Ch 7: Atomic Electron Configurations & Chemical Periodicity

1. Electron Spin & Pauli Exclusion Principle
2. Polyelectronic Atoms
3. Electron Configurations
4. Ionic Electron Configurations
5. Periodic Trends & Chemical Properties

7.1 Pauli Exclusion Principle
Two Electrons Can Occupy an Orbital According to the **Pauli Exclusion Principle**

Note: Electrons Have Intrinsic Spin
-A Spinning Charged Particle Creates a Magnetic Field, and Just Like Two Magnets, Will Repel Unless North-South Pole Coupled, **Two Electrons Must Have Opposite Spins to Be in the Same Orbit**

m_s – fourth quantum number

Summary of Quantum numbers
-Electrons can be described by orbitals which can in turn be described by 4 quantum numbers
-No two electrons can have the same set of quantum numbers

n – Principle Q# - describes “shell”
l – angular momentum Q# - describes shape
m_l – magnetic Q# - describes orientation
m_s – spin Q# - describes intrinsic spin

Periodic Table & Quantum Numbers

Orbital Energies for Multiple Electron Atoms

- The 4s orbital “penetrates” the 3d orbital and feels a greater effective nuclear charge (Z^*)
7.3 Electron Configurations

General Rules

1. Electrons Fill Lowest Energy Orbitals First (Aufbau Principle)
2. For Orbitals of Equal Energy, Fill Each Orbital With One e^- Before Placing 2 in an Orbital (Hunds Rule)
3. Each Orbital Can Only Have Two Electrons of Opposite Spin (Pauli Exclusion Principle)
4. Determine # of Electrons in Atom (or Ion), and Fill the Orbitals According to the Above Rules

Electron Configuration of Hydrogen

Number of electrons = 1

Electron Configuration of Lithium

Number of electrons = 3

Electron Configuration of Carbon

Number of electrons = 6

Electron Configuration of Sodium (11 electrons)

Na: 1s22s22p63s1

Inner Shells can be abbreviated by Nobel gas they represent (Ne = 1s22s22p6)

Alternative (preferred) Notation use Nobel gas symbol to represent Core Electrons

Na: [Ne]3s1

Write the Electron Configuration of Vanadium and Chromium
Order of Orbital Energies

Cr: [Ar]4s\(^1\)3d\(^5\)

Filled and 1/2 Filled Sublevels Are Exceptionally Stable, This Is the Reason Behind the Stability of Noble Gasses and the Previous Electron Configuration of Chromium.

7.4 Electron Configuration of Ions

1. Anions – Add electrons to Lowest Energy Unoccupied Orbital
 - Tend to form ions which are isoelectronic to nearest noble gas

 S\(^2\) : [Ne]3s\(^2\)3p\(^6\)
 P\(^3\) : [Ne]3s\(^2\)3p\(^6\)

Electron Configuration of Ions

1. Cations – Remove electrons the orbital which is furthest from the nucleus (note how the 4s is both closer and further from the nucleus than the 3d

V: [Ar]4s\(^2\)3d\(^3\)

What is V\(^+2\)?

Ionic Radii

Anions Are Larger Than Parent Atom

Ionic Radii

Cations Are Smaller Than Parent Atom

7.5 Periodic Trends in Atomic Properties

1. Ionization Energy - ease of loosing an electron
2. Electron Affinity – ease of gaining an electron
3. Atomic radii – “size of atom”
Atomic Radii

How are atomic radii determined?

1/2 the Internuclear Bond Length for a Homonuclear Bond

\[
\text{Atomic Radii of Carbon} = .77 \ \text{Å}
\]

Atomic Size

What 2 Factors Influence Atomic Size?

1. **Principle quantum #**: as \(n \) increases, the orbitals increase in size

2. **Effective Nuclear Charge**: Core electrons shield valence electrons from the nucleus thus reducing the positive charge the valence electron feels

Why Do Atoms Get Larger Going Down a Group?

Why do Atoms Get Smaller Going Across a Period?
First Ionization Energy
- the amount of energy required to remove an electron from a gas phase atom (forming a cation)

\[\text{M(g)} \rightarrow \text{M}^+(\text{g}) + e^- \]

First Ionization Energy
Why does the ionization energy tend to increase going across a period?
The effective nuclear charge increases, making it harder to remove an electron

First Ionization Energy
Why does the ionization energy decrease going Be to B and Mg to Al
The 2s or 3s orbitals are respectively filled and have a partial shielding effect on the 2p\(^1\) & 3p\(^1\) electrons of B & Al
(Decreasing the effective nuclear charge)

First Ionization Energy
Why Does the Ionization Energy Tend to Decrease in Going From N to O & P to S?
The spin pairing energy associated with 2 electrons in a single orbital of the ns\(^2\)np\(^4\) electron configuration is repulsive and weakens the nuclear attraction

First Ionization Energy
Why Does the Ionization Energy Decrease Going Down a Group?
The valence electron tends to be further from the nucleus, making it easier to be removed

Higher Ionization Energies
Note: You can move more than one electron from an atom

First Ionization Energy
\[\text{M(g)} \rightarrow \text{M}^+(\text{g}) + e^- \]
Second Ionization Energy
\[\text{M}^+(\text{g}) \rightarrow \text{M}^{2+}(\text{g}) + e^- \]
Which is Larger?
Higher Ionization Energies

First Ionization Energy

\[\text{Li}(g) \rightarrow \text{Li}^+(g) + e^- \quad I_1 = 513.3 \text{ kJ/mol} \]

Second Ionization Energy

\[\text{Li}^+(g) \rightarrow \text{Li}^{+2}(g) + e^- \quad I_2 = 7298 \text{ kJ/mol} \]

Electron Affinities

Energy must be added for the reaction to proceed

\[\text{Ar}([\text{Ne}]:3s^23p^6) + e^- \rightarrow \text{Ar}([\text{Ne}]:3s^23p^64s^1) \]

What Does a Negative Electron Affinity Mean?

Periodic Trends: Electron Affinity

Electron Affinity Tends to Decrease Going Across a Period With Some Notable Exceptions (becoming more exothermic)

Is It Easier to Ionize an Element With a High or a Low Ionization Energy?

Note, Electron Affinities Can Be Both Endothermic and Exothermic.

What Does a Positive Electron Affinity Mean?
Periodic Trends: Electron Affinity

Why is group IIA > IA?

Group IIA has a filled s orbital

Periodic Trends: Electron Affinity

Why is group VA > IVA?

Group VA has a 1/2 filled p shell

Periodic Trends: Electron Affinity

Why is group VIIIA Positive?

The e⁻ is being added to the next shell which is shielded from the nucleus

Noble Gases

Which Group Tends to Have the Highest Ionization Energy?

Which Group Tends to Have the Highest Electron Affinity?

Metals

Tend to Have Low Ionization Energies
- Easily Oxidized (lose electrons)
- Form Cations

Charge of cations can be determined by successive ionization energies (table 7.2)

Nonmetals

- Tend to have low (negative) electron affinities
- Easily Reduced (gain electrons)
- Tend to Form anions

Note: Noble gases are an exception