Effect of Ear Canal, Earlobe, and Mastoid References on ABR

Timothy J. Lim, B.A. and Samuel R. Atcherson, Ph.D.
University of Arkansas at Little Rock and University of Arkansas for Medical Sciences

Abstract

The available literature has hinted that larger ABR Wave I amplitudes can be obtained with an ear canal reference electrode, though this practice is not in mainstream clinical use. We created a custom ear canal electrode and compared ABR amplitudes, latencies, and thresholds across three reference sites, ear canal, mastoid, and earlobe, in a staggered fashion with a two-channel commercial system. Advantages and disadvantages for the three references will be discussed.

Background and Significance

Auditory brainstem response (ABR) testing is a non-invasive procedure which utilizes an array of surface electrodes to measure aggregate evoked responses stemming from the hearing nerve and auditory brainstem (Wilson, Talbot, and Mills, 1991). It is an invaluable tool for assisting in the assessment and determination of possible hearing loss and the presence of neurological lesions within the auditory nerve through the auditory brainstem up to the level of inferior colliculus (Stockard and Rosriter, 1977).

Waves I, III, and V are often clearly exhibited in most individuals when using high stimulus intensity levels, and the overall ABR waveform generally exhibits good test-retest reliability in the same, quiet and cooperating person (Beattez, Zipp, Schaer, and Sizel, 1992). Additionally, latencies are quite similar from person to person despite normal variability in waveform morphology (Stockard, Stockard, and Shabrosh, 1978). The interpeak latency (IPL) for Waves I and V is one useful clinical index of a neurological lesion especially when the IPL is prolonged (Ruth, Mills, and Ferraro, 1988). However, Wave I is sometimes obscured because of poor signal-to-noise ratio, peripheral hearing loss, and/or the location and placement of electrodes on the head and ears (Hyde and Blair, 1981; Cashman and Rossman, 1983). Lack of a Wave I precludes the use of the Wave I-V IPL measurement.

Research and clinical experience show that an electrode placed superficially within the ear canal may enhance the amplitude of Wave I (Harder and Arlinger, 1981). The reason for this is because the ear canal electrode is closer to the generator, that is, the auditory nerve. The distal end of the auditory nerve is the most likely candidate to give rise to Wave I (Møller and Jho, 1989). While an ear lobe reference may be assumed to be stable, it is thought to be freest from the auditory nerve and the less parallel with the brainstem dipole when taking the non-inverting electrode (Fz) into account. The mastoid reference may be a better choice, but there is always risk of post-auricular muscle contamination. Thus, it seems worthwhile to (re)examine the clinical utility of the ear canal reference electrode.

Methods

Participants

- Young adults (4 males, 6 females)
- No known neurological problems reported
- Tympanograms with static admittances between 0.3 and 1.8 mmhos and tympanometric peak pressure between -100 and +50 daPa
- Pure-tone audiograms within normal limits
- No known neurological problems reported
- Completed informed consent form (Study approved by the UALR Institutional Review Board, Protocol #10-012 M1)

Evoked Potential Equipment and Procedures

- 2-Channel Bio-Logic NavPro Auditory Evoked Potential System
- Proprietary Bio-Logic NavPro insert earphones used (SINSER)
- Electrode montage: Fz referred to: Ear Canal vs. Mastoid
- Fz referred to: Ear Canal vs. Earlobe (see Figure 2)
- Ear Canal vs. Mastoid
- Earlobe vs. Mastoid

Equipment

- 2-Channel Bio-Logic NavPro Auditory Evoked Potential System
- Proprietary Bio-Logic NavPro insert earphones used (SINSER)
- Electrode montage: Fz referred to: Ear Canal vs. Mastoid
- Ear Canal vs. Mastoid
- Earlobe vs. Mastoid

Custom Ear Canal Electrode

- A straightened paperclip was passed between the plastic straw and foam of the ear tip to create a small hole for 32 gauge wire to pass through
- One end was left free to be used with an alligator clip electrode lead, while the other was tucked back into the foam for safety

Recording Parameters

- Number of Points: 256
- Epoch: 10.66 ms
- Gain: 100,000x
- Filter Settings: 100-3000 Hz
- Artifactual Rejection: ±23.9 µV
- Stimulus Type: 100 µs click
- Stimulus Level: 80 dB nHL
- Stimulus Polarity: negative
- Stimulus Rate: 2000 repetitions

Data Analysis

Two 2-way (3x3) repeated measures ANOVAs were conducted at 80 dB nHL for peak-to-trough amplitude and latency with Wave I, III, and V as one factor and Reference Electrode (ear canal, earlobe, and mastoid) as the second factor. Maxwell and Delaney (1985) note that when the sample size is less than n = 10 (where n is the number of levels for the repeated measures), the multivariate approach results are less powerful than the univariate results (within-subject). Results for the first factor were ignored. Descriptive statistics were also calculated.

Results

Peak Latency

2-way RM-ANOVAs revealed no significant main effect (F(1.974,17.762) = 1.650, p = .220); however, there was a significant interaction effect (F(2.468,22.216) = 6.040, p = .004).

Peak-to-Trough Amplitude

2-way RM-ANOVAs revealed no significant main effect (F(1.492,13.427) = 3.489, p = .071) nor significant interaction effect (F(2.320,26.889) = 1.724, p = .181).

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>III</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ear Canal</td>
<td>1.46(0.10)</td>
<td>3.66(0.06)</td>
<td>5.57(0.13)</td>
</tr>
<tr>
<td>Earlobe</td>
<td>1.49(0.11)</td>
<td>3.78(0.04)</td>
<td>5.36(0.13)</td>
</tr>
<tr>
<td>Mastoid</td>
<td>1.53(0.08)</td>
<td>3.61(0.09)</td>
<td>5.43(0.04)</td>
</tr>
</tbody>
</table>

Discussion and Conclusions

- Although the results show no statistical difference among reference electrodes, a difference in peak-to-peak amplitudes approached significance. The earlobe reference may produce smaller Wave I and Wave V amplitudes, and the ear canal may produce a larger Wave V compared to other references.
- Custom ear canal electrode appears to be clinically viable, is cheap, and easy to construct.
- Future research should consider deeper ear canal insertions, gender-specific data sets, and a larger sample size. Until then, this study suggests little difference among the three references.

References


