops of concrete pads shall be level and shall project 100 mm above finished paving or grade and sloped to drain. Edges of concrete pads shall have 20 mm chamfer. Conduits for primary, secondary, and grounding conductors shall be set in place prior to placement of concrete pads. Where grounding electrode conductors are installed through concrete pads, PVC conduit sleeves shall be installed through the concrete to provide physical protection. To facilitate cable installation and termination, the concrete pad shall be provided with a rectangular hole below the primary and secondary compartments, sized in accordance with the manufacturer's recommended dimensions. Upon completion of equipment installation the rectangular hole shall be filled with masonry grout.

3.7.1.2 Concrete and Reinforcement

Concrete work shall have minimum 20 MPa compressive strength and conform to the requirements of Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Concrete pad reinforcement shall be in accordance with Section 03200 CONCRETE REINFORCEMENT.

3.7.1.3 Sealing

When the installation is complete, the Contractor shall seal all conduit and other entries into the equipment enclosure with an approved sealing compound. Seals shall be of sufficient strength and durability to protect all energized live parts of the equipment from rodents, insects, or other foreign matter.

3.7.2 Padlocks

Padlocks shall be provided for pad-mounted equipment and for each fence gate. Padlocks shall be keyed alike as directed by the Contracting Officer. Padlocks shall comply with ASTM F 883. Padlocks shall be 8-pin "BEST" core or approved equal.

3.8 CONNECTIONS BETWEEN AERIAL AND UNDERGROUND SYSTEMS
Connections between aerial and underground systems shall be made as shown. Underground cables shall be extended up poles in guards conduit to cable terminations. Conduits shall be secured to the poles by 2-hole galvanized steel pipe straps spaced not more than 3 m apart and with 1 strap not more than 300 mm from any bend or termination. Cable guards shall be secured to poles in accordance with the manufacturer's published procedures. Conduits shall be equipped with bushings to protect cables and minimize water entry. Capnut potheads shall be used to terminate medium-voltage multiple-conductor cable. Cables shall be supported by devices separate from the conduit or guard, near their point of exit from the conduit or guard.

3.8.1 Pole Installation

Pole installation shall be in accordance with Section 16370 ELECTRICAL DISTRIBUTION SYSTEM, AERIAL.

3.9 CONNECTIONS TO BUILDINGS

Cables shall be extended into the various buildings as indicated, and shall be connected to the first applicable termination point in each building. Interfacing with building interior conduit systems shall be at conduit stubouts terminating 1.5 m outside of a building and 600 mm below finished grade as specified and provided under Section 16415 ELECTRICAL WORK, INTERIOR. After installation of cables, conduits shall be sealed with caulking compound to prevent entrance of moisture or gases into buildings.

3.10 GROUNDING

A ground ring consisting of the indicated configuration of bare copper conductors and driven ground rods shall be installed around pad-mounted equipment as shown. Equipment frames of metal-enclosed equipment, and other noncurrent-carrying metal parts, such as cable shields, cable sheaths and armor, and metallic conduit shall be grounded. At least 2 connections shall be provided from a transformer. Metallic frames and covers of handholes and pull boxes shall be grounded by use of a braided, copper ground strap with equivalent ampacity of 16 mm.

3.10.1 Grounding Electrodes

Grounding electrodes shall be installed as shown on the drawings and as follows:

a. Driven rod electrodes - Unless otherwise indicated, ground rods shall be driven into the earth until the tops of the rods are approximately 300 mm below finished grade.

b. Ground ring - A ground ring shall be installed as shown consisting of bare copper conductors installed 450 mm, plus or minus 75 mm, below finished top of soil grade. Ground ring conductors shall be sized as shown.

c. Additional electrodes - When the required ground resistance is not met, additional electrodes shall be provided interconnected with grounding conductors to achieve the specified ground resistance. The additional electrodes will be up to three, 3 m rods spaced a minimum of 3.7 m apart a single extension-type rod, 19.1 mm diameter, up to 9.1 m long, driven perpendicular to grade coupled
and driven with the first rod. In high ground resistance, UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 10 ohms measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately.

3.10.2 Grounding and Bonding Connections

Connections above grade shall be made by the fusion-welding process or with bolted solderless connectors, in compliance with UL 467, and those below grade shall be made by a fusion-welding process. Where grounding conductors are connected to aluminum-composition conductors, specially treated or lined copper-to-aluminum connectors suitable for this purpose shall be used.

3.10.3 Grounding and Bonding Conductors

Grounding and bonding conductors include conductors used to bond transformer enclosures and equipment frames to the grounding electrode system. Grounding and bonding conductors shall be sized as shown, and located to provide maximum physical protection. Bends greater than 45 degrees in ground conductors are not permitted. Routing of ground conductors through concrete shall be avoided. When concrete penetration is necessary, nonmetallic conduit shall be cast flush with the points of concrete entrance and exit so as to provide an opening for the ground conductor, and the opening shall be sealed with a suitable compound after installation.

3.10.4 Surge Arrester Grounding

Surge arresters and neutrals shall be bonded directly to the transformer enclosure and then to the grounding electrode system with a bare copper conductor, sized as shown. Lead lengths shall be kept as short as practicable with no kinks or sharp bends.

3.10.5 Manhole, Handhole, or Concrete Pullbox Grounding

Ground rods installed in manholes, handholes, or concrete pullboxes shall be connected to cable racks, cable-pulling irons, the cable shielding, metallic sheath, and armor at each cable joint or splice by means of a 25 mm braided tinned copper wire. Connections to metallic cable sheaths shall be by means of tinned terminals soldered to ground wires and to cable sheaths. Care shall be taken in soldering not to damage metallic cable sheaths or shields. Ground rods shall be protected with a double wrapping of pressure-sensitive plastic tape for a distance of 50 mm above and 150 mm below concrete penetrations. Grounding electrode conductors shall be neatly and firmly attached to manhole or handhole walls and the amount of exposed bare wire shall be held to a minimum.

3.10.6 Metal Splice Case Grounding

Metal splice cases for medium-voltage direct-burial cable shall be grounded by connection to a driven ground rod located within 600 mm of each splice box using a grounding electrode conductor having a current-carrying capacity of at least 20 percent of the individual phase conductors in the associated splice box, but not less than 25 mm.
3.10.7 Riser Pole Grounding

A single continuous vertical grounding electrode conductor shall be installed on each riser pole and connected directly to the grounding electrodes indicated on the drawings or required by these specifications. All equipment, neutrals, surge arresters, and items required to be grounded shall be connected directly to this vertical conductor. The grounding electrode conductor shall be sized as shown. Grounding electrode conductors shall be stapled to wood poles at intervals not exceeding 600 mm.

3.11 FIELD TESTING

3.11.1 General

Field testing shall be performed in the presence of the Contracting Officer. The Contractor shall notify the Contracting Officer 7 days prior to conducting tests. The Contractor shall furnish all materials, labor, and equipment necessary to conduct field tests. The Contractor shall perform all tests and inspections recommended by the manufacturer unless specifically waived by the Contracting Officer. The Contractor shall maintain a written record of all tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results. Field test reports shall be signed and dated by the Contractor.

3.11.2 Safety

The Contractor shall provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. The Contractor shall replace any devices or equipment which are damaged due to improper test procedures or handling.

3.11.3 Ground-Resistance Tests

The resistance of each grounding electrode each grounding electrode system the ground mat the ground ring shall be measured using the fall-of-potential method defined in IEEE Std 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

 a. Single rod electrode - 10 ohms.
 c. Ground ring - 10 ohms.

3.11.4 Medium-Voltage Cable Test

After installation and before the operating test or connection to an existing system, the medium-voltage cable system shall be given a high potential test. Direct-current voltage shall be applied on each phase conductor of the system by connecting conductors as one terminal and connecting grounds or metallic shieldings or sheaths of the cable as the other terminal for each test. Prior to making the test, the cables shall be isolated by opening applicable protective devices and disconnecting...
equipment. The test shall be conducted with all splices, connectors, and terminations in place. The method, voltage, length of time, and other characteristics of the test for initial installation shall be in accordance with NEMA WC 7 or NEMA WC 8 for the particular type of cable installed, except that 28 kV and 35 kV insulation test voltages shall be in accordance with either AEIC CS6 as applicable, and shall not exceed the recommendations of IEEE Std 404 for cable joints and IEEE Std 48 for cable terminations unless the cable and accessory manufacturers indicate higher voltages are acceptable for testing. Should any cable fail due to a weakness of conductor insulation or due to defects or injuries incidental to the installation or because of improper installation of cable, cable joints, terminations, or other connections, the Contractor shall make necessary repairs or replace cables as directed. Repaired or replaced cables shall be retested.

3.11.5 Low-Voltage Cable Test

Low-voltage cable, complete with splices, shall be tested for insulation resistance after the cables are installed, in their final configuration, ready for connection to the equipment, and prior to energization. The test voltage shall be 500 volts dc, applied for one minute between each conductor and ground and between all possible combinations conductors in the same trench, duct, or cable, with all other conductors in the same trench, duct, or conduit. The minimum value of insulation shall be:

\[R \text{ in megohms} = (\text{rated voltage in kV} + 1) \times 304.8/(\text{length of cable in meters}) \]

Each cable failing this test shall be repaired or replaced. The repaired cable shall be retested until failures have been eliminated.

3.11.6 Liquid-Filled Transformer Tests

The following field tests shall be performed on all liquid-filled transformers. Pass-fail criteria shall be in accordance with transformer manufacturer's specifications.

a. Insulation resistance test phase-to-ground.

b. Turns ratio test.

c. Correct phase sequence.

d. Correct operation of tap changer.

3.11.7 Pre-Energization Services

Calibration, testing, adjustment, and placing into service of the installation shall be accomplished by a manufacturer's product field service engineer or independent testing company with a minimum of 2 years of current product experience. The following services shall be performed on the equipment listed below. These services shall be performed subsequent to testing but prior to the initial energization. The equipment shall be inspected to ensure that installation is in compliance with the recommendations of the manufacturer and as shown on the detail drawings. Terminations of conductors at major equipment shall be inspected to ensure the adequacy of connections. Bare and insulated conductors between such terminations shall be inspected to detect possible damage during
installation. If factory tests were not performed on completed assemblies, tests shall be performed after the installation of completed assemblies. Components shall be inspected for damage caused during installation or shipment to ensure packaging materials have been removed. Components capable of being both manually and electrically operated shall be operated manually prior to the first electrical operation. Components capable of being calibrated, adjusted, and tested shall be calibrated, adjusted, and tested in accordance with the instructions of the equipment manufacturer. Items for which such services shall be provided, but are not limited to, are the following:

a. Pad-mounted transformers

3.11.8 Operating Tests

After the installation is completed, and at such times as the Contracting Officer may direct, the Contractor shall conduct operating tests for approval. The equipment shall be demonstrated to operate in accordance with the requirements herein. An operating test report shall be submitted in accordance with paragraph SUBMITTALS.

3.12 ACCEPTANCE

Final acceptance of the facility will not be given until the Contractor has successfully completed all tests and after all defects in installation, material or operation have been corrected.

-- End Of Section --
SECTION 16403

MOTOR CONTROL CENTERS, SWITCHBOARDS AND PANELBOARDS

08/95

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 187 (1994) Copper Bar, Bus Bar, Rod and Shapes

ASME INTERNATIONAL (ASME)

ASME B1.1 (1989) Unified Inch Screw Threads (UN and UNR Thread Form)

ASME B1.20.1 (1983; R 1992) Pipe Threads, General Purpose (Inch)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA AB 1 (1993) Molded Case Circuit Breakers and Molded Case Switches

NEMA PB 1 (1990) Panelboards

NEMA PB 2 (1989) Deadfront Distribution Switchboards

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

UNDERWRITERS LABORATORIES (UL)

UL 50 (1992) Enclosures for Electrical Equipment

UL 67 (1993; Rev thru May 1994) Panelboards

UL 891 (1994; Rev thru Jan 1995) Dead-Front Switchboards

1.2 SYSTEM DESCRIPTION

These specifications include the design, fabrication, assembly, wiring, testing, and delivery of the items of equipment and accessories and spare parts listed in the Schedule and shown on the drawings.

1.2.1 Rules

The equipment shall conform to the requirements of NFPA 70 unless more stringent requirements are indicated herein or shown. NEMA rated and UL listed equipment has been specified when available. Equipment must meet NEMA and UL construction and rating requirements as specified. No equivalent will be acceptable. The contractor shall immediately notify the Contracting Officer of any requirements of the specifications or contractor proposed materials or assemblies that do not comply with UL or NEMA. International Electrotechnical Commission (IEC) rated equipment will not be considered an acceptable alternative to specified NEMA ratings. Ground fault indication and voltage fault protection (voltage faults, phase loss, phase reversal, under and over voltage) on service entrance equipment will be required.

1.2.2 Coordination

The general arrangement of the switchboards and panelboards is shown on the contract drawings. Any modifications of the equipment arrangement or device requirements as shown on the drawings shall be subject to the approval of the Contracting Officer. If any conflicts occur necessitating departures from the drawings, details of and reasons for departures shall be submitted and approved prior to implementing any change. All equipment shall be completely assembled at the factory. The switchboards may be disassembled into sections, if necessary, for convenience of handling, shipping, and installation.

1.2.3 Standard Products

Material and equipment shall be standard products of a manufacturer regularly engaged in their manufacture and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. All materials shall conform to the requirements of these specifications. Materials shall be of high quality, free from defects and imperfections, of recent manufacture, and of the classification and grades designated. All materials, supplies, and articles not manufactured by the Contractor shall be the products of other recognized reputable manufacturers. If the Contractor desires for any reason to deviate from the standards designated in these specifications, he shall, after award, submit a statement of the exact nature of the deviation, and shall submit, for the approval of the Contracting Officer, complete specifications for the materials which he proposes to use.

1.2.4 Nameplates

Nameplates shall be made of laminated sheet plastic or of anodized aluminum approximately 4 millimeters thick, engraved to provide white letters on a black background. The nameplates shall be fastened to the panels in proper positions with anodized round-head screws. Lettering shall be minimum 15 millimeters high. Nameplate designations shall be in accordance with lists
on the drawings, and as a minimum shall be provided for the following equipment:

- Switchboards
- Individually-mounted circuit breakers in Switchboard
- Group-mounted circuit breakers in Switchboard
- Panelboards

Equipment of the withdrawal type shall be provided with nameplates mounted on the removable equipment in locations visible when the equipment is in place.

1.3 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals not having a "GA" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Drawings; GA
Shop Drawings; GA

The Contractor shall, within 30 calendar days after date of receipt by him of notice of award, submit for the approval of the Contracting Officer six (6) copies of outline drawings of all equipment to be furnished under this contract, together with weights and overall dimensions. Drawings shall show the general arrangement and overall dimensions of the motor control centers, switchboards, and panelboards. These drawings shall show space requirements, details of any floor supports to be embedded in concrete and provisions for conduits for external cables.

Switchboards; GA
Panelboards; GA

The Contractor shall, within 30 calendar days after date of receipt by him of notice of award, submit for the approval of the Contracting Officer six (6) copies of electrical equipment drawings. A single-line diagram, equipment list and nameplate schedule shall be provided for each switchboard and panelboard.

SD-03 Product Data

Equipment; GA

The Contractor shall within 30 calendar days after date of award date of receipt by him of notice of award submit for approval six (6) copies of such descriptive cuts and information as are required to demonstrate fully that all parts of the equipment will conform to the requirements and intent of the specifications. Data shall include descriptive data showing typical construction of the types
of equipment proposed, including the manufacturer's name, type of molded case circuit breakers or motor circuit protectors, performance capacities and other information pertaining to the equipment. Six (6) sets of characteristic curves of the individual breaker trip element shall be submitted.

Factory Tests; FIO

The Contractor shall submit, within a minimum of 14 days prior to the proposed date of tests, six (6) copies of manufacturer's routine factory test procedures and production line tests for all motor control centers and switchboards.

SD-06 Test Reports

Factory Tests; FIO

The Contractor shall submit six (6) complete reproducible copies of the factory inspection results and six (6) complete reproducible copies of the factory test results in booklet form, including all plotted data curves, all test conditions, a listing of test equipment complete with calibration certifications, and all measurements taken. Report shall be signed and dated by the Contractor's and Contracting Officer's Representatives.

1.4 DELIVERY, STORAGE, AND HANDLING

The equipment shall be shipped as completely assembled and wired as feasible so as to require a minimum of installation work. Each shipping section shall be properly match marked to facilitate reassembly, and shall be provided with removable lifting channels with eye bolts for attachment of crane slings to facilitate lifting and handling. Any relay or other device which cannot withstand the hazards of shipment when mounted in place on the equipment shall be carefully packed and shipped separately. These devices shall be marked with the number of the panel which they are to be mounted on and fully identified. All finished painted surfaces and metal work shall be wrapped suitably or otherwise protected from damage during shipment. All parts shall be prepared for shipment so that slings for handling may be attached readily while the parts are in a railway car or transport truck.

1.5 MAINTENANCE

1.5.1 Accessories and Tools

A complete set of accessories and special tools unique to equipment provided and required for erecting, handling, dismantling, testing and maintaining the apparatus shall be furnished by the Contractor.

1.5.2 Spare Parts

Spare parts shall be furnished as specified below. All spare parts shall be of the same material and workmanship, shall meet the same requirements, and shall be interchangeable with the corresponding original parts furnished.

a. 2 - Fuses of each type and size.

b. 1 - Circuit breaker auxiliary switch.
c. 2 - Operating coils for each size ac contactor.
d. 1 - Operating coil for each size dc contactor.
e. 2 - Complete sets of 3-pole stationary and moving contact assemblies for each size ac contactor.
f. 1 - Complete set of 2-pole stationary and moving contact assemblies for each size dc contactor.
g. 3 - Contactor overload relays of each type and rating, each relay with a complete set of contact blocks.
h. 1 - spare set of heater elements for each heater rating provided.
i. 2 - Indicating lamp assemblies of each type.
j. 1 - Control relay of each type and rating.
k. 1 - Contactor auxiliary contact of each type.
l. 4 - One quart containers of finish paint for indoor equipment.
m. 2 - One quart containers of the paint used for the exterior surfaces of outdoor equipment.
n. 4 - Keys for motor control center door lock.

PART 2 PRODUCTS

2.1 CONNECTIONS

All bolts, studs, machine screws, nuts, and tapped holes shall be in accordance with ASME B1.1. The sizes and threads of all conduit and fittings, tubing and fittings, and connecting equipment shall be in accordance with ASME B1.20.1. All ferrous fasteners shall have rust-resistant finish and all bolts and screws shall be equipped with approved locking devices. Manufacturer's standard threads and construction may be used on small items which, in the opinion of the Contracting Officer, are integrally replaceable, except that threads for external connections to these items shall meet the above requirements.

2.2 MOLDED CASE CIRCUIT BREAKERS

Molded case circuit breakers shall conform to the applicable requirements of NEMA AB 1 and UL 489. The circuit breakers shall be manually-operated, shall be quick-make, quick-break, common trip type, and shall be of automatic-trip type unless otherwise specified or indicated on the drawings. All poles of each breaker shall be operated simultaneously by means of a common handle. The operating handles shall clearly indicate whether the breakers are in "On," "Off," or "Tripped" position and shall have provisions for padlocking in the "Off" position. Personnel safety line terminal shields shall be provided for each breaker. The circuit breakers shall be products of only one manufacturer, and shall be interchangeable when of the same frame size. Where indicated on the drawings, circuit breakers shall be provided with shunt trip devices.
2.2.1 Trip Units

Except as otherwise noted, the circuit breakers, of frame sizes and the trip unit ratings as shown on the drawings, shall be provided with combination thermal and instantaneous magnetic or solid state trip units. The Government reserves the right to change the indicated trip ratings, within frame limits, of the trip devices at the time the shop drawings are submitted for approval. The breaker trip units shall be interchangeable and the instantaneous magnetic trip units shall be adjustable on frame sizes larger than 150 amperes. Nonadjustable instantaneous magnetic trip units shall be set at approximately 10 times the continuous current ratings of the circuit breakers. Solid state trip units, where indicated, shall also have adjustable long time pick-up and delay, short time pick-up and delay, and ground fault pick-up and delay.

2.2.2 480-Volt AC Circuits

Circuit breakers for 480-volt or 277/480-volt ac circuits shall be rated 600 volts ac, and shall have an UL listed minimum interrupting capacity of 14,000 symmetrical amperes at 600 volts ac.

2.2.3 120/240-Volt AC Circuits

Circuit breakers for 120-volt ac circuits shall be rated not less than 120/240 or 240 volts ac, and shall have a UL listed minimum interrupting capacity of 10,000 symmetrical amperes.

2.3 WIRING

All control wire shall be stranded tinned copper switchboard wire with 600-volt flame-retardant insulation Type SIS meeting UL 44 or Type MTW meeting UL 1063, and shall pass the VW-1 flame tests included in those standards. Hinge wire shall have Class K stranding. Current transformer secondary leads shall be not smaller than No. 10 AWG. The minimum size of control wire shall be No. 14 AWG. Power wiring for 480-volt circuits and below shall be of the same type as control wiring and the minimum size shall be No. 12 AWG. Special attention shall be given to wiring and terminal arrangement on the terminal blocks to permit the individual conductors of each external cable to be terminated on adjacent terminal points.

2.4 TERMINAL BLOCKS

Control circuit terminal blocks for control wiring shall be molded or fabricated type with barriers, rated not less than 600 volts. The terminals shall be removable binding, fillister or washer head screw type, or of the stud type with contact and locking nuts. The terminals shall be not less than No. 10 in size and shall have sufficient length and space for connecting at least two indented terminals for 10 AWG conductors to each terminal. The terminal arrangement shall be subject to the approval of the Contracting Officer and not less than four (4) spare terminals or 10 percent, whichever is greater, shall be provided on each block or group of blocks. Modular, pull apart, terminal blocks will be acceptable provided they are of the channel or rail-mounted type. The Contractor shall submit data showing that the proposed alternate will accommodate the specified number of wires, are of adequate current-carrying capacity, and are constructed to assure positive contact between current-carrying parts.
2.4.1 Types of Terminal Blocks

2.4.1.1 Short-Circuiting Type

Short-circuiting type terminal blocks shall be furnished for all current transformer secondary leads and shall have provision for shorting together all leads from each current transformer without first opening any circuit. Terminal blocks shall meet the requirements of paragraph CONTROL CIRCUIT TERMINAL BLOCKS above.

2.4.1.2 Load Type

Load terminal blocks rated not less than 600 volts and of adequate capacity shall be provided for the conductors for NEMA Size 3 and smaller motor controllers and for other power circuits except those for feeder tap units. The terminals shall be of either the stud type with contact nuts and locking nuts or of the removable screw type, having length and space for at least two indented terminals of the size required on the conductors to be terminated. For conductors rated more than 50 amperes, screws shall have hexagonal heads. Conducting parts between connected terminals shall have adequate contact surface and cross-section to operate without overheating. Each connected terminal shall have the circuit designation or wire number placed on or near the terminal in permanent contrasting color.

2.4.2 Marking Strips

White or other light-colored plastic marking strips, fastened by screws to each terminal block, shall be provided for wire designations. The wire numbers shall be made with permanent ink. The marking strips shall be reversible to permit marking both sides, or two marking strips shall be furnished with each block. Marking strips shall accommodate the two sets of wire numbers. Each device to which a connection is made shall be assigned a device designation and each device terminal to which a connection is made shall be marked with a distinct terminal marking corresponding to the wire designation used on the Contractor's schematic and connection diagrams. The wire (terminal point) designations used on the Contractor's wiring diagrams and printed on terminal block marking strips may be according to the Contractor's standard practice; however, additional wire and cable designations for identification of remote (external) circuits shall be provided for the Government's wire designations. Prints of drawings submitted for approval will be so marked and returned to the Contractor for addition of the designations to the terminal strips and tracings, along with any rearrangement of points required.

2.5 SWITCHBOARDS

The switchboards shall be dead-front switchboards conforming to NEMA PB 2 and labeled under UL 891. The switchboards shall be completely enclosed self-supporting metal structures with the required number of vertical panel sections, buses, molded-case circuit breakers, and other devices as shown on the drawings. Switchboards shall be fully rated for a short-circuit current of 100,000 symmetrical amperes RMS AC.

2.5.1 Enclosure
Each switchboard enclosure shall be NEMA type 1, built with selected smooth sheet steel panels of not less than 1.9 millimeters. Exposed panels on the front and ends shall have bent angle or channel edges with all corner seams welded and ground smooth. The front outside surfaces shall not be drilled or welded for the purpose of attaching wires or mounting devices if such holes or fastenings will be visible from the front. The front panels shall be made in sections flanged on four sides and attached to the framework by screws and arranged for ready removal for inspection or maintenance. Ventilating openings shall be provided as required and shall preferably be of the grille type. All ventilating openings shall be provided with corrosion-resistant insect-proof screens on the inside. Each switchboard shall be provided with a channel iron base at front, rear, and sides, with exposed ends covered by welded steel plates. Grout holes shall be provided. The switchboard sections shall be bolted to the base. All interior and exterior steel parts shall be treated to inhibit corrosion and shall be painted as specified in paragraph PAINTING.

2.5.2 Bus

All buses shall be of copper and all bolted splices and connections between buses and for extensions or taps for equipment shall be tin or silver-plated throughout. Copper bars and shapes for bus conductors shall conform to the applicable requirements of ASTM B 187. All splices for field assembly shall be bolted with at least two bolts and shall employ the use of "Belleville" washers in the connection. Horizontal and vertical power buses have minimum current ratings as shown on the drawings. The buses shall be insulated for not less than 600 volts. Shop splices and tap connections shall be brazed, pressure-welded or bolted. All splices for field assembly shall be bolted. The buses shall be mounted on insulating supports of wet process porcelain, glass polyester, or suitable molded material, and shall be braced to withstand not less than 100,000 symmetrical amperes ac.

2.5.3 Grounding Bus

A copper ground bus, rated not less than 300 amps, extending the entire length of the assembled structure, shall be mounted near the bottom of enclosure. A full clamp-type solderless copper or copper alloy lug for No. 2/0 AWG stranded copper cable shall be provided at each end of the bus for connection to the station grounding system.

2.5.4 Components

Each switchboard shall be equipped with molded-case circuit breakers conforming to paragraph MOLDED CASE CIRCUIT BREAKERS and with frame sizes, trip ratings, and terminal connectors for attachment of outgoing power cables as shown on the drawings. The circuit breakers shall be individually stationary mounted, as shown on the drawings, and shall be operable and removable from the front. Where shown on the drawings, circuit breakers shall be enclosed in individual compartments. The group-mounted circuit breakers shall be provided complete with bus work in an integrated assembly on the switchboard and shall conform to the applicable requirements of paragraph PANELBOARDS.

2.6 PANELBOARDS

Panelboards shall consist of assemblies of molded-case circuit breakers with buses and terminal lugs for the control and protection of branch circuits to
motors, heating devices and other equipment operating at 480 volts ac or less. Panelboards shall be UL 67 labeled. "Loadcenter" type panels are not acceptable. Panelboards shall be designed for installation in surface-mounted or flush-mounted cabinets accessible from the front only, as shown on the drawings. Panelboards shall be fully rated for a short-circuit current as indicated on the drawings.

2.6.1 Enclosure

Enclosures shall meet the requirements of UL 50. All cabinets shall be fabricated from sheet steel of not less than 3.5 millimeters if flush-mounted or mounted outdoors, and not less than 2.7 millimeters if surface-mounted indoors, with full seam-welded box ends. Cabinets mounted outdoors or flush-mounted shall be hot-dipped galvanized after fabrication. Cabinets shall be painted in accordance with paragraph PAINTING. Outdoor cabinets shall be of NEMA 3R raintight and conduit hubs welded to the cabinet. Front edges of cabinets shall be form-flanged or fitted with structural shapes welded or riveted to the sheet steel, for supporting the panelboard front. All cabinets shall be so fabricated that no part of any surface on the finished cabinet shall deviate from a true plane by more than 3 millimeters. Holes shall be provided in the back of indoor surface-mounted cabinets, with outside spacers and inside stiffeners, for mounting the cabinets with a 15 millimeter clear space between the back of the cabinet and the wall surface. Flush doors shall be mounted on hinges that expose only the hinge roll to view when the door is closed. Each door shall be fitted with a combined catch and lock, except that doors over 600 millimeters long shall be provided with a three-point latch having a knob with a T-handle, and a cylinder lock. Two keys shall be provided with each lock, and all locks shall be keyed alike. Finished-head cap screws shall be provided for mounting the panelboard fronts on the cabinets. Enclosure shall have nameplates in accordance with paragraph NAMEPLATES. Directory holders, containing a neatly typed or printed directory under a transparent cover, shall be provided on the inside of panelboard doors.

2.6.2 Buses

All panelboards shall be of the dead-front type with buses and circuit breakers mounted on a plate or base for installation as a unit in a cabinet. All buses shall be of copper. Copper bars and shapes for bus conductors shall conform to the applicable requirements of ASTM B 187. The sizes of buses and the details of panelboard construction shall meet or exceed the requirements of NEMA PB 1. Suitable provisions shall be made for mounting the bus within panelboards and adjusting their positions in the cabinets. Terminal lugs required to accommodate the conductor sizes shown on the drawing, shall be provided for all branch circuits larger than No. 10 AWG. A grounding lug suitable for 1/0 AWG wire shall be provided for each panelboard.

2.6.3 Components

Each branch circuit, and the main buses where so specified or shown on the drawings, shall be equipped with molded-case circuit breakers having overcurrent trip ratings as shown on the drawings. The circuit breakers shall be of a type designed for bolted connection to buses in a panelboard assembly, and shall meet the requirements of paragraph MOLDED CASE CIRCUIT BREAKERS. Circuit breakers of the same frame size and rating shall be
interchangeable. Terminal blocks shall conform to requirements of paragraph TERMINAL BLOCKS.

2.7 PAINTING

Interior and exterior steel surfaces of equipment enclosures shall be thoroughly cleaned and then receive a rust-inhibitive phosphatizing or equivalent treatment prior to painting. Exterior surfaces shall be free from holes, seams, dents, weld marks, loose scale or other imperfections. Interior surfaces shall receive not less than one coat of corrosion-resisting paint in accordance with the manufacturer's standard practice. Exterior surfaces shall be primed, filled where necessary, and given not less than two coats baked enamel with semigloss finish. Equipment located indoors shall be ANSI Light Gray, and equipment located outdoors shall be ANSI Dark Gray. All touch-up work shall be done with manufacturer's coatings as supplied under paragraph SPARE PARTS.

2.8 FACTORY TESTS

Each item of equipment supplied under this contract shall be given the manufacturer's routine factory tests and tests as specified below, to insure successful operation of all parts of the assemblies. All tests required herein shall be witnessed by the Contracting Officer unless waived in writing, and no equipment shall be shipped until it has been approved for shipment by the Contracting Officer. The Contractor shall notify the Contracting Officer a minimum of 14 days prior to the proposed date of the tests so that arrangements can be made for the Contracting Officer to be present at the tests. The factory test equipment and the test methods used shall conform to the applicable NEMA Standards, and shall be subject to the approval of the Contracting Officer. Reports of all witnessed tests shall be signed by witnessing representatives of the Contractor and Contracting Officer. The cost of performing all tests shall be borne by the Contractor and shall be included in the prices bid in the schedule for equipment.

2.8.1 Switchboards Tests

2.8.1.1 Production Tests

Each switchboard shall be completely assembled and given applicable production tests for assembled switchgear as specified in NEMA PB 2.

2.8.1.2 Short Circuit Tests

If the unit is not UL labeled for the specified short circuit, the contractor may submit design tests demonstrating that satisfactory short-circuit tests have been made on a switchboard of similar type of construction and of the same short-circuit rating as the switchboards specified to be furnished under these specifications.

2.8.2 Panelboards Tests

Each panelboard shall be assembled with cabinet and front to the extent necessary to check the fit and provisions for installing all parts in the field. Each panelboard shall be given a dielectric test in accordance with NEMA PB 1. All circuit breakers shall be operated to check mechanical adjustments. All doors and locks shall be checked for door clearances and fits and the performance of lock and latches.
PART 3 EXECUTION (NOT APPLICABLE)

SECTION B
SUPPLIES/SERVICES AND PRICES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>EST QTY</th>
<th>U/M</th>
<th>UNIT PRICE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>480-VOLT, 3-PHASE, UNIT MOTOR CONTROL CENTER (NO. _____)</td>
<td>1</td>
<td>LS</td>
<td>EACH</td>
<td>$__________</td>
</tr>
<tr>
<td>000X</td>
<td>480-VOLT, 3-PHASE, MOTOR CONTROL CENTER (NO. _____)</td>
<td>1</td>
<td>LS</td>
<td>EACH</td>
<td>$__________</td>
</tr>
<tr>
<td>000X</td>
<td>480-VOLT, 3 PHASE, POWER DISTRIBUTION SWITCHBOARD (NO. _____)</td>
<td>1</td>
<td>LS</td>
<td>EACH</td>
<td>$__________</td>
</tr>
<tr>
<td>000X</td>
<td>480-VOLT, 3-PHASE, POWER DISTRIBUTION PANELBOARD (NO. _____)</td>
<td>1</td>
<td>LS</td>
<td>EACH</td>
<td>$__________</td>
</tr>
<tr>
<td>000X</td>
<td>ACCESSORIES AND SPARE PARTS</td>
<td>1</td>
<td>LOT</td>
<td>XXXX</td>
<td>$__________</td>
</tr>
<tr>
<td>000X</td>
<td>CONTRACT DATA (PART 1, THE SCHEDULE) (SEE DD FORM 1423, EXHIBIT B)</td>
<td>XXX</td>
<td>XXX</td>
<td>NSP</td>
<td>XXXXXXXXXXXX</td>
</tr>
</tbody>
</table>

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI C82.4 (1992) Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps (Multiple-Supply Type)

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM B 8 (1993) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

ASTM D 709 (1992) Laminated Thermosetting Materials

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA AB 1 (1993) Molded Case Circuit Breakers and Molded Case Switches

NEMA FU 1 (1986) Low Voltage Cartridge Fuses

NEMA ICS 2 (1993) Industrial Control and Systems Controllers, Contactors, Overload Relays Rated Not More Than 2,000 Volts AC or 750 DC

<table>
<thead>
<tr>
<th>Standard</th>
<th>Publication Date(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA MG 1</td>
<td>Rev 1; Rev 2; Rev 3</td>
<td>Motors and Generators</td>
</tr>
<tr>
<td>NEMA OS 1</td>
<td>1989</td>
<td>Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports</td>
</tr>
<tr>
<td>NEMA PB 1</td>
<td>1990</td>
<td>Panelboards</td>
</tr>
<tr>
<td>NEMA PB 2</td>
<td>1995</td>
<td>Deadfront Distribution Switchboards</td>
</tr>
<tr>
<td>NEMA RN 1</td>
<td>1989</td>
<td>Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit</td>
</tr>
<tr>
<td>NEMA ST 20</td>
<td>1992</td>
<td>Dry-Type Transformers for General Applications</td>
</tr>
<tr>
<td>NEMA VE 1</td>
<td>1991</td>
<td>Metal Cable Tray Systems</td>
</tr>
<tr>
<td>NEMA WD 1</td>
<td>Rev 1989</td>
<td>General Requirements for Wiring Devices</td>
</tr>
<tr>
<td>NEMA WD 6</td>
<td>1988</td>
<td>Wiring Devices - Dimensional Requirements</td>
</tr>
<tr>
<td>NFPA 70</td>
<td>1999</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>NFPA 101</td>
<td>1997</td>
<td>Safety to Life from Fire in Buildings and Structures</td>
</tr>
<tr>
<td>UL-03</td>
<td>1996; Supple</td>
<td>Electrical Construction Materials Directory</td>
</tr>
<tr>
<td>UL 1</td>
<td>Rev thru Jan 1995</td>
<td>Flexible Metal Conduit</td>
</tr>
<tr>
<td>UL 6</td>
<td>Rev Mar 1996</td>
<td>Rigid Metal Conduit</td>
</tr>
<tr>
<td>UL 20</td>
<td>Rev thru Apr 1997</td>
<td>General-Use Snap Switches</td>
</tr>
<tr>
<td>UL 50</td>
<td>Rev Oct 1996</td>
<td>Enclosures for Electrical Equipment</td>
</tr>
<tr>
<td>UL 67</td>
<td>Rev thru Dec 1993</td>
<td>Panelboards</td>
</tr>
<tr>
<td>UL 83</td>
<td>1996</td>
<td>Thermoplastic-Insulated Wires and Cables</td>
</tr>
<tr>
<td>UL 198E</td>
<td>Rev Jul 1988</td>
<td>Class R Fuses</td>
</tr>
<tr>
<td>UL Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>UL 198G</td>
<td>(1988; Rev May 1988) Fuses for Supplementary Overcurrent Protection</td>
<td></td>
</tr>
<tr>
<td>UL 360</td>
<td>(1996; Rev Mar 1997) Liquid-Tight Flexible Steel Conduit</td>
<td></td>
</tr>
<tr>
<td>UL 467</td>
<td>(1993; Rev thru Aug 1996) Grounding and Bonding Equipment</td>
<td></td>
</tr>
<tr>
<td>UL 486C</td>
<td>(1997) Splicing Wire Connectors</td>
<td></td>
</tr>
<tr>
<td>UL 486E</td>
<td>(1994; Rev thru Feb 1997) Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors</td>
<td></td>
</tr>
<tr>
<td>UL 498</td>
<td>(1996) Attachment Plugs and Receptacles</td>
<td></td>
</tr>
<tr>
<td>UL 506</td>
<td>(1994; Rev Jul 1994) Specialty Transformers</td>
<td></td>
</tr>
<tr>
<td>UL 508</td>
<td>(1993) Industrial Control Equipment</td>
<td></td>
</tr>
<tr>
<td>UL 510</td>
<td>(1994) Insulating Tape</td>
<td></td>
</tr>
<tr>
<td>UL 512</td>
<td>(1993; R Dec 1995) Fuseholders</td>
<td></td>
</tr>
<tr>
<td>UL 514A</td>
<td>(1996) Metallic Outlet Boxes</td>
<td></td>
</tr>
<tr>
<td>UL 514B</td>
<td>(1996) Fittings for Conduit and Outlet Boxes</td>
<td></td>
</tr>
<tr>
<td>UL 542</td>
<td>(1994; Rev May 1997) Lampholders, Starters, and Starter Holders for Fluorescent Lamps</td>
<td></td>
</tr>
<tr>
<td>UL 797</td>
<td>(1993; Rev thru Mar 1997) Electrical Metallic Tubing</td>
<td></td>
</tr>
<tr>
<td>UL 854</td>
<td>(1996; Rev May 1996) Service-Entrance Cables</td>
<td></td>
</tr>
<tr>
<td>UL 891</td>
<td>(1994; Rev thru Jan 1995) Dead-Front Switchboards</td>
<td></td>
</tr>
<tr>
<td>UL 924</td>
<td>(1995; Rev thru May 95) Emergency Lighting and Power Equipment</td>
<td></td>
</tr>
<tr>
<td>UL 935</td>
<td>(1995; Rev thru Apr 1997) Fluorescent-Lamp Ballasts</td>
<td></td>
</tr>
</tbody>
</table>
1.2 GENERAL

1.2.1 Rules

The installation shall conform to the requirements of NFPA 70 and NFPA 101, unless more stringent requirements are indicated herein or shown.

1.2.2 Coordination

The drawings indicate the extent and the general location and arrangement of equipment, conduit, and wiring. The Contractor shall become familiar with all details of the work and verify all dimensions in the field so that the outlets and equipment shall be properly located and readily accessible. Lighting fixtures, outlets, and other equipment and materials shall be located to avoid interference with mechanical or structural features; otherwise, lighting fixtures shall be symmetrically located according to the room arrangement when uniform illumination is required, or asymmetrically located to suit conditions fixed by design and shown. Raceways, junction and outlet boxes, and lighting fixtures shall not be supported from sheet metal roof decks. If any conflicts occur necessitating departures from the drawings, details of and reasons for departures shall be submitted and approved prior to implementing any change. The Contractor shall coordinate electrical work with the HVAC and electrical drawings and specifications and provide power related wiring.

1.2.3 Special Environments

1.2.3.1 Weatherproof Locations

Wiring, Fixtures, and equipment in designated locations shall conform to NFPA 70 requirements for installation in damp or wet locations.

1.2.3.2 Hazardous Locations

Wiring in locations indicated shall conform to the NFPA 70 for Class I, Division 1 hazardous locations. Equipment shall be suitable for Group D. Wiring and equipment in locations indicated shall be of the classes, groups, divisions, and suitable for the operating temperature; as indicated.
1.2.3.3 Ducts, Plenums and Other Air-Handling Spaces

Wiring and equipment in ducts, plenums and other air-handling spaces shall be installed using materials and methods in conformance with NFPA 70 unless more stringent requirements are indicated in this specification or on the contract drawings.

1.2.4 Standard Products

Material and equipment shall be a standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

1.2.5 NAMEPLATES

1.2.5.1 Identification Nameplates

Major items of electrical equipment and major components shall be permanently marked with an identification name to identify the equipment by type or function and specific unit number as indicated. Designation of motors shall coincide with their designation in the motor control center or panel. Unless otherwise specified, identification nameplates shall be made of laminated plastic in accordance with ASTM D 709 with black outer layers and a white core. Edges shall be chamfered. Plates shall be fastened with black-finished round-head drive screws, except motors, or approved nonadhesive metal fasteners. When the nameplate is to be installed on an irregular-shaped object, the Contractor shall devise an approved support suitable for the application and ensure the proper installation of the supports and nameplates. In all instances, the nameplate shall be installed in a conspicuous location. At the option of the Contractor, the equipment manufacturer's standard embossed nameplate material with black paint-filled letters may be furnished in lieu of laminated plastic. The front of each panelboard, motor control center, switchgear, and switchboard shall have a nameplate to indicate the phase letter, corresponding color and arrangement of the phase conductors. The following equipment, as a minimum, shall be provided with identification nameplates:

<table>
<thead>
<tr>
<th>Minimum 6.4 mm</th>
<th>Minimum 3.2 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Letters</td>
<td>High Letters</td>
</tr>
</tbody>
</table>

Panelboards
Starters
Safety Switches
Transformers
Equipment Enclosures
Switchboards
Motors

Each panel, section, or similar assemblies shall be provided with a nameplate in addition to nameplates listed above, which shall be provided for individual compartments in the respective assembly, including nameplates which identify "future," "spare," and "dedicated" or "equipped spaces."

1.2.6 As-Built Drawings
Following the project completion or turnover, within 30 days the Contractor
shall furnish two sets of as-built drawings to the Contracting Officer. As-
Built drawings shall also be provided on CD-ROM in AutoCad 2000 format.

1.3 SUBMITTALS

Government approval is required for submittals with a "GA" designation;
submittals having an "FIO" designation are for information only. The
following shall be submitted in accordance with Section 01330 SUBMITTAL
PROCEDURES:

SD-01 Data

Manufacturer's Catalog; GA.

Data composed of catalog cuts, brochures, circulars, specifications, product
data, and printed information in sufficient detail and scope to verify
compliance with the requirements of the contract documents.

Material, Equipment, and Fixture Lists; GA.

A complete itemized listing of equipment and materials proposed for
incorporation into the work. Each entry shall include an item number, the
quantity of items proposed, and the name of the manufacturer of each item.

Installation Procedures; FIO.

Installation procedures for rotating equipment, transformers, switchgear,
battery systems, voltage regulators, and grounding resistors. Procedures
shall include diagrams, instructions, and precautions required to install,
adjust, calibrate, and test devices and equipment.

SD-04 Drawings

Interior Electrical Equipment; FIO.

Detail drawings consisting of equipment drawings, illustrations, schedules,
instructions, diagrams, and other information necessary to define the
installation. Detail drawings shall show the rating of items and systems
and how the components of an item and system are assembled, function
together, and how they will be installed on the project. Data and drawings
for component parts of an item or system shall be coordinated and submitted
as a unit. Data and drawings shall be coordinated and included in a single
submission. Multiple submissions for the same equipment or system are not
acceptable except where prior approval has been obtained from the
Contracting Officer. In such cases, a list of data to be submitted later
shall be included with the first submission. Detail drawings shall show
physical arrangement, construction details, connections, finishes, materials
used in fabrication, provisions for conduit or busway entrance, access
requirements for installation and maintenance, physical size, electrical
characteristics, foundation and support details, and equipment weight.
Drawings shall be drawn to scale and/or dimensioned. Optional items shall
be clearly identified as included or excluded. Detail drawings shall as a
minimum include:

a. Transformers.
b. Switchgear.

b. Battery system including calculations for the battery and charger.

c. Motors and rotating machinery.

d. Single line electrical diagrams including primary, metering, sensing and relaying, control wiring, and control logic.

e. Sway bracing for suspended luminaires.

f. Secondary connection enclosure.

Structural drawings showing the structural or physical features of major equipment items, components, assemblies, and structures, including foundations or other types of supports for equipment and conductors. These drawings shall include accurately scaled or dimensioned outline and arrangement or layout drawings to show the physical size of equipment and components and the relative arrangement and physical connection of related components. Weights of equipment, components and assemblies shall be provided when required to verify the adequacy of design and proposed construction of foundations or other types of supports. Dynamic forces shall be stated for switching devices when such forces must be considered in the design of support structures. The appropriate detail drawings shall show the provisions for leveling, anchoring, and connecting all items during installation, and shall include any recommendations made by the manufacturer.

Electrical drawings including single-line and three-line diagrams, and schematics or elementary diagrams of each electrical system; internal wiring and field connection diagrams of each electrical device when published by the manufacturer; wiring diagrams of cabinets, panels, units, or separate mountings; interconnection diagrams that show the wiring between separate components of assemblies; field connection diagrams that show the termination of wiring routed between separate items of equipment; internal wiring diagrams of equipment showing wiring as actually provided for this project. Field wiring connections shall be clearly identified.

If departures from the contract drawings are deemed necessary by the Contractor, complete details of such departures, including changes in related portions of the project and the reasons why, shall be submitted with the detail drawings. Approved departures shall be made at no additional cost to the Government.

As-Built Drawings; FIO.

The as-built drawings shall be a record of the construction as installed. The drawings shall include all the information shown on the contract drawings, deviations, modifications, and changes from the contract drawings, however minor. The as-built drawings shall be kept at the job site and updated daily. The as-built drawings shall be a full-sized set of prints marked to reflect all deviations, changes, and modifications. The as-built drawings shall be complete and show the location, size, dimensions, part identification, and other information. Additional sheets may be added. The as-built drawings shall be jointly inspected for accuracy and completeness by the Contractor's quality control representative and by the Contracting Officer prior to the submission of each monthly pay estimate. Upon
completion of the work, the Contractor shall submit three full sized sets of
the marked prints to the Contracting Officer for approval. If upon review,
the as-built drawings are found to contain errors and/or omissions, they
will be returned to the Contractor for correction. The Contractor shall
correct and return the as-built drawings to the Contracting Officer for
approval within ten calendar days from the time the drawings are returned to
the Contractor.

SD-08 Statements

On-Site Test; GA.

A detailed description of the Contractor's proposed procedures for on-site
tests.

SD-09 Reports

Factory Test Reports; GA.

Six copies of the information described below in 216 x 280 mm binders having
a minimum of 5 rings from which material may readily be removed and
replaced, including a separate section for each test. Sections shall be
separated by heavy plastic dividers with tabs.

a. A list of equipment used, with calibration certifications.
b. A copy of measurements taken.
c. The dates of testing.
d. The equipment and values to be verified.
e. The conditions specified for the test.
f. The test results, signed and dated.
g. A description of adjustments made.

Field Test Plan; GA.

A detailed description of the Contractor's proposed procedures for on-site
test submitted 30 days prior to testing the installed system. No field test
will be performed until the test plan is approved. The test plan shall
consist of complete field test procedures including tests to be performed,
test equipment required, and tolerance limits.

Field Test Reports; GA.

Six copies of the information described below in 216 x 280 mm binders having
a minimum of 5 rings from which material may readily be removed and
replaced, including a separate section for each test. Sections shall be
separated by heavy plastic dividers with tabs.

a. A list of equipment used, with calibration certifications.
b. A copy of measurements taken.
c. The dates of testing.
d. The equipment and values to be verified.
e. The conditions specified for the test.
f. The test results, signed and dated.
g. A description of adjustments made.
h. Final position of controls and device settings.

SD-13 Certificates

Materials and Equipment; GA.

The label or listing of the Underwriters Laboratories, Inc., will be accepted as evidence that the materials or equipment conform to the applicable standards of that agency. In lieu of this label or listing, a statement from a nationally recognized, adequately equipped testing agency indicating that the items have been tested in accordance with required procedures and that the materials and equipment comply with all contract requirements will be accepted. However, materials and equipment installed in hazardous locations must bear the UL label unless the data submitted from other testing agency is specifically approved in writing by the Contracting Officer. Items which are required to be listed and labeled in accordance with Underwriters Laboratories must be affixed with a UL label that states that it is UL listed. No exceptions or waivers will be granted to this requirement. Materials and equipment will be approved based on the manufacturer's published data.

For other than equipment and materials specified to conform to UL publications, a manufacturer's statement indicating complete compliance with the applicable standard of the American Society for Testing and Materials, National Electrical Manufacturers Association, or other commercial standard, is acceptable.

1.4 WORKMANKSHIP

Materials and equipment shall be installed in accordance with NFPA 70, recommendations of the manufacturer, and as shown.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Products shall conform to the respective publications and other requirements specified below. Materials and equipment not listed below shall be as specified elsewhere in this section. Items of the same classification shall be identical including equipment, assemblies, parts, and components.

2.2 CABLES AND WIRES

Conductors 4 mm and larger diameter shall be stranded. Conductors No. 10 AWG and smaller diameter shall be solid, except that conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3, shall be stranded.
unless specifically indicated otherwise. Conductor sizes and ampacities shown are based on copper. All conductors shall be copper.

2.2.1 Equipment Manufacturer Requirements

When manufacturer's equipment requires copper conductors at the terminations or requires copper conductors to be provided between components of equipment, provide copper conductors or splices, splice boxes, and other work required to meet manufacturer's requirements.

2.2.2 Aluminum Conductors

Aluminum conductors shall not be used.

2.2.3 Insulation

Unless indicated otherwise, or required by NFPA 70, power and lighting wires shall be 600-volt, Type THWN, THHN, or THW conforming to UL 83 except that grounding wire may be type TW conforming to UL 83; remote-control and signal circuits shall be Type TW, THW or TF, conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or better.

2.2.4 Bonding Conductors

Solid bare copper wire for sizes 3 mm and smaller diameter; ASTM B 8, Class B, stranded bare copper wire for sizes 4 mm and larger diameter.

2.2.5 Service Entrance Cables

Service entrance (SE) and underground service entrance (USE) cables, UL 854.

2.3 CABLE TRAYS - (FOR USE WITH COMMUNICATION CABLES ONLY)

NEMA VE 1 cable trays shall form a wireway system, and shall be of nominal 100 mm depth. Cable trays shall be constructed of aluminum. Trays shall include splice and end plates, dropouts, and miscellaneous hardware. Edges, fittings, and hardware shall be finished free from burrs and sharp edges. Fittings shall have not less than the load-carrying ability of straight tray sections and shall have manufacturer's minimum standard radius. Radius of bends shall be 610 mm. Cable tray system shall be B-Line Cent-R-Rail system or equal, and meeting load requirements of NEMA 12C and other manufacturer requirements.

2.4 TRANSIENT VOLTAGE SURGE PROTECTION

Refer to SECTION 16445 "TRANSIENT VOLTAGE SURGE SUPPRESOR (TVSS).

2.5 CIRCUIT BREAKERS

2.5.1 MOLDED-CASE CIRCUIT BREAKERS

Molded-case circuit breakers shall conform to NEMA AB 1 and UL 489 for circuit breakers and circuit breaker enclosures located in hazardous (classified) locations. Circuit breakers may be installed in panelboards, switchboards, enclosures, motor control centers, or combination motor controllers.
2.5.1.1 Construction

Circuit breakers shall be suitable for mounting and operating in any position. Lug shall be listed for copper conductors only in accordance with UL 486E. Single-pole circuit breakers shall be full module size with not more than one pole per module. Multi-pole circuit breakers shall be of the common-trip type having a single operating handle such that an overload or short circuit on any one pole will result in all poles opening simultaneously. Sizes of 100 amperes or less may consist of single-pole breakers permanently factory assembled into a multi-pole unit having an internal, mechanical, nontamperable common-trip mechanism and external handle ties. All circuit breakers shall have a quick-make, quick-break overcenter toggle-type mechanism, and the handle mechanism shall be trip-free to prevent holding the contacts closed against a short-circuit or sustained overload. All circuit breaker handles shall assume a position between "ON" and "OFF" when tripped automatically. All ratings shall be clearly visible.

2.5.1.2 Ratings

Voltage ratings shall be not less than the applicable circuit voltage. The interrupting rating of the circuit breakers shall be at least equal to the available short-circuit current at the line terminals of the circuit breaker and correspond to the UL listed integrated short-circuit current rating specified for the panelboards and switchboards. Molded-case circuit breakers shall have nominal voltage ratings, maximum continuous-current ratings, and maximum short-circuit interrupting ratings in accordance with NEMA AB 1. Ratings shall be coordinated with system X/R ratio.

2.5.1.3 Thermal-Magnetic Trip Elements

Thermal magnetic circuit breakers shall be provided as shown. Automatic operation shall be obtained by means of thermal-magnetic tripping devices located in each pole providing inverse time delay and instantaneous circuit protection. The instantaneous magnetic trip shall be adjustable and accessible from the front of all circuit breakers on frame sizes above 150 amperes.

2.5.2 Solid-State Trip Elements

Solid-state circuit breakers shall be provided as shown. All electronics shall be self-contained and require no external relaying, power supply, or accessories. Printed circuit cards shall be treated to resist moisture absorption, fungus growth, and signal leakage. All electronics shall be housed in an enclosure which provides protection against arcs, magnetic interference, dust, and other contaminants. Solid-state sensing shall measure true RMS current with error less than one percent on systems with distortions through the 13th harmonic. Peak or average actuating devices are not acceptable. Current sensors shall be toroidal construction, encased in a plastic housing filled with epoxy to protect against damage and moisture and shall be integrally mounted on the breaker. Where indicated on the drawings, circuit breaker frames shall be rated for 100 percent continuous duty. Circuit breakers shall have tripping features as shown on the drawings and as described below:
a. Long-time current pick-up, adjustable from 50 percent to 100 percent of continuous current rating.

b. Fixed Adjustable long-time delay.

c. Short-time current pick-up, adjustable from 1.5 to 9 times long-time current setting.

d. Fixed Adjustable short-time delay.

e. Short-time I square times t switch.

f. Instantaneous current pick-up, adjustable from 1.5 to 9 times long-time current setting.

g. Ground-fault pick-up, adjustable from 20 percent to 60 percent of sensor rating, but in no case greater than 1200 amperes. Sensing of ground-fault current at the main bonding jumper or ground strap shall not be permitted. Zone-selective interlocking shall be provided as shown.

h. Fixed Adjustable ground-fault delay.

i. Ground-fault I square times t switch.

j. Overload and short-time and ground-fault trip indicators shall be provided.

2.5.3 Current-Limiting Circuit Breakers

Current-limiting circuit breakers shall be provided as shown. Current-limiting circuit breakers shall limit the let-through I square times t to a value less than the I square times t of one-half cycle of the symmetrical short-circuit current waveform. On fault currents below the threshold of limitation, breakers shall provide conventional overload and short-circuit protection. Integrally-fused circuit breakers shall not be used.

2.5.4 SWD Circuit Breakers

Circuit breakers rated 15 amperes and intended to switch 277 volts or less fluorescent lighting loads shall be marked "SWD."

2.5.5 HACR Circuit Breakers

Circuit breakers 60 amperes or below, 240 volts, 1-pole or 2-pole, intended to protect multi-motor and combination-load installations involved in heating, air conditioning, and refrigerating equipment shall be marked "Listed HACR Type."

2.6 CONDUIT AND TUBING

2.6.1 Electrical, Zinc-Coated Steel Metallic Tubing (EMT)

UL 797

2.6.2 Flexible Conduit and Steel
General-purpose type, UL 1; liquid tight, UL 360.

2.6.3 Intermediate Metal Conduit
UL 1242.

2.6.4 PVC Coated Rigid Steel Conduit
NEMA RN 1.

2.6.5 Rigid Metal Conduit
UL 6.

2.7 CONDUIT AND DEVICE BOXES AND FITTINGS

2.7.1 Boxes, Metallic Outlet
NEMA OS 1.

2.7.2 Fittings for Conduit and Outlet Boxes
UL 514B.

2.7.3 Fittings, PVC, for Use with Rigid PVC Conduit
UL 514B.

2.8 CONDUIT COATINGS PLASTIC RESIN SYSTEM
NEMA RN 1, Type A-40.

2.9 CONNECTORS, WIRE PRESSURE

2.9.1 For Use With Copper Conductors
UL 486A.

2.10 ELECTRICAL GROUNDING AND BONDING EQUIPMENT
UL 467.

2.10.1 Ground Rods
Ground rods shall be of copper-clad steel conforming to UL 467 not less than 19.1 mm in diameter by 3.1 meter in length of the sectional type driven full length into the earth.

2.10.2 Ground Bus
The ground bus shall be bare conductor or flat copper in one piece, if practicable.

2.11 ENCLOSURES

2.11.1 Cabinets and Boxes
Cabinets and boxes with volume greater than 0.0164 cubic meters shall be in accordance with UL 50, hot-dip, zinc-coated, if sheet steel.

2.11.2 Circuit Breaker Enclosures

UL 489.

2.12 FIXTURES, LIGHTING AND FIXTURE ACCESSORIES/COMPONENTS

Fixtures shown on contract drawings. Fixtures, accessories and components, including ballasts, lampholders, lamps, starters and starter holders, shall conform to industry standards specified below.

2.12.1 Fixture, Auxiliary or Emergency

UL 924.

2.12.2 Fluorescent

a. Fixture: NEMA LE 4 for ceiling compatibility of recessed fixtures and UL 1570. Fixtures shall be plainly marked for proper lamp and ballast type to identify lamp diameter, wattage, color and start type. Marking shall be readily visible to service personnel, but not visible from normal viewing angles.

b. Ballasts:

(1) Electronic Ballast. Electronic ballasts shall consist of a rectifier, high frequency inverter, and power control and regulation circuitry. The ballasts shall be UL listed, Class P, with a Class A sound rating and shall contain no PCBs. Ballasts shall meet standard for electromagnetic interference and shall not interfere with the operation of other electrical equipment. Design shall withstand line transients per IEEE C62.41, Category A. Unless otherwise indicated, the minimum number of ballasts shall be used to serve each individual fixture, using one, two, three or four lamp ballasts. A single ballast may be used to serve multiple fixtures if they are continuous mounted, factory manufactured for that installation with an integral wireway, and are identically controlled.

(a) Light output regulation shall be +/- 10%.

(b) Voltage input regulation shall be +/- 10%.

(c) Lamp current crest factor shall be no more than 1.6.

(d) Ballast factor shall be not less than 85% nor more than 100%, unless otherwise indicated.

(e) A 60 Hz filter shall be provided. Flicker shall be no more than 10% with any lamp suitable for the ballast.

(f) Ballast case temperature shall not exceed 25 degree Celsius rise above 40 degree Celsius ambient, when tested in accordance with UL 935.
(g) Total harmonic distortion shall be less than 10%.
(h) Power factor shall not be less than 0.95.
(i) Ballasts shall operate at a frequency of 20 kHz or more.
(j) Operating filament voltage shall be 2.5 to 4.5 volts.
(k) Warranty. Three year full warranty including a $10 labor allowance.
(l) Ballast Efficacy Factor (BEF) shall be in accordance with the following table. Ballasts and lamps shall be matching rapid start or instant start as indicated on the following table. If 32W-F32-T8 lamps and ballasts are used, they must be either all rapid start or all instant start.

ELECTRONIC FLUORESCENT BALLAST EFFICACY FACTORS

<table>
<thead>
<tr>
<th>LAMP TYPE</th>
<th>TYPE OF STARTER & LAMP</th>
<th>NOMINAL INPUT VOLTAGE</th>
<th>NUMBER OF LAMPS</th>
<th>MIN. BALLAST EFFICACY FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>32W F32 T8</td>
<td>rapid or instant start</td>
<td>120 or 277 V</td>
<td>1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

*For ballasts not specifically designed for use with dimming controls

The BEF is calculated using the formula:

\[
BEF = \frac{\text{Ballast Factor (in percent)}}{\text{Power Input}}
\]

Where Power Input = Total Wattage of Combined Lamps and Ballasts.

c. Lampholders, Starters, and Starter Holders: UL 542.

2.12.3 High-Intensity-Discharge

a. Fixture: NEMA LE 4 for ceiling compatibility of recessed fixtures and UL 1572.

b. Ballasts: ANSI C82.4 for multiple supply types and UL 1029.

2.13 LOW-VOLTAGE FUSES AND FUSEHOLDERS

2.13.1 Fuses, Low Voltage Cartridge Type

NEMA FU 1.

2.13.2 Fuses, Class R

UL 198E.
2.13.3 Fuses for Supplementary Overcurrent Protection

UL 198G.

2.13.4 Fuseholders

UL 512.

2.14 INSTRUMENTS, ELECTRICAL INDICATING

ANSI C39.1.

2.15 MOTORS, AC, FRACTIONAL AND INTEGRAL

Motors, ac, fractional and integral kilowatt, 373.0 kW and smaller shall conform to NEMA MG 1 and UL 1004 for motors; NEMA MG 10 for energy management selection of polyphase motors; and for use of motors in hazardous (classified) locations.

2.15.1 Rating

The kilowatt rating of motors should be limited to no more than 125 percent of the maximum load being served unless a NEMA standard size does not fall within this range. In this case, the next larger NEMA standard motor size should be used.

2.15.2 Motor Efficiencies

All permanently wired polyphase motors of 746 W or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 W or more with open, drip proof or totally enclosed fan cooled enclosures shall be high efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Motor Efficiencies

<table>
<thead>
<tr>
<th>kW</th>
<th>Std. Efficiency</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.746</td>
<td>77.0</td>
<td>85.5</td>
</tr>
<tr>
<td>1.12</td>
<td>78.5</td>
<td>85.5</td>
</tr>
<tr>
<td>1.49</td>
<td>78.5</td>
<td>85.5</td>
</tr>
<tr>
<td>2.24</td>
<td>78.5</td>
<td>88.5</td>
</tr>
<tr>
<td>3.73</td>
<td>82.5</td>
<td>88.5</td>
</tr>
<tr>
<td>5.60</td>
<td>84.0</td>
<td>90.0</td>
</tr>
<tr>
<td>7.46</td>
<td>85.5</td>
<td>90.0</td>
</tr>
<tr>
<td>11.2</td>
<td>85.5</td>
<td>91.0</td>
</tr>
<tr>
<td>14.9</td>
<td>87.5</td>
<td>92.0</td>
</tr>
<tr>
<td>18.7</td>
<td>88.5</td>
<td>92.0</td>
</tr>
<tr>
<td>22.4</td>
<td>88.5</td>
<td>92.0</td>
</tr>
<tr>
<td>29.8</td>
<td>88.5</td>
<td>92.0</td>
</tr>
<tr>
<td>37.3</td>
<td>89.0</td>
<td>92.5</td>
</tr>
<tr>
<td>44.8</td>
<td>89.0</td>
<td>92.5</td>
</tr>
<tr>
<td>56.9</td>
<td>89.0</td>
<td>95.5</td>
</tr>
</tbody>
</table>
2.16 MOTOR CONTROLS

2.16.1 General

Panelboards supplying non-linear loads shall have neutrals sized for 200 percent of rated current.

2.16.2 Motor Starters

Combination starters shall be provided with circuit breakers, and fusible switches, and switches equipped with high-interrupting-capacity current-limiting fuses as indicated.

2.16.2.1 Reduced-Voltage Starters

Reduced-voltage starters shall be provided for polyphase motors 56 kW (75 hp) or larger. Reduced-voltage starters shall be of the single-step autotransformer, reactor, or resistor type having an adjustable time interval between application of reduced and full voltages to the motors. Wye-delta reduced voltage starter or part winding increment starter having an adjustable time delay between application of voltage to first and second winding of motor may be used in lieu of the reduced voltage starters specified above for starting of motor-generator sets, centrifugally operated equipment or reciprocating compressors provided with automatic unloaders.

2.16.3 Thermal-Overload Protection

Each motor of 93 W (1/8 hp) or larger shall be provided with thermal-overload protection. Polyphase motors shall have overload protection in each ungrounded conductor. The overload-protection device shall be provided either integral with the motor or controller, or shall be mounted in a separate enclosure. Unless otherwise specified, the protective device shall be of the manually reset type. Single or double pole tumbler switches specifically designed for alternating-current operation only may be used as manual controllers for single-phase motors having a current rating not in excess of 80 percent of the switch rating.

2.16.4 Low-Voltage Motor Overload Relays

2.16.4.1 General

Thermal and magnetic current overload relays shall conform to NEMA ICS 2 and UL 508. Overload protection shall be provided either integral with the motor or motor controller, and shall be rated in accordance with the requirements of NFPA 70. Standard units shall be used for motor starting times up to 7 seconds. Slow units shall be used for motor starting times
from 8 to 12 seconds. Quick trip units shall be used on hermetically sealed, submersible pumps, and similar motors.

2.16.4.2 Construction

Manual reset type thermal relay shall be bimetallic construction. Automatic reset type thermal relays shall be bimetallic construction. Magnetic current relays shall consist of a contact mechanism and a dash pot mounted on a common frame.

2.16.4.3 Ratings

Voltage ratings shall be not less than the applicable circuit voltage. Trip current ratings shall be established by selection of the replaceable overload device and shall not be adjustable. Where the controller is remotely-located or difficult to reach, an automatic reset, non-compensated overload relay shall be provided. Manual reset overload relays shall be provided otherwise, and at all locations where automatic starting is provided. Where the motor is located in a constant ambient temperature, and the thermal device is located in an ambient temperature that regularly varies by more than minus 10 degrees C, an ambient temperature-compensated overload relay shall be provided.

2.16.5 Automatic Control Devices

2.16.5.1 Direct Control

Automatic control devices (such as thermostats, float or pressure switches) which control the starting and stopping of motors directly shall be designed for that purpose and have an adequate kilowatt rating.

2.16.5.2 Pilot-Relay Control

Where the automatic-control device does not have such a rating, a magnetic starter shall be used, with the automatic-control device actuating the pilot-control circuit.

2.16.5.3 Manual/Automatic Selection

a. Where combination manual and automatic control is specified and the automatic-control device operates the motor directly, a double-throw, three-position tumbler or rotary switch (marked MANUAL-OFF-AUTOMATIC) shall be provided for the manual control.

b. Where combination manual and automatic control is specified and the automatic-control device actuates the pilot control circuit of a magnetic starter, the magnetic starter shall be provided with a three-position selector switch marked MANUAL-OFF-AUTOMATIC.

c. Connections to the selector switch shall be such that; only the normal automatic regulatory control devices will be bypassed when the switch is in the Manual position; all safety control devices, such as low-or high-pressure cutouts, high-temperature cutouts, and motor-overload protective devices, shall be connected in the motor-control circuit in both the Manual and the Automatic positions of the selector switch. Control circuit connections to any MANUAL-OFF-AUTOMATIC switch or to more than one automatic regulatory
control device shall be made in accordance with wiring diagram approved by the Contracting Officer unless such diagram is included on the drawings. All controls shall be 120 volts or less unless otherwise indicated.

2.17 PANELBOARDS

Dead-front construction, NEMA PB 1 and UL 67.

2.18 RECEPTACLES

2.18.1 Heavy Duty Grade

NEMA WD 1. Devices shall conform to all requirements for heavy duty receptacles.

2.18.2 Standard Grade

UL 498.

2.18.3 Ground Fault Interrupters

UL 943, Class A or B.

2.18.4 NEMA Standard Receptacle Configurations

NEMA WD 6.

a. Single and Duplex, 20-Ampere

20-ampere, non-locking: NEMA type 5-20R.

c. 30-Ampere, 125/250 Volt

d. 60-Ampere, 125/250 Volt

Three-pole, 4-wire grounding, non-locking: NEMA type 14-60R, locking: NEMA type L14-60R.

2.19 SERVICE ENTRANCE EQUIPMENT

UL 869A.

2.20 SPLICE, CONDUCTOR

UL 486C.

2.21 POWER-SWITCHGEAR ASSEMBLIES INCLUDING SWITCHBOARDS

Assemblies shall be metal-enclosed, freestanding general-purpose type ventilated type in accordance with NEMA PB 2, UL 891, and IEEE C37.20.1 and shall be installed to provide front and rear access. Busses shall be copper. Assembly shall be approximately 2.3 meters high; arrangement of circuit breakers and other items specified shall be as indicated. The
withstand rating and interrupting capacity of the circuit breakers shall be based on the maximum fault current available.

2.21.1 Circuit Breakers

Circuit breakers shall be molded-case circuit breakers; disconnected and withdrawn positions.

2.22 SNAP SWITCHES

UL 20.

2.23 TAPES

2.23.1 Plastic Tape

UL 510.

2.23.2 Rubber Tape

UL 510.

2.24 TRANSFORMERS

Single- and three-phase transformers shall have two windings per phase. Full-capacity standard NEMA taps shall be provided in the primary windings of transformers unless otherwise indicated. Three-phase transformers shall be configured with delta-wye wye-delta windings, except as indicated. "T" connections may be used for transformers rated 15 kVA or below. Transformers supplying non-linear loads shall be UL listed as suitable for supplying such loads with a total K-factor not to exceed K-13 and have neutrals sized for 200 percent of rated current. Transformers shall be "Energy Star Complaint".

2.24.1 Transformers, Dry-Type

Transformers shall have 220 degrees C insulation system for transformers 15 kVA and greater with temperature rise not exceeding 115 degrees C under full-rated load in maximum ambient temperature of 40 degrees C. Transformer of 115 degrees C temperature rise shall be capable of carrying continuously 115 percent of nameplate kVA without exceeding insulation rating. Non-linear K-13 rated transformers shall be required as indicated on drawings.

a. 600 Volt or Less Primary:

NEMA ST 20, UL 506, general purpose, dry-type, self-cooled, ventilated. Provide transformers in NEMA 1 enclosure. Transformers shall be quiet type with maximum sound level at least 3 decibels less than NEMA standard level for transformer ratings indicated.

2.25 WIRING DEVICES

NEMA WD 1 for wiring devices, and NEMA WD 6 for dimensional requirements of wiring devices.
PART 3 EXECUTION

3.1 GROUNDING

Grounding shall be in conformance with NFPA 70, the contract drawings, and the following specifications.

3.1.1 Ground Rods

The resistance to ground shall be measured using the fall-of-potential method described in IEEE Std 81. The maximum resistance of a driven ground shall not exceed 10 ohms under normally dry conditions. If this resistance cannot be obtained with a single rod, additional rods not less than 1.8 meters on centers, or if sectional type rods are used, additional sections may be coupled and driven with the first rod. In high-ground-resistance, UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 10 ohms measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately. Connections below grade shall be fusion welded. Connections above grade shall be fusion welded or shall use UL 467 approved connectors.

3.1.2 Grounding Conductors

A green equipment grounding conductor, sized in accordance with NFPA 70 shall be provided, regardless of the type of conduit. Equipment grounding bars shall be provided in all panelboards. The equipment grounding conductor shall be carried back to the service entrance grounding connection or separately derived grounding connection. All equipment grounding conductors, including metallic raceway systems used as such, shall be bonded or joined together in each wiring box or equipment enclosure. Metallic raceways and grounding conductors shall be checked to assure that they are wired or bonded into a common junction. Metallic boxes and enclosures, if used, shall also be bonded to these grounding conductors by an approved means per NFPA 70. When boxes for receptacles, switches, or other utilization devices are installed, any designated grounding terminal on these devices shall also be bonded to the equipment grounding conductor junction with a short jumper.

3.2 WIRING METHODS

Wiring shall conform to NFPA 70, the contract drawings, and the following specifications. Unless otherwise indicated, wiring shall consist of insulated conductors installed in rigid zinc-coated steel conduit electrical metallic tubing. Where cables and wires are installed in cable trays, they shall be of the type permitted by NFPA 70 for use in such applications. Wire fill in conduits shall be based on NFPA 70 for the type of conduit and wire insulations specified. Wire fill in conduits located in Class I or II hazardous areas shall be limited to 25 percent of the cross sectional area of the conduit.

3.2.1 Conduit and Tubing Systems

Conduit and tubing systems shall be installed as indicated. Conduit sizes shown are based on use of copper conductors with insulation types as described in paragraph WIRING METHODS. Minimum size of raceways shall be 15 mm. Only metal conduits will be permitted when conduits are required for shielding or other special purposes indicated, or when required by
conformance to NFPA 70. Electrical metallic tubing (EMT) may be installed only within buildings. EMT may be installed in concrete and grout in dry locations. EMT installed in concrete or grout shall be provided with concrete tight fittings. EMT shall not be installed in damp or wet locations, or the air space of exterior masonry cavity walls. Bushings, manufactured fittings or boxes providing equivalent means of protection shall be installed on the ends of all conduits and shall be of the insulating type, where required by NFPA 70. Only UL listed adapters shall be used to connect EMT to rigid metal conduit, cast boxes, and conduit bodies. Penetrations of above grade floor slabs, time-rated partitions and fire walls shall be firestopped in accordance with Section 07840 FIRESTOPPING. Except as otherwise specified, IMC may be used as an option for rigid steel conduit in areas as permitted by NFPA 70. Raceways shall not be installed under the firepits of boilers and furnaces and shall be kept 150 mm away from parallel runs of flues, steam pipes and hot-water pipes. Raceways shall be concealed within finished walls, ceilings, and floors unless otherwise shown. Raceways crossing structural expansion joints or seismic joints shall be provided with suitable expansion fittings or other suitable means to compensate for the building expansion and contraction and to provide for continuity of grounding. Wiring installed in underfloor duct system underfloor raceway system shall be suitable for installation in wet locations.

3.2.1.1 Pull Wires

A pull wire shall be inserted in each empty raceway in which wiring is to be installed if the raceway is more than 15 meters in length and contains more than the equivalent of two 90-degree bends, or where the raceway is more than 45 meters in length. The pull wire shall be of 25 mm zinc-coated steel, or of plastic having not less than 1.4 MPa tensile strength. Not less than 254 mm of slack shall be left at each end of the pull wire.

3.2.1.2 Conduit Stub-Ups

Where conduits are to be stubbed up through concrete floors, a short elbow shall be installed below grade to transition from the horizontal run of conduit to a vertical run. A conduit coupling fitting, threaded on the inside shall be installed, to allow terminating the conduit flush with the finished floor. Wiring shall be extended in rigid threaded conduit to equipment, except that where required, flexible conduit may be used 150 mm above the floor. Empty or spare conduit stub-ups shall be plugged flush with the finished floor with a threaded, recessed plug.

3.2.1.3 Below Slab-on-Grade or in the Ground

Electrical wiring below slab-on-grade shall be protected by a conduit system. Conduit passing vertically through slabs-on-grade shall be rigid steel or IMC. Rigid steel conduits installed below slab-on-grade or in the earth shall be field wrapped with 0.254 mm thick pipe-wrapping plastic tape applied with a 50 percent overlay, or shall have a factory-applied polyvinyl chloride, plastic resin, or epoxy coating system.

3.2.1.4 Installing in Slabs Including Slabs on Grade

Conduit installed in slabs-on-grade shall be rigid steel. Conduits shall be installed as close to the middle of concrete slabs as practicable without disturbing the reinforcement. Outside diameter shall not exceed 1/3 of the...
slab thickness and conduits shall be spaced not closer than 3 diameters on centers except at cabinet locations where the slab thickness shall be increased as approved by the Contracting Officer. Where conduit is run parallel to reinforcing steel, the conduit shall be spaced a minimum of one conduit diameter away but not less than 25.4 mm from the reinforcing steel.

3.2.1.5 Changes in Direction of Runs

Changes in direction of runs shall be made with symmetrical bends or cast-metal fittings. Field-made bends and offsets shall be made with an approved hickey or conduit-bending machine. Crushed or deformed raceways shall not be installed. Trapped raceways in damp and wet locations shall be avoided where possible. Care shall be taken to prevent the lodgment of plaster, dirt, or trash in raceways, boxes, fittings and equipment during the course of construction. Clogged raceways shall be cleared of obstructions or shall be replaced.

3.2.1.6 Supports

Except where otherwise permitted by NFPA 70, conduits and tubing shall be securely and rigidly fastened in place at intervals of not more than 3 meters and within 900 mm of boxes, cabinets, and fittings, with approved pipe straps, wall brackets, conduit clamps, conduit hangers, threaded C-clamps, beam clamps, or ceiling trapeze. Loads and supports shall be coordinated with supporting structure to prevent damage or deformation to the structure. Loads shall not be applied to joist bridging. Attachment shall be by wood screws or screw-type nails to wood; by toggle bolts on hollow masonry units; by expansion bolts on concrete or brick; by machine screws, welded threaded studs, heat-treated or spring-steel-tension clamps on steel work. Nail-type nylon anchors or threaded studs driven in by a powder charge and provided with lock washers and nuts may be used in lieu of expansion bolts or machine screws. Raceways or pipe straps shall not be welded to steel structures. Cutting the main reinforcing bars in reinforced concrete beams or joists shall be avoided when drilling holes for support anchors. Holes drilled for support anchors, but not used, shall be filled. In partitions of light steel construction, sheet-metal screws may be used. Raceways shall not be supported using wire or nylon ties. Raceways shall be independently supported from the structure. Upper raceways shall not be used as a means of support for lower raceways. Supporting means will not be shared between electrical raceways and mechanical piping or ducts. Cables and raceways shall not be supported by ceiling grids. Except where permitted by NFPA 70, wiring shall not be supported by ceiling support systems. Conduits shall be fastened to sheet-metal boxes and cabinets with two locknuts where required by NFPA 70, where insulating bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, a single locknut and bushing may be used. Threadless fittings for electrical metallic tubing shall be of a type approved for the conditions encountered. Additional support for horizontal runs is not required when EMT rests on steel stud cutouts.

3.2.1.7 Exposed Raceways

Exposed raceways shall be installed parallel or perpendicular to walls, structural members, or intersections of vertical planes and ceilings. Raceways under raised floors and above accessible ceilings shall be considered as exposed installations in accordance with NFPA 70 definitions.
3.2.1.8 Exposed Risers

Exposed risers in wire shafts of multistory buildings shall be supported by U-clamp hangers at each floor level, and at intervals not to exceed 3 meters.

3.2.1.9 Communications Raceways

Communications raceways indicated shall be installed in accordance with the previous requirements for conduit and tubing and with the additional requirements that no length of run shall exceed 15 meters for 15 mm and 20 mm sizes, and 30 meters for 25 mm or larger sizes, and shall not contain more than two 90-degrees bends or the equivalent. Additional pull or junction boxes shall be installed to comply with these limitations whether or not indicated. Inside radii of bends in conduits of 25 mm size or larger shall not be less than ten times the nominal diameter.

3.2.2 Cable Trays

Cable trays shall be supported in accordance with the recommendations of the manufacturer but at no more than 1.8 meter intervals. Contact surfaces of aluminum connections shall be coated with an antioxidant compound prior to assembly. Adjacent cable tray sections shall be bonded together by connector plates of an identical type as the cable tray sections. The Contractor shall submit the manufacturer's certification that the cable tray system meets all requirements of Article 318 of NFPA 70. The cable tray shall be installed and grounded in accordance with the provisions of Article 318 of NFPA 70. Data submitted by the Contractor shall demonstrate that the completed cable tray systems will comply with the specified requirements. Cable trays shall terminate 250 mm from both sides of smoke and fire partitions. Conductors run through smoke and fire partitions shall be installed in 103 mm rigid steel conduits with grounding bushings, extending 300 mm beyond each side of the partitions. The installation shall be sealed to preserve the smoke and fire rating of the partitions. Penetrations shall be firestopped in accordance with Section 07840 FIRESTOPPING.

3.2.3 Cables and Conductors

Installation shall conform to the requirements of NFPA 70. Covered, bare or insulated conductors of circuits rated over 600 volts shall not occupy the same equipment wiring enclosure, cable, or raceway with conductors of circuits rated 600 volts or less.

3.2.3.1 Sizing

Unless otherwise noted, all sizes are based on copper conductors and the insulation types indicated. Sizes shall be not less than indicated. Branch-circuit conductors shall be not smaller than 4 mm. Conductors for branch circuits of 120 volts more than 30 meters long and of 277 volts more than 70 meters long, from panel to load center, shall be no smaller than 6 mm. Class 1 remote control and signal circuit conductors shall be not less than 2.5 mm. Class 2 remote control and signal circuit conductors shall be not less than 2 mm. Class 3 low-energy, remote-control and signal circuits shall be not less than 1 mm.
3.2.3.2 Conductor Identification and Tagging

Power, control, and signal circuit conductor identification shall be provided within each enclosure where a tap, splice, or termination is made. Where several feeders pass through a common pull box, the feeders shall be tagged to indicate clearly the electrical characteristics, circuit number, and panel designation. Phase conductors of low voltage power circuits shall be identified by color coding. Phase identification by a particular color shall be maintained continuously for the length of a circuit, including junctions.

a. Color coding shall be provided for service, feeder, branch, and ground conductors. Color shall be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in the same raceway or box, other neutral shall be white with colored (not green) stripe. The color coding for three-phase and single-phase low voltage systems shall be as follows:

 120/208-volt, 3-phase: Black(A), red(B), and blue(C).
 277/480-volt, 3-phase: Brown(A), orange(B), and yellow(C).
 120/240-volt, 1-phase: Black and red.

b. Conductor phase and voltage identification shall be made by color-coded insulation for all conductors smaller than No. 6 AWG. For conductors 16 mm and larger, identification shall be made by color-coded insulation, or conductors with black insulation may be furnished and identified by the use of half-lapped bands of colored electrical tape wrapped around the insulation for a minimum of 75 mm of length near the end, or other method as submitted by the Contractor and approved by the Contracting Officer.

c. Control and signal circuit conductor identification shall be made by color-coded insulated conductors, plastic-coated self-sticking printed markers, permanently attached stamped metal foil markers, or equivalent means as approved. Control circuit terminals of equipment shall be properly identified. Terminal and conductor identification shall match that shown on approved detail drawings. Hand lettering or marking is not acceptable.

3.3 BOXES AND SUPPORTS

Boxes shall be provided in the wiring or raceway systems where required by NFPA 70 for pulling of wires, making connections, and mounting of devices or fixtures. Pull boxes shall be furnished with screw-fastened covers. Indicated elevations are approximate, except where minimum mounting heights for hazardous areas are required by NFPA 70. Unless otherwise indicated, boxes for wall switches shall be mounted 1.2 meters above finished floors. Switch and outlet boxes located on opposite sides of fire rated walls shall be separated by a minimum horizontal distance of 600 mm. The total combined area of all box openings in fire rated walls shall not exceed 0.0645 square meters per 9.3 square meters. Maximum box areas for individual boxes in fire rated walls vary with the manufacturer and must not exceed the maximum specified for that box in UL-03. Only boxes listed in UL-03 shall be used in fire rated walls.
3.3.1 Box Applications

Each box shall have not less than the volume required by NFPA 70 for number of conductors enclosed in box. Boxes for metallic raceways, 102 by 102 mm nominal size and smaller, shall be of the cast-metal hub type when located in normally wet locations, when flush and surface mounted on outside of exterior surfaces, or when located in hazardous areas. Cast-metal boxes installed in wet locations and boxes installed flush with the outside of exterior surfaces shall be gasketed. Boxes for mounting lighting fixtures shall be not less than 102 mm square, or octagonal, except smaller boxes may be installed as required by fixture configuration, as approved. Cast-metal boxes with 2.4 mm wall thickness are acceptable. Large-size boxes shall be NEMA 1 and NEMA 12 or as shown. Boxes in other locations shall be sheet steel except that aluminum boxes may be used with aluminum conduit, when permitted by NFPA 70. Boxes for use in masonry-block or tile walls shall be square-cornered, tile-type, or standard boxes having square-cornered, tile-type covers.

3.3.2 Brackets and Fasteners

Boxes and supports shall be fastened to wood with wood screws or screw-type nails of equal holding strength, with bolts and metal expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screw or welded studs on steel work. Threaded studs driven in by powder charge and provided with lockwashers and nuts, or nail-type nylon anchors may be used in lieu of expansion shields, or machine screws. Penetration of more than 38.1 mm into reinforced-concrete beams or more than 19.1 mm into reinforced-concrete joists shall avoid cutting any main reinforcing steel. The use of brackets which depend on gypsum wallboard or plasterboard for primary support will not be permitted. In partitions of light steel construction, bar hangers with 25 mm long studs, mounted between metal wall studs or metal box mounting brackets shall be used to secure boxes to the building structure. When metal box mounting brackets are used, additional box support shall be provided on the side of the box opposite the brackets. This additional box support shall consist of a minimum 300 mm long section of wall stud, bracketed to the opposite side of the box and secured by two screws through the wallboard on each side of the stud. Metal screws may be used in lieu of the metal box mounting brackets.

3.3.3 Mounting in Walls, Ceilings, or Recessed Locations

In walls or ceilings of concrete, tile, or other non-combustible material, boxes shall be installed so that the edge of the box is not recessed more than 6 mm from the finished surface. Boxes mounted in combustible walls or ceiling material shall be mounted flush with the finished surface. The use of gypsum or plasterboard as a means of supporting boxes will not be permitted. Boxes installed for concealed wiring shall be provided with suitable extension rings or plaster covers, as required. The bottom of boxes installed in masonry-block walls for concealed wiring shall be mounted flush with the top of a block to minimize cutting of the blocks, and boxes shall be located horizontally to avoid cutting webs of block. Separate boxes shall be provided for flush or recessed fixtures when required by the fixture terminal operating temperature, and fixtures shall be readily removable for access to the boxes unless ceiling access panels are provided.

3.3.4 Installation in Overhead Spaces
In open overhead spaces, cast-metal boxes threaded to raceways need not be separately supported except where used for fixture support; cast-metal boxes having threadless connectors and sheet metal boxes shall be supported directly from the building structure or by bar hangers. Hangers shall not be fastened to or supported from joist bridging. Where bar hangers are used, the bar shall be attached to raceways on opposite sides of the box and the raceway shall be supported with an approved type fastener not more than 600 mm from the box.

3.4 DEVICE PLATES

One-piece type device plates shall be provided for all outlets and fittings. Plates on unfinished walls and on fittings shall be of zinc-coated sheet steel, cast-metal, or impact resistant plastic having rounded or beveled edges. Plates on finished walls shall be of steel with baked enamel finish or impact-resistant plastic and shall be ivory as indicated satin finish corrosion resistant steel or satin finish chromium plated brass. Screws shall be of metal with countersunk heads, in a color to match the finish of the plate. Plates shall be installed with all four edges in continuous contact with finished wall surfaces without the use of mats or similar devices. Plaster fillings will not be permitted. Plates shall be installed with an alignment tolerance of 1.6 mm. The use of sectional-type device plates will not be permitted. Plates installed in wet locations shall be gasketed and provided with a hinged, gasketed cover, unless otherwise specified.

3.5 RECEPTACLES

3.5.1 Single and Duplex, 20-ampere, 125 volt

Single and duplex receptacles shall be rated 20 amperes, 125 volts, two-pole, three-wire, grounding type with polarized parallel slots. Bodies shall be of ivory to match color of switch handles in the same room or to harmonize with the color of the respective wall, and supported by mounting strap having plaster ears. Contact arrangement shall be such that contact is made on two sides of an inserted blade. Receptacle shall be side- or back-wired with two screws per terminal. The third grounding pole shall be connected to the metal mounting yoke. Switched receptacles shall be the same as other receptacles specified except that the ungrounded pole of each suitable receptacle shall be provided with a separate terminal. Only the top receptacle of a duplex receptacle shall be wired for switching application. Receptacles with ground fault circuit interrupters shall have the current rating as indicated, and shall be UL Class A type unless otherwise shown. Ground fault circuit protection shall be provided as required by NFPA 70 and as indicated on the drawings.

3.5.2 Weatherproof Applications

Weatherproof receptacles shall be suitable for the environment, damp or wet as applicable, and the housings shall be labeled to identify the allowable use. Receptacles shall be marked in accordance with UL 514A for the type of use indicated; "Damp locations", "Wet Locations", "Wet Location Only When Cover Closed". Assemblies shall be installed in accordance with the manufacturer's recommendations.

3.5.2.1 Damp Locations
Receptacles in damp locations shall be mounted in an outlet box with a gasketed, weatherproof, cast-metal cover plate (device plate, box cover) and a gasketed cap (hood, receptacle cover) over each receptacle opening. The cap shall be either a screw-on type permanently attached to the cover plate by a short length of bead chain or shall be a flap type attached to the cover with a spring loaded hinge.

3.5.2.2 Wet Locations

Receptacles in wet locations shall be installed in an assembly rated for such use whether the plug is inserted or withdrawn, unless otherwise indicated. In a duplex installation, the receptacle cover shall be configured to shield the connections whether one or both receptacles are in use. Assemblies which utilize a self-sealing boot or gasket to maintain wet location rating shall be furnished with a compatible plug at each receptacle location and a sign notifying the user that only plugs intended for use with the sealing boot shall be connected during wet conditions.

3.5.3 Receptacles, 20-Ampere, 250-Volt

Receptacles, single, 20-ampere, 250-volt, shall be ivory molded plastic, two-pole, three-wire or three-pole, four-wire, grounding type complete with appropriate mating cord-grip plug.

3.5.4 Receptacles, 30-Ampere, 125/250-Volt

Receptacles, single, 30-ampere, 125/250-volt, shall be molded-plastic, three-pole, three-wire, grounding type, complete with appropriate mating cord-grip type attachment plug. Each dryer receptacle shall be furnished with a non-detachable power supply cord for connection to the electric clothes dryer. The cord shall be an angle-type 900 mm length of Type SRD range and dryer cable with three No. 10 AWG conductors.

3.5.5 Receptacles, 60-Ampere, 125/250-Volt

Receptacles, single, 60-ampere, 125/250-volt, shall be molded-plastic, three-pole, four-wire grounding type, complete with appropriate mating cord-grip plug.

3.5.6 Special-Purpose or Heavy-Duty Receptacles

Special-purpose or heavy-duty receptacles shall be of the type and of ratings and number of poles indicated or required for the anticipated purpose. Contact surfaces may be either round or rectangular. One appropriate straight or angle-type plug shall be furnished with each receptacle. Locking type receptacles, rated 30 amperes or less, shall be locked by rotating the plug. Locking type receptacles, rated more than 50 amperes, shall utilize a locking ring. Podium receptacle/telecom box to be FSR, Inc., Type FL-500P Series.

3.6 WALL SWITCHES

Wall switches shall be of the totally enclosed tumbler type. The wall switch handle and switch plate color shall be ivory. Wiring terminals shall be of the screw type or of the solderless pressure type having suitable conductor-release arrangement. Not more than one switch shall be installed in a single-gang position. Switches shall be rated 20-ampere 277-volt for
use on alternating current only. Dimming switches shall be solid-state flush mounted, sized for the loads.

3.7 SERVICE EQUIPMENT

Service-disconnecting means shall be of the enclosed molded-case circuit breaker type with an external handle for manual operation. When service disconnecting means is a part of an assembly, the assembly shall be listed as suitable for service entrance equipment. Enclosures shall be sheet metal with hinged cover for surface mounting unless otherwise indicated.

3.8 PANELBOARDS

Circuit breakers and switches used as a motor disconnecting means shall be capable of being locked in the open position. Door locks shall be keyed alike. Nameplates shall be as approved. Directories shall be typed to indicate loads served by each circuit and mounted in a holder behind a clear protective covering. Busses shall be copper.

3.8.1 Panelboards

Panelboards shall be circuit breaker equipped as indicated on the drawings.

3.9 UNDERGROUND SERVICE

Unless otherwise indicated, interior conduit systems shall be stubbed out 1.5 m beyond the building wall and 600 mm below finished grade, for interface with the exterior service lateral conduits and exterior communications conduits. Outside conduit ends shall be bushed when used for direct burial service lateral conductors. Outside conduit ends shall be capped or plugged until connected to exterior conduit systems. Underground service lateral conductors will be extended to building service entrance and terminated in accordance with the requirements of Section 16375 ELECTRICAL DISTRIBUTION SYSTEM, UNDERGROUND and NFPA 70.

3.10 MOTORS

Each motor shall conform to the kW and voltage ratings indicated, and shall have a service factor and other characteristics that are essential to the proper application and performance of the motors under conditions shown or specified. Three-phase motors for use on 3-phase 208-volt systems shall have a nameplate rating of 200 volts. Unless otherwise specified, all motors shall have open frames, and continuous-duty classification based on a 40 degree C ambient temperature reference. Polyphase motors shall be squirrel-cage type, having normal-starting-torque and low-starting-current characteristics, unless other characteristics are specified in other sections of these specifications or shown on contract drawings. The Contractor shall be responsible for selecting the actual kilowatt ratings and other motor requirements necessary for the applications indicated. When electrically driven equipment furnished under other sections of these specifications materially differs from the design, the Contractor shall make the necessary adjustments to the wiring, disconnect devices and branch-circuit protection to accommodate the equipment actually installed.

3.11 MOTOR CONTROL
Each motor or group of motors requiring a single control and not controlled from a motor-control center shall be provided under other sections of these specifications with a suitable controller and devices that will perform the functions as specified for the respective motors. Each motor of 93 W or larger shall be provided with thermal-overload protection. Polyphase motors shall have overload protection in each ungrounded conductor. The overload-protection device shall be provided either integral with the motor or controller, or shall be mounted in a separate enclosure. Unless otherwise specified, the protective device shall be of the manually reset type. Single or double pole tumbler switches specifically designed for alternating-current operation only may be used as manual controllers for single-phase motors having a current rating not in excess of 80 percent of the switch rating. Automatic control devices such as thermostats, float or pressure switches may control the starting and stopping of motors directly, provided the devices used are designed for that purpose and have an adequate kilowatt rating. When the automatic-control device does not have such a rating, a magnetic starter shall be used, with the automatic-control device actuating the pilot-control circuit. When combination manual and automatic control is specified and the automatic-control device operates the motor directly, a double-throw, three-position tumbler or rotary switch shall be provided for the manual control; when the automatic-control device actuates the pilot control circuit of a magnetic starter, the latter shall be provided with a three-position selector switch marked MANUAL-OFF-AUTOMATIC. Connections to the selector switch shall be such that only the normal automatic regulatory control devices will be bypassed when the switch is in the Manual position; all safety control devices, such as low- or high-pressure cutouts, high-temperature cutouts, and motor-overload protective devices, shall be connected in the motor-control circuit in both the Manual and the Automatic positions of the selector switch. Control circuit connections to any MANUAL-OFF-AUTOMATIC switch or to more than one automatic regulatory control device shall be made in accordance with wiring diagram approved by the Contracting Officer unless such diagram is included on the drawings. All controls shall be 120 volts or less unless otherwise indicated.

3.11.1 Reduced-Voltage Controllers

Reduced-voltage controllers shall be provided for polyphase motors 56 kW (75 Hp) or larger. Reduced-voltage starters shall be of the single-step autotransformer, reactor, or resistor type having an adjustable time interval between application of reduced and full voltages to the motors. Wye-delta reduced voltage starters or part winding increment starters having an adjustable time delay between application of voltage to first and second winding of motor may be used in lieu of the reduced voltage starters specified above for starting of motor-generator sets, centrifugally operated equipment or reciprocating compressors provided with automatic unloaders.

3.11.2 Contacts

Unless otherwise indicated, contacts in miscellaneous control devices such as float switches, pressure switches, and auxiliary relays shall have current and voltage ratings in accordance with NEMA ICS 2 for rating designation B300.

3.11.3 Safety Controls
Safety controls for boilers shall be connected to a 2-wire, 120 volt grounded circuit supplied from the associated boiler-equipment circuit. Where the boiler circuit is more than 120 volts to ground, safety controls shall be energized through a two-winding transformer having its 120 volt secondary winding grounded. Overcurrent protection shall be provided in the ungrounded secondary conductor and shall be sized for the load encountered.

3.12 MOTOR-DISCONNECT MEANS

Each motor shall be provided with a disconnecting means when required by NFPA 70 even though not indicated. For single-phase motors, a single or double pole toggle switch, rated only for alternating current, will be acceptable for capacities less than 30 amperes, provided the ampere rating of the switch is at least 125 percent of the motor rating. Switches shall disconnect all ungrounded conductors. All motor disconnect means will be rated for the horsepower of the device to be disconnected.

3.13 TRANSFORMER INSTALLATION

Three-phase transformers shall be connected only in a delta-wye or wye-delta configuration as indicated except isolation transformers having a one-to-one turns ratio. "T" connections may be used for transformers rated at 15 kVA or below. Dry-type transformers shown located within 1.5 meters of the exterior wall shall be provided in a weatherproof enclosure. Transformers to be located within the building building and vault may be provided in the manufacturer's standard, ventilated indoor enclosure designed for use in 40 degrees C ambient temperature, unless otherwise indicated.

3.14 LAMPS AND LIGHTING FIXTURES

Ballasted fixtures shall have ballasts which are compatible with the specific type and rating of lamps indicated and shall comply with the applicable provisions of the publications referenced.

3.14.1 Lamps

Lamps of the type, wattage, and voltage rating indicated shall be delivered to the project in the original cartons and installed in the fixtures just prior to the completion of the project.

3.14.1.1 Incandescent

Incandescent lamps shall be for 125-volt operation unless otherwise indicated.

3.14.1.2 Fluorescent

Fluorescent lamps for electronic ballasts shall be as indicated. Lamps shall meet minimum requirements stated in Section 6.2.2.3 of Design Analysis with minimum CRI not less than 75 and an initial lumen output not less than 2800.

3.14.1.3 High-Intensity-Discharge

High-intensity-discharge lamps shall be the metal halide type unless otherwise indicated, shown, or approved.
3.14.2 Fixtures

Fixtures shall be as shown and shall conform to the following specifications. Fixtures of similar designs and equivalent energy efficiency, light distribution and brightness characteristics, and of equal finish and quality will be acceptable if approved. In suspended acoustical ceilings with fluorescent fixtures, the fluorescent emergency light fixtures shall be furnished with self-contained battery packs.

3.14.2.1 Accessories

Accessories such as straps, mounting plates, nipples, or brackets shall be provided for proper installation. Open type fluorescent fixtures with exposed lamps shall have a wire-basket type guard.

3.14.2.2 Suspended Fixtures

Suspended fixtures shall be provided with swivel hangers in order to ensure a plumb installation. Pendants, rods, or chains 1.2 meters or longer excluding fixture, shall be braced to limit swinging. Bracing shall be 3 directional, 120 degrees apart. Single unit suspended fluorescent fixtures shall have twin-stem hangers. Multiple unit or continuous-row fluorescent units shall have a tubing or stem for wiring at one point, and a tubing or rod suspension provided for each length of chassis including one at each end. Maximum distance between adjacent tubing or stems shall be 3.1 meters. Rods shall be of not less than 4.8 mm diameter. Flexible raceway shall be installed to each fixture from an overhead junction box. Fixture to fixture wiring installation is allowed only when fixtures are installed end to end in a continuous run.

3.14.2.3 Ceiling Fixtures

Ceiling fixtures shall be coordinated with and suitable for installation in, on, or from the suspended ceiling provided under other sections of these specifications. Installation and support of fixtures shall be in accordance with the NFPA 70 and manufacturer's recommendations. Recessed fixtures shall have adjustable fittings to permit alignment with ceiling panels. Recessed fixtures installed in fire-resistant type of suspended ceiling construction shall have the same fire rating as the ceiling or shall be provided with fireproofing boxes having materials of the same fire rating as the ceiling panels, in conformance with UL-03. Surface-mounted fixtures shall be suitable for fastening to the structural support for ceiling panels.

3.14.2.4 Sockets

Sockets of industrial, strip, and other open type fluorescent fixtures shall be of the type requiring a forced movement along the longitudinal axis of the lamp for insertion and removal of the lamp.

3.15 EQUIPMENT CONNECTIONS

All wiring not furnished and installed under other sections of the specifications for the connection of electrical equipment as indicated on the drawings shall be furnished and installed under this section of the specifications. Connections shall comply with the applicable requirements of paragraph WIRING METHODS. Flexible conduits 2 m or less in length shall
be provided to all electrical equipment subject to periodic removal, vibration, or movement and for all motors. All motors shall be provided with separate grounding conductors. Liquid-tight conduits shall be used in damp or wet locations.

3.15.1 Motors and Motor Control

Motors and motor controls shall be installed in accordance with NFPA 70, the manufacturer's recommendations, and as indicated. Wiring shall be extended to motors and motor controls centers and terminated.

3.15.2 Installation of Government-Furnished Equipment

Wiring shall be extended to the equipment location and terminated.

3.16 CIRCUIT PROTECTIVE DEVICES

The Contractor shall calibrate, adjust, set and test each new adjustable circuit protective device to ensure that they will function properly prior to the initial energization of the new power system under actual operating conditions.

3.17 PAINTING AND FINISHING

Field-applied paint on exposed surfaces shall be provided under Section 09900 PAINTING, GENERAL.

3.18 FIELD TESTING

Field testing shall be performed in the presence of the Contracting Officer. The Contractor shall notify the Contracting Officer 3 days prior to conducting tests. The Contractor shall furnish all materials, labor, and equipment necessary to conduct field tests. The Contractor shall perform all tests and inspection recommended by the manufacturer unless specifically waived by the Contracting Officer. The Contractor shall maintain a written record of all tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results. All field test reports will be signed and dated by the Contractor.

3.18.1 Safety

The Contractor shall provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. The Contractor shall replace any devices or equipment which are damaged due to improper test procedures or handling.

3.18.2 Ground-Resistance Tests

The resistance of each grounding electrode each grounding electrode system the grounding grid shall be measured using the fall-of-potential method defined in IEEE Std 81. Soil resistivity in the area of the grid shall be measured concurrently with the grid measurements. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be
used to meet the required resistance, but the specified number of electrodes must still be provided.

a. Single rod electrode - 10 ohms.

b. Grid electrode - 10 ohms.

3.18.3 Ground-Grid Connection Inspection

All below-grade ground-grid connections will be visually inspected by the Contracting Officer before backfilling. The Contractor shall notify the Contracting Officer 72 hours before the site is ready for inspection.

3.18.4 Cable Tests

The Contractor shall be responsible for identifying all equipment and devices that could be damaged by application of the test voltage and ensuring that they have been properly disconnected prior to performing insulation resistance testing. An insulation resistance test shall be performed on all low and medium voltage cables after the cables are installed in their final configuration and prior to energization. The test voltage shall be 500 volts DC applied for one minute between each conductor and ground and between all possible combinations of conductors. The minimum value of resistance shall be:

\[R \text{ in megohms} = \frac{(\text{rated voltage in kV} + 1) \times 304,800}{\text{(length of cable in meters)}} \]

Each cable failing this test shall be repaired or replaced. The repaired cable system shall then be retested until failures have been eliminated.

3.18.4.1 Low Voltage Cable Tests

a. Continuity test.

b. Insulation resistance test.

3.18.5 Motor Tests

a. Phase rotation test to ensure proper directions.

b. Operation and sequence of reduced voltage starters.

c. High potential test on each winding to ground.

d. Insulation resistance of each winding to ground.

e. Vibration test.

f. Dielectric absorption test on motor and starter.

3.18.6 Dry-Type Transformer Tests

The following field tests shall be performed on all dry-type transformers.

a. Insulation resistance test phase-to-ground, each phase.

b. Turns ratio test.
3.18.7 Circuit Breaker Tests

The following field tests shall be performed on circuit breakers.

3.18.7.1 Circuit Breakers, Molded Case
 a. Insulation resistance test phase-to-phase, all combinations.
 b. Insulation resistance test phase-to-ground, each phase.
 c. Closed breaker contact resistance test.
 d. Manual operation of the breaker.

3.19 OPERATING TESTS

After the installation is completed, and at such time as the Contracting Officer may direct, the Contractor shall conduct operating tests for approval. The equipment shall be demonstrated to operate in accordance with the specified requirements. An operating test report shall be submitted in accordance with paragraph FIELD TEST REPORTS.

3.20 FIELD SERVICE

3.20.1 Installation Engineer

After delivery of the equipment, the Contractor shall furnish one or more field engineers, regularly employed by the equipment manufacturer to supervise the installation of equipment, assist in the performance of the onsite tests, oversee initial operations, and instruct personnel as to the operational and maintenance features of the equipment.

3.21 ACCEPTANCE

Final acceptance of the facility will not be given until the Contractor has successfully completed all tests and after all defects in installation, material or operation have been corrected.

-- End Of Section --
SECTION 16445

TRANSIENT VOLTAGE SURGE SUPPRESSOR (TVSS)

PART 1 GENERAL

1.1 SCOPE

Includes furnishing and installing a high energy transient voltage suppressor. The specified device shall provide effective high energy surge diversion for application in ANSI/IEEE C62.41-1991 Location Category C3 for Service Entrance Panels (SEP) and B3 for Panelboards.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 13 (1996; Errata 13-96-1) Automatic Sprinkler Systems

NFPA 13R (1996) Installation of Sprinkler Systems in Residential Occupancies Up to and Including Four Stories in Height

NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET)
1.2 RELATED WORK

a. Basic Electrical Requirement.

b. Electrical-Basic Materials and Method.

c. Distribution Switchboard.

d. Panel Boards.

1.3 STANDARDS

The suppressor shall be designed, manufactured, tested and installed in compliance with:

a. American National Standards Institute of Electrical and Electronic Engineers (ANSI/IEEE C62.11, (ANSI)IEEE C62.41 and (ANSI)IEEE C62.45)

b. National Electrical Manufacturer Association (NEMA)

c. National Fire Protection Association (NFPA 20, NFPA 70, NFPA 75 and NFPA 78)

d. Underwriters Laboratories (UL 1449)

1.4 SUBMITTALS

Submit product brochures/data completely describing all items of equipment. Submit shop drawings indicating locations and dimensions of all TVSS equipment and associated electrical boards. Include data substantiating that materials comply with requirements.

SD-01 Data

Product Brochures/Data; FIO

SD-04

Shop Drawings

PART 2 PRODUCTS
2.1 REPLACABLE MODULES

The system shall be constructed using field replaceable modules. The status of each module shall be locally monitored with an LED that will illuminate if the modules protection capabilities are reduced. Provide protection for each phase. Each phase surge suppressor shall be protected with field replaceable fuses.

2.2 SELF DIAGNOSTICS

Solid state LED indicators shall be provided to indicate power available to each phase and reduced protection of a phase. Indicators shall be visible without having to remove or open a cover.

2.3 REMOTE ALARM CAPABILITY

Relay alarm contacts shall be provided for remote alarm monitoring capability of unit status. Normally open and normally closed contacts shall be provided with voltage and current limiting protection. Relay operation shall be in a fail safe operating mode i.e., continuously energized so that power failure, reduced protection, or a break in the remote monitoring line will cause a fault indication at the remote monitor.

2.4 AUDIBLE ALARM

The system shall be equipped with an audible alarm which shall be activated when any one of the modules has a reduced protection condition. A mute switch shall be provided for the audible alarm.

2.5 ELECTRICAL REQUIREMENTS

2.5.1 Unit operating Voltage

The nominal unit operating voltage shall be as indicated in Table 1 for Service Entrance Panels and Table 2 for Panelboards.

- The unit shall be installed in parallel with the protected equipment. No series connected protective elements shall be used.

2.5.2 Surge Current Capacity

The maximum surge current capacity per phase of the system, based on the standard IEEE 8/20 microsecond wave-form, shall be at least:

- SEP: 1 Event at 225kA. The surge life (8/20us) shall be at least 4kA for 10,000 occurrences. The transient suppression capability shall be bi-directional and suppress both positive and negative impulses.

- Branch panels: 1 event at 80kA. The surge life (8/20us) shall be at least 3kA for 10,000 occurrences. The transient suppression capability shall be bi-directional and suppress both positive and negative impulses.

2.5.3 Suppressor
The suppressor shall be capable of interrupting a 65kA short circuit current delivered from the AC power line. The interrupt capability must be confirmed and documented by a recognized independent testing laboratory.

The suppressor shall be designed so as to minimize the internal surge path impedance. Connection shall be made to the protected equipment using low impedance Micro Z cabling for maximum magnetic field cancellation.

2.5.4 Electrical Equipment

The equipment shall be manufactured by the following (or approved equal):

a. SEP: AMP Incorporated model SD-family, MCG Electronics, Inc. MZC-family.

b. Panelboards: AMP Incorporated model SB-family, MCG Electronics, Inc. MZB-family.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (VAC)</td>
</tr>
<tr>
<td>120/20</td>
</tr>
<tr>
<td>240/120</td>
</tr>
<tr>
<td>277/480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (VAC)</td>
</tr>
<tr>
<td>120/208</td>
</tr>
<tr>
<td>240/415</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>240/120/120*</td>
</tr>
<tr>
<td>277/480</td>
</tr>
</tbody>
</table>
PART 3 EXECUTION

3.1 INSTALLATION

The unit shall be installed in accordance with the manufacturer's printed instructions and the NEC.

 a. Units shall be installed as close as possible to the panelboard to which it is connected. Any contemplated installation greater than two feet away from the panelboard shall be requested and approved in writing prior to installation.

3.2 MAINTENANCE INSTRUCTIONS

Detailed maintenance instructions shall be provided.

3.3 MODULES AND FUSES

Internal construction should facilitate rapid repair. Plug-in modules and field replaceable fuses are required.

3.4 WARRANTY

Manufacturer to provide a 5-year warranty to cover repair or replacement of the device. Manufacturer to provide replacement of protection modules with coordinated fuses at no cost for the life of the device.

-- End Of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ELECTRONIC INDUSTRIES ALLIANCE (EIA)

ANSI/TIA/EIA-607 (1994) Commercial Building Grounding and Bonding Requirements for Telecommunications

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)

ICEA S-83-596 (1994) Fiber Optic Premises Distribution Cable

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

UNDERWRITERS LABORATORY (UL)

1.2 SYSTEM DESCRIPTION

The premises distribution system shall consist of inside-plant horizontal, riser, and backbone cables and connecting hardware to transport telephone and data (including LAN) signals between equipment items in a building.

1.3 ENVIRONMENTAL REQUIREMENTS
Connecting hardware shall be rated for operation under ambient conditions of 0 to 60 degrees C and in the range of 0 to 95 percent relative humidity, noncondensing.

1.4 QUALIFICATIONS

1.4.1 Minimum Contractor Qualifications

All work under this section shall be performed by and all equipment shall be furnished and installed by a certified Telecommunications Contractor, hereafter referred to as the Contractor. The Contractor shall have the following qualifications in Telecommunications Systems installation:

a. Contractor shall have a minimum of 3 years experience in the application, installation and testing of the specified systems and equipment.

b. All supervisors and installers assigned to the installation of this system or any of its components shall have factory certification from each equipment manufacturer that they are qualified to install and test the provided products.

c. All installers assigned to the installation of this system or any of its components shall have a minimum of 3 years experience in the installation of the specified copper and fiber optic cable and components.

1.4.2 Minimum Manufacturer Qualifications

The equipment and hardware provided under this contract will be from manufacturers that have a minimum of 3 years experience in producing the types of systems and equipment specified.

1.5 SUBMITTALS

Government approval is required for submittals with a "GA" designation; submittals not having a "GA" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Premises Distribution System; GA.

Detail drawings including a complete list of equipment and material. Detail drawings shall contain complete wiring and schematic diagrams and other details required to demonstrate that the system has been coordinated and will function properly as a system. Drawings shall include vertical riser diagrams, equipment rack details, elevation drawings of telecommunications closet walls, outlet face plate details for all outlet configurations, sizes and types of all cables, conduits, and cable trays. Drawings shall show proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearance for maintenance and operation.

Record Drawings; GA.
Record drawings for the installed wiring system infrastructure per ANSI/TIA/EIA-606. The drawings shall show the location of all cable terminations and location and routing of all backbone and horizontal cables. The identifier for each termination and cable shall appear on the drawings.

SD-03 Product Data

Record Keeping and Documentation; GA.

Documentation on cables and termination hardware in accordance with ANSI/TIA/EIA-606.

Spare Parts; FIO.

Lists of spare parts, tools, and test equipment for each different item of material and equipment specified, after approval of detail drawings, not later than 2 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of spare parts recommended for stocking.

Manufacturer's Recommendations; GA.

Where installation procedures, or any part thereof, are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations, prior to installation shall be provided. Installation of the item will not be allowed to proceed until the recommendations are received and approved.

Test Plan; GA.

Test plan defining the tests required to ensure that the system meets technical, operational and performance specifications, 60 days prior to the proposed test date. The test plan must be approved before the start of any testing. The test plan shall identify the capabilities and functions to be tested, and include detailed instructions for the setup and execution of each test and procedures for evaluation and documentation of the results.

Qualifications; GA.

The qualifications of the Manufacturer, Contractor, and the Installer to perform the work specified herein. This shall include proof of the minimum qualifications specified herein.

SD-06 Test Reports

Test Reports; GA.

Test reports in booklet form with witness signatures verifying execution of tests. Test results will also be provided on 89 mm diskettes in ASCII format. Reports shall show the field tests performed to verify compliance with the specified performance criteria. Test reports shall include record of the physical
parameters verified during testing. Test reports shall be submitted within 14 days after completion of testing. A paper copy of the test results shall be given to 314 CS/SCX (SRA Glisson) prior to Contractors departure. The test results must be approved by the QAE before the 314CS will accept the duties as the maintaining activity.

SD-07 Certificates

Premises Distribution System; GA.

Written certification that the premises distribution system complies with the ANSI/TIA/EIA-568-B, ANSI/TIA/EIA-569-A, and ANSI/TIA/EIA-606 standards.

Materials and Equipment; GA.

Where materials or equipment are specified to conform, be constructed or tested to meet specific requirements, certification that the items provided conform to such requirements. Certification by a nationally recognized testing laboratory that a representative sample has been tested to meet the requirements, or a published catalog specification statement to the effect that the item meets the referenced standard, will be acceptable as evidence that the item conforms. Compliance with these requirements does not relieve the Contractor from compliance with other requirements of the specifications.

Installers; GA.

The Contractor shall submit certification that all the installers are factory certified to install and test the provided products.

1.6 DELIVERY AND STORAGE

Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variation, dirt and dust or other contaminants.

1.7 OPERATION AND MAINTENANCE MANUALS

Commercial off the shelf manuals shall be furnished for operation, installation, configuration, and maintenance for all products provided as a part of the premises distribution system. Specification sheets for all cable, connectors, and other equipment shall be provided.

1.8 RECORD KEEPING AND DOCUMENTATION

1.8.1 Cables

A record of all installed cable shall be provided on electronic media using Windows based computer cable management software per ANSI/TIA/EIA-606. A licensed copy of the cable management software including documentation, shall be provided. The cable records shall include the required data fields for each cable and complete end-to-end circuit report for each complete circuit from the assigned outlet to the entry facility per ANSI/TIA/EIA-606.
1.8.2 Termination Hardware

A record of all installed patch panels and outlets shall be provided on electronic media using Windows based computer cable management software per ANSI/TIA/EIA-606. A licensed copy of the cable management software including documentation, shall be provided. The hardware records shall include only the required data fields per ANSI/TIA/EIA-606.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall be the manufacturer's latest standard design that has been in satisfactory use for at least 1 year prior to installation. Materials and equipment shall conform to the respective publications and other requirements specified below and to the applicable requirements of NFPA 70.

2.2 UNSHIELDED TWISTED PAIR CABLE SYSTEM

All communications cabling/premise distribution copper wiring will be CAT-6 (includes all voice and data).

2.2.1 Cable Insulation

For each individual Category 6 cable, the insulation, and material used on each pair shall be exactly the same in all physical, electrical, and chemical respects. The use of Teflon insulated, plenum rated Category 6 cable is acceptable for both plenum and non-plenum applications. If Teflon insulated plenum rated cable is used by the Contractor, it shall be Type 4x0, where all four pairs are Teflon insulated. Type 3x1 and 2x2 are not acceptable.

2.2.2 Riser Cable

Riser cable shall meet the requirements of ANSI/TIA/EIA-568-B for Category 6 100-ohm unshielded twisted pair cable. Cable shall be label-verified. Cable jacket shall be factory marked at regular intervals indicating verifying organization and performance level. Conductors shall be solid untinned copper 22 AWG. Cable shall be rated CMP per NFPA 70.

2.2.3 Horizontal Cable

Horizontal cable shall meet the requirements of ANSI/TIA/EIA-568-B-5 for Category 6. Cable shall be label-verified. Cable jacket shall be factory marked at regular intervals indicating verifying organization and performance level. Cable shall be rated CMP per NFPA 70.

2.2.4 Connecting Hardware

Connecting and cross-connecting hardware shall be the same category as the cable it serves. Hardware shall be in accordance with ANSI/TIA/EIA-568-B.

2.2.4.1 Telecommunications Outlets
Wall and desk outlet plates shall come equipped with two modular jacks, with the top or left jack labeled "voice" and the bottom or right jack labeled "data." Red LAN System outlets shall have one red multi-mode fiber optic outlet connector labeled "Secure Data." Modular jacks shall be the same category as the cable they terminate and shall meet the requirements of ANSI/TIA/EIA-568-B. Modular jack pin/pair configuration shall be T568A T568B per ANSI/TIA/EIA-568-B. Modular jacks shall be keyed. Faceplates for secure LAN shall be provided and shall be red, impact resistant plastic. Voice/Data mounting plates shall be provided for system furniture and shall match the system furniture in color. Outlet assemblies used in the premises distribution system shall consist of modular jacks assembled into both simplex and duplex outlet assemblies in single or double gang covers as indicated on the drawings. The modular jacks shall conform to the requirements of ANSI/TIA/EIA-568-B, and shall be rated for use with Category 6 cable. Outlet shall be AMP Type MDLXX or approved equal.

2.2.4.2 Patch Panels

Patch panels shall consist of eight-position modular jacks, with rear mounted type 110 insulation displacement connectors, arranged in rows or columns on 580 mm rack mounted panels. Jack pin/pair configuration shall be T568A per ANSI/TIA/EIA-568-B. Jacks shall be keyed. Panels shall be provided with labeling space.

2.2.4.3 Patch Cords

Patch cords shall be cable assemblies consisting of flexible, twisted pair stranded wire with eight-position plugs at each end. Cable shall be label-verified. Cable jacket shall be factory marked at regular intervals indicating verifying organization and performance level. Patch cords shall be wired straight through; pin numbers shall be identical at each end and shall be paired to match T568B patch panel jack wiring per ANSI/TIA/EIA-568-B. Patch cords shall be keyed. Patch cords shall be factory assembled. Patch cords shall conform to the requirements of ANSI/TIA/EIA-568-B-5 for Category 5e.

2.2.4.4 Terminal Blocks

Terminal blocks shall be rack mounted wire termination units consisting of insulation displacement connectors mounted in plastic blocks, frames or housings. Blocks shall be type 110 which meet the requirements of ANSI/TIA/EIA-568-B, and shall be rated for use with Category 6 cable. Blocks shall be mounted on standoffs and shall include cable management hardware. Insulation displacement connectors shall terminate 22 or 24 gauge solid copper wire as a minimum, and shall be connected in pairs so that horizontal cable and connected jumper wires are on separate connected terminals.

2.3 FIBER OPTIC CABLE SYSTEM

2.3.1 Backbone Cable

2.3.1.1 Singlemode

Singlemode fiber optic backbone cable shall meet the requirements of ICEA S-83-596 and the following: operation at a center wavelength of 1310 and 1550 nm; core/cladding diameter 8.3 nominal/125 micrometer; maximum attenuation
2.0 dB/km at 1300 nm, 1.75 dB/km at 1550 nm. Numerical aperture for each fiber shall be a minimum of 0.10. Cable construction shall be tight buffered type. Cable shall be imprinted with fiber count and aggregate length at regular intervals. Individual fibers shall be color coded for identification. Cable shall be rated OFNP per NFPA 70.

2.3.2 Horizontal Distribution Cable

2.3.2.1 Multimode

Multimode fiber optic horizontal cable shall meet the requirements of ANSI/TIA/EIA-568-B and ICEA S-83-596 for 62.5/125 micrometer multimode graded index optical fiber cable. Numerical aperture for each fiber shall be a minimum of 0.275. Cable construction shall be tight buffered type, two strands. Individual fibers shall be color coded for identification. Cable shall be imprinted with fiber count, fiber type, and aggregate length at regular intervals of 1.0 m. Cable shall be rated and marked OFNP per NFPA 70. Exclusive use of multi-mode fiber for the classified (RED) LAN will provide additional security as there will be no chance for an accidental connection between the base unclassified network and the facility's classified (RED) LAN.

2.3.3 Connecting Hardware

2.3.3.1 Connectors

Connectors shall be ST type with ceramic ferrule material with a maximum insertion loss of .5 dB. Connectors shall meet performance requirements of ANSI/TIA/EIA-568-B. Connectors shall be field installable. Connectors shall utilize adhesive for fiber attachment to ferrule. Connectors shall terminate fiber sizes as required for the service. Station cable faceplates shall be provided and shall be stainless steel double gang, with double-sided female ST coupler. Mounting plates shall be provided for system furniture and shall match the furniture system in color.

2.3.3.2 Patch Panels

Patch panels shall be a complete system of components by a single manufacturer, and shall provide termination, splice storage, routing, radius limiting, cable fastening, storage, and cross-connection. Patch panels shall be 580 mm rack mounted wall mounted panels. Patch panels shall provide strain relief for cables. Panels shall be provided with labeling space. Patch panel connectors and couplers shall be the same type and configuration as used elsewhere in the system.

2.3.3.3 Patch Cords

Patch cords shall be cable assemblies consisting of flexible optical fiber cable with connectors of the same type as used elsewhere in the system. Optical fiber shall be the same type as used elsewhere in the system. Patch cords shall be complete assemblies from manufacturer's standard product lines.

2.4 EQUIPMENT RACKS

2.4.1 Floor Mounted Open Frame
Floor mounted equipment racks shall be aluminum relay racks with uprights to mount equipment 580 mm wide. Uprights shall be 75 mm deep channel, 32 mm wide, drilled and tapped 12-24 in a 13 mm pattern. Racks shall be provided with a standard top crossmember, and predrilled base plate to allow floor fastening. Open frame equipment racks shall be 2.1 m in height and painted. AC outlets shall be provided as shown.

2.4.2 Cable Guides

Cable guides shall be specifically manufactured for the purpose of routing cables, wires and patch cords horizontally and vertically on 580 mm equipment racks. Cable guides shall consist of ring or bracket-like devices mounted on rack panels for horizontal use or individually mounted for vertical use. Cable guides shall mount to racks by screws and/or nuts and lockwashers.

2.4.3 Floor Mounted Cabinets

Equipment cabinets shall be floor mounted enclosures with side panels, acrylic plastic front doors, rear louvered metal doors, depth-adjustable front and rear mounting rails, and louvered top. Ventilation fans will be included. Vertical cable management devices shall be integral to the cabinet. Power strips with 12 outlets shall be provided within the cabinet. Equipment racks shall mount equipment 580 mm wide and shall be 1828 mm high and 760 mm deep. Cabinet exteriors shall be painted ivory/off-white.

2.4.4 Wall Mounted Cabinets

Wall mounted cabinets shall conform to UL 50 and have boxes constructed of zinc-coated sheet steel with dimensions not less than shown on drawings. Trim shall be fitted with hinged door and flush catch. Doors shall provide maximum openings to the box interiors. Boxes shall be provided with 19 mm fire rated plywood backboard painted white or a light color. A duplex AC outlet shall be installed within the cabinet.

2.4.5 Cable Tray

Cable support in hallways shall be provided by installing a ladder type cable tray or cable rail system above the accessible ceiling. Cable tray shall be B-line aluminum ladder or approved equal. Cable rail shall be B-line Cent-R-Rail system or approved equal. Cable tray/rail shall be mounted 10 inches below drywall ceiling in corridor. Cable support system shall be sized to provide 50% increase in the number of cables initially installed. Provide required area/sizing calculations with equipment submittal.

2.5 EQUIPMENT MOUNTING BACKBOARD

Plywood backboards shall be provided, sized as shown. Plywood to be fire retarding, shellacked.

2.6 TELECOMMUNICATIONS OUTLET BOXES

Electrical boxes for telecommunication outlets shall be 117 mm square by 53 mm deep with minimum 9 mm deep single or two gang plaster ring as shown. Provide a minimum 25 mm conduit.
PART 3 EXECUTION

3.1 INSTALLATION

System components and appurtenances shall be installed in accordance with NFPA 70, manufacturer's instructions and as shown. Necessary interconnections, services, and adjustments required for a complete and operable signal distribution system shall be provided. Components shall be labeled in accordance with ANSI/TIA/EIA-606. Penetrations in fire-rated construction shall be firestopped in accordance with Section 07840 FIRESTOPPING. Conduits, outlets and raceways shall be installed in accordance with Section 16415 ELECTRICAL WORK, INTERIOR. Wiring shall be installed in accordance with ANSI/TIA/EIA-568-B and as specified in Section 16415 ELECTRICAL WORK, INTERIOR. Wiring, and terminal blocks and outlets shall be marked in accordance with ANSI/TIA/EIA-606. Cables shall not be installed in the same cable tray, utility pole compartment, or floor trench compartment with ac power cables. Cables not installed in conduit or wireways shall be properly secured and neat in appearance and, if installed in plenums or other spaces used for environmental air, shall comply with NFPA 70 requirements for this type of installation.

3.1.1 Horizontal Distribution Cable

The rated cable pulling tension shall not be exceeded. Cable shall not be stressed such that twisting, stretching or kinking occurs. Cable shall not be spliced. Fiber optic cables shall be installed either in conduit or through type cable trays to prevent microbending losses. Copper cable not in a wireway shall be suspended a minimum of 200 mm above ceilings by cable supports no greater than 1.5m apart. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items. Placement of cable parallel to power conductors shall be avoided, if possible; a minimum separation of 300 mm shall be maintained when such placement cannot be avoided. Cables shall be terminated; no cable shall contain unterminated elements. Minimum bending radius shall not be exceeded during installation or once installed. Cable ties shall not be excessively tightened such that the transmission characteristics of the cable are altered. In raised floor areas, cable shall be installed after the flooring system has been installed. Cable 1.8 meters long shall be neatly coiled not less than 300mm in diameter below each feed point in raised floor areas.

3.1.2 Riser and Backbone Cable

Vertical cable support intervals shall be in accordance with manufacturer's recommendations. Cable bend radius shall not be less than ten times the outside diameter of the cable during installation and once installed. Maximum tensile strength rating of the cable shall not be exceeded. Cable shall not be spliced.

3.1.3 Telecommunications Outlets

3.1.3.1 Faceplates

As a minimum each jack shall be labeled as to its function and a unique number to identify cable link.
In addition, all jacks will be numbered on the faceplates and at its corresponding termination point in each of the appropriate Comm rooms. A red jack with a clear plastic faceplate will be used for the classified (RED) LAN outlets. A clear plastic faceplate will be used for voice/data (BLACK) LAN outlets.

3.1.3.2 Cables

Unshielded twisted pair and fiber optic cables shall have a minimum of 150 mm of slack cable loosely coiled into the telecommunications outlet boxes. Minimum manufacturers bend radius for each type of cable shall not be exceeded.

3.1.3.3 Pull Cords

Pull cords shall be installed in all conduit serving telecommunications outlets which do not initially have fiber optic cable installed.

3.1.4 Terminal Blocks

Terminal blocks shall be mounted in orderly rows and columns. Adequate vertical and horizontal wire routing areas shall be provided between groups of blocks. Industry standard wire routing guides shall be utilized.

3.1.5 Unshielded Twisted Pair Patch Panels

Patch panels shall be mounted in equipment racks with sufficient modular jacks to accommodate the installed cable plant plus 10 percent spares. Cable guides shall be provided above, below and between each panel.

3.1.6 Fiber Optic Patch Panels

Patch panels shall be mounted in equipment racks with sufficient ports to accommodate the installed cable plant plus 10 percent spares. A slack loop of fiber shall be provided within each panel. Loop shall be 900 mm in length. The outer jacket of each cable entering a patch panel shall be secured to the panel to prevent movement of the fibers within the panel, using clamps or brackets specifically manufactured for that purpose.

3.1.7 Equipment Racks

Open frame equipment racks shall be bolted to the floor. Cable guides shall be bolted or screwed to racks. Racks shall be installed level. Ganged racks shall be bolted together. Ganged rack cabinets shall have adjacent side panels removed.

3.1.8 Rack Mounted Equipment

Equipment to be rack mounted shall be securely fastened to racks by means of the manufacturer's recommended fasteners.

3.2 TERMINATION

Cables and conductors shall sweep into termination areas; cables and conductors shall not bend at right angles. Manufacturer's minimum bending radius shall not be exceeded. When there are multiple system type drops to individual workstations, relative position for each system shall be
maintained on each system termination block or patch panel. In addition, all voice CAT 6 (blue) will terminate on wall mounted 66 blocks in the main Comm room. All data CAT 6 (white) for the base network will terminate on rack mounted 110 blocks in the main Comm room.

3.2.1 Unshielded Twisted Pair Cable

Each pair shall be terminated on appropriate outlets, terminal blocks or patch panels. No cable shall be unterminated or contain unterminated elements. Pairs shall remain twisted together to within the proper distance from the termination as specified in ANSI/TIA/EIA-568-A. Conductors shall not be damaged when removing insulation. Wire insulation shall not be damaged when removing outer jacket.

3.2.2 Fiber Optic Cable

Each fiber shall have connectors installed. The pull strength between the connector and the attached fiber shall be not less than 11.3 kg. The mated pair loss, without rotational optimization, shall not exceed 1.0 dB. Fiber optic connectors shall be installed per ANSI/TIA/EIA-568-B.

3.3 GROUNDING

Signal distribution system ground shall be installed in the telecommunications entrance facility and in each telecommunications closet in accordance with ANSI/TIA/EIA-607 and Section 16415 ELECTRICAL WORK, INTERIOR. Equipment racks shall be connected to the electrical safety ground.

3.4 ADDITIONAL MATERIALS

The Contractor shall provide the following additional materials required for facility startup.

a. 10 of each type outlet.
b. 10 of each type cover plate.
c. 1 of each type terminal block for each telecommunications closet.
d. 4 Patch cords of 3 m for each telecommunications closet.
e. 1 Set of any and all special tools required to establish a cross connect and to change and/or maintain a terminal block.

3.5 ADMINISTRATION AND LABELING

3.5.1 Labeling

3.5.1.1 Labels

All labels shall be in accordance with ANSI/TIA/EIA-606.

3.5.1.2 Cable

All cables will be labeled using color labels on both ends with encoded identifiers per ANSI/TIA/EIA-606.
3.5.1.3 Termination Hardware

All workstation outlets and patch panel connections will be labeled using color coded labels with encoded identifiers per ANSI/TIA/EIA-606.

3.6 TESTING

Materials and documentation to be furnished under this specification are subject to inspections and tests. All components shall be terminated prior to testing. Equipment and systems will not be accepted until the required inspections and tests have been made, demonstrating that the signal distribution system conforms to the specified requirements, and that the required equipment, systems, and documentation have been provided.

3.6.1 Unshielded Twisted Pair Tests

All metallic cable pairs shall be tested for proper identification and continuity. All opens, shorts, crosses, grounds, and reversals shall be corrected. Correct color coding and termination of each pair shall be verified in the communications closet and at the outlet. Horizontal wiring shall be tested from and including the termination device in the communications closet to and including the modular jack in each room. Backbone wiring shall be tested end-to-end, including termination devices, from terminal block to terminal block, in the respective communications closets. These tests shall be completed and all errors corrected before any other tests are started.

3.6.2 Category 6 Circuits

All category 6 circuits shall be tested using a test set that meets the Class II accuracy requirements of TIA/EIA TSB 67 standard, including the additional tests and test set accuracy requirements of ANSI/TIA/EIA-568-B-5. Testing shall use the Basic Link Test procedure of TIA/EIA TSB 67, as supplemented by ANSI/TIA/EIA-568-B-5. Cables and connecting hardware which contain failed circuits shall be replaced and retested to verify the standard is met.

3.6.3 Fiber Optic Cable

Unless stated otherwise, tests shall be performed from both ends of each circuit. Connectors shall be visually inspected for scratches, pits or chips and shall be reterminated if any of these conditions exist. Each circuit leg and complete circuit shall be tested for insertion loss at 850 and 1300 nm using a light source similar to that used for the intended communications equipment. High-resolution optical time domain reflectometer (OTDR) tests shall be performed from one end of each fiber. Scale of the OTDR trace shall be such that the entire circuit appears over a minimum of 80 percent of the X-axis.

-- End Of Section --
SECTION 16775

CABLE TV SYSTEMS

PART 1 GENERAL

1.1 SCOPE

The scope includes furnishing and installing a complete cable TV system as described in the Contract Documents and as indicated on the drawings.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.3 RELATED WORK

a. Basic Electrical Requirements.

b. Raceways.

c. Wiring Devices.

1.4 SUBMITTALS

Submit manufacturer's product specifications and installation instructions for each type of material and device required. Include data substantiating that materials comply with requirements.

SD-03 Product Data

Manufacturer's Instructions

PART 2 PRODUCTS

2.1 CABLE TV CABINET

The new Cable TV Cabinet shall be a single door, piano hinged, wall mounted enclosure with an 14 gauge body and 12 gauge sub-panel. Cabinet shall have a factory finish inside and out. Inside shall be baked white enamel and outside shall be gray. Minimum size shall be 36"H x 30"W x 8"D. Grounding bar shall be securely fastened and bonded to sub-panel and to service ground. Provide a 120V dedicated circuit duplex outlet inside box for auxiliary equipment.

2.2 CABLE CONNECTORS

All cable connections shall be made with a hex crimping tool. Connectors shall be designed to be crimped with a hex crimping tool.
2.3 CABLE

Cable shall be RG6/U with braided copper shield unless otherwise noted on drawings.

2.4 SYSTEM EQUIPMENT

The system equipment shall include terminal boards, cabinets, signal splitters, amplifiers, station jacks, grounding, interior cables, outlet boxes, power supplies, conduits, and other such materials and equipment as required for a complete distribution system. Grounding shall be made via a #10 AWG wire connected to the building's service ground. A minimum clearance of 12 inches shall be maintained between runs of communication and power conduits.

2.5 CABLE REQUIREMENTS

Where required, cable shall be UL classified low smoke and low flame for use in air plenums in accordance with NFPA 70.

PART 3 EXECUTION

3.1 INSTALLATION INSTRUCTION

The contractor shall install cable TV distribution system connecting all outlets.

3.1.1 Conduit and Cable

Install conduit and RG6/U cable from each outlet to cable TV cabinet as indicated on the drawings.

3.2 MOUNTED TV JACKS

Provide Cable TV jacks mounted to metal device support and ivory color cover plate or jacks mounted to stainless steal cover plate for all outlets. Outlet jacks mounted directly to plastic will not be accepted.

3.3 RACEWAYS

All raceway elbows shall be long radius elbows as required.

3.4 SYSTEM COMPONENTS

All system components and appurtenances shall be installed in accordance with the manufacturer's instructions as specified and indicated. All installation work must be done in accordance with the safety requirements set forth in the general requirements of the latest revision of NFPA 70.

3.5 INTERIOR WIRING

Interior wiring shall be installed and terminated at all station locations as indicated. Wiring shall take the form of a "Universal Wiring Plan" where station cables are wired directly, homerun fashion, from a distribution point to the appropriate modular jack plate, jack assembly, or floor jack. Cables shall not be installed in the same cable trap, utility pole compartment or floor trench compartment with AC power cables. Cables not
installed in conduit or wireways shall be properly secured and neat in appearance.

3.6 CABLE TRAY

Provide ladder type cable tray in the corridor (above accessible ceiling) for all cable TV cables. Cable tray may be used in lieu of conduit in other areas. Cable tray to be mounted above ceiling, at 10 inches below corridor structure. Equal to B-Line 4-inch aluminum ladder type #24A-06-12-REQ'D.

-- End Of Section --